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ABSTRACT. The gonotrophic cycle of mosquitoes conditions the frequency of mosquito-human con-
tacts. The knowledge of this important phenomenon in the mosquito life cycle is a fundamental ele-
ment in the epidemiological analysis of a communicable disease such as mosquito-borne diseases.
In this work, we analyse a deterministic model of complete life cycle of mosquitoes which takes into
account the principal phases of female mosquitoes gonotrophic cycle, and the Sterile Insect technique
combined with the use of insecticide as control measures to fight the proliferation of mosquitoes. We
compute the corresponding mosquito reproductive number N ∗ and prove the global asymptotic sta-
bility of trivial equilibrium. We prove that the model admits two non-trivial equilibria whenever N ∗ is
greater than another threshold, Nc, which the total number of sterile mosquitoes depends on. Nu-
merical simulations, using mosquito parameters of the Aedes species, are carried out to illustrate our
analytical results and permit to show that the strategy which consists in combining the sterile insect
technique with adulticides, when it is well done, effectively combats the proliferation of mosquitoes.

RÉSUMÉ. Le cycle gonotrophique des moustiques conditionne la fréquence des contacts homme-
moustique. La connaissance de cet important phénomène du cycle de vie du moustique est un
élément fondamental dans l’analyse épidémiologique des maladies transmises par les moustiques.
Dans ce travail, nous faisons l’analyse d’un modèle déterministe traduisant le cycle de vie du mous-
tique et qui prend en compte les principales phases du cycle gonotrophique et la lutte antivectorielle
basée sur la technique de l’insecte stérile et l’utilisation des insecticides. Nous Calculons le nombre
de reproduction de moustique N ∗ et montrons la globale stabilité de l’équilibre trivial. Nous mon-
trons que quand N ∗ est strictement supérieur à 1 et plus grand qu’un certain seuil Nc dépendant du
nombre total de moustiques stériles, alors le modèle admet deux équilibres non triviaux. Des simu-
lations numériques, utilisant les paramètres des moustiques de l’espèce Aedes, sont réalisées pour
illustrer nos résultats analytiques et permettent de montrer que la stratégie qui consiste à combiner
la technique des insectes stériles aux adulticides, quand elle est bien menée, combat efficacement la
prolifération des moustiques.

KEYWORDS : Mosquito life cycle; Gonotrophic cycle; Cooperative systems; Sterile Insect Technique
(SIT).

MOTS-CLÉS : Cycle de vie du moustique, Cycle gonotrophique, Systèmes coopératifs, Technique de
l’insecte stérile.



1. Introduction
Many diseases among humans are transmitted by mosquitoes and sandflies. Accord-

ing to the World Health Organization (WHO), over a billion people are infected and over
a million die from these vector-borne diseases annually [16, 17]. Although some of these
diseases have effective vaccines (yellow fever) or effective curative drugs (malaria and
lymphatic filariasis), vector-borne diseases remain real public health problems in devel-
oping countries. The effective means of preventing the transmission of most of these
vector-borne diseases remain vector control mechanisms. Consequently, a better under-
standing of the vector life cycle is necessary in order to propose better control mechanisms
and thus reduce their proliferation.

The gonotrophic cycle of mosquitoes conditions the frequency of mosquito-human
contacts. The knowledge of this important phenomenon in the mosquito life cycle is a
fundamental element in the epidemiological analysis of a communicable disease such as
mosquito-borne diseases. The frequency of these mosquito-host contacts is indeed depen-
dent on certain factors such as availability of vertebrate hosts, rainfall and temperature.But
it depends essentially on the time required for the digestion of the blood meal which is
accompanied by the maturation of the ovaries and oviposition and followed by the search
for a new blood meal. For Beklemishev [6], the gonotrophic cycle would define the in-
terval between the emergence of the first spawning in the case of nulliparous females and
two successive ovipositions in the case of parous females (see also [7]). In general, the
gonotrophic cycle consists of following distinct phases [5, 11]:

1) blood meal seeking: search of a vertebrate host by a young female mosquito
after its mating with a male mosquito, or an adult female mosquito which has just laid
eggs in a breeding site,

2) blood meal digesting: digestion of ingested blood and ovarian maturation,
3) gravid: laying eggs by pregnant females (gravid) in a favourable breeding site,
4) search of another blood meal, . . .

Figure 1 presents the principal stages of mosquito life cycle.

