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MAXIMAL-IN-TIME EXISTENCE AND UNIQUENESS OF STRONG SOLUTION OF A 3D
FLUID-STRUCTURE INTERACTION MODEL

DEBAYAN MAITY, JEAN-PIERRE RAYMOND, AND ARNAB ROY

ABSTRACT. In this work, we study a system coupling the incompressible Navier-Stokes equations in a cylindrical
type domain with an elastic structure, governed by a damped shell equation, located at the lateral boundary of
the domain occupied by the fluid. We prove the existence of a unique maximal strong solution.

1. INTRODUCTION AND MAIN RESULTS

We study the interaction between a viscous, Newtonian, incompressible fluid and an elastic structure modelled
by a nonlinear damped shell equation. Let us consider a clamped thin cylindrical shell of length L and of reference
radius 1. For the fluid, the reference configuration is €2, and the structure is located at the boundary I'y C 99,
where

Q= (0,L) x B(Ogz,1), B(0gz2,1) = {(22,23) € R? | (23 + 22)/2 < 1},
Ty = {(21,22,23) | 21 € (0,L), 23 + 25 = 1}.
We shall also use w = (0, L) x (0,27) to parametrize I';:
I's = {(21,cos0,sinf) | z1 € (0,L),0 € (0,2m)}.

When the fluid moves, it deforms the elastic structure which in turn influences the fluid motion. Let (¢, -) denote
the displacement of the shell from the reference configuration I'y at time ¢. We assume that the displacement
n(t,-) is only in the radial direction. Thus n(¢, z1,0) = n(t, z1,0)e,(0) where e.(0) = (0, cos d,sin ) is the unit
vector in the radial direction, 7(t,21,60) € R and 1+(t, 21,0) > 0. Therefore, the domain ,,;) occupied by the
fluid at time ¢ > 0 and the lateral boundary F;( t occupied by the elastic structure at time ¢ > 0 are defined by

Qn(t) :{<21,$,y>€R3 | \/-'172+y2 <1+77(t72’179)a 21 6(07[’)’96 (07271-)}7
F;(t):{(zlaxay)GRB | \/l‘2+y2:1+77(t72130)ﬂ <1 G(O,L),HE (0727T)},
or in cylindrical coordinates by

Q) = {(21,7,0) ER* |0 < r < 1+n(t,21,0), 21 € (0,L),0 € (0,2m)},

FZ(t) - {(21,7‘,0) eR? | r=1 +77(t72176)7 z1 € (0,L),9 € (07271—)} .

We set I';, = I'sy U Tout, where the inlet and outlet boundaries, I, and Iy, are defined by
I, = {(zl,x,y) ERP|OS Va2 +y2 <1, z :0} and
Lout = {(zl,x,y) ER3|OLS Va2 +y2 <1, 21 = L}.
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Remark 1.1. In the following, the Cartesian coordinates of points in R will be denoted by (z1, 22, 23) in the
reference configuration and by (z1,x,y) in the deformed configuration. When (21, z2, z3) belongs to  (resp. T's),
the corresponding cylindrical coordinates will be denoted by (z1,7,0) (resp. (21,0)). A function f in Cartesian

coordinates (in the deformed configuration) defines a function f in cylindrical coordinates via the identity

f(z1,m,0) = f(z1,2,y).
Since no confusion is possible, to simplify the notation we will omit the superscript’; and both the functions f

and f will be denoted by f.

Remark 1.2. Since we write the structure equation in w = (0,L) x (0,27), any function defined on T's (or
I‘;(t)) must be viewed as a function defined on w, 2w-periodic w. r. to 6.

For 0 < T < oo, we set
Qr =Uicon {t} X Qs Qr=(0,T)xQ,  wr=(0,T) xw,
¥5 = (0,T) x Iy, B =0,T)xTi, X =(0,T) x Tout.
In this paper, we want to study the following fluid-structure interaction system:
pr(ug+ (u-V)u) —divo(u,p) =0, divu=0 in Qr,
o(u,p)n=0o0n =B o(u,p)n =0 on TN,
u(t, z1,1 +n(t, 21,0),0) = ni(t, z1,0)e,, for (t,21,0) € (0,T) x w,
pshnee + Lnem + B1AZN — BaAgy = H(w,p,n)  inwr,
n="291=0 on(0,T)xdw=(0,T) x ({0} U{L}) x (0,27),
7(0,) =n?, m(0,-) =n8 inw, u(0,)=upin Qy,
where py > 0 denotes the constant density of the fluid, u(¢,-) and p(¢, ) respectively denotes the fluid velocity
and the fluid pressure in €, ;). The fluid stress tensor o(u, p) is given by

o(u,p) = 2ve(u) — plgs, e(u)= %(Vu + vuTl), (1.2)

where v > 0 is the constant fluid viscosity. In (1.1)4, the structure displacement 7 is assumed to satisfy a
viscoelastic cylindrical nonlinear Koiter shell equation, where ps > 0 is the constant structure density, h is the
thickness of the structure, 5; > 0 is the bending coefficient, 8o > 0 is the damping coefficient, and H is the force
exerted by the fluid acting on the structure in the radial direction. When §5 = 0, that is to say when there is
no damping, this model is introduced in [29] and the differential operator %, em, is defined by

Lrem] = g[(l + n)(lbi(j;%ni + 1 _EU% (ntn+2)+n2))
_ (%(1 _EJI% nl + 1E_UUI2) ney (10 +2) + 03 )
0 E

~anl

FEo

2 P 2
+ —5n, +2)+ ))
1 0%772;1779 1 0%771<77(77 ) un

E 0, 5 0 , 4

= - R , 1.3
1+ap<aa(’721’7") * gy 0 )] (1.3)
where E is the Young’s modulus of elasticity and op is the Poisson ratio. In the right hand side of equation
(1.1)4, H(u,p,n) is defined by

H(w,pim) = =/ (L4 22)(L+1)2 + 13 (o(u, p)i)

Ffl(t) s €, (14)

where

n= L (—nzl(l+77)7(1+77)cos€+ngsin97(l+77)sin0—1790059),

Ja+n2) A+ +
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is the unit normal to Ff]( 0 outward €, ;. In (1.1)2 homogeneous Neumann boundary conditions are prescribed
at the inlet and outlet boundaries of the fluid, but nonhomogeneous boundary conditions of the form

o(u,p)n = g, on EiT“, o(u, p)n = goue on LG (1.5)

with g, € H'(0,T;HY?(I'y,)) and g € HY(0,T;HY?(Tyy)), could also be considered. Equation (1.1)s
corresponds to the equality of velocities at the interface Ff](t) (i.e., no-slip boundary condition).

Remark 1.3. Let us make the following remarks.

1. For simplicity in the writing, we shall take py = 1 and all the structure parameters h, ps, B1, B2 are also
taken equal to 1.
2. In view of Remark 1.2, the boundary condition of the structure stated in (1.1)5 reads as follows

0(10,0) = n(t. 1,8) = 2L (0,0,0) = 2L (1. 1,0) = 0, for all ¢ € [0,T],
821 82’1

all 0 € [0,27], n is 2m-periodic with respect to 6.
3. In the rest of this article, to simplify the notation, we do not include the above periodicity condition

while writing the systems. For the same reason the notion of periodicity does not appear in the notation
of function spaces also.

Remark 1.4. In (1.1);, A2 and A, represent respectively the biharmonic and Laplace operators defined on w.
More precisely

9 L 82 82
D(A;) = H*(w) N Hy(w), Ag= 782% + 202
- 2 2 (0 Y
D) = @ N, 8= (it o)

The spaces HE(w) and HE(w) are introduced in Section 2.

This type of model is motivated by blood flow in human arteries. Actually, the blood is a nonhomogeneous
medium, composed of red blood cells, leukocytes (white blood cells) and thrombocytes (platelets) suspended
in blood plasma. However, in large vessels, blood can be considered as an incompressible, viscous Newtonian
fluid. An artery is a large blood vessel whose thickness is negligible in front of the radius of its section. For
more details about the modelling of such systems we refer to [27, 29, 5] and the references therein.

During the last two decades, there has been a considerable interest in fluid-structure interaction problems
involving moving interfaces. Generally speaking, these type of models can be classified into two types: either
the structure is moving inside the fluid or the structure is located at the boundary of the fluid domain. Since
in this article we are interested in studying FSI models where the structure is located at the boundary of the
fluid domain, below we mention related works from the literature concerning this case only.

Let us briefly review some existence results for such models. Chambolle et al. [7] proved the existence of
weak solutions for a FSI problem coupling a 3D viscous, incompressible fluid with a 2D viscoelastic plate, with
homogeneous Dirichlet boundary conditions on the fluid boundaries, as long as the structure does not touch the
fixed part of the fluid boundary. Grandmont [14] extended this result to undamped 2D elastic plates. In these
studies, the middle surface of the structure is assumed to be flat. Lengeler and Ruzicka [22] and Lengeler [21]
extended the above results to the case when the middle surface of the structure is no longer flat. In [22], the
fluid is assumed to be incompressible and Newtonian and the structure is a linear elastic Koiter shell, whereas
in [21] the interaction of an incompressible and generalized Newtonian fluid with a linear elastic Koiter shell
has been studied.

Recently Muha and Canié¢ [26] proved the existence of weak solutions for a class of 2D/1D FSI problems.
The fluid is viscous, Newtonian and driven by pressure data at the inflow and outflow boundaries, whereas the
structure is modelled either by a linear viscoelastic beam or by a linear elastic Koiter shell equation. The proof
is based on a splitting time discretization scheme. These results were extended by Muha and Canié¢ in [27] to
the 3D cylindrical domain where the structure is modelled by a linear elastic cylindrical Koiter shell, and in [29],
where the structure is described by a nonlinear cylindrical Koiter shell whose displacements are not necessarily
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radially symmetric. A FSI problem with two structural layers, a thick layer and a thin layer, was dealt in [28].
Bukac et. al [4] numerically solved the coupled FSI, with a linear viscoelastic cylindrical Koiter shell modeling
both radial and longitudinal displacements.

