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A B S T R A C T   

The study of rock fabric properties (orientation, planar, linear, anisotropy) is key to unravelling the geological 
processes that generated them. With advancements in data acquisition and treatment, X-ray micro-computed 
tomography (μXCT) represents a powerful method to analyse the shape preferred orientation (SPO) of rock- 
forming elements, including minerals, aggregates, and pores, in the three-dimensional space. After reconstruc
tion and segmentation of μXCT images, we developed a novel protocol to construct and analyse the fabric tensor, 
a second-rank symmetric tensor constructed using the orientation and the length of the three characteristic axes 
of each grain (simplified to a best fit ellipsoid). The analysis of the fabric tensor permits calculation of mean 
principal directions and associated confidence ellipses, and quantifies the degree of anisotropy (P0) and the shape 
(T) of the fabric ellipsoid by eigenvalue and eigenvector analysis. 

We implement this method in the TomoFab open-source MATLAB package. The code integrates a graphical 
user interface (GUI) that allows the visualisation of the full set of ellipsoid orientation, shape, and size. Density 
plots and contouring can be utilised to identify fabrics graphically, and a full set of fabric parameters can be 
calculated based on the analysis of the fabric tensor and/or the analysis of each principal direction orientation 
tensor. 

We demonstrate the versatility of TomoFab with synthetic datasets and a field- and laboratory-based inves
tigation of a sample presenting a magmatic foliation and lineation, collected in the Mafic Complex within the 
lower crustal section of the Ivrea-Verbano Zone (North Italy). In the light of these developments, we stress that 
μXCT represents a pertinent tool for rock fabric analysis to characterise the SPO of rock components. This 
approach can be performed parallel or complementary to other rock fabric quantification methods (e.g., AMS, 
EBSD) and applied to various rock types. TomoFab is freely available for download at https://github. 
com/benpetri/tomofab.   

1. Introduction 

A rock fabric (or petrofabric) corresponds to a spatial and geomet
rical arrangement of elements inherent to a rock (minerals, grain ag
gregates, pores, inclusions). This is controlled by compositional 
layering, grain size variations of minerals, shape preferred orientation 
(SPO) and crystallographic preferred orientation (CPO) of grains. The 
study of rock fabrics provides multi-scale insights into various geological 

processes such as magma flow (Benn and Allard, 1989; Nicolas, 1992), 
rock strain patterns (Chopin et al., 2012), and paleo-sediment transport 
directions (Benn, 1994). The fabric development can be described 
semi-quantitatively in the field (foliation, lineation), but proper quan
tification requires more rigorous methods (Higgins, 2006). To date, 
quantitative fabric studies involve electron backscatter diffraction 
(EBSD; Prior et al., 1999) measurements for CPO determination (e.g., 
Bascou et al., 2001) and magnetic fabric measurements, such as 
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anisotropy of both magnetic susceptibility (AMS) and anhysteretic 
remanent magnetization (AARM) (Borradaile and Jackson, 2010; Hirt 
and Almqvist, 2012); AMS and AARM depend on both CPO and SPO (for 
ferromagnetic minerals) of the magnetic minerals of rocks (Petri et al., 
2018). Obtaining the three dimensional SPO is however time-consuming 
because it requires either serial sectioning or grinding of samples and 
image analysis (e.g., Bryon et al., 1995). Alternatively, the SPO can be 
estimated by analysing three or more section planes (slabs or thin sec
tions) at high-angle to one another or by more advanced statistical 
methods if the observation planes are not mutually perpendicular (e.g., 
Heilbronner, 1992; Launeau and Robin, 2005; Moreno Ch�avez et al., 
2018; Robin, 2002; Shan, 2008). The characterisation of a petrofabric by 
SPO requires determining the shape and orientation of each individual 
rock component. Consequently, a fabric can be either weakly developed 
(i.e., isotropic) with rounded and/or randomly oriented components or 
strongly developed (i.e., anisotropic) with highly elongated or flattened 
and strongly aligned components. 

The development of micro-computed tomography techniques, using 
either X-ray or neutron tomography (e.g., Ketcham and Carlson, 2001; 
Vontobel et al., 2006), provides access to the three-dimensional explo
ration of a rock volume and represents a powerful tool when single 
grains and/or grain aggregates can be visualised and segmented. 
Micro-computed tomography has found several applications ranging 
from fluid flow characterisation in porous media (Islam et al., 2018; 
Starnoni et al., 2017) to imaging biological matter (Titschack et al., 
2018). The size, shape and orientation of each individual object can be 
extracted (e.g., Som et al., 2013) using Blob3D for instance (Ketcham, 
2005b), but this approach requires subsequent statistical treatment. 
There is a wealth of literature on the statistics of 3D orientation data 
(Fisher, 1953; Watson and Irving, 1957), which is summarised in several 
text books (Borradaile, 2003; Fisher et al., 1993; Mardia and Jupp, 
2009). Specifically, spherical statistics are mainly obtained by means of 
vector (or axis) analysis or by analysing the orientation or the fabric 
second-rank tensors from which several parameters can be used to 
calculate the properties of the fabrics. While the construction of the 
orientation tensor is unequivocal (Scheidegger, 1965; Watson, 1966), 
various approaches to construct a “fabric tensor” have been reported, 
notably for bone structure characterisation (Odgaard, 1997) and applied 
to rock fabric quantification (Ketcham, 2005a; Launeau and Cruden, 
1998; Launeau and Robin, 1996; Macente et al., 2017; Sch€opa et al., 
2015). The different approaches to construct a fabric tensor are: (1) the 
star length distribution (SLD; Odgaard et al., 1997; Smit and Odgaard, 
1998), which probes the grain shape by analysing the length of axes 
sourcing from a point located in the volume; (2) the star volume dis
tribution (SVD), which reports the volume of a cone that originates from 
a point located in the volume; and (3) the mean intercept length (MIL; 
Harrigan and Mann, 1984; Whitehouse, 1974), which is determined 
using the number of intercepts between a linear grid and the considered 
volume surface. All these continuum methods apply a regularly or 
randomly distributed counting grid that is particularly appropriate for 

the characterisation of the fabric of a connected network of elements (e. 
g., connected pores). However, none of the current tools uses the full set 
of data that can be extracted from the best-fit ellipsoids that approxi
mate grains and/or grain aggregates (Jerram and Higgins, 2007; Ket
cham, 2005b, 2005a) with the aim of quantifying a fabric defined by a 
population of grains or pores. 