Figure 1 – Life cycle of female mosquitoes [8].



The time between mating and a successful blood meal seeking is a key factor in the female
mosquito life who increases their mortality rate in the finding of blood to ensure develop-
ment of eggs. For many mosquitoes species such as Anopheles sp., the search of a blood
meal is between 06 pm to 06 am [5, 11]. Thus, it is in this time interval that some vec-
tor control mechanisms such as treated insecticide bed-nets usage and insecticides permit
to decrease the number of mosquito-human contacts or increase the mosquito death rate.
The technique called sterile insect technique (SIT), was developed to stop the mosquitoes
proliferation [9, 11]. Indeed, this mosquito control mechanism consists to release around
breeding sites, male mosquitoes which was irradiated, in order for them to compete with
wild male mosquitoes and mate with female mosquitoes. So, the eggs laying by female
mosquitoes who had mated with sterile males will not be able to hatch. Thus, the next
generation of mosquito population will decrease according to the number of sterile males
mosquitoes whom mated with wild female mosquitoes. This technique has been used to
control the proliferation of Aedes albopictus population during the 2005 chikungunya
epidemic in Reunion Island [9, 10].

There is a long history in the mathematical modelling of life cycle of mosquitoes.
After the chikungunya epidemic outbreak in 2005, many mathematical models, which
take into account some principal stages of mosquito life cycle, were proposed (see for
example [1, 2, 3, 5, 9, 10, 11, 13, 18, 19]). In [3, 9, 10], the authors propose some
various models with aquatic development phase of Aedes sp. mosquitoes coupled with
the transmission dynamics of chikungunya virus in human populations. To prove the
impact of sterile insect techniques on the decrease of Aedes population during the 2005
chikungunya epidemic in Reunion island, Dumont et al. [3, 9] proposed and studied
two compartmental models. They did not modelled the complete mosquito life cycle.
In the same idea, Moulay et al. [13] (see also Yang et al. [18] and Yusoff et al. [19])
proposed also a compartmental model in which they modelled eggs and larvae to represent
mosquito aquatic phase of Aedes albopictus. They did not take into account the pupae
stage and the gonotrophic cycle of mosquitoes. Abboubakar et al. [1, 2] extended the
models of Dumont et al. [9] and Moulay et al. [13] by adding the pupa stage in their
models. Arifin et al. [5] and Gentile et al. [11] proposed two agent-based models to
study the dynamic behavior of Anopheles gambiae. Here, we present the corresponding
ODE model of Arifin et al. [5] and Gentile et al. [11] by the representation of each
mosquito life cycle phase in a different compartment, and in which we include the sterile
insect technique and the use of insecticide to decrease the population of mosquitoes. We
prove the global stability of the trivial equilibrium and show that whenever the mosquito
reproductive number N ∗ is greater than one and greater than an other threshold, Nc,
which depends on the total number of sterile mosquitoes, the model admits two positive
equilibria. Numerical simulations are performed to illustrate our analytical results.

The paper is organised as follow. The description of the complete life cycle model of
mosquitoes (including gonotrophic cycle, SIT and the use of insecticide) and its mathe-
matical analysis are devoted in Section 2. Numerical simulations are performed in Section
3.

2. The model and its analysis
Here, we describe the general mosquito life cycle model.



2.1. Aquatic phase
Aquatic phase is divided in three compartments: E for eggs, L for larvae and P for

pupae. Eggs are laid with a rate µb. After 2 to 4 days depending of ambient temperature,
eggs become larvae at a rate s. The larvae will in turn become pupae at a rate l. µE , µL and
µP denotes the mortality rate of eggs, larvae and pupae, respectively. We assume in this
work that, based on the larval population size, the density-dependence affect the survival
rates of both larvae and pupae with linear density functions αL and βL, respectively [4].

2.2. Juvenile stage and mosquito ready to mate
They are two compartments for juvenile mosquitoes. We denote byX the total number

of male mosquitoes and by Y the total number of female mosquitoes. Indeed, after the
completed aquatic phase, the pupae will become either male mosquitoes X at a rate (1−
ϑ)η or female mosquitoes Y at a rate ϑη, where ϑ is the sex ratio and η is the pupae
development rate. Then comes the phase where a male mosquito will mate with a female
mosquito F at a constant rate β2. We denote by µX , µY and µF the mortality rates of
male mosquitoes, juvenile female mosquitoes and adult female mosquitoes, respectively.