Concerning strong solutions, as far as we know, the first result was obtained by Beirao da Veiga [1]. The
author proved local in time existence and uniqueness of solution for small data for an interaction between a
2D fluid and a 1D viscoelastic beam with periodic boundary conditions in the axial direction of the vessel.
This result was extended by Lequeurre in [23] and [24], where the existence of a unique, local in time, strong
solution for any data was proved in the case when the structure is modeled by a clamped viscoelastic beam.
Local in time existence and uniqueness results, when the structure is purely elastic, have been recently obtained
by Grandmont, Hillairet and Lequeurre [16]. Casanova [6] proved local in time existence and uniqueness of
solutions with boundary data involving the pressure and when the structure is modeled as a viscoelastic beam.
Grandmont and Hillairet [15] proved global in time existence and uniqueness of solutions for any initial data in
a 2D/1D setting when the structure equation corresponds to a viscoelastic beam. Both in [15] and [16], periodic
boundary conditions in the vessel direction for the fluid were assumed.

In the context of strong solutions, as far as we are aware of, the only articles that deal with more general
geometry and nonlinearities in the structure model are Cheng, Coutand and Shkoller [9] and Cheng and Shkoller
[10]. In these papers, existence and uniqueness of local in time strong solution is proved for the interaction
between a viscous, incompressible fluid and thin nonlinear shells. In [9], the fluid is inside of a deformable
elastic structure of Wilmore type in 3D, whereas in [10] the fluid interacts with a nonlinear elastic shell of
Koiter type, both in 2D and 3D. However, in both works, whenever the 3D case is considered, the structure
has zero inertia. Moreover, in the 3D Koiter shell case, the result is obtained assuming that the thickness of
the shell is much smaller than the fluid viscosity. Also, in both works the structure is located on the entire
boundary.

In this present work, we prove the existence and uniqueness of a maximal strong solution to the system (1.1).
Here we want to emphasize that we consider a shell model with a damping, which is also the case in the references
mentioned above concerning the existence of strong solutions in three dimensions. In our case, the structure
is located at the lateral boundary of the cylinder (as in [27, 29]), and we prescribe homogeneous Neumann
boundary conditions at the inlet and outlet boundaries of the cylindrical domain (the case of nonhomogeneous
Neumann boundary conditions can also be considered, see (1.5)).

To state our main result, we need to introduce some notation. We set L?(Q) = L?*(Q;R3) and H*(Q) =
H*(Q;R?) for s > 0. We shall use the same notation when 2 is replaced by € for some 77 € H3(w) N Hg(w). We
also need to introduce function spaces for the fluid velocity and the fluid pressure depending on the displacement
7 of the structure.

Definition 1.5. For a givenn € L*(0,T; H*(w))NH?(0,T; L*(w)) satisfying 1+n(t, z1,0) > 0 on [0,T] x@, and
setting 7 = 1(0), we say that u belongs to L2(0, T; H3/?=0(Q, ))) (resp. H'(0,T;L2(Q,))), C([0,T]; HY(Q,(.))))
when u(t,-) is a mapping from Quq) into R3 and when there exists X belonging to
H?(0,T; L*(Q7))NH(0,T; H*(Q57))NL>(0, T; H3(Q5)) such that, for allt € [0,T), X(t,-) is a C*-diffeomorphism
Jrom Qz onto Q) and U, defined by U(t, 21, z2,23) = u(t, X(t, 21, 22,23)), belongs to L%(0,T; H3/2+50(Qﬁ))
(resp. HY(0,T;L%(Q5)), C([0,T); HY(Q5))). Similarly, we say that p belongs to L*(0,T; HY/?+%0(Q, ) when
p(t,-) is a mapping from Q. into R and when p, defined by p(t, 21, 22, 23) = p(t, X (t, 21, 22, 23)), belongs to
L2(0,T; HY/2%50(Qy)) (g0 is determined in Theorem 4.2).

We look for solutions (u,p,n) to system (1.1) satisfying

u e L2(0, T H3/2He0(Q,))) N H' (0, T5 L2 (Qy.))) N C([0, T]; H (2 ),
p € L*(0,T; HY/>T=0 (€, ()),  div o(u,p) € L*(Qr),
n € L*(0,T; HY(w)) N H*(0,T; L*(w)),

14+n(t,21,0) >0 forall (¢,21,0) € [0,T] x @,

(1.6)

for some ¢g € (0,1/2).
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Definition 1.6. We say that a triplet (u,p,n) is a solution to system (1.1) when it satisfies (1.6), equation
(1.1)1 in the sense of distributions in Qr, equation (1.1)4 in the sense of distributions in wr, equations (1.1)235
in the sense of traces, and the initial conditions stated in (1.1)g.

We are now in position to state the first existence and uniqueness result of the paper.
Theorem 1.7. Let (ug,n?,n9) belong to Hl(Qn(l)) x H3Te0(w) x H(w), for some ¢ € (0,1/2), and satisfy
div ug =0 in Qni’v
70(0,0) = (L, 0) = 22(0,6) = 925(L,0) = 0, 6 € (0,2m),
19(0,0) = 13(L,0) =0, 6 € (0,27), (1.7)
uo(z1,1 +19(21,0),0) =n3(21,0)e,  for all 1 € (0,L),0 € (0,2m)
min{1 +n9(z1,0) | (21,0) € [0,T] x @} > 0.

Then there exists a T > 0, depending only on the initial data (ug,n?,n3), such that the system (1.1) admits a
strong solution in the sense of Definition 1.6.

When that solution is maximal-in-time, in the sense introduced in Proposition 3.4, it is unique in the class
of functions defined in (3.13).

One of the main difficulties in the analysis of fluid-structure interaction models as in (1.1) is that the fluid
equations are written in the deformed configuration (in Eulerian variables), while the structure equations are
written in the reference configuration (in Lagrangian variables). Since the fluid domain at time ¢ is one of the
unknowns, we first rewrite the system in a fixed spatial domain. This can be achieved either by using a geometric
change of variables (defined through the displacement of the fluid-structure interface), or a Lagrangian change of
variables. In our case, it is more convenient to use a geometric change of variables. Next, we associate with the
nonlinear problem a linear one, involving non-homogeneous source terms. We show that the operator associated
to the linearized problem generates an analytic semigroup in a suitable Hilbert space. Another difficulty in
our problem comes from the choice of boundary conditions we have taken. Due to the presence of mixed
boundary conditions, we have to look for solutions in some appropriate weighted Sobolev spaces. Moreover, due
to the change of variables transforming the system in the deformed configuration to a system in the reference
configuration, the velocity in the reference configuration is no longer divergence free. Thus to solve the linear
fluid-structure problem, we have to solve problems with non zero divergence conditions. We use the Banach
fixed point theorem to prove our main result.

Before ending this review, we would like to mention that, since the end of the nineties, there are many
contributions studying the well posedness of different type of fluid-structure interaction problems. We cannot
mention all of the different configurations recently studied in the literature. But let us investigate if the method
used in the present paper could be used for two typical models. In the case when an elastic structure modeled
by the Lamé system of linear elasticity interacts with an incompressible viscous fluid, the existence of strong
solutions is obtained for higher regularities than that we consider here (see, e.g., [3, 11, 20, 33]). In that case
there is no hope of adapting our results to this type of model. At the opposite, the case of a smooth rigid body
immersed in an incompressible viscous fluid, see [35, 17], can be handled more easily because the boundary
of the rigid body remains regular. The analytic tools used here could be adapted to obtain the existence and
uniqueness of local in time strong solution for those coupled models in three dimensions.

The outline of the paper is as follows. In Section 2, we introduce notations of several functional spaces that we
will use later on. We introduce a change of variables and rewrite the system (1.1) in the reference configuration
in Section 3. Local in time existence for the system written in reference configuration is stated in Theorem 3.3.

Section 4 is devoted to rewriting the linearized fluid-structure system as an evolution equation. We rewrite
the Stokes system as an operator equation in Section 4.1, and the damped shell equation in Section 4.2. The
coupled linear fluid-structure system is rewritten as an evolution equation in Section 4.3. The analyticity of
the associated semigroup is studied in Section 4.4. Existence and regularity results for the nonhomogeneous
linear system are studied in Section 5. Estimates of the nonlinear terms in suitable norms are done in Section 6.
Section 7 is devoted to the proof of the main results, Theorem 1.7 and Theorem 3.3. Some technical results are
collected in Appendix A.
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2. NOTATION

We first introduce the spaces

Hj(w) = {ne H"(w)|n(0,0) =n(L,0) =0, for all 6 € (0,27)},
Hg(w) = {77 € H(w) N HE (w) g" (0,60) = g" (L,0) =0, for all € (0,2@}.
For any 7 belonging to H3(w) N HZ(w), and satisfying
V= mln{l +ﬁ(zlv9) | (2’1,9) € (07L) X (0527()} >0, (21)

we set

Q7 = {(21,7,0) €R* | 0<r <1+47(21,0), 21 € (0,L),0 € (0,27)},
Iy = {(zl,r,ﬁ) ER3|r=1+7(2,0), 21 € (0,L),0 € (O,27r)}.
For o > 1/2, ~; is the operator belonging to L(H (), H?~'/2(w)) and defined by
(v2h) (21,0) = h(z1,1 4+ 7(21,0),0) for all (z1,0) € w, (2.2)

where h(z1,1+7(z1,0),0) is nothing but the trace of h € H? () on I'}.

We use boldface letters, L?(Q7) = L*(Q7;R?) and H7 (Q57) = H (O R ), for functional spaces for the fluid
velocity. For u € L2 (Q), we denote by w1, us and uz the components of u.

For an arbitrary integer £ > 0 and for —1 < § < 1, we denote by H5(Q5) and H{(Q5) the weighted Sobolev
spaces (see [25, section 6.2.1]), respectively defined as the closure of C°°(Qg; R3) and C’°°( 7) for the norms

|u||H/(QT,) - Z Z/ T25T26|Dauz|2 dZ1dZQdZ3,

o<t i=1
P10y = Z/mmWWmmmm
|| <2

where 1o (respectively rp) is the distance to 9T, (respectively Oyt ), and D denotes the partial differential
operator associated to the multi-index o = (a1, a2, v3). Here,

272 272
e (Vara-1) | ns|e-are (VEa-r) |

Notice that g > z1 and r;, > (L — z1).
If § > 0, we have H' (Qf) C H{(Q%). We also introduce the following spaces

To =

Vo(Q {ueL2 Q) | div u =0},

VnP ) = {ueL*Q )|divu:OinQﬁ7u-n:00nI‘%},
VT ( ={ueH (Q7) NV’ (Q5) [lu=0o0nT%}, a>%,
Z,F%(Qﬁ) ={ueH'(Q7) NV’ (Qy) |u-n=0o0n s, o> %,
HE () = {f € (@) | f=0on Ty}, o> L.