We present a set of parameters used to quantify the fabric develop
ment as basis of the TomoFab MATLAB package, which we developed to 
visualise and quantify petro-fabrics using micro-tomographic data. We 
finally illustrate and discuss the methodology using synthetic datasets 
and a case study from a rock core of gabbro presenting a magmatic 
foliation and lineation, collected in the Ivrea-Verbano Zone (Southern 
Alps, North Italy). 

2. Methods 

To satisfy the mutual dependency of three orthogonal principal axis 
orientation distributions (and related confidence angles), an appropriate 
approach should use the shape and the orientation of each individual 
grains simultaneously (i.e., the direction and length of the three prin
cipal axes V1, V2 and V3 with ||V1|| � ||V2|| � ||V3||; Fig. 1). To this 
end, we have built a method based on the SLD fabric tensor to construct 
a linear and a quadratic fabric tensor that both integrate all three 
principal axes of individual ellipsoid orientations and lengths. 

More generally, two categories of approaches have been developed 
to treat orientation data, either by analysing vectors (or axes) or by 
constructing and analysing second-rank tensors. Two types of tensors 

Fig. 1. (a) Three-dimensional view of a segmented 
grain (red) and its best-fit ellipsoid (blue), 
segmented and compiled with Blob3D (Ketcham, 
2005b). (b) Three-dimensional view of the ellipsoid 
characterised by the length and orientation of three 
orthogonal principal axes V1, V2 and V3. Colour 
map from Crameri (2018) representing the distance 
to the ellipsoid centre. (For interpretation of the 
references to colour in this figure legend, the reader 
is referred to the Web version of this article.)   

Table 1 
Summary of symbols used in the equations, text and figures.  

Symbol Definition 

i Index of ellipsoid axis: 1, 2, 3 
j Index of ellipsoid: from 1 to N 
l, m, n Directional cosines of an axis 
a Axis directional cosines in vector format: (l, m, n) 
N Number of ellipsoids considered 
V Axis coordinates in vector format 
R Length of the mean axis calculated from a population of axes 
O Orientation tensor calculated from directional cosines of a population of 

axes 
L Linear fabric tensor calculated from a set of axes triplet 
Q Quadratic fabric tensor calculated from a set of axes triplet 
λ Eigenvalue of orientation or fabric tensors 
v Eigenvector of orientation or fabric tensors 
E Confidence angle around specified direction 
P, G, R Point, Girdle, or Random orientation distribution parameters of Vollmer 

(1990) 
K Or K-index; fabric shape parameter of Woodcock (1977) 
LS Fabric shape parameter of Ulrich and Mainprice (2005) 
T Fabric shape parameter of Jelínek (1981) 
P’ Degree of anisotropy of a fabric of Jelínek (1981)  
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can be defined: the orientation tensor, constructed for each of the 
principal directions using their Cartesian coordinates (directional co
sines), and the fabric tensor, here constructed using the three principal 
directions and length of associated axes. Each of the methods provides 
quantitative estimations of circular and elliptical confidence cones and 
fabric developments parameters. The nomenclature used is reported in 
Table 1. 

2.1. Axis analysis and associated confidence estimates 

An intuitive and easily applicable approach analyses orientation and 
length of each axis (also referred to as vector analysis; after Borradaile, 
2003; Tauxe, 2003) by calculating the length R of the mean axis by: 

R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�X��

�Vi;j
�
�*lVi;j

� �2
þ
�X��

�Vi;j
�
�*mVi;j

� �2
þ
�X��

�Vi;j
�
�*nVi;j

� �2
r

(1)  

lVi,j, mVi,j and nVi,j being the directional cosines of each individual axis 
and ||Vi,j|| the length of each individual axis. This method is convenient 
for statistical estimates of the distribution using Fisher statistics (Fisher, 
1953) if data follows a unimodal distribution (one confidence angle; a 
circular confidence cone; Fig. 2a), and Bingham or Henry – Le Goff 
statistics (Bingham, 1964; Henry and Le Goff, 1995) if data distribution 
is bimodal (two confidence angles; an elliptical confidence cone). The 
main drawback of this approach is that the three principal directions of 
each ellipsoid are treated independently, whereas the orientation of 
each principal axis (e.g., V1) depends on the orientation of the other two 
axes (V2 and V3). The orthogonality of the resulting mean directions will 
not be preserved and the compiled lineations and foliations defined by 
an ellipsoid population are without meaning, notably in case of rela
tively scattered principal axes orientation (Fig. 2a). 

2.2. Orientation tensor 

The mean orientation tensor is a second-rank symmetric tensor 
constructed using the sum of the directional cosines of a single principal 
direction (e.g., V1). The method was developed in parallel by Schei
degger (1965) and Watson (1966). The orientation tensor is defined as: 

OVi¼
XN

j¼1
ajaT

j (2)  

with aj ¼

0

@
lj
mj
nj

1

A, l, m, and n being the directional cosines of a specific 

principal direction (e.g., V1). Thus, OVi can be re-written as: 

O Vi¼

2

6
6
6
4

X
l2
Vi;j

X
lVi;jmVi;j

X
lVi;jnVi;j

X
mVi;jlVi;j

X
m2

Vi;j

X
mVi;jnVi;j

X
nVi;jlVi;j

X
nVi;jmVi;j

X
n2

Vi;j

3

7
7
7
5

(3)  

OVi is frequently normalised by the sum of its eigenvalues or by the 
number of data points. The eigenvectors (v1, v2, v3) of the greatest, 
intermediate, and smallest eigenvalues (λ1, λ2, λ3) of O, corresponds to 
axes with maximum, intermediate, and minimum strength, respectively. 
Similar to the axis analysis, OVi can only be calculated for an individual 
direction (e.g., OV1 for V1 axes) but the combination of orientation 
tensors cannot involve more than 2 principal directions (Lisle, 1989), 
simply because the sum of O from the three orthogonal directions is null. 