2.3. The gonotrophic cycle
We subdivide the gonotrophic cycle in three compartments: S for total number of

female mosquitoes in blood meal seeking stage, D for total number of female mosquitoes
in blood meal digesting stage, and G for total number of female mosquitoes in gravid
stage. After mating with a male, female mosquito will go to search a vertebrate host for
a blood meal rich in protein which will ensure the proper development of their eggs, at
a rate ω. Female mosquitoes in blood meal seeking stage die at constant rate µS . After
a successful blood meal, seeking mosquitoes find a place to digest at constant rate γ1.
Female mosquitoes in blood meal digesting stage die at constant rate µD, and become
gravid G at the constant rate γ2. Gravid mosquitoes die at a constant rate µG. In this
stage, gravid mosquitoes find an appropriate breeding site to lay their eggs, and search
another vertebrate host to find a new blood meal at a rate ε, and then enter in another
gonotrophic cycle.

The above assumptions lead to the following nonlinear system of ordinary differential
equations

Ė(t) = µbG(t)− (s+ µE)E(t), (1a)

L̇(t) = sE(t)− (l + µL + αL(t))L(t), (1b)

Ṗ (t) = lL(t)− (η + µP + β1L(t))P (t), (1c)

Ẋ(t) = (1− ϑ)ηP (t)− µXX(t) (1d)

Ẏ (t) = ϑηP (t)− (µY + β2)Y (t), (1e)

Ḟ (t) = β2Y (t)− (µF + ω)F (t), (1f)

Ṡ(t) = ωF (t) + εG(t)− (µS + γ1)S(t), (1g)

Ḋ(t) = γ1S(t)− (µD + γ2)D(t), (1h)

Ġ(t) = γ2D(t)− (µG + ε)G(t). (1i)



Without loss of generalities, we claim the following results.

Lemma 1. Every solutionψ(t) = ((E(t), L(t), P (t), X(t), Y (t), F (t), S(t), D(t), G(t)))
of (1) with its initial conditions in R9

+ is defined and lies in int(R9
+) for all t > 0.

Define the net reproductive number [13], given by

N ∗ =
s

(s+ µE)

l

(l + µL)

ϑη

(η + µP )

µbβ2

(β2 + µY )

ω

(ω + µF )

γ1γ2

(k6k7k8 − εγ1γ2)
, (2)

where k6k7k8 − εγ1γ2 = γ1µDε+ (µD + γ2) (µG (µS + γ1) + µSε) > 0.
N ∗ measures the average expected number of new adult female offsprings produced

by a single female vector during its life time. It can be interpreted as the product of
the fraction of eggs that survived and hatched into larvae s/(s + µE), the fraction of
larvae that survived and progressed into pupae l/(l + µL), the fraction of pupae that
survived to become juvenile female mosquitoes ϑη/(η + µP ), the fraction of juvenile
female mosquitoes that survived to become adult female mosquitoes µbβ2/(β2 + µY ),
the fraction of the adult females which survived to give mosquitoes in search of blood
meal ω/(ω + µF ), the fraction of the mosquitoes in search of blood meal which survived
to give mosquitoes in gravid (pregnant) state γ1γ2/(k6k7k8 − εγ1γ2).

To decrease the proliferation of mosquito population, we use the biological mosquito
control called sterile insect technique (SIT) combined with the use of insecticide and
treated insecticide bed-nets which permits to increase the mortality rate of mosquitoes
in blood meal seeking stage. To this aim, we firstly add one compartment X2 of sterile
male mosquitoes, which would compete with wild male mosquitoes to mate with female
mosquitoes. Sterile males are released into the wild in an amount 5 to 10 times greater
than that of wild males [9, 10]. It only takes one mating of a female mosquito with a sterile
male to reduce their fertility since it stores the sperm of the first male which fertilized their
to conceive all their eggs throughout their life (about a month). Secondly, we modify the
mortality rate of mosquitoes in blood meal seeking stage by adding a constant cm which
represents the insecticide killing rate (µS := µS + cm). Thus, the complete life cycle
mosquito model with the introduction of sterile male compartment is as follow.