For —oo <ty <t; < +o0, we set

Hj 1(Qto ") = L2(to, t1; Hy () N H' (to, t1; L2 (),

H™%(w x (to,t1)) = L*(to, t1; H™(w)) N H(to, t1; L*(w)), 7,5 > 0.
(H§ (%)) is the dual of Hj () with L*(Q5) as pivot space.

When (tg,t1) = (0,T), we shall simplify the notation by setting Qﬁ = Q%’T and wr =w x (0, 7).
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3. SYSTEM REWRITTEN IN THE INITIAL CONFIGURATION

The domain occupied by the fluid depends on the displacement 7 of the structure. For —oco < tg < t1 < +00,
we consider displacement 7 belonging to

E(to, t1) = L*(to, t1; H*(w) N HE (w)) N H?(to, t1; L*(w)),
and satisfying
Yo (to, t1) = min{1 4+ n(t, z1,0) | (t, 21,0) € [to,t1] x @} > 0. (3.1)
For 7 belonging to H3(w) N H3(w) and satisfying (2.1), we introduce the spaces
Eg(to, t1) = {n € E(to, t1) | n(to) =7}
and for v >0, Eg(to,t1;7) = {n € Ex(to,t1) | v(to, t1) = 7}
For n € Ey(to,t1;y) with v > 0, we introduce the mapping X, (¢,-) : Q+— Q, defined by

X, (t, 21, 22, 23) = (21, 22, 23) + (0, 22, 23)¥(r)n(t, z1,6), withr = \/ 23 + 22, (3.2)
where 1 is a C*° nondecreasing function from [0, 1] into [0, 1] satisfying
Y(r) =0 forall r € [0,1/4] and ¢(r) =1 for all r € [3/4,1].
Similarly, if 7 € H?(w) N HZ(w) satisfies (2.1), we set

X7(z1, 20, 23) = (21, 22, 23) + (0, 20, 23)¢(r)7(21,6),  with r = /23 + 22. (3.3)
We look for conditions ensuring that X, (¢,-) is a C''-diffeomorphism from Q onto Q).
Lemma 3.1. (i) Let —0o < tg < t1 < 400 and v be positive. For all n belonging to E(to,t1) and satisfying
n(to,t1) > 0, the mapping X, defined in (3.2) satisfies
o Xy(t,Ts) =17, Xy(t,Tin) =Tin and X;(t, Tour) = Tous for all't € [to, t1],
d Xﬁ(th Q) Qn(to)a
o X, € L%to,t1; H ( ) N H2(tg, t1; L2(Q)),
o X, € H'(to, t1; H*(Q)) N L>(to, t1; H* ().
Moreover, for all t € [to,t1], X,(t,-) is a C'-diffeomorphism from Q onto Q)
(i) If 1 € H3(w) N HE(w) satisfies (2.1), the mapping Xz defined in (3.3) is a C*'-diffeomorphism from
onto $d, and it satisfies
° Xﬁ(].—‘ ) FS X (Fln) = Fin and Xﬁ(f‘out) = Fout7
(#i1) With the assumptz'ons stated in (i) and (it), the mapping X5 ,, defined by
Xin(t,) = X, (t,(X7)71()) for all t € (tg,t1), (3.4)
belongs to H?(to, t1; L*(Q5)) N H (to, t1; H2(Q5)) N L®(to, t1; H3(Qs)).
Proof. Step 1. The first part of (¢) is an obvious consequence of the definition of X,,. Let us prove that X, (¢,-)
is a C'!-diffeomorphism from Q onto Q) for t € [to,t1]. For that we express X, in cylindrical coordinates. To
show that X, (¢,) is a C'-diffeomorphism from € onto Qy4), it is sufficient to show that the mapping

Xn(t> ) : (Zh 97 T) = (<17 ®, p) = (Zla 9, 7"(1 + ¢(7’)77(t7 21, 0)))
is a C'-diffeomorphism from = (0, L) x [0, 27) x [0,1) into Q) = {(¢1,9,p) € (0,L) x [0,2m) x RT [0 < p <
n(t,z1,¢)}. Tt is clear that X, (¢,-) is a map of class C'' from Q onto €,). Moreover, for all 5 € R satisfying
1+ 7 > 7, due to the definition of ¥, the mapping

P p= (L4 ()

is invertible from [0, 1) into [0,1 + 7). Let us denote its inverse by x(p,n). It is clear that (p,n) — x(p,n) is of
class C! from {(p,n) |0 < p<1+mn, v—1<n<oo}onto [0,1] x [y —1,00).
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Let us set YV, (t, C1, 0, 0) = (¢, C1, ¢, x(p,n(t, C1,¢))). It is clear that, for all ¢ € [to,t1], Yy (¢,-) is the inverse
of X,(t,-) and is of class C.

Step 2. The results stated in (i4) can be proved similarly. The result stated in (i¢) is an easy consequence
of (i) and (¢¢). The proof is complete. O

Before rewriting the system (1.1) in the initial configuration Qn‘f’ we first define a family of nonlinear terms
indexed by an arbitrary initial displacement 7.
For all j € H3(w) N HE(w) satisfying (2.1), and for —oo < tg < t; < +00, we first introduce the space

BQ7™")
= {(Vap7 77) € (Hgol(thh) N C([tht1]7H1<Q ))) X L (t07t13H§0(Q )) x Eg (t07t1)
| v=me, on (tg,t1) % F%},

where §y € (0,1/2) is the parameter introduced in Theorem 4.2. The condition v = n.e, on (tg,t1) X I'Z, in the
definition of B(Qto’tl) is needed in the proof of Lemma 6.8. We equip B(Qt‘“tl) with the norm
v, 2 Ml qrony = IVl oy + 1Vl to.tai32: () 55)
+Hp”L2(t0,t1;H§0(QW)) + Il Ecto.t1)

where

||77||E(t0,t1)

= 10l a2 (wx (to,02)) F 17 oo (o053 (@) + 1]l 5203 (@ (h0,00)) + el Loo (0,001 (0)) -
We denote by Y3 the inverse of Xz. For all £ € Ex(to, t1) satisfying ve (to, t1) > 0, X5.¢(t, -) is the diffeomorphism
from € into Q¢ () introduced in (3.4). We set

Jre(t,z) = (Jg;’g)lgj,kgg = VX567 (t,2) for (t,2) € (to,t1) X Q. (3.6)

If 77 and & satisfy the conditions mentioned above, and if (v, ¢, ) belongs to B (Qto’tl) we define the nonlinear
terms Fy 7(v,q,€) = ( Fai(v,q, 5))1<‘<3 and g}(v,g), in Q%Jvtl = (to,t1) x O, by

X

=~ 62%
fﬁﬂ'(v, q, f) = — (V - 8tXﬁ75) : J%Vvi +v Z 92102n (Jn ’g Jrl]’j5 - (Sk,j(SlJ)

ov; &
L (JED T+ ((Ips — Jg V)i, i=1,2,3, (3.7
v ]Zkl 8Zk 3zl + (( R3 W’g)Vq) ) g ) &y 9y ( )

and
Gr(v,€) = Vv : (Ins — J7 o), (3.8)

where 0; denotes the partial derivative with respect to t. The nonlinear term ﬁﬁ(v, q,&) is defined in (tg, 1) X w
by

Hi(v,q.6) = —w%((vvh,g + (Vvie) ") (cof (VXge) — Ins) eﬁ) ‘e,
_ V’Y%((VV(Jﬁ’g — Is) + [Vv(Jge — I]R3)]T)eﬁ) o
+ 7%(Q(Cof(VXﬁ7§) — I]RS)eﬁ) ‘e, (39)

where ey is the unit normal to I'; exterior to O, and ~y; is defined in (2.2).
For any 79 satisfying the assumptions of Theorem 1.7, we consider the following change of unknowns

ﬁ(t’C) = u(taXn?,n(tvé.))v ﬁ(tvc) :p(thn‘f,n(ta C)) (310)
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The system satisfied by (ﬁ, D, 1) is the following
— dive(8,p) = Fpo(G.5.1) —vVGe(@,n)  in (0,T) x Q.
div i =Gp(d,n) in (0,T) x Qp,
U(t, 21,1 +n%,0) = ni(t,21,0)e,, for (t,21,0) € (0,T) x
oc(@pmn=0o0n (0,7) x Ty, o(@,pmn=0on (0,7) X Loy,
u(0) = uo(Xpo(+)) in Qpo, (3.11)
Nt + «i/ﬂmemn + AQ"? Ag?’]t
- ,Y;(l) (O(ﬁaﬁ)eng) e+ Hn? (uaﬁv 77) in (Oa T) X w
n=mn.=0 on (0,7)x {0,L} x (0,27),
n(0) =n?, n:(0)=n) inw.
Definition 3.2. We say that a triplet (4,p,n) € B(QZ") is a strong solution to system (3.11), over the time
1
interval (0,T), when n satisfies (3.1), when equation (3.11)1,2 is satisfied in the sense of distributions in QZO,
1
equation (3.11)g,7 in the sense of distributions in wr, equations (3.11)3 4,5 in the sense of traces, and the initial
conditions stated in (3.11)5 9.
We say that (0,Dp,n) is a mazimal strong solution to system (3.11) over the time interval [0,Ty,) when either

T = 00, or Ty < 00 and, for all 0 < T < Ty, (U,p,n) is a strong solution to system (3.11) over the time
interval [0,T], and it satisfies

. ~ ~ 1 _ o
iy (1G5l + max {JL+ oT0. 017 | (1,0) €} ) = . (3.12)

We prove the following existence and uniqueness result for system (3.11).

Theorem 3.3. Let (ug,n?,79) € Hl(Qn?) x H3%20(w) x HY(w), for some g9 > 0, be such that (1.7) is satisfied.
Then the system (3.11) admits a unique maximal strong solution. Both the mazimal time of existence and the
solution are unique.

To establish the equivalence between solutions to system (1.1) and solutions to system (3.11), we need to
introduce the spaces L?(0,T;H3 () and L?(0,T; Hj (€,.)). These spaces can be defined as we did in
Definition 1.5. We also need to introduce the following class of functions

uc L2(0 T; H2 ( n(- ))) N HI(O,T;LZ(Q,I(,))) N C([O T],Hl(ﬂ ())),
p€L2(O T H6 ( ())), div 0'(11 p) ELQ(O,T,LQ( ))),

n € L*(0,T; H4( ) N H?(0,T; L (w)),
q/n(T) mm{l +n(t,21,0) | (t721,0) [0,T] x w} > 0.