2.3. Fabric tensor 

Calculation of the three orthogonal principal axes and their inter
dependent level of confidence alone is not sufficient to fully quantify the 
fabric tensor because it requires combining information on the three 
principal axes into a single tensor. This can be done using a fabric tensor 
that can be described in a linear or quadratic form. 

2.3.1. Linear fabric tensor 
The linear fabric tensor corresponds to the sum of the three orien

tation tensors of characteristic axes multiplied by their lengths: 

L ¼
XN

j¼1

�
�V1;j

�
�aV1;jaT

V1;j þ
XN

j¼1

�
�V2;j

�
�aV2;jaT

V2;j þ
XN

j¼1

�
�V3;j

�
�aV3;jaT

V3;j (4)  

with aV1;j ¼

0

@
lV1;j
mV1;j
nV1;j

1

A, l, m, and n being the directional cosines of a 

specific principal direction (here V1) and ||V1,j|| its length or norm. For 
example, the first element of equation (4) can be also written as:  

Fig. 2. Mean orientation statistics for the three principal axes defined by a set 
of ellipsoids. (a) Axis analysis and associated Fisher statistics. E1, E2 and E3 are 
cone half-opening angles for V1, V2 and V3 mean directions. (b) Fabric tensor 
analysis (linear fabric tensor) with Hext and Jelínek statistics. Hext-Jelínek 
confidence estimates result in elliptical confidence cones characterised by two 
half-opening angles (e.g., E13 and E12 for V1 in the direction of V3 and V1 in the 
direction of V2, respectively). The red dashed line highlights the V1–V2 plane, i. 
e., the foliation defined by the SPO; the lineation corresponds to the direction of 
V1. N: number of ellipsoids used for calculations. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 
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2.3.2. Quadratic fabric tensor 
The quadratic fabric tensor design is identical to the fabric tensor 

based on the SLD method (Ketcham, 2005a; Odgaard et al., 1997; Smit 
and Odgaard, 1998), but it adopts only the three characteristic axes of 
individual ellipsoids: 

Q¼
XN

j¼1
aV1;jaT

V1;j þ
XN

j¼1
aV2;jaT

V2;j þ
XN

j¼1
aV3;jaT

V3;j (6)  

with aV1;j ¼

0

@

�
�V1;j

�
�lV1;j�

�V1;j
�
�mV1;j�

�V1;j
�
�nV1;j

1

A, l, m, and n being the directional cosines of 

a specific principal direction (here V1) and ||V1,j|| its length. For 
example, the first element of Q, which is the fabric tensor of V1, can also 
be written as:   

2.3.3. Fabric tensor analysis 
Both the linear and the quadratic fabric tensors can be decomposed 

into eigenvectors (v1, v2, v3) of the greatest, intermediate, and smallest 
eigenvalues (λ1, λ2, λ3), which give the maximum, intermediate, and 
minimum values of the “moment of inertia” i.e., the mean principal 
directions and lengths of V1, V2 and V3 of the fabric ellipsoid, which will 
be orthogonal (Fig. 2b). From the principal directions, the coordinates of 
the foliation and the lineation defined by the SPO of the ellipsoids can be 
calculated and correspond to the V1–V2 plane and to the V1 axis, 
respectively. 

Several operations are applicable when constructing the orientation 
tensor. One consists of constructing the fabric tensor with normalised 
individual ellipsoid size (e.g., by the root of the sum of the square axis 
length or by the length of the V1 axis) so that all ellipsoids are weighted 
equally. This would avoid that the fabric tensor is dominated by a small 
number of highly anisotropic and large ellipsoids, which potentially 
form a secondary and weaker fabric (sub-fabric; see discussion below 
and in the work of Borradaile, 2001). For convenience, both L and Q can 
be normalised by the sum of its eigenvalues. 

2.3.4. Confidence estimates 
Calculations to estimate the data dispersion from second-rank ten

sors were initially proposed for anisotropy of magnetic susceptibility 
(AMS) measurements but are applicable to other second-rank tensors on 
the condition that they are symmetric. The methods permit calculation 

of confidence angles that define an elliptical cone around each mean 
principal axis by integrating the mutually dependant distribution of the 
individual axes. 

First, the Hext method (Hext, 1963; summarised in Tauxe, 2003) 
uses the mean value of the tensor diagonal elements and uses its devi
ation to calculate confidence angles. Three angles of confidence of the 
three mean directions are calculated: E12 ¼ E21; E13 ¼ E31; and E23 ¼ E32, 
with E12 being the confidence angle around V1 in the direction of V2 
(Fig. 2b), usually calculated at a 95% level of confidence. 

The method of Jelínek (Jelínek, 1978; summarised in Tauxe, 2003) 
requires a larger number of calculations with the use of the covariance 
matrix of a reassembled tensor to construct three matrices whose ei
genvalues are used to derive six different confidence angles: E12, E21, 
E13, E31, E23 and E32. Both methods usually provide similar confidence 
angles, although the Hext method tends to generate larger confidence 
angles than those produced by the Jelínek method (Fig. 2b; Borradaile, 
2003; Tauxe, 2003; Werner, 1997). Both Hext and Jelínek methods 
require measurements that have uncertainties with zero mean as well as 

being normally distributed and small (see discussion in Tauxe, 2003). 
This can be verified using quantile-quantile plots (Q-Q plots; Tauxe, 
2003). A third method was therefore developed by Constable and Tauxe 
(1990) using a bootstrapping approach that would be preferred in the 
presence of a sub-fabric (bimodal orientation distribution). 