Ė(t) = µbG(t)− (s+ µE)E(t), (3a)

L̇(t) = sE(t)− (l + µL + αL(t))L(t), (3b)

Ṗ (t) = lL(t)− (η + µP + β1L(t))P (t), (3c)

Ẋ1(t) = (1− ϑ)ηP (t)− µX1
X1(t), (3d)

Ẋ2(t) = frΛ1 − µX2X2(t), (3e)

Ẏ (t) = ϑηP (t)− (µY + β2)Y (t), (3f)

Ḟ (t) = β2

(
eX1(t)

eX1(t) + πX2(t)

)
Y (t)− (µF + ω)F (t), (3g)

Ṡ(t) = ωF (t) + εG(t)− (µS + γ1 + cm)S(t), (3h)

Ḋ(t) = γ1S(t)− (µD + γ2)D(t), (3i)

Ġ(t) = γ2D(t)− (µG + ε)G(t). (3j)



In Eq. (3), frΛ1 represent the efficient release of sterile males with f which denotes the
competitivity of the sterile male, r is a parameter that represents the quality of the release,
and Λ1 denotes the rate of release of sterile males [10]. It is important to note that we
follow Dumont and Tchuenche [10] and suppose that the introduction of sterile males
only impacts the incoming of immature females in the wild females compartment F .

2.4. The trivial equilibrium and its stability analysis
The model system (3) admits a trivial equilibrium Q1 = (0, 0, 0, 0, X∗

2 , 0, 0, 0, 0, 0)
whenever N ∗ ≤ 1, where N ∗ is the net reproduction number given by (2) with cm = 0,
and X∗

2 = frΛ1

µX2
.

The stability analysis of the trivial equilibrium of model system (3) is given by the
following result.

Theorem 1. The trivial equilibrium point Q1 = (0, 0, 0, 0, X∗
2 , 0, 0, 0, 0, 0) of (3) is

globally asymptotically stable in R10
+ if N ∗ ≤ 1, and unstable if N ∗ > 1.

Proof. The Jacobian matrix of system (3) at the trivial equilibrium Q1, with the compo-
nents being reordered to Q = (E,L, P,X1, X2, Y, F, S,D,G), has the following form

J (Q1) =

(
A11 A12

0 A22

)
,

where A11 =


−k1 0 0 0 0 0
s −k2 0 0 0 0
0 l −k3 0 0 0
0 0 (1− ϑ)η −µX1 0 0
0 0 0 0 −µX2 0
0 0 ϑη 0 0 −k4

,

A12 =


0 0 0 µb
0 0 0 0
0 0 0 0
0 0 0 0

 and A22 =


−k5 0 0 0
ω −k6 0 ε
0 γ1 −k7 0
0 0 γ2 −k8

 .

The eigenvalues of J (Q1) consist of those of A11 and A22. The eigenvalues of A11

are given by λ1 = −k1, λ2 = −k2, λ3 = −k3, λ4 = −µX1 , λ5 = −µX2 and λ6 = −k4,
which are all negative. It easy to see , using Routh- criterion thatA22 has eigenvalues with

negative real part wheneverN ≤ 1, whereN =
s

(s+ µE)

l

(l + µL)

ϑη

(η + µP )

µbβ2

(β2 + µY )

1

µF
.

For the global stability, let us consider the following Lyapunov function

L(x,X2) =

9∑
i=1

aixi +
1

2
(X2 −X∗

2 )
2
, (4)

where x = (E,L, P,X1, Y, F, S,D,G) and a1 = k4k5k9N ∗, a2 = k1k4k5k9N ∗/s,
a3 = k1k2k4k5k9N ∗/sl, a4 = N ∗β2ϑµbωγ1γ2, a5 = N ∗β2ϑµbωγ1γ2, a6 = N ∗k4ϑµbωγ1γ2

, a7 = N ∗k4k5ϑµbγ1γ2, a8 = N ∗k4k5k6ϑµbγ2 and a9 = N ∗k4k5k6k7ϑµb.