We now state a proposition whose proof is obvious.

(3.13)

Proposition 3.4. A triplet (u,p,n), satisfying (3.13), is solution (respectively a maximal strong solution) to

system (1.1) in the sense of Definition 1.6 if and only if the triplet (U,p,n), where (U,D) is defined in (3.10),

belongs to B(ng) and is a solution (respectively a mazimal strong solution) to system (3.11) over the time
1

interval (0,T), in the sense of Definition 5.2.

Let us notice that the definition of maximal strong solution for system (1.1) is introduced in the above
proposition via the equivalence between solutions to system (1.1) and solutions to system (3.11).

4. STUDY OF THE LINEARIZED SYSTEM

Throughout this section, we assume that 7 satisfies the following conditions
7€ H ™ (w)N Hi(w) and v5 > 0, (4.1)
where 5 is defined in (2.1), and €y € (0,1/2) is the exponent appearing in Theorem 4.1.
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To study system (3.11), we are going to prove regularity results for the solutions to the following nonhomo-
geneous linear system

vy —divo(v,p) =f —vVyg, divv=g in (0,T) x Qx,
v=_(e, on(0,7)xTI%,

o(v,p)n=0o0n (0,T) x Ty, o(v,p)n=0o0n (0,7) X Tous,
v(0) = vo in Qg,

Ge=¢ in(0,T) X w, (4.2)
Cot + A — Ao = —’Y%(U(V,p)eﬁ) e, +h in (0,T) x w,
G=9%2=0 on(0,T)x{0,L}x (0,2m),

G0)=¢Y, (0)=¢ inw.

To rewrite (4.2) when g = 0 as an evolution equation and to study the properties of the associated semigroup,
we are going to follow the approach in [31, 32]. The idea is to decompose the fluid velocity v, satisfying (4.2);_4
when g = 0, into two parts Pv and (I — P)v, where P is the Leray projector introduced in Lemma 4.4. The
part Pv satisfies the Stokes equations in a suitable space and (I — P)v satisfies an algebraic equation. Next we
determine an expression for the pressure, which can be broken down into two parts, one which depends on Pv
and another one which depends on 75. This allows us to eliminate the pressure term from the structure equation
(4.2)4 and to rewrite the system as an evolution equation for (Pv, (1, (2).

4.1. The steady Stokes equation with nonhomogeneous boundary condition. We consider the follow-
ing nonhomogenous Stokes equation
—dive(w,m)=f, divw=0 in Qs

(4.3)
w=gonly, o(w,mn=0onTl,.

Theorem 4.1. Let us assume that 7= 0. If f € L2(Q) and g € H¥/?(T,). The system (4.3) admits a unique
solution (w, ) belonging to H3_ (Q) x Hj () satisfying

Wiz @) + lI7llay @ < CUElLz@) + lIgllas-r.)),
for some 0 < & < 1/2. In particular, setting g = (5 — do) € (0,1/2), we have
[Wllgsrzteo ) + [Tl 172420 () < ClIfllL2@) + llgllae/2(r,))- (4.4)
Proof. This result follows from [25, Theorem 9.1.5]. O

Theorem 4.2. We assume that 7 belongs to H3T°0(w) N HE(w), where €9 = (5 — &) and & is the exponent
introduced in Theorem 4.1, and that (2.1) is satisfied. If f € L*(Qz) and g € HS/Q(F%), the system (4.3) admits
a unique solution (w, ) belonging to H3 (Qn) x Hj (Qy), and satisfying
Wiz @ + I7lla1 @ < CUElILzq) + ll8llas2rs)),
and
[Wllgzz/24e0 @) + 17l rr2eco () < CUIENIL2 () + lI8ll272(0s))- (4.5)

In the above estimates, the constant C depends on ||| gs+<o () and on vy > 0 introduced in (2.1).

Proof. First, from [25, Theorem 9.1.5] it follows that (4.3) admits a unique solution (w,7) € H*(Q5) x L?(Q5)
satisfying
Iwlle g + I7llL2 ) < CUIEIL2 @) + I8lla2/2(rs))- (4.6)

The result in [25, Theorem 9.1.5] is proved for polyhedral domains, but the adaptation to Q can be easily done.
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The proof of (4.5) mainly follows from Theorem 4.1, a localization argument, and (4.6). Let us give the main
ideas of the proof. For € > 0, let us set

Qre= |J {a1} x {(22,23) € R?| (3 + 25)"/2 < 1 +7(21,0))},
z1€(e,L—¢)

with (cos®,sinf) = ((z2+2222)1/2, (z2+232)1/2). Since I'%is of class C?, from the classical regularity results for the
2 3 2 3

Stokes equation, it can be shown that
1Wlos o[l @y ) + I7los iz @50 < CEUEll @y + I8l ws))-

The regularity of (w, ) in Q. = Q7 \ Q5., can be deduced from the regularity of (w,7) = (w, ) o (X3)~! in
Q. We set Q. = (e,L — ) x B(Ogz,1) and QF = Q\ Q.. Using a localization argument and Theorem 4.1, we
can prove that

IWleellaz e + [1Tloc 1y o) < CUElIL20q)) + 18lle2/2 g -
provided that « > 0 is small enough For that, we have to notice that
lim._,q HE) X7 8? 20 X7 = Ok,500,5 || H1((0,6)U(L—e,L):L>B(0,2,1)) = 0, and to use nonlinear estimates as those
proved in Sectlon 6. d

Remark 4.3. From now on, §g and g are the exponents appearing in Theorem 4.1. Throughout Section 4, we
assume that 7 satisfies the assumptions of Theorem 4.2.

We want to rewrite the stationary Stokes equation (4.3) in an operator formulation and to obtain an expression
of the pressure 7 in terms of f,g and w. To this aim, we introduce the Leray projector in the case of mixed
Dirichlet-Neumann boundary conditions. Let us notice that this projector is different from the classical Leray
projector corresponding to the case where only Dirichlet boundary conditions are prescribed on the whole
boundary.

Lemma 4.4. We have the following orthogonal decomposition of the space L?(z):
L2(Qy) = V?L e (Q7) ® VH} (), where
V?LP {ueL2 7) [ diva=0in Qg u-ey =0 on TS}  and
H} (5 —{peH (Q7) [p=0onT,}.
The orthogonal projection P from L?(Q) onto Vg Fs( Q) is defined by Pf =f — Vg — Vo, where

@ € HY (D), Aq =divf in Q7 and

9 . 4.7

s = €. e set
FW n W

In (4.7) n is the unit normal to 0Q exterior to Qx, and n

pr = q1 + q2, (48)

and we have (I — P)f = VN, (f) and N, € L(L*(Q5), H (Q)).
Moreover the restriction of P to Hi. (Q5) belongs to L(HE. (Q5), VI 1 ().
] n m

Proof. For the proof of the above result we refer to [30, Lemma 2.2]. The fact that P belongs to L(H}. (Q5), V1 1. (7))
n M
may be proved with Lemma A.1. O

Formally, the pressure 7 in system (4.3) is the solution of the following elliptic equation
Amr =divf in O,
or A s (4.9)
n =f-ef+tvAw-e; only, 7=2ve(wn-n onl,.
Since the solution w of system (4.3) belongs to Hj (Qg), and not to H?(Qy), we cannot define Aw - n as an

element in H’l/z(I‘%). Moreover f - e is not defined on I'; when f € L?(Q). This is why the equation (4.9)
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is not well posed. To overcome that difficulty, we write 7 in the form 7 = ¢ + p, where ¢ = N, (f) and p is the
formal solution of the following elliptic equation

dp
on
Following [13, Section 4.2], we introduce the operator Ny, € L(Hj (Qz), L*(Q5)) defined by Nyw = p, where p
is the solution of the variational problem

Find p € L?(Q5) such that

Ap=0 in Qg, =vAw-e; only, p=2ve(w)n-n onl,.

4.10
/ p&= 2V/ e(w): Vi — QV/ e(w)ey - Vi, for all € € L*(Qy), (4.10)
Qi Q rs
and where ¢ € H'(Qy) is the solution to the equation
. I s
Ap =€ in Oy, o =0onl%, @=0onl,. (4.11)

From Theorem A.1, it follows that ¢ belongs to H?(€;). Therefore, all the terms in (4.10) are well defined.
Actually, using the Lax-Milgram Lemma, we can prove that problem (4.10) admits a unique solution p € L2(Qﬁ),
and therefore Ny, is a well defined operator belonging to £L(Hj (Qy), L*(Qy)).

We now introduce the Stokes operator (Ag, D(Ap)) in Vg,r%(Qﬁ)~ We set

D(Ag) = {u € Vi () N HZ () | div o (u, Nyu) € L2 (Qy),
77
o(u, Nyu)n = 0 on Fn}
and Apu = Pdivo(u, Nyu),
where Jg is introduced in Theorem 4.2. Below we prove the analyticity of the semigroup generated by the Stokes
operator Ayg.

Theorem 4.5. The operator (Ag, D(Ag)) is the generator of an analytic semigroup on VO .. (Q) and its
m
resolvent is compact.

Proof. There exists A\g > 0 large enough such that, for all u € D(A), we have

(Aol — AO)uvu>vgYF%(Qﬁ) > Vil (q,)- (4.12)

Then we can use [2, Theorem 2.12, pp. 115] to conclude that (Ag, D(Ap)) generates an analytic semigroup on
Vi (Q)-
Now, from Theorem 4.2, it follows that — A" is a bounded operator from V9 .. (Q) into V1. (Q5). Since
T n

the imbedding from Vl%(Qﬁ) into V%F%(Qﬁ) is compact, the proof is complete. O

Let us now introduce several operators which are needed to rewrite the system (4.3) in the form of an operator
equation. We first introduce the Dirichlet operators D € E(H3/2(F%), Hj (Q)) and D, € L(H3/2(F%), H; (95)),
defined by

(Dg, Dpg) = (w, ), (4.13)
where (w,7) is the solution to system (4.3) when f = 0.

In order to rewrite the stationary Stokes equation (4.3) as an operator equation, we need to use the so-called
extrapolation method. We can easily verify that Ay can be considered as an isomorphism from D(Ap) into
Vg,,r%(Qﬁ)’ and that (Ag, D(Ap)) is a self-adjoint operator in V?,,’F%(Qﬁ). Thus, using the so-called transposition
method Aj can also be considered as an isomorphism from Vg,r%(gﬁ) into (D(Ap))" (where (D(Ap))’ is the dual
of D(Ap) with V%Fi(Qﬁ) as pivot space). By this way we can say that Ay with domain V27F;(Qﬁ) is an
unbounded operator in (D(Ap))’. That corresponds to a particular use of the extrapolation method.