2.4. Fabric parameters 

Second-order tensors are particularly appropriate to derive quanti
tative parameters characterising fabrics, as commonly done with 
structural data, EBSD or AMS. Indeed, fabric analysis can be performed 
either by using the eigenvalues of the orientation tensor of each axis 
treated separately (OVi; K-index; P, G, R values; parameters introduced 
below), a combination of eigenvalues of multiple orientation tensors 
(OV1 and OV3; LS-index) or simply the eigenvalues of the fabric tensor (L 
and Q; shape parameter T, corrected anisotropy P0). All parameters rely 
on the following ellipsoid shape end-members:  

(1) Spherical ellipsoid if V1 ¼ V2 ¼ V3;  
(2) Planar ellipsoid if V1 ¼ V2 > V3;  
(3) Linear ellipsoid if V1 > V2 ¼ V3;  
(4) Triaxial (neutral) ellipsoid if V1 > V2 > V3;  
(5) The greater the difference between the lengths of each axis, the 

more anisotropic the ellipsoid becomes. 

Most of these parameters can be calculated from a best fit ellipsoid 
(with V1, V2, V3 lengths) to each grain, but also for the fabric tensor 

XN

j¼1

�
�V1;j

�
�aV1;jaT

V1;j ¼

2

6
6
6
6
4

X�
�V1;j

�
�l2

V1;j

X�
�V1;j

�
�lV1;jmV1;j

X�
�V1;j

�
�lV1;jnV1;j

X�
�V1;j

�
�mV1;jlV1;j

X�
�V1;j

�
�m2

V1;j

X�
�V1;j

�
�mV1;jnV1;j

X�
�V1;j

�
�nV1;jlV1;j

X�
�V1;j

�
�nV1;jmV1;j

X�
�V1;j

�
�n2

V1;j

3

7
7
7
7
5

(5)   
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6
6
6
6
6
4
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�V1;j

�
�2lV1;jnV1;j
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�V1;j

�
�2mV1;jlV1;j

X�
�V1;j

�
�2m2

V1;j

X�
�V1;j

�
�2mV1;jnV1;j
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�V1;j
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�2nV1;jlV1;j
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�V1;j
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X�
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3

7
7
7
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5

(7)   
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eigenvalues (λ1, λ2, λ3) resulting from the combination of many grains. 
Various types of diagrams can be used to analyse the parameters 
calculated from each grain and from the fabric tensor (Fig. 3). 

2.4.1. Shape parameters 
One of the first parameters that was introduced is the K-index 

(Woodcock, 1977), which can be computed using any of the orientation 
tensors. It is most likely calculated using the orientation tensor of the 
longest axis of objects (i.e., c-axis for pyroxene, V1 for ellipsoids) and is 
defined by Woodcock, 1977 as: 

K¼
lnðλ1=λ2Þ

lnðλ2=λ3Þ
(8)  

The K-index value ranges from 1 to ∞ for linear ellipsoids, approaches 1 
for spherical and triaxial neutral ellipsoid and ranges from 1 to 0 for 
planar ellipsoids. It is an analogue to the Flinn (1962) or Ramsay (1967) 
diagram used in structural geology (Fig. 3a). 

Alternatively, Vollmer (1990) proposed the definition of three pa
rameters to estimate the distribution of directions by the calculation of 
the P (equal 1 for point distribution), G (equal 1 for girdle distribution) 
and R (equal 1 for random distribution) parameters defined as follows: 

P¼ λ1 � λ2; G¼ 2�ðλ2 � λ3Þ; R¼ 3� λ3 (9)  

with Pþ Gþ R ¼ 1 and λ1, λ2, and λ3 being the three eigenvalues of the 
orientation tensor of the chosen principal axis. 

The LS-index of Ulrich and Mainprice (2005) is constructed using the 
P, G, and R parameters of two perpendicular principal directions, 
commonly the largest and smallest axes (e.g., b- and c-axes of pyroxene, 
V1 and V3 of ellipsoids, respectively), and are defined as: 

LS¼
1
2

�

2 �
�

PV3

GV3 þ PV3

�

�

�
GV1

GV1 þ PV1

��

(10)  

with PV3 and GV3 being the P and G parameters calculated using the V3 
orientation tensor and PV1 and GV1 being the P and G parameters 
calculated using the V1 orientation tensor. Consequently, the LS-index 
equals 1 for linear fabrics and is 0 for planar objects (Fig. 3a). 

The shape parameter T, developed for AMS measurements, uses a 
tensor containing the information of the three orthogonal principal di
rections (i.e., a fabric tensor). It is defined by Jelínek (1981) as: 

T ¼
lnðλ2=λ3Þ � lnðλ1=λ2Þ

lnðλ2=λ3Þ þ lnðλ1=λ2Þ
(11) 

The shape parameter T reflects shape of the fabric ellipsoid: rota
tional planar (1.0 � T > 0.5); planar to plano-linear (0.5 � T > 0.2); 
plano-linear (0.2 � T > � 0.2); plano-linear to linear � 0.2 � T > � 0.5); 
rotational linear (� 0.5 � T � � 1.0). 