The Lyapunov derivative of (4) is given by

L̇(x,X2) =

9∑
i=1

aiẋi + (X2 −X∗
2 ) Ẋ2

= −(k1k4k5k9N ∗/s)αL2 − (k1k2k4k5k9N ∗/sl)β1LP − µX2 (X2 −X∗
2 )

2

+
k1k2k3k4k5k9N ∗

sl
(N ∗ − 1)P −N ∗β2ϑµbωγ1γ2µX1

X1

−N ∗k4β2ϑµbωγ1γ2Y +N ∗k4ϑµbωγ1γ2β2

(
eX1

eX1 + πX2

)
Y

≤ −(k1k4k5k9N ∗/s)αL2 − (k1k2k4k5k9N ∗/sl)β1LP − µX2 (X2 −X∗
2 )

2

−N ∗β2ϑµbωγ1γ2µX1X1 +
k1k2k3k4k5k9N ∗

sl
(N ∗ − 1)P

(5)

It follows that L̇(x,X2) ≤ 0 for N ∗ ≤ 1. The largest compact invariant set in
{(E,L, P,X1, X2, Y, F, S,D,G) ∈ R+

10 : L̇(x,X2) = 0} is the singleton {Q1}. It
follows from the LaSalle Invariance Principle [12, Chapter 2, Theorem 6.4] that every
solution to the equations in (3) with initial conditions in R+

10 converge to the trivial equi-
librium Q1 as t −→ +∞. Thus (x(t), X2(t)) −→ (0R9 , X∗

2 ) when t −→ +∞ for
N ∗ ≤ 1. So, From the LaSalle principle we deduce the attractiveness of Q1. Since Q1 is
locally asymptotically stable whenN ∗ ≤ 1, we deduce that it is not only attractive, but it
is also globally asymptotically stable. This ends the proof.

2.5. The non-trivial equilibria
In the following, we consider that the net reproductive number N ∗ is greater than

unity. We have the following result.

Theorem 2. Let us define the following thresholds:

ξ =
Λ1fr

µX2

µX1
π (αk3 + 2β1k2)

el(1− ϑ)ηk2
and Nc = 1 + ξ. (6)

Assume that N ∗ > 1.

1) If N ∗ ≤ Nc, model system (3) has no positive equilibrium point.

2) If N ∗ > Nc, model system (3) admits two positive equilibrium points
Q+/−

2 =
(
E∗

+/−, L
∗
+/−, P

∗
+/−, X

∗
1+/−, X

∗
2 , Y

∗
+/−, F

∗
+/−, S

∗
+/−, D

∗
+/−, G

∗
+/−

)
where

X∗
2 =

fr∧1

µX2

, P ∗ =
lL∗

+/−

k3 + β1L∗
+/−

, Y ∗
+/− =

ϑη

k4
P ∗

+/−, X∗
1+/−

=
(1− ϑ)η

µX1

P ∗
+/−,

F ∗
+/− =

β2eX
∗
1+/−

k5(eX∗
1+/− + πX∗

2 )
Y ∗

+/−, S∗
+/− =

ωk7k8

k9
F ∗

+/−, D∗
+/− =

γ1

k7
S∗

+/−,

G∗
+/− =

γ2

k8
D∗

+/−, E∗
+/− =

µb
k1
G∗

+/−,

(7)



and L∗
+/− are positive solutions of the following equation

P(L∗) = L∗ [ρ3L
∗3 + ρ2L

∗2 + ρ1L
∗ + ρ0

]
= 0, (8)

with ρ3 = −αβ1eηlϑµX2 − Λ1αβ
2
1fµX1πr < 0,

ρ2 = − [eηϑlµX2(αk3 + β1k2) + Λ1β1fµX1πr(2αk3 + β1k2)] < 0,
ρ1 = el(1− ϑ)ηµX2

k2k3 [N ∗ −Nc] and ρ0 = −Λ1fk2k
2
3µX1

πr < 0.

Proof. By setting the hand right sides of the equations of (3) to zero and expressing the
variables in terms of L, we obtain that the non-trivial equilibria come from the resolution
of (8) in terms of L. It follows, using Descartes’ Rule of Signs, that the polynomial (8)
has two positive non-trivial roots (L+

1 and L−
2 ) wheneverN ∗ > Nc, and no positive root

otherwise. Thus, we conclude that (3) admits two non-trivial positive equilibria (Q+
2 and

Q−
2 ) whenever N ∗ > Nc. This ends the proof.

It is important to note that, in the presence of sterile males, the condition N ∗ > 1 is
not sufficient to the mosquitoes proliferation (see for example [1, 2, 3, 10, 13] ). Indeed,
it follows from the item (1) of Theorem 2, that if 1 < N ∗ ≤ Nc, there is no non-trivial
equilibrium, which implies that there are no mosquitoes. This is illustrated in figure 3.

