Table 1. Physical loss of methyl salicylate (MeSA) under different experiment conditions: dry without SOA, dry with SOA, humid without SOA and humid with SOA. | [MeSA] ₀
(ppbv) | [O ₃] ₀
(ppbv) | [limonene] ₀
(ppbv) | Exp.
Numbers | RH (%) | SOA | | loss rate (s ⁻¹) | | | |-------------------------------|--|-----------------------------------|-----------------|--------|--|------------------|--------------------------------|--|--| | | | | | | Number
(10 ⁴ #/cm ³) | Mass
(μg/cm³) | k' | methyl salicylate | SF ₆ | | 25-48 | | | 2 | <1 | ~0 | ~0 | Total loss | 1.58×10 ⁻⁵ ± 1.6×10 ⁻⁷ | | | | | | | | | | Wall loss in dry conditions | (1.0 ± 0.1)×10 ⁻⁶ | | | 9-34 | 32-34 | 137-163 | 3 | <1 | 6.4±4.4 | 36.5±14.4 | Total loss | 1.62×10 ⁻⁵ ± 1.2×10 ⁻⁷ | | | | | | | | | | loss on SOA in dry conditions | (0.4 ± 0.1)×10 ⁻⁶ | 4.40.40-5 | | 22-40 | | | 2 | 48-59 | ~0 | ~0 | Total loss | 1.96×10 ⁻⁵ ± 1.6×10 ⁻⁷ | 1.48×10 ⁻⁵ ± 6.5×10 ⁻⁸ | | | | | | | | | Wall loss in humid conditions | (4.8 ± 0.1)×10 ⁻⁶ | | | 22-36 | 32-34 | 137-163 | 2 | 40-62 | 7.2±4.6 | 36.0±14.4 | Total loss | $2.17 \times 10^{-5} \pm 1.1 \times 10^{-7}$ | | | | | | | | | | loss on SOA in humid condition | (2.1 ± 0.1)×10 ⁻⁶ | | Table 2. Summary of the Results from the Relative Rate Study for Reaction of OH/Cl/NO₃ with methyl salicylate at 296 \pm 2K. | Radical | [methyl salicylate] ₀
10 ¹¹ molecule cm ⁻³ | References | $k_{\rm ref}$ (cm ³ molecule ⁻¹ s ⁻¹) d | no. of experiments | $\frac{k}{k_{ref}}$ ±2 σ ^a | $k\pm 2\sigma (\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1})^b$ | |-----------------|--|-------------------------|---|--------------------|--|---| | ОН | 1.84-4.61 | methyl ethyl ketone | (1.05±0.21)×10 ⁻¹² | 2 | 2.718±0.093 | (2.85±0.58)×10 ⁻¹² | | | | toluene | (5.60±1.46)×10 ⁻¹² | 2 | 0.675±0.012 | (3.78±0.98)×10 ⁻¹² | | | | di-n-butyl ether | (2.80±0.42)×10 ⁻¹¹ | 3 | 0.118±0.005 | (3.30±0.51)×10 ⁻¹² | | | | | | | Average ^c | (3.20±0.46)×10 ⁻¹² | | Cl | 1.86-4.09 | Chloroacetone | (1.90±0.49)×10 ⁻¹³ | 3 | 0.797±0.038 | (1.51±0.40)×10 ⁻¹² | | | | ethyl formate | (1.02±0.20)×10 ⁻¹⁵ | 3 | 0.173±0.009 | (1.76±0.37)×10 ⁻¹² | | | | | | | Average ^c | (1.65±0.44)×10 ⁻¹² | | NO ₃ | 1.98-19.8 | acetaldehyde | (2.70±1.08)×10 ⁻¹⁵ | 2 | 1.816±0.052 | (4.90±1.97)×10 ⁻¹⁵ | | | | benzaldehyde | (4.00±1.60)×10 ⁻¹⁵ | | 0.944±0.009 | (3.78±1.51)×10 ⁻¹⁵ | | | | | | | Average c | (4.19±0.92)×10 ⁻¹⁵ | | O ₃ | 1.55-14.5 | 3,3,3,-trifluoropropene | (3.50±1.02)×10 ⁻¹⁹ | 2 | 0.951±0.504 | (3.33±2.01)×10 ⁻¹⁹ | a the error of $\frac{k}{k_{ref}}$ was estimated in three steps in this work: (1) 2 times of standard deviation was calculated in the least-squares fit of Figure 3; (2) weighted average and error of repeated sampling was calculated using Eq.2 and Eq.3 (SI); (3) the final error of $\frac{k}{k_{ref}}$ was mutilplied 2.353/2.9 as the Student t-distribution contribution due to the limited number of measurements (3 and 2, respectively). ^b The quoted error was calculated from Eq. S1 in SI. $^{^{\}rm c}$ The weighted averaged calculated from Eq. S2 and Eq. S3. ^d Reference compound rate coefficients were taken from the recent evaluated database of McGillen et al., 2020. **Table 3.** Summary of rate constants and estimated atmospheric lifetimes of methyl salicylate with respect to their reactions with OH, NO₃, O₃, Cl and photolysis and deposition on the SOA and ground surface. | | rate constants (cm ³ molecule ⁻¹ s ⁻¹) ^a | Loss/deposition rate (m s ⁻¹) | Global life time
(days) | |----------------|---|---|--| | ОН | (3.20±0.46)×10 ⁻¹² | | 7.2 ^g | | NO_3 | (4.19±0.92)×10 ⁻¹⁵ | | 11.0 ^g | | Cl | (1.65±0.44)×10 ⁻¹² | | 701 ^g | | ozone | (3.33±2.01)×10 ⁻¹⁹ | | 50 ^g | | photolysis | | (2.7±2.4)×10 ⁻⁶ | - | | Ground surface | | 0.8 -4.0×10 ⁻⁶ b | 145 ^d /694 ^c | | SOA surface | | 0.3 -1.8×10 ^{-3 b} | 1-30 ^f / 4-190 ^e | ^a values obtained in this work. ^b deposition rate from dry (<1%) to humid (~40-60%) conditions. $^{^{\}rm c,d}$ $\frac{s}{V}$ is ca. 0.02 m $^{-1}$ and deposition rate of dry (<1%) $^{\rm c}$ or humid (~40 to 60%) $^{\rm d}$ conditions. $[\]frac{e,f}{V}$ is 10^{-4} - 10^{-3} m⁻¹ and deposition rate of dry (<1%) or humid (~40 to 60%) conditions. $^{^{}g}$ global OH, NO₃, Cl and ozone concentration is: [OH]= 1×10^{6} molecule cm⁻³ (Spivakovsky et al., 2000), [NO₃]= 5×10^{8} molecule cm⁻³ (Atkinson, 1991), [ozone]= 7×10^{11} molecule cm⁻³ (Monks et al., 2009) and [Cl]= 1×10^{4} molecule cm⁻³ (Wingenter et al., 1996)