2.4.2. Anisotropy 
The degree of anisotropy of the fabric can be inferred from the 

“corrected” anisotropy parameter P0 (Jelínek, 1981) of the fabric tensor, 
defined as: 

P’¼ exp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
��

ln
�

λ1

λm

��2

þ

�

ln
�

λ2

λm

��2

þ

�

ln
�

λ3

λm

��2�
s

(12)  

with λm ¼ ðλ1 þ λ2 þ λ3Þ=3. The P0 parameter increases from 1 
(isotropic) up to values depending on the shape and distribution of its 
constituents. Both P0 and T parameters are combined to construct the 
Jelínek plot, as particularly adapted for rock fabric analysis (Fig. 3b). 
However, low anisotropy ellipsoids that approach to a spherical shape 
can be graphically scattered in a standard Jelínek plot. To avoid this 
graphical bias, an alternative approach was proposed by Borradaile and 
Jackson (2010) with a polar P0-T plot (Fig. 3c). 

Fig. 3. Examples of fabric diagrams, associated fabric ellipsoids and ideal 
distribution of V1, V2 and V3 orientations. (a) Ramsay plot (modified Flinn 
diagram; Flinn, 1962; Ramsay, 1967), (b) standard P0-T plot (Jelínek plot; 
Jelínek, 1981) and (c) polar P0-T plot (Borradaile and Jackson, 2010). Black 
arrows indicate the direction of increasing degree of anisotropy. 
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3. Implementation of the TomoFab program 

The various methods for mean direction calculations, confidence 
ellipses and parameters informing about the characteristics of the fabric 
have been incorporated in the TomoFab MATLAB package (a continu
ously maintained version is available for download at https://github. 
com/benpetri/tomofab). The code runs on multiple platforms using 
MATLAB R2015a and newer versions without additional specific tool
boxes. The user can run the tomofab.m file, which launches promptly the 
graphical user interface or GUI (Fig. 4). 

The GUI consists of different panels that allow loading and exporting 
data and plots and then visualizing and filtering input data using the 
ellipsoid volume. Input files are tab-separated value tables of ellipsoids 
and sample orientation information. Volume filtering automatically 
recalculates all statistical parameters and updates all plots. Orientation 
data are plotted in either equal area (Schmidt) or equal angle (Wülff) 
nets, however the equal area projection is recommended for fabric 
analysis to avoid the inherent density distortion of the stereographic 
equal angle projection. The user can identify data clustering (fabrics and 
sub-fabrics) using contoured density plots constructed with a modified 
Kamb method (Vollmer, 1995) displaying densities in 3σ (standard de
viation) or in multiples of uniform distribution (MUD). 

Calculation of mean orientations can be performed either by vector 
analysis (orthogonality between the mean principal directions is not 
taken into account) or using the analysis of the fabric tensor (orthogo
nality between the mean principal directions is preserved). The user has 
the choice to either use a linear or a quadratic fabric tensor. Depending 
on the dataset, the user may normalise the size of each ellipsoid by the 
root of the sum of the squared axis lengths to limit the influence of a 
small number of large and highly anisotropic ellipsoids on the fabric 
tensor (the effect of the “sub-fabric” above described). Depending 
whether the orientation statistics were compiled by vector or tensor 
analysis, Fisher, Hext and Jelínek confidence cones can be calculated 
and displayed. Additional statistical methods can also be implemented 
such as Bingham statistics. For each loop of calculation, orientation 
parameters (mean V1, V2 and V3 direction, foliation, and lineation dip 
directions) are updated at the bottom-left of the window. 

Fabric diagrams are updated at each calculation loop and consist of 
an ellipsoid aspect ratio (V1/V3) histogram, a PGR ternary diagram for 
each principal direction (Vollmer, 1990), a Ramsay plot using a log(|| 
V2||/||V3||) - log(||V1||/||V2||) correlation (Fig. 3a; modified from 
Flinn, 1962; Ramsay, 1967) and a Jelínek plot (P0-T; Fig. 3b; Jelínek, 
1981) for individual ellipsoid but also for the fabric tensor. Alterna
tively, a polar P0-T plot of Borradaile and Jackson (2010) can be used, 
with either a linear P0 axis or a log(P0) axis in case of dataset with 
scattered individual ellipsoid P0, which is likely the case with geological 
material analysed with μXCT compared to standard P0 values derived 
from AMS dataset (usual P0 values are ranging between 1 and 1.2). 

All calculations can be performed in the sample coordinate system, 
but the full dataset can be re-oriented back to the geographic coordinate 
system. To do so, the sample orientation should be known and high
lighted by a physical mark before the tomography analysis, in order to 
apply upside down analysis, strike and dip angle corrections. In such a 
case, the program reads orientation information and applies corrections 
for each individual ellipsoid, and performs all calculations (axis or 
tensor analysis, confidence estimates, fabric parameters) in the 
geographic coordinate system. 

4. Synthetic case study 

In order to test the different methods of constructing fabric tensors 
and the implications for confidence ellipses calculation and fabric pa
rameters, we have generated synthetic datasets composed of ellipsoids 
with variable size, shape, and orientation distribution (Figs. 5–7). 

4.1. Fabric parameters 

The first dataset employed (Figs. 5 and 6) corresponds to a set of 50 
planar and planar to plano-linear ellipsoids with V1 � 1 mm, V2 � 0.9 
mm and V3 � 0.6 mm and 3 linear to plano-linear ellipsoids with V1 � 2 
mm, V2 � 0.9 mm and V3 � 0.6 mm. These ellipsoids are rotated around 
their V1 axis to produce a linear fabric (Figs. 5a and 6a) or rotated 
around their V3 axis to produce a planar fabric (Figs. 5b and 6b). For 
better visibility, random noise is added to the orientation of the 