Note that in absence of sterile males, i.e Λ1 = 0 or f = r = 0, equation (8) becomes
(L∗)2

[
ρ2L

∗2 + ρ1L
∗ + ρ0

]
= 0, with ρ2 = −αβ1eηlµX2ϑ < 0,

ρ1 = − (αeηk3lµX2ϑ+ β1eηk2lµX2ϑ) < 0, and ρ0 = el(1 − ϑ)ηµX2k2k3 [N ∗ − 1].
So, the system admits only one non-trivial equilibrium whenever N ∗ > 1.
Now, consider that N ∗ > 1. Then, if the following condition holds

ρ1 > 0⇐⇒ Nc < N ∗ ⇐⇒ Λ1 < Λcrit1 =
e

π

µX2

fr

l(1− ϑ)η

µX1

k2

(αk3 + 2β1k2)
(N ∗ − 1) ,

(9)

model system (3) admits two non-trivial equilibriaQ+
2 andQ−

2 . Then, we can reformulate
theorem 2 as follows.

Theorem 3. Assume thatN ∗ > 1. Then there exist Λcrit1 > 0 such that model (3) admits
two non-trivial equilibria if 0 < Λ1 < Λcrit1 and no non-trivial equilibrium otherwise.

3. Numerical simulations
In this subsection, we perform some numerical simulations to illustrate results of the-

orem 3 and 2. To this aim, we use the following parameter values µb = 250, s = 0.7,
µE = 0.2, µL = 0.4, µP = 0.4, l = 0.5, ω = 0.8, ϑ = 0.5, f = 0.7, r = 0.5, α = 0.07,
η = 0.5, β1 = 0.08, µX1

= 1/14, µX2
= 1/8, β2 = 0.7, µY = 1/15, e = 0.5, µF =

1/15, ε = 0.8, µS = 1/10, µD = 1/14, γ1 = 1/2, γ2 = 1/2, µG = 1/12 and cm = 0
[1, 10]. We obtain N ∗ = 61.4689 > Nc = 13.144, Λ1 = 33 < Λcrit1 = 164.31766,
ρ3 = −2.285 × 10−4 < 0, ρ2 = −7.5887 × 10−4 < 0, ρ1 = 0.305806 > 0 and
ρ0 = −0.3007125 < 0. So conditions of theorems 2 and 3 hold. The positive solutions
of equation (8) are L∗

+ = 23 and L∗
− = 1. Figure 2(a) shows clearly existence of two

positive solution of equation (8) whenever condition (9) holds. From figure 2(b) we see
that one of the two positive equilibria, Q+

2 , is locally stable.
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Figure 2 – Illustration of theorem 3 for 1 < N ∗ = 61.4689 > Nc = 13.144 and
Λ1 = 33 < Λcrit1 = 164.31766. So, the positive equilibrium Q+

2 is locally stable.

Figure 3 illustrate the situation which happens when the condition of item (1) of The-
orem 2 holds, i.e. when 1 < N ∗ ≤ Nc. Indeed, it clear that if there is this condition
holds, then there are no non-trivial equilibria, which implies that there are no mosquitoes.
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Figure 3 – Illustration of item (1) of theorem 3 for 1 < N ∗ = 12.2938 ≤ Nc = 15.6194.
Parameter values are the same that those use in figure 2. So, model system (1) has no
non-trivial equilibrium, which means that there are no mosquitoes where the condition
1 < N ∗ ≤ Nc holds.

The effects of varying parameter e to the decrease of the total number larvae are de-
picted on figure 4. It is clear that if female mosquitoes have a preference to mate with
sterile males, the population of larvae will decrease significantly.
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Figure 4 – Effect of preference of female mosquitoes to mate with sterile males on larvae.

Now, we numerically study the impact of sterile insect technique combined with the
use of conventional insecticide on larvae and mosquitoes in blood meal seeking stage. Be-
cause Deltamethrin, for example, is effective only during a couple of hours and taking into
account the preservation of the environment, it is not realistic to spray this chemical prod-