We now rewrite the stationary Stokes equation (4.3) as an operator equation, thanks to the following propo-
sition.
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Proposition 4.6. Let f belong to L%(Q;) and g belong to H3/2(F%). A pair (w,m) € H} (Q) x Hj (Q) is a
solution to equation (4.3) if and only if
—AoPW + AQPDg =Pf in (D(Ao))/,

(I -P)w= (I —-P)Dg, and7=Ny(w)+ Ny(f). (4.14)

Proof. First notice that, since Pw — PDg belongs to Vg,ri(Qﬁ)v the first equation in (4.14) is well defined in
(D(Ap))"-
Let (w,7) € Hj (Qy) x Hj (€) be the solution to equation (4.3). We set

w=w-Dg and 7T=7-D,g.
The pair (w,7) satisfies
—divo(w,7) =f, divw=0,inQz w=0onT}, oW, 7)n=0onT,. (4.15)
It implies that w € D(Ap), and we have —AgPw = —Aow = Pf. Since (I — P)w = (I — P)(Pw + Dg) =
(I — P)Dg, we obtain
—AyPw + AgPDg = Pf, (I — P)w = (I — P)Dg.

Now we want to determine the expression of the pressure m. Let £ € L?(Q5) and ¢ € H?(Q25) be the solution
of (4.11). We first notice that the function § = N,(f) and ¢ obey

/f~V<p:/ Vq- V.
Qr QF

n

With a Green’s formula, we have

[ vave= [ qae= [ mioe
Q Q Q
Multiplying (4.3); by V¢, where ¢ is the solution to (4.11), and integrating over {5, we obtain
7/ f -V - / div o(w,m) - Vo = 0. (4.16)
O Q

T

Integrating by parts and using (4.11), we deduce that

_/Q f-V<p+2y/ e(w):V2<p—2V/

Qi r
By combining the above identities and by using the definition of the operators N, and N, we have

/an &= /Q,,Nb(W) E—!—/Qan(f) ¢ forall £ € L*(Qy).

s(w)eﬁ-Vga—/ergzo.

_ s
n M

Therefore,
T = Np(w) + Np(f).

To prove the converse statement, we notice that equation (4.14) admits at most one solution. Indeed if
—AoPw = 0 and (I — P)w = 0, then w = 0. Thus equation (4.14) admits a unique solution, which is the
solution to (4.3). O
4.2. Damped shell equation. In this subsection we study only the structure equation:

me—mn2=0 and mos+ A% — Agne =01in (0,7) x w,
m(0) =77, 12(0) = 7Y in w, (4.17)
n(t,0,0) =n(t, L,0) =n,(t,0,0) =n.(t,L,0)=0,vVt € (0,T), 6 €[0,27].
Let us introduce the Hilbert space
H, = H3(w) x L*(w), (4.18)
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equipped with the inner product
((m1,m2), (€1,€2))m. = (—Asm1, —As&1) 2wy + (12, 82) L2 () -
We now define the unbounded operator (As, D(As; Hy)) in Hg by
D(As; Hy) = (HY(w) N HE(w)) x H(w) and

(0 I (4.19)
(% 1)

Proposition 4.7. The unbounded operator (As, D(As; Hy)) generates an analytic semigroup of contractions on
H,.

Proof. See [8, Proposition 3.1]. O
We have the following regularity result.

Proposition 4.8. If (n9,79) belongs to HE(w) x L*(w), then system (4.17) admits a unique solution (n1,72)
belonging to H>3/?(wr) x HYY?(wr).

Proof. Let us set V = [D(Ag; Hy), Hyl1jo = (H?(w) N H§(w)) X Hj(w). Let V' be the dual of V with H, as
pivot space, we have
V' = Hg(w) x H *(w).
Since (As, D(As; Hy)) generates an analytic semigroup on Hy, for (n9,79) € Hy, the solution (11, 72) to system
(4.17) belongs to L2(0,T;V) N H(0,T;V") (see [2, Part II, Chapter 3, Corollary 2.1]). Thus, we have
m € L*(0,T; H(w)) N H' (0, T; Hy (w)),
ne =me € L*(0,T; Hy(w)) N H' (0, T; H ! (w)).

Finally, by interpolation we obtain 7, € H>%/%(wr) and 1y € H"Y?(wr). O
4.3. Rewriting system (4.2) as an evolution equation. In this subsection we rewrite the system (4.2) when
g = 0 as an evolution equation. Let us set

Dgny = D(n2e;), (4.20)

where D is defined in (4.13).

We also introduce the operator Ny € L(L*(I'g), H' (%)) defined by N;h = ¢, where ¢ € H' () is the
solution to the equation
9
on
Remark 4.9. Due to Remark 1.2, the operator Dy defined in (4.20) can be viewed as a bounded operator from
H3/2(Q) onto HE (), i.e. Dy € L(H3?(w),H3 (Q)). Similarly, the operator Ny defined in (4.21) can be
viewed as an operator belonging to L(L?*(w), H(Q5)).

Ag =0 in Qy, =honly, g=0onT,. (4.21)

We have the following proposition.
Proposition 4.10. Let us assume that 1y € H*'(wr). A pair (v,p) € L*(0,T; Hj (%)) N H'(0,T; L*(Qg)) x
L2(0,T; Hy (Q)) is a solution of system
vi —dive(v,p) =0, divv=0 n Q%
v=1me, onl;x(0,T), o(v,p)n=0 on yiny ngnt, (4.22)
v(0) = vq in Q,
if and only if
Pv' = AyPv — AgPDyns, Pv(0) = Pvq in Qg,
(I—P)v=(I—P)Dsn, and p= Ny(v)— Nsnoy. (4.23)
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Proof. According to Proposition 4.6, the system (4.22) is equivalent to
Pv' = AgPv — AgPDgsns, Pv(0) = Pvg in Qg,
(I —=P)v=(I—P)Dsna, p=Np(v)+ Np(—vy).
From the definitions of the operator N, (defined in (4.8)) and of Ny in (4.21), one can easily verify that
Np(=vi) = —=Nsna .
Thus the proof is complete. O

Using the expression of the pressure obtained in Proposition 4.10, we can now rewrite the equation (4.2)g
satisfied by (2 when g = 0 as follows

(I + NG+ A2 = Al = 3No(v) — 75 (20e(v)eg) - 2y

We want to rewrite the system (4.2) as an evolution equation for (Pv, (1, (2) when g = 0. Therefore we need to
express the right hand side of (4.24) in terms Pv, ¢; and (. By writing v = Pv 4 (I — P)v and using the fact
that (I — P)v = (I — P)Ds(z, (4.24) can be written as

(I +4ENs) o + D26 — Ao

(4.25
= Y3 No(Pv = PDyGs + D,Ga) — 43 (2ve(Pv = PDyG + DyGa)ey ) - ;. )

Lemma 4.11. The operator Ks =1 +7%NS c ﬁ(Lz(w)) is an automorphism in H= (w).
Proof. The proof can be adapted from that of [32, Lemma 3.2]. 0

Now we are in a position to write the system satisfied by (Pv,7;,72) as an evolution equation. Let us recall
that the space Hg and the unbounded operator A are defined in (4.18) and (4.19). We equip the Hilbert space

H= Vg,r%(Qﬁ) x Hij(w) x L*(w) = V917F%(Qﬁ) x H, (4.26)
with the inner product
((vom,m2), (W, 61, &2))m = (v, W)z, + (A, —As&1) L2 (w) + (12, €2) 22 (w) -
We define the unbounded operator (A, D(A; H)) in H by

D(AH) = {(PV,11,m2) € V0 rs (2) x D(As; Hy)
| Ag(Pv — PDyp) € Vg’F%-(Qﬁ)},
and A = A; +B1+82+B3+B4, with

Ai=[0 o I, (4.27)
0 —A? A,
Pv 0
Byl m | = 0 , (4.28)
2 K 'ENy(Pv — PDgn + Do)
Pv 0
By | m | = 0 (4.29)
o K [7%(21/5(1% — PDyns + DSUQ)eT) : er}
and
Pv 0 Pv 0
Bs | m | = 0 , Byl m | = 0 . (4.30)

n2 —(K;'—=1)AInp 72 (K= DA,

S
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Combining Proposition 4.10 and the operators introduced above, we write system (4.2) when g = 0 as an
evolution equation.
Theorem 4.12. Let v € L*(0,T;H3 (Q7)) N H'(0,T;L*(Q5)), p € L*(0,00; Hy (), m € HY?(wr), n2 €
H?Y(wr). Then (v,p,n1,n2) is a solution of (4.2) if and only if

a (FY Pv Pv(0) Pvy
Z\m | =Alm |, | mO =10,
t 0
72 Up n2(0) "2
(I = P)v = (I = P)Dsn, (4.31)

p = Ny(Pv — PDgny + Dyn2) — Nyma ¢

In the following subsections we will show that (A, D(A;H)) is the infinitesimal generator of an analytic
semigroup on H.

4.4. Analyticity of (etA)@O on H. In this subsection, we prove the following theorem.
Theorem 4.13. The operator (A, D(A; H)) is the infinitesimal generator of an analytic semigroup on H.

The proof of this theorem is divided into several parts. We first show that the operator A;, defined in (4.27),
generates an analytic semigroup. Then we show that the operators B;, for i = 1,2,3,4, can be treated as
perturbations of the operator A;.

For A\ € R and ¢ € (0,7), let us define the sector S, by

Serg ={A€C|larg(A— Xo)| < e}.
Theorem 4.14. There exists \g € R and € € (7/2,7) such that the sector S¢ , is contained in the resolvent

set of Ay and there exists a constant C > 0 such that

C
[(A = A)7H| < o for all X € 52 5,

In particular, the operator (A1, D(A; H)) is infinitesimal generator of an analytic semigroup on H.