Fig. 4. Graphical user interface of TomoFab allowing to display, analyse and quantify orientation and fabric statistics.  
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Fig. 5. Synthetic datasets composed of ellipsoids with different orientation distribution illustrated with a 3D rendering of the ellipsoids, Schmidt net, PGR diagram, 
Ramsay diagram, standard P0-T diagram and polar P0-T diagram. (a) Ellipsoids rotated around their V1 axes to produce a linear fabric. (b) Ellipsoids rotated around 
their V3 axes to produce a planar fabric. The red dashed line highlights the V1–V2 plane, i.e., the foliation defined by the SPO; the lineation corresponds to the 
direction of V1. Statistics calculated with a linear fabric tensor and Hext confidence ellipses at 95% level of confidence. See text for details. Colour map from Crameri 
(2018) representing the distance to the ellipsoid centre. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version 
of this article.) 
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ellipsoids and the length of their axes. 
The synthetic linear fabric (Fig. 5a) displays a point clustering of V1 

axes and girdle distribution of V2 and V3 axes, confirmed by the PGR 
values and diagram. Accordingly, the use of a linear fabric tensor in
dicates V1 mean direction at V1 clustering point, whereas V2 and V3 
mean directions lie on the girdle defined by V2 and V3 individual el
lipsoids axes. Compiled Hext confidence angles also highlight the V2–V3 
girdle distribution, with E23 and E32 angles larger than the other angles. 
The compiled fabric parameters (K ¼ 7.4; LS ¼ 0.87; T ¼ � 0.50; P0 ¼ 1.5) 
clearly indicate a linear to plano-linear fabric. It has to be noted that the 
shape parameter of the fabric ellipsoid has quite high values (T ¼ � 0.5), 
despite the fact that high G values for V2 and V3 would rather lead to 
lower T values (T � � 1). This is the result of the shape of the majority of 
the individual grains that are planar to plano-linear, avoiding extreme 
linear T values. 

The synthetic planar fabric (Fig. 5b) displays a point clustering of V3 
axes whereas V1 and V2 axes are distributed along a girdle, in agreement 
with the PGR values of the three principal axes. Using a linear fabric 
tensor, the mean V1 and V2 directions lie on the girdle defined by the 
individual ellipsoid principal axes, whereas mean V3 is located on the V3 
cluster. The derived Hext confidence angles shows high opening values 
for E12 and E21 whereas the other confidence angles are rather small. In 
agreement to this, the fabric parameters indicate a clearly planar fabric 
(K ¼ 0.06; LS ¼ 0.06; T ¼ 0.95; P0 ¼ 1.6). The shape parameter (T) is 

quite high in comparison to the one compiled with the synthetic linear 
fabric (Fig. 5a) and is explained by the planar and planar to plano-linear 
shape of individual ellipsoids. This clearly demonstrates the influence of 
the shape of individual ellipsoids on the resulting fabric ellipsoid. 

4.2. Linear vs. quadratic fabric tensor 

Using the same two synthetic datasets, we have compiled mean 
orientation, confidence angles and fabric parameters from linear fabric 
tensors and quadratic fabric tensors (Fig. 6). The calculated mean 
principal axes for the synthetic linear fabric is almost identical between 
the two tensors. However, the mean principal directions of V1 and V2 for 
the synthetic planar fabric shows misorientation of ~10� but remains on 
the girdle defined by the V1 and V2 individual ellipsoid orientations. The 
Hext confidence angles calculated using the two methods present sys
tematically smaller opening angles with a quadratic fabric tensor than 
with a linear fabric tensor. The fabric parameters that are derived from 
both linear (Fig. 6a; K ¼ 7.4; LS ¼ 0.87; T ¼ � 0.53; P0 ¼ 2.2) and planar 
synthetic fabrics (Fig. 6b; K ¼ 0.06; LS ¼ 0.06; T ¼ 0.92; P0 ¼ 2.9) still 
indicates a plano-linear to linear fabric and a planar fabric, respectively. 
K- and LS- indexes are identical as they are compiled with V1 and V3 
orientation tensors. This is not the case with the parameters derived 
from fabric tensors, notably for the anisotropy parameter P0: the squared 
axes length favours long axes more than small axes when constructing 

Fig. 6. Difference in mean axes orientation, Hext confidence ellipses at 95% level of confidence and fabric statistics between linear fabric tensors and quadratic fabric 
tensors compiled for the two datasets presented in Fig. 6: (a) synthetic linear fabric and (b) synthetic planar fabric. The red dashed line highlights the V1–V2 plane – i. 
e., the foliation defined by the SPO; the lineation corresponds to the direction of V1. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.) 
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the tensor, but also when deriving its eigenvalues and eigenvectors. This 
has several consequences: (1) the calculated mean principal directions 
with a quadratic fabric tensor are predominantly influenced by the 
orientation of the large ellipsoids compared to the small ellipsoids, 
explaining the misorientation of V1 and V2 observed in Fig. 6b; and (2) 
the quadratic fabric ellipsoid has a different shape parameter (T) value 
and higher degree of anisotropy (P0), which cannot be compared to in
dividual ellipsoids. 

4.3. Standardised fabric tensor 

The second dataset employed (Fig. 7) is composed of 50 planar to 
plano-linear ellipsoids with V1 � 1 mm, V2 � 0.9 mm and V3 � 0.6 mm 
and 3 larger linear ellipsoids with V1 � 6 mm, V2 � 0.9 mm and V3 �

0.6 mm. The axes orientation and length are varied slightly for better 
visualisation: the three large ellipsoids are defining a V1 cluster at 205/ 
25 whereas the set of small ellipsoids are defining a V1 cluster at 260/20. 