uct continuously. So, we use "pulse control" technique which means that "the control is
not continuous in time order is effective only one day every T day" [9]. Also, the continue
release of sterile males mosquitoes is not realistic. We thus consider that sterile males will
be release after every one week (seven days) [9, 10]. Using the above assumptions in nu-
merical simulations, we obtain the following figures on which we clearly see the impact
of the use of these two controls technique on larvae and mosquitoes in blood meal seek-
ing stage. From figure 5, it follows that increases in the number of sterile males permit
to decrease in both larvae and female mosquitoes in the blood meal seeking. The same
observation can be done if we use insecticide (adulticide). Indeed, in figure 6, it is clear
that the periodic use of adulticide permits to decrease both larvae and female mosquitoes
in the blood meal seeking. From figure 7, it is clear that the combination of these two
controls permits to reduce significantly the total number of larvae and mosquitoes in the
blood meal seeking stage.
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Figure 5 – Effect of release sterile male mosquitoes after every one week on larvae L and
blood meal seeking mosquitoes S.
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Figure 6 – Effect of the use of insecticide on the population of larvae L and blood meal
seeking mosquitoes S.
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Figure 7 – Effect of the use of insecticide combined with the release of sterile males
mosquitoes on the population of larvae L and blood meal seeking mosquitoes S.



4. Conclusion
We analysed a complete life cycle model of mosquitoes, vectors of some diseases in

human communities, which take into account the principal stage of the gonotrophic cycle
of female mosquitoes. To control the population of eggs, larvae and female mosquitoes
in blood meal seeking stage, we combined the sterile insect technique with the use of
insecticides to kill female mosquitoes in blood meal seeking stage. To this end, we took
into account a compartment of sterile male mosquitoes, and we modified the mortality
rate of seeking mosquitoes. Unlike other published works in the literature which consider
that sterile and wild mosquitoes have a same probability to mate with a wild female [9,
10], we introduce one parameter e to traduce the fact that female mosquitoes, before
mating, can make a choice between wild male and sterile male mosquitoes. We prove the
global stability of the trivial equilibrium and showed that when the mosquito reproductive
number N ∗ is greater than a certain threshold Nc greater than one, the model admits two
positive equilibria. This shows that, according to the quality and the quantity of the release
of sterile males, the traditional condition N ∗ > 1 is not sufficient to the proliferation of
mosquito populations. So, the sterile insect technique has a great impact in the control of
mosquito population.

To illustrate our analytical results, we used parameters of Aedes species and performed
numerical simulations. Indeed, we have shown numerically existence of two positive
equilibria whenever the mosquito reproduction number N ∗ is greater than one and Nc
(1 < Nc ≤ N ∗). On the other hand, if this condition is violated, then the model with
sterile mosquitoes does not have a non-trivial equilibrium. It was clear that if female
mosquitoes have a preference to mate with sterile males, the population of larvae will
decrease significantly. Also, we used the technique of "pulse control" which contrast with
the non-realistic continuous controls and concluded that the combination of sterile insect
techniques and insecticides have a great impact on the decrease of total number of larvae
and female mosquitoes in blood meal seeking stage, and so, can permit to decrease the
total number of females mosquitoes.

A. Useful definitions and results.
First of all, we provide a few preliminaries for our proof.

Theorem 4 (p. 112 of [15]). Assume that f : U −→ Rn is cooperative, where U is
open and convex, and that y, z : [t0, t0 + a] −→ U are differentiable. If y(t0) ≤
z(t0), ẏ(t) ≤ f(y(t)), ż(t) = f(z(t)) ∀t ∈ [t0, t0 + a], then y ≤ z, on
[t0, t0 + a].

Theorem 5. [14, p. 62] Assume that ẏ = f(y) is cooperative in an open convex set
U ⊆ Rn and that y0 and y1, y0 < y1 are the only equilibria in U . If the Jacobian matrix
Df(y0) is irreducible and s(Df(y0)) := max{Re λ : λ is an eigenvalue of A}, then
there exists a unique solution y(t) (up to translation) satisfying ẏ(t) > 0, for all t ∈ R,
y(t)→ y0, as t→ −∞, and y(t)→ y1, as t→ +∞.



B. Proof of lemma 1
Let f be the right-hand side of (1) and k1 = s + µE , k2 = l + µL, k3 = µP + η,

k4 = β2 + µY , k5 = µF + ω, k6 = µS + γ1, k7 = µD + γ2 and k8 = µG + ε. The
Jacobian matrix of f is

Df(E,L, P,X, Y, F, S,D,G)

=



−k1 0 0 0 0 0 0 0 µb
s −(k2 + 2αL) 0 0 0 0 0 0 0

0 l − β1P −(k3 + β1L) 0 0 0 0 0 0

0 0 (1− ϑ)η −µX 0 0 0 0 0

0 0 ϑη 0 −k4 0 0 0 0

0 0 0 0 β2 −k5 0 0 0

0 0 0 0 0 ω −k6 0 ε

0 0 0 0 0 0 γ1 −k7 0

0 0 0 0 0 0 0 γ2 −k8


.