Proof. We can prove this result with the help of Theorem 4.5, Proposition 4.7, Proposition 4.8 by following [32,
Theorem 3.5] and [32, Theorem 3.6] . O

Lemma 4.15. The operators (B1, D(A;H)) and (B2, D(A; H)), defined in (4.28) and (4.29), are A;-bounded
with relative bound zero, i.e., for all § > 0, there exists Cs > 0 such that
1B (P, 1, m2) e + [1B2(Pvymyme) Tl < APV 1, 2) Tl + Coll(Pvymyme) T,
for all (Pv,m1,m2) € D(A;H) (see [19]).
Proof. Let us first prove that, for all (Pv,n1,m2) € D(A; H), Ny(Pv — PDgna + Dgn2) belongs to H/2+<0(Qy).

Since (A1, D(A;; H)) generates a semigroup on H, for all (f, g, k)T € H, we have a unique solution (Pv, 1, 72)
D(A;;H) to the following system

Pv f
M-A)|m |=1g9]|, (I-P)v=PDsn,
12 h

for some A > 0. Notice that (Pv,n,72) satisfies the above system if and only if (v, p, 11, 12) satisfies the following
system
Av —dive(v,p) =f, divv=0 in Qg

v=mpe,only, o(v,p)n=0onT,,

A =12 =g in w, (4.32)
Ao + A2 — Agna =h in w,

n(0,0) = n(L,0) = $4(0,0) = FL(L,0) =0, for all 6 € (0,27).
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Let us note that the solution (v,p,n1,72) to the above system can be determined by solving first the system
satisfied by (n1,72) and next the system satisfied by (v, p). For every (g, h) € HZ(w) x L?(w), it is easy to check
that (11,712) belongs to H*(w) N H3(w) x HZ(w). Next, using Theorem 4.2, we obtain (v,p) € H3/2te0(Q) x
H1/2+€°(Qﬁ). Proceeding as in Proposition 4.10, the pressure p in (4.32) can be expressed as

p = Ny(Pv — PDgna + Dyn2) — ANg12.

Since Ny € L(L?(w), H'(Q5)), we obtain that Ny,(Pv—PDgna+Dgns2) belongs to H'/2+50(Q). Thus Lemma 4.11
yields that K 92Ny (Pv — PDgng + Dgn2) belongs to H(Qy). Therefore the operator By € L(D(A; H), H) is
a compact operator.

Since Pv — PDgns + D19 belongs to H3/2+50(Qﬁ), using Lemma 4.11 it is easy to see that

K;! [7%(21/€(Pv — PDgns + Dsng)eﬁ) : er] € H*(w).

Thus B; is also a compact operator. Therefore By and Bs are A;-bounded with relative bound zero (see [12,
Section 3.4, Lemma 2.13]). O

Lemma 4.16. There exists 0 < 6 < 1 such that the operators (Bs, D(A;H)) and (B, D(A;H)) are bounded
from D((—A1)?) into H.
Proof. The proof may be adapted from that of [32, Lemma 3.9]. O

Proof of Theorem 4.13. The proof of Theorem 4.13 follows from Theorem 4.14, Lemma 4.15 and Lemma 4.16.
O

5. NONHOMOGENEOUS LINEAR SYSTEM

Throughout this section, we assume that 77 satisfies (4.1).
To transform the system (4.2) when g # 0 into an equivalent one in which g will be zero, we consider the
following problem

—dive(w,q) = —vVyg, divw =g in Qg, (5.1)
w=0onl%, o(w,gn=0onTl,. '

We first recall the following regularity result.
Proposition 5.1. Let g belong to L*(0,T; H'(Q)) N H'(0,T; (Hy, (5))') and satisfy g|r, = 0. The system
(5.1) admits a unique solution (w,q) € Hgél(QT) x L*(0,T; Hy (%)) and
||W||H§[’)1(Q;A’,;) + HqHL2(O,T;H(}O(QW)) < C||9||L2(O,T;Hl(Qﬁ))ﬁHl(O,T;(H{%O(Qﬁ))’)a
[w(0)l[ (o) < Cllg(0)llz2 (o)
where the constant C' is independent of time T and dq is defined as in Theorem 4.2.

Proof. Using the same arguments as in the proof of Theorem 4.2, the proposition follows from [25, Theorem
9.4.5] and Lemma A.3. O

Theorem 5.2. For all (vo,(?,¢Y) € HY(Q5) x (H3(w) N HE(w)) x Hi(w), all £ € L?(0,T;L*(Q)), g €
L?(0,T; H (%)) N H'(0,T; (Hg, (Q))) with glr, =0, and h € L*(0,T; L*(w)), satisfying

div vg = ¢(0,-) in QF, vo(21,1,0) = (z1,0)e, forall z; € (0,L),6 € (0,27),

the system (4.2) admits a unique solution (v,p,(1,(2) € Hg;}l(Qﬁ x (0,T)) x L*(0,T; H, () x H?(w x
(0,7)) x H>Y(w x (0,T)). Moreover, there exists a constant Cg, depending on 1) but independent of T > 0, such



18 DEBAYAN MAITY, JEAN-PIERRE RAYMOND, AND ARNAB ROY

that

||V||H§61(Qﬁx(o,T)) + [Vl zoe (0,711 (02,)) + ”pHL2(O,T;H§O(Qﬁ)) + 11l a2 wx 0,7))
+ 1GillLe 0,753 (w)) T G2l B2 (x (0,7)) + 12l Lo 0,711 ()
< Cr(Ivollmn @y + 1620y + 168 3oy + N 20722200,
+ 9l 20,711 (02)) + Hg”Hl(O,T;(HgO(QW))’) + ||hHL2(O,T;L2(w))>. (5.2)

If, in addition, h belongs to L?(0,T; H*°(w)), then the function t — min(t,1)(1(t) satisfies

[t = min(t, 1)1 ()|l ¢ (jo,7;15+<0 (w))
< CH(HVOHHl(Qﬁ) + 11 ms ) + 1161 a1 ) + IEll L2 (0,712 020
Flgllez.mimr @) + gl iz, @ + ||h||L2(o,T;Hso(w))>- (5.3)
Remark 5.3. The estimate in (5.3) yields that, for all t € (0, min(T, 1)], we have
||C16(3f)||H3+Eo(w)
< (Ivollers @) + 167 lrser + 168 ity + 120,22 020
+llgllz2 0,781 () + ”g”Hl(O,T;(HélO(Q;))/) + Hh||L2(o,T;Hso(w)))-

Since the regqularity results used to prove (5.2) and (5.3) are based on the reqularity results obtained in Section
4, the constant Cy; depends on ||| gs+eo () and on 47 > 0.

Proof. Step 1. Proof of (5.2), except the L°°(0,T; H*(Q))-estimate. We set v.=v —w and p = p — g, where
(w, q) is the solution of the equation (5.1). Proceeding as in Theorem 4.12, it is easy to see that (v, p, (1, (2) is
the solution to

d Pv Pv PF Pv(0) P(vo — w(0))
o G |=Al&G |+ 0], ¢i(0) | = 7 )
G2 G2 H ¢2(0) 9

(I = P)v= (I — P)Ds(o, (5.4)

ﬁ: Nb(PV - PDSCZ + DSCQ) - Ns<2,t + q1 + qo,
where

F=f-w;, H=K" (—fy%(a(w, q)eﬁ) cer +h+vs(q1 + qg)) , (5.5)

with

@ € Hi (), Agq=divFinQy and
o _
On
We can easily verify that P(vg — w(0) — Ds(2) = vo — w(0) — Ds(s € V%%(Qﬁ). From the expression of F and
H in (5.5) and using Proposition 5.1, it is easy to see that

@ € HE (), Aga=0in Qy, (F—Vq1) -nonTs.

IPF (| L20,m:v0 . o) + H | L20,7502()) 5.
T
< C(Ifll L2 0,mL2(0)) + 19122 0,710 (@) (0,13 (222, (2))) Il L2007 02(w))) s

where the constant C' is independent of T. To obtain the regularity of (Pv,({;,(2), we will use a maximal
regularity result for analytic semigroups (see [2, Theorem 3.1, Chapter 1]). In order to obtain estimates with



3D FLUID STRUCTURE INTERACTION MODEL 19

continuity constant independent of time 7', we have to distinguish the cases where "< 1 and T" > 1. For that,
we set T =max(1,T). fT > 1, weset F=F and H=H. If T < 1, we set

T

F:{F if0 <t s
T

T7 T H ifo<t
0 ifT<t

<
T 0 fT<t<

<
<

Obviously, PF € LQ(O,f; VO 1 (Q5)) and H € L2(O,f; L?*(w)). Instead of (5.4), we consider the following

n,l"%
problem
J pPv pPv PF R Pv(0) P(vo —w(0))
P G| =A[&G [+] 0 te(0,7), 6(0) | = ¢
Ca Ca H C2(0) ¢

Let us recall that A generates an analytic semigroup on H (Theorem 4.13). As in [13, Proposition 6.14], we can
show that [D(A; H), H]y 5 = {(Pv,m, 1) € V/pl /2 (Q) x H (w) N H (w) x HJ (@) | (PV,m1,112) = PDynp €
V}%(Qﬁ)}. Thus (P(vo — w(0)),¢?,¢9) belongs to [D(A; H),H] /5, and from [2, Theorem 3.1,Chapter 1], it
follows that (PV,(;,(,) belongs to L2(0,T; D(A; H)) N H'(0, T; H) and

HPVHHl(OJA“;V?L L@ T ||E1||H4»2(Wf) + ||22HH2>1(%)
< C(IIvollers o) + 1213 + 1168 o) (5.7)
HIPFL20,m5v0 |, @) + ||HHL2(O,T;L2(w))>7
where the positive constant C'is independent of T. Next, using the continuous embeddings H* (0, f; Vg rs (7)) =
m

L0, T;L2(Q)), H*2(wz) < L(0,T;H3*w)) and H>'(wz) < L>(0,T;H'(w)), we obtain
Pv e L®(0,T; L2(0%)), ¢, € L®(0,T; H3(w)) and ¢, € L>®(0,T; H(w)). Therefore

1PV e (0,72 2y 1€l (0,755 yy T €2l (0,711 )
< C(”PV”Hl(oj“;v?L s (7)) + ||C1||H4’2(er) + ||C2HH2’1(UJ7A~))' (5'8)
T

Notice that, by construction, (Pv, (1, () = (PV,(;,(,) in [0, T]. Thus (Pv, (1, () belongs to H (0,73 VY 1. (Q7))N
o
L>(0,T; L% (Q5)) x H4?(wp) N L (0, T; H3(w)) x H*(wr)NL>®(0,T; H' (w)) and using (5.7) - (5.8), we obtain