As fabric tensors are constructed using the length of the character
istic axes of ellipsoids, more weight is attributed to large and highly 
anisotropic ellipsoids than to small and isotropic ellipsoids. The influ
ence of such outlier ellipsoids is moderate when using linear fabric 
tensors but dominant using quadratic fabric tensors. This effect is 
depicted in Fig. 7a, where the mean principal axes are lying in between 
the two clustering points, in particular for mean V1 and V3 axes. Con
fidence ellipses clearly show a triaxial fabric ellipsoid (note that the 
exemplified bimodal distribution might not be suitable for Hext and 
Jelínek confidence estimates; see section 2.3.4.). This is confirmed by 
the fabric statistics, especially by the T value (K ¼ 2.1; LS ¼ 0.50; T ¼

� 0.00; P0 ¼ 1.6). The mean axes orientation, the confidence ellipses and 
the fabric statistics indicate that the three large ellipsoids define a sub- 
fabric that overcomes the fabric defined by the 50 smaller ellipsoids. 
This may occasionally lead to a decoupling between indexes derived 
from orientation tensors and indexes derived from fabric tensors (here K 
> 1 and T ¼ 0). The sub-fabric effect is attenuated by normalising each 
individual ellipsoid by the root of the sum of the squared axes length to 
obtain “unit ellipsoids” (see details in Borradaile, 2001). In such a case, 
mean principal directions and fabric statistics are ruled by the most 
populated set of ellipsoids rather than by the largest and most aniso
tropic ellipsoids (Fig. 7b), which mean principal directions localised at 
individual axes clustering points, and confidence angles and fabric sta
tistics approaching values expected from the set of 50 small ellipsoids (K 
¼ 2.1; LS ¼ 0.50; T ¼ 0.46; P0 ¼ 1.5). 

5. Natural case study 

The natural example represents a sub-volume of an oriented core 
(~45-mm diameter) collected with a portable rock drill (Fig. 8). It 
consists of a pyroxene-bearing gabbro from the exposed lower-crustal 
section of the Ivrea-Verbano Zone, in the gabbro-norite zone of the 
Upper Mafic Complex (sample MC07-02; 45.84826�N; 8.19640�E; Val 
Mastallone, NW Italy). The sample is composed of pyroxenes, plagio
clase, and oxides (magnetite and ilmenite) and presents a well- 
developed foliation and lineation marked by the preferred orientation 
of magmatic pyroxene grains (Fig. 8a–c). Notably, the study of this 
sample allows a better understanding of the dynamics and the fabric 
development related to magma flow and emplacement in the lower 

Fig. 7. Influence of ellipsoid size and anisotropy on the linear fabric tensor analysis using datasets for which each individual ellipsoid is either (a) non-normalised or 
(b) normalised by the root of the sum of the squared length (“unit ellipsoids”). The red dashed line highlights the V1–V2 plane – i.e., the foliation defined by the SPO; 
the lineation corresponds to the direction of V1. Hext confidence ellipses are plotted at 95% level of confidence. See text for details. Colour map from Crameri (2018) 
representing the distance to the ellipsoid centre. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of 
this article.) 
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crust. 
The sample was imaged with a Bruker SkyScan 1173 X-ray micro- 

tomographer at the University of Lausanne (Switzerland) using a 
source voltage of 130 kV and a source current of 61 μA for 6 h, producing 
801 slices with a 50 μm spatial resolution. Image segmentation and both 
automatic and manual separations (i.e., defining and isolating a set of 
connected voxels that constitutes a blob; see Appendix A for details) 
were performed using Blob3D (Ketcham, 2005b) before measuring each 
blob centre coordinates, volume and best-fit ellipsoid axis length and 
orientation using the same software. Figs. 9–10 present fabric and 
orientation distribution of pyroxene and oxide grains that were manu
ally separated and selected by their volume (0.5–8.5 mm3 for pyroxene; 
0.1–2.4 mm3 for oxide). A comparison between automatic and manual 
segmentation results is reported in Table 2 and as Supplementary Ma
terial (see Appendix A). In order to compare the results of our approach 
to state-of-the-art methods, we performed a Star Length Distribution 
(SLD) analysis using Quant3D (Ketcham, 2005a; Odgaard et al., 1997; 
Smit and Odgaard, 1998) on the same set of images segmented with 
Blob3D. The SLD is a continuum method of fabric characterization that 
does not require a separation of grains or even to consider grains, but 
suffers from being grain size sensitive; a large grain will be sampled and 
integrated several times, whereas smaller grains may even not be 
integrated. 

Individual best-fit ellipsoid of both pyroxene and oxide grains are 
scattered but pyroxene grains are preferentially plano-linear, whereas 
oxide grains are more elongated, being preferentially linear to plano- 
linear (Fig. 9). In the absence of solid-state deformation, these individ
ual grain shape parameters correspond to the almost ideal shape of 
magmatic pyroxenes and oxides. 

Orientation of individual grains best-fit ellipsoid of pyroxene grains 
(Fig. 10a) shows a clear V1 vertical point distribution with a weak 
vertical girdle that is striking towards the NNE. Conversely, V3 distri
bution presents a horizontal girdle distribution with ESE and WNW 
point maxima. The analysis of the linear fabric tensor compiled with the 
same dataset constrains a vertical foliation and a vertical lineation at 

~10� from the field measured foliation and lineation. The fabric defined 
by the pyroxene grains is linear to plano-linear as indicated by the 
analysis of the orientation tensors (K ¼ 1.776; LS ¼ 0.625) and the linear 
fabric tensor (T ¼ � 0.248; P0 ¼ 1.537). The SLD analysis of segmented 
but not separated images indicate a plano-linear fabric (Fig. 9a; λ1 ¼

0.384; λ 2 ¼ 0.335; λ3 ¼ 0.281; equivalent to T ¼ 0.117 and P0 ¼ 1.367) 
with higher equivalent T values than those ones derived from the linear 
fabric tensor, likely due to the integration of grains aggregates when 
using the SLD method. 