(10)

To prove Lemma 1, we proceed by step. Since (1) is a smooth system in R9, ψ(t) exists
on a maximal interval [0, T+) for some 0 < T+ ≤ ∞.

Step 1 We show that ψ(t) > 0 for t ∈ [0, T+). Using the variation of parameters formula,
we have, for t ∈ [0, T+)

E(t) = E(0)e−k1t + µb
∫ t

0
G(τ)e−k1(t−τ)dτ,

L(t) = L(0)e−
∫ t
0

(k2+αL(τ))dτ + s
∫ t

0
E(τ)e−

∫ t
τ

(k2+αL(η))dηdτ,

P (t) = P (0)e−
∫ t
0

(k3+β1L(τ))dτ + l
∫ t

0
L(τ)e−

∫ t
τ

(k3+β1L(η))dηdτ,

X(t) = X(0)e−µXt + (1− ϑ)η
∫ t

0
P (τ)e−µX(t−τ)dτ,

Y (t) = Y (0)e−k4t + ϑη
∫ t

0
P (τ)e−k4(t−τ)dτ,

F (t) = F (0)e−k5t + β2

∫ t
0
Y (τ)e−k5(t−τ)dτ,

S(t) = S(0)e−k6t + ω
∫ t

0
F (τ)e−k6(t−τ)dτ + ε

∫ t
0
G(τ)e−k6(t−τ)dτ,

D(t) = D(0)e−k7t + γ1

∫ t
0
S(τ)e−k7(t−τ)dτ,

G(t) = G(0)e−k8t + γ2

∫ t
0
D(τ)e−k8(t−τ)dτ,

(11)

Since ψ(t) ∈ R9
+ \ {0}, we have E(0) > 0, L(0) > 0, P (0) > 0, X(0) > 0, Y (0) >

0,F (0) > 0,S(0) > 0,D(0) > 0 orG(0) > 0. IfE(0) > 0, it follows from the continuity
ofE thatE(t) > 0, for t ∈ (0, ε), for small ε > 0. Then it follows from (11) thatL(t) > 0
on (0, ε], which, in turn, implies that P (t) > 0, X(t) > 0, Y (t) > 0,F (t) > 0, S(t) > 0,
D(t) > 0 on (0, ε], and then G(t) > 0 on (0, ε]. Note that for any t ∈ [ε, T+), as long
as E, L, P , X , Y , F , S, D, G are positive on (0, t), all the integrals on the right-hand
side of (11) are positive. It then follows from (11) that E(t) > 0, L(t) > 0, P (t) > 0,
X(t) > 0, Y (t) > 0, F (t) > 0, S(t) > 0, D(t) > 0 and G(t) > 0, for any t ∈ [ε, T+),
as long as E, L, P , X , Y , F , S, D,G, are positive on (0, t). This yields that E, L, P ,
X1, Y , F , S, D and G are positive on (0, T+). The same assertion holds in the cases that
L(0) > 0, P (0) > 0,X(0) > 0, Y (0) > 0, F (0) > 0, S(0) > 0, D(0) > 0 or G(0) > 0.

Step 2 We next show that T+ = +∞. To this aim, we compare ψ(t) with a solution of the
variational system of (1) at its trivial equilibrium

ż = Df(0)z (12)

which is a cooperative system in R9. Let z(t) be the solution of (12), with z(0) = ψ(0).
Since ψ(t) ∈ R9

+ \ {0}, for t ∈ [ε, T+), it follows, for t ∈ [ε, T+), that

ψ̇(t) = f(ψ(t)) = Df(0)ψ(t)−
(
0, αL2(t), β1L(t)P (t), 0, 0, 0, 0, 0, 0

)T ≤ Df(0)ψ(t).



Then, from Theorem 4, it follows that ψ(t) ≤ z(t), for t ∈ [0, T+). Since z(t) is defined
for all t ≥ 0, it follows that ψ(t) is defined for all t ∈ (0,+∞), i.e. T+ = +∞.
The results from Steps 1-2 permit us to conclude the proof of lemma 1.
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