1PV a1 0,05v0 . @m)nLeso,1:12(@)) T 1G Il H22 (wr)nLee (0,113 ()

n,l"%
HIC2ll 521 (wr)nLe (0,7:H1 (w))

S IVl 02w L @mnz= .72 F 101l e nnr= 0.7 w)

HIC2ll fr2.1 @ pynLoe (0,55 ()
< C(Ivolle @) + 168 o) + 1681 a1y

+||PF||L2(O,T;V91'F%(QH)) + ||H||L2(0,T;L2(w))>~

Next using the fact that Dy € £(L?*(w), L?(€25)) (see Lemma A.2), we have

(I~ P)V”Hl(0>T§L2(Qﬁ))ﬂL°°(O,T;L"’(Qﬁ))
= (I = P)DsCall g1.(0,7:12(00))n Lo (0,752 (020))
< C|lCall 21 (wr)nLoe (0,722 (w)) (5.10)
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where the constant C is independent of T. To estimate the space regularity of v and p we consider the following
system

—diVU(v,ﬁ):f—Wt—vt, le;ZO7 in Qﬁa
v ={_(se,, on Iz, oc(v,p)n=0on Ty, o(v,p)n=0on Iyy.
As f — wy — vy € L?(0,T;L?(Q)) and ¢ € L?(0,T; HZ(w)), Theorem 4.2 yields that (v,p) belongs to
L?(0,T; Hgo(Qﬁ)) X LQ(O,T;H(%O(QE)) and
||6||L2(0,T;H§O(QF)) + ”ﬁ”LQ(O,T;H(}O(Q;)) < C(”f = Wi — Vi p20,7L2 () T ||<2||L2(0,T;H§(w))>v (5.11)

where the constant C' is independent of T'. Since v =v + w and p = p + ¢, Proposition 5.1 and estimates (5.6),
(5.9) - (5.11) yields

V| gg2 st T Vi< rzmn) + 1Pl2omms @) + G H12 )
+||C1HL°°(O T;H3(w)) + HC2||H2 Awr) F 1G]l Lo 0,11 (w)) (5.12)

(||V0\|H1(Qﬁ) + [1¢3 11 11 @) + 11681 3 () + IE 1l 220, 7522 (02 '
+llgllz20,7;m51 (25)) + ”g”Hl(O,T;(H(}O(Q;)’)) + ”h”LZ(O,T;L?(w)))a

where the constant C' is independent of 7.

Step 2. Proof of the L>°(0,T; H'(Q5))-estimate. We have to show that v € L>(0,7;H!(Q5)). Multiplying
(4.2); by v, and integrating by parts over , we obtain

Vet Moy + 20 | e0): Vv,

1 1
vt )Hm(n,, *Hf(tw)—vVg(tw)HimW)

1 2
45000 ey + 319008 ey + 510 P) s

77
1
+ 516Gt el ey )

The above estimate yields

i

7,j=1

ov; 81;]
azj

< C (I8t ) By + 196 Mgy + lonlt Ny iy

1Ip(t My gy + IV @y + 120 (8 w))-

Integrating the above inequality over [0,T] and applying Korn’s inequality, one can easily check that

IVl om0 @ < C(Ivollen @y + €20, miz2@) + 9l 20720012

gl o, @y + HV”LQ(O,T;HgU(QW)) + [Vl 2o (0,712 (24))

2oz, @y + Il )
where C' is independent of T. The above estimate together with (5.12) gives (5.2).
Step 3. Proof of (5.3). Let us set H® = Hy™(w) x H*(w) and D(Ay; HE*) = (H**°(w) N HE(w)) x
HZ*(w). From [8, Theorem 1.2], we know that (A, D(A,; HZ°)) is the infinitesimal generator of an analytic
semigroup of contractions on HZ. Since —’y%(a(v,p)eﬁ) ce. +h € L%0,T; H* (w)), if (¢¥,¢Y) belonged
to H3teo(w) N HZ(w) x Hy™°(w), then ¢; would be in C([0,T]; H3**°(w)). We know that ¢ belongs to

H3*e0 (w) N HE (w), but ¢ only belongs to HE (w) and not to Hy ™ (w). But, due to the regularizing effect of the
semigroup (e*4¢),50, we can expect that ¢ (t) belongs to H3+¢0(w) for ¢ > 0. To obtain an estimate for (;(¢) in
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H3%¢0(w), and for ((t) in H1*40(w), for ¢ € (0, 1), it is sufficient to write the system satisfied by (v, tp, t(1,t(2)
over the time interval [0, 1], and to use the fact that (A,, D(As; HZ°)) is the infinitesimal generator of an analytic
semigroup on HS°. When ¢ > 1, the estimate of ¢; in C([1,7]; H3*°(w)) can be deduced from the regularity
of (¢1(1),¢(1)) € H3* 0 (w) N H3 (w) x Hi™(w), and from the fact that (A, D(Ag; HZ0)) is the infinitesimal
generator of an analytic semigroup on HZ°. 0

6. ESTIMATES OF THE NONLINEAR TERMS

Throughout this section, we assume that 77 satisfies (4.1).
We are going to obtain different estimates for the nonlinear terms 73 and Gy defined in Q%”tl = Qz x (to, t1),

and ’ﬁﬁ and ZLem defined in w x (to,t1), introduced in (3.7) - (3.9) and in (1.3). For notational simplicity we
shall only treat the case where (to,t1) = (0,T).

6.1. Preliminary results. Let us first recall some lemmas which we shall use later on. The first lemma is a
direct consequence of [17, Lemma 1]:

Lemma 6.1. Let Z be a Banach space and 1/2 < s < 1. Then there is a bounded extension operator from
{f € H*(0,T;Z) | f(0) =0} to H*(0,00; Z) with a norm bounded independently of T.

Lemma 6.2. Let Z be a Banach space space and 1/2 < s < 1. Then there exist a constant C > 0 and o > 0,
depending only on s but independent of T, such that

I fllcqo,m:z) < CT\ fllaso,1:2), for all f € H*(0,T; Z) satisfying f(0) =
By using C([0,T]; Z) rather than L>°(0,T; Z) we avoid talking about weak and strong measurability.

Proof. Let us fix 1/2 < s; < s. With Lemma 6.1 and by interpolation, we have

Ilcoriz < Clfllmaomz < ClI oz |1 F1 S0,

with C independent of T since f(0) = 0. Holder’s inequality implies that

Iflleqo.ryz) < CTC/@N | fle N F IS -

Simplifying the above estimate by ||f||(cf [(:172]/;) we obtain

I flleo,rz) < CTEV/ DN £l oo, 7).

Now we prove several lemmas used to estimate the nonlinear terms. We set
B(Ogz, 1 +7(21,-)) = {(22,23) € R? | (25 + 23)"/* < 1 +7(21,0))},
with (cos#,sinf) = (

T )

Thus B(Ogz, 14+7(z1,-)) depends on z;. To simplify the notation, we shall simply write B(0,1+7) for B(0Ogz2, 1+
7(z1,-)). We say that a function g belongs to H'(0,L; L>°(B(0,1 + 7))) if and only if g o X5 belongs to
HY(0, L; L*°(B(0gz2, 1))).

Lemma 6.3. Let f € L} (Q) and g € H*(0, L; L*(B(0,1+47)) with g =0 on I'y. Then fg belongs to L*(Q)
and

gl 0,2 (B(0,147)))-

I 1/2
zi/2 (/ 931 (s, 22,23) ds) .
0

1f9llL20q) < Clifllzz, (@

Proof. Since g =0 on I';,, we get

‘g(zlv 22, Z3)| =

z1
/ 921(5722723) ds <
0
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In a similar manner we obtain

I 1/2
‘9(21’22723” < (L - Z1)1/2 </() 931 (5722’Z3) dS) .

Using the above estimates we obtain

L2
/ / 2% dzodzsdz
0 B(0,1+7)
L/2 L
g/ / f? = / ggl(s,22723) ds | dzpdzsdzy
0 B(0,14+7) 0
1—260

L)2
2 26 200 £2 "1
< N9z l122 0,52 (B0, 147) ))/ /B(O ) (L —z1)"f (L —21)%% dzadzzdzy

L/2
CC T —— E/OH)ﬁ%@MV%Fd@®ﬂQ,
n

where in the last inequality, we crucially use the fact that §g < 1/2. Also observe that, z; < rg and (L—2z1) < rp.
Hence, the above inequality becomes

L/2
/ / 29? dzodzsdz
0 B(0,147)

L2
< (L/2)1_460”gH%Il(0,L;L°°(B(0,1+ﬁ)))/0 /B(O - ra%r2% 2 qzodzgdzy. (6.1)
n

Similarly, we can obtain

L
/ / 2% dzadzsdz
L/2 JB(0,1+7)

L
< (L/Q)PMOHg\\?{l(o,L;Loc(B(o,Hﬁ)))/

/ o207’ £ dzodezdz.  (6.2)
L/2 JB(0,147

Combining estimates (6.1)-(6.2), we complete the proof of the lemma. O

Lemma 6.4. Let s belong to (1/2,1/2+ &g) and p > 0. Then there exists a constant Cs > 0, depending only
on 7, p and s, such that, for all 0 < T < 1 and all u satisfying ||u||Loo(07T;L2(QW))OLQ(QT;H::./HSO(Qﬁ)) < u, we
have
1429 —2s
llallz20, i1 +5 () < Cs T26GF2500
Proof. By interpolation we have

2(14s) 14269 —2s
3+2¢ 3+2¢
(e, e cry) < C(Q5) [0t Yz g 0l gy

Therefore a simple application of Holder’s inequality yields

[allp2 0,781+ ()

1/2
1426025 T 4(1+s)
) 3+2
CHu”LojoE% L2(Q)) (/O Hu(t, ')||H§/2150(Qﬁ) dt)

142e9-2s el
313 3+2
< OT 50 [l 200 Gt o 191 5 g 20 )

1+2e9—2s

g CT 2(3+2¢g) |
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Lemma 6.5. There exist positive constants Cs and Cs, , depending only on p > 0,7, s € (0,1/2), and s; € [0,1),
such that, for all0 <T <1 and alln € Ez(0,T) satisfying ||| po,r)y < 1, we have

17 = ll oo (0,13 57242 (w)) < Cs T,
V0l /4 5/2(0,T; H3/2+b(Qn))mL°°(0 T; H2(Q,,)) < G,
V0l /4 $/2(0,T;HY(0,L;L> (B(0,147)))) S

19| Lo 0,751 () + [10: V| 20,1515 (2

. (6.3)
)
170l 20,75 113 +1 () + V0l 20,7511 (0)) <

<C,
Cs,

where a only depends on s € (0,1/2) and ay on s; € [0,1).