The orientation distribution of oxide grains (Fig. 10b) is moderately 
scattered. The distribution of V1 orientations draws a moderately 
defined girdle that steeply dips to the ESE from which a vertical point 
distribution can be noticed. On the other hand, V3 distribution defines 
two ESE and WNW horizontal, but scattered, point distribution. The 
analysis of the linear fabric tensor presents rather similar orientations to 
those derived for the pyroxene grains, but with larger Hext and Jelínek 
confidence estimates due to the scattered distribution of individual grain 
orientation. Although oxide grains are individually quite elongated 
(Fig. 9b), the fabric they define is planar to plano-linear (K ¼ 0.653; LS 
¼ 0.260; T ¼ 0.302; P0 ¼ 1.323). The results of both orientation and 
fabric tensor analysis are in good agreement with the SLD analysis 
(Fig. 9b; λ1 ¼ 0.372; λ2 ¼ 0.342; λ3 ¼ 0.286; equivalent to T ¼ 0.351 and 
P0 ¼ 1.307). 

In general, the use of automatically separated grains allows to give a 
first order constraint on the grain shape and fabric properties, but the 
analysis is disturbed by the integration of a large number of grain ag
gregates as well as randomly oriented, very small grains that are ruled 
out by volume filtering using TomoFab (see comparison in Appendix A). 
We have to highlight that in our example, both automatically and 
manually separated datasets lead to similar fabric properties which may 
not be the case for all datasets, notably in case of interconnected pores or 
grains (aggregates). However, manual separation clearly increases the 
quality of the dataset, allowing to better document the difference in 
fabric properties between the pyroxene and the oxide grain population 
that relates different stress regime during the sequential crystallisation 

Fig. 8. μXCT images and segmented images of a pyroxene-bearing gabbro from the Upper Mafic Complex in the Ivrea-Verbano Zone (Southern Alps, North Italy). (a) 
Section of the core showing the physical mark needed to reorient data to the geographical reference frame. (b) Reconstructed volume showing the analysed sample 
and the physical mark. (c) Reconstructed section across the analysed core showing coarse grained pyroxene, plagioclase and oxide gabbro with a well-developed 
magmatic foliation. Segmented sub-volume presenting (d) pyroxene and (e) oxide blobs processed with Blob3D (Ketcham, 2005b), represented in the sample 
reference frame. Px: pyroxenes; Pl: plagioclase; Op: opaque mineral (oxides; magnetite and ilmenite). 
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Fig. 9. Fabric diagrams of segmented and manually separated pyroxene (0.5–8.5 mm3) and oxide (0.1–2.4 mm3) grains of Fig. 8de simplified to best-fit ellipsoids. 
The black filled tensor shape parameters reported in the Ramsay and Jelínek plots derive from the compiled linear fabric tensor, the white filled tensor shape 
parameters derive from the SLD fabric tensor. Rightmost images are star length distribution diagrams calculated on Blob3D-segmented images using Quant3D 
(Ketcham, 2005a) in sample reference frame. N: number of ellipsoids used for calculations. Density colour map from Crameri (2018). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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of the various mineralogical phases (Table 2). Notably, the oxide grain 
population, although being linear to plano-linear in general, the fabric 
they define is planar to plano-linear showing that they behave as passive 
markers of the deformation – i.e., individual grain shape does not always 
translate deformation regimes. 

6. Conclusion 

We have designed and constructed a versatile fabric tensor analysis 
tool to characterise rock fabrics using segmented micro-computed to
mography datasets. We defined the linear fabric tensor and the 
quadratic fabric tensor using the sum of the orientation tensors of the 
three characteristic axes of grains (simplified to best fit ellipsoids) 
multiplied by the length or squared length of each axis, respectively. The 
use of the fabric tensor allows calculation of three orthogonal mean 
principal axes, their elliptical cones of confidence and the two main 
parameters relevant to rock fabric quantitative characterisation: the 
fabric ellipsoid shape and the degree of anisotropy. This approach is 
implemented in TomoFab, an open-source MATLAB package that is 

freely available for download. The method permits quantitative com
parison of rock fabrics of different samples imaged by micro-computed 
tomography, but also to fabrics constrained by other independent 
methods (EBSD, AMS, and seismic anisotropy). The examples described 
above demonstrate the wide applicability of the method. Ultimately, the 
software can be more broadly used in Earth and material sciences and, 
potentially, in other fields when considering analyses of material fabrics 
and porosity. 

7. Computer code availability 

TomoFab is an open source MATLAB package available for download 
at https://github.com/benpetri/tomofab. TomoFab is developed under 
a GNU licence by Benoît PETRI (see corresponding author information). 
The code runs on multiple platforms using MATLAB R2015a and newer 
versions without additional specific toolboxes. 

Fig. 10. Orientation distribution of segmented and manually separated (a) pyroxene (0.5–8.5 mm3) and (b) oxide (0.1–2.4 mm3) grains simplified to best-fit el
lipsoids. Raw ellipsoids V1 and V3 orientation densities are represented in multiples of uniform distribution (MUD), analysed and contoured using TomoFab. 
Orientation data (equal area lower hemisphere spherical projection) are in the geographic reference frame. The red dashed line highlights the V1–V2 plane, i.e., the 
foliation defined by the SPO; the lineation corresponds to the direction of V1. Statistics performed with a linear fabric tensor and both Hext (dashed) and Jelínek 
(solid) confidence estimates at 95% level of confidence. N: number of ellipsoids used for calculations. The solid black line and point reports the field-measured 
foliation and lineation. Density colour map from Crameri (2018). (For interpretation of the references to colour in this figure legend, the reader is referred to the 
Web version of this article.) 

Table 2 
Summary of fabric parameters and orientation derived from the analysis of linear fabric tensors constructed using manually or automatically separated blobs. See 
Figs. 9–10 and Appendix A for related diagrams.   

Separation N K LS T P0 Foliation Lineation 

Pyroxene manual 538 1.776 0.625 � 0.248 1.537 286/86 352/80 
automatic 658 1.209 0.526 � 0.103 1.468 287/86 342/83 

Oxide manual 306 0.653 0.260 0.302 1.323 297/83 267/82 
automatic 260 0.798 0.275 0.108 1.400 301/82 301/82  
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