Proof. By interpolation, we have

n 14+2s)/4 (3—2s)/4
10 = Tllzra/a-er20,7s15/24+ ) < Clln =TTl Cate s oy 1 = Tl v o sty < Ct
where C' independent of T since 1(0) = 7 (see Lemma 6.1). Since (3/4 —s/2) € (1/2,3/4), applying Lemma 6.2
we conclude that
llm — ﬁHLOO(O,T;HS/?Jrs(w)) <CT*,

with constant C' independent of T.
The estimates (6.3)2—4 follow from the bound |9 g r) < - The estimates of 7 in L*(0,T; H*>**' (w)) and
Ve in L2(0,T; H*' (w)) are similar to that in the proof of Lemma 6.4. O

Estimates of X5, and Jg,.

Lemma 6.6. There exists a positive constant C, depending only on pn >0, v > 0, 7 and s € (0,1/2), such that,
for all 0 < T < 1, and all n € Ez(0,T;7) satisfying ||nllgo,r) < p, Xg, and Jg,, defined in (3.4) and (3.6)
satisfy

IV X0\l zr3/4-sr2 0,1, 183/2+5 ()L (0.1 2 () S O
IV X570l mrsra—sr2 (0,751 (0,L;0 (B0, 147)))) < C,
10: X, | oo 0,1 () + 10:V XS 220,755 (02)) < O
cof (V Xzl gs/a—s/20,7:m3/2+2 (@)L (0,312 (20)) < O
l|cof (V. X7,0) || grs/a- $/2(0,T;H(0,L;L>° (B(0,1+7)) < C, (6.4)
| det(V Xz.) || zrara—sr20,1;m3/2+5 (@)L= (0, 1:82 (0)) < C,
et (V Xa )| rsra—s/2(0, 7311 (0,152 (B(0,147)))) < O
|| zr374=5/2 0,15 1537245 () Lo (0,132 (2)) < C
| J,nll rsra=sr2 0,117 (0,15 (B(0,147)))) < C-
Moreover, for all 0 < s <1/2 and 0 < a < (1 —2s)/(6 — 4s), we have

||Jﬁ,n -
S COTN g = Ll prsra=sr20,1;00 (0,512 (B(0,147)))

o (0,T;H(0,L;L>(B(0,1+7))))

(6.5)
| 7,0 @ Jgn — L @ I|| Leo 0,131 (0,L;: L (B(0,147))))

S CT | I @ Jq — L @ Il gssa—sr2 (0,031 (0,155 (B(0,147)))

where (Jg, @ Jgn — I @ 1)) = 23 (Jn’f,J,l]’Jn —0k.;01.4), and L°(0,T; HY(0, L; L>=(B(0,1 +1)))) is the space
of bounded and weakly measurable functions from (0,T) to H'(0,L; L>°(B(0,1+7))). For all 0 < s < 1/2 and

0<a<(1-2s)/(6—4s), we have

Hjﬁm I||L°°0TH3/2+“(Q ) X < 017,

(6.6)
leof (VX,) — I||L°°(O7T;H3/2+S(QW)) < OT*.
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Proof. Step 1. Proof of (6.4). From the definition of X5 ,, it follows that ||V X7,z < C||V1|z, |0: X5,z <
Cl|om| z, and ||,V X5 4llz < C|0: V1| z, for the various spaces Z involved in the estimates (6.4)1—3. Thus
(6.4)1_3 follow from (6.3)2_4.

To estimate the norms of cof (VX5 ,) and det(V Xy ,), we note that the spaces H3/4=5/2(0, T; H3/?%5(Qy)),
L>(0,T; H*(Q)) and H3/4=%/2(0,T; H*(0, L; L=(B(0,1 + 7)))) are algebras for s € (0,1/2). The estimates
with constants independent of T follows from [33, Lemma A.1].

Observe that, if n € E7(0,T;7) then det(VX5,) > m > 0in Qf x (0,7). Finally, we estimate J5 ,, by using
Lemma A.4 and the following relation

Jnn = cof(VX5.5).

1
det(VXﬁm)

Step 2. Proof of (6.5) and (6.6). To prove (6.5); it is enough to notice that (Jz, —I)|:=0 = 0, and to
use Lemma 6.2. The estimate (6.5)2 can be deduced from (6.5); and (6.4)9 and the fact that the space
H3/4=5/2(0,T; HY(0, L; L>°(B(0,1 +7)))) is an algebra for s € (0,1/2).

Estimate (6.6) can be proved with Lemma 6.2 and (6.4)s. O

6.2. Lipschitz estimates. We introduce the space
BQ" %) = {(v.pm) € BQ™) | 1 € Eq(0,T57)}.

We define the ball B(Qt”’tl,% w) in B(Qto’tl,v) as follows

BQ" 7. ) = {(vopym) € BQW" 1) 1w pm) | pquosy < i) (07

As mentioned at the begining of the section, for notational simplicity, we only treat the case where (tg,t1) =
(0,T). But all what follows is valid for an arbitrary interval (¢o,%1).
Estimate of F3.

Lemma 6.7. There exist positive constants C']@ and «, depending on pu > 0, v > 0, and 77 such that, for all
0<T <1, adl(Q,p,n) € BQL;v,p), (@,p",n") € B(QL;v, 1) and (6, p%,7%) € B(QL;~, 1), we have

| P (1, B, M2 0,1L20,)) < C2T, (6.8)
H]: (Al»ﬁ 77) ]:( ap 77)||L2(0TL2(Q,,)) CﬁTQH(ﬁlaﬁlﬂ?l)—(ﬁzaﬁz,ﬁz)HB(Q%y

Proof. Step 1. Let us prove (6.8);. Let us recall that ]?ﬁ,i is defined in (3.7). With [18, Proposition B1],
Lemma 6.4, and Lemma 6.6, we estimate the first term of 75 ; as follows: For s fixed in (1/2,1/2+¢(), we have

(8 = 0 Xz7.0) + S5y V]| 2 0 12

< C<||11||L<><> (0,T;H(Q5)) T |0 7777||L°° (0,T;H' (7)) ) X HvaiHLQ(O,T;HS(Qﬁ))H‘]ﬁ,TIHLO‘?(O,T;H%Qﬁ))
<

From (6.5)2 and Lemma 6.3, we estimate the second term of j-:m as follows

> O%i (yhagti _ g, 5
Y 2 920, ( w7 O l’j)
et L2(0.75L2(2)

k,g 7l,J
|55 — Ok.g0ujllLee (0,711 (0,15 (B(0,147))))

0210z, L2(0,T5L3 (7))
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To estimate the third term of .7?571-, we use [18, Proposition B1], Lemma 6.4 and Lemma 6.6. We obtain
Z du; 0 ,J ) gL
0zx (’9,21 ™7

< v Z Bui 0 lc’j

Skl azk 8zl

< CT*, forall s € (1/2,1/2+ &p).

L2(0,T;L2(Q))

|73
P Lo (0,73 H2(924))

L2(0,T;H* () L= (0,T;H (7))

With (6.5); and Lemma 6.3, we obtain the following estimate of the last term of ]?ﬁ,z‘
T N
||(I_ J7 )vp||L2(0 T;L2 (%))
< - n||L°°(0 T;H(0,L;L°° (B(0,14%)))) ||VP||L2 0,T5L2, (7)) < CT“.

This completes the proof of (6.8);.

Step 2. Let us prove (6.8). That Lipschitz estimate can be proved as in Step 1. However, for clarity, let us
explain how the Lipschitz estimate can be proved for the second term in 3. We have

Z 3Zl32k ( 1 Jld 6k’j61’j) Z 82[82’k ( " Jl)] 6k’j5l’j)

gkl

21
_ RSCANSS Ui (ki gki \ ghi
Z 5Zlazk 77 77 (Jﬁ,nl Jﬁnﬂ) + = 02,02, Jﬁml Jﬁ,n"‘ Jﬁﬂﬂ

Jiksl i
52A1 0*u; k.j lJ

. s — 001 -

+Z (azlazk 8zlazk> (‘] J k,j lJ)

All terms can be estimated as in Step 1, but we notice that (J%Cf?z J%’jﬂ — Ok j 517]-) lt=0 = 0 is used in an essential

way. 0

Estimate of g}.

Lemma 6.8. There exist positive constants C’g and «, depending on > 0, v > 0, and 7 such that, for all
0<T <1, all(8pn) € BQF;v ), @,p"n") € BQL;7, 1) and (W, p,7°) € B(QT;7, 1), we have

”gﬁ(ﬁv77)”LQ(O,T;Hl(Qﬁ))ﬂHl(O,T;(H(}O(Qﬁ))’) < CgTe,

1G7(@",n') — gﬁ(AQa772)HLZ(O,T;Hl(QW))ﬁHl(O,T;(H(%U(Qﬁ))/)
< CATO‘H( 1aﬁ1 n ) ( 2)1/7\27772)HB(Q%)'

Proof. Let us recall éﬁ is defined in (3.8). Let us note that J5,(0,-) = I and J5, = I on I';,. Thus
Gy(0,)=0inQ; and Gy;=0onT,.
First we estimate the L?(0,T; H'(Q5))-norm of éﬁ. The terms

8 RN Uk ‘ k.,j aak 0 k,j
8 Z aZ]aZ J’T]’n) (92’]‘ 321 Jﬁ’n

are similar to those in ]?ﬁ. Thus, proceeding as in the proof of Lemma 6.7, we obtain

||gn( sML20,75m1 () < CT. (6.10)
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Next we estimate the H'(0, T’ (Hj (€))")-norm of Q\ﬁ. We calculate

86uk @6ka

0 5o k,j el >
&gn(ua ) 8t8 ( i,k ﬁ,n) 82]' ot mn’

Let ¢ € Hj (Qy). For all 1 < j,k <3, and all t € (0,T), we have
0 iy y
*7(63’,/7@ - Jn7%)7()0>
<3t 0z (1], ()}, (52)

ouy, ki 0@ / 8uk 0 / b
- _ GUk (5 _ gk 9¥ NS — T
/Q” ot i J”’”)azj * Ot 0z J cp+ Fi(ﬂtte V(830 = )

n

vl

Tl 10,1510 (B(0,147))

+ kel 20 + 1meell L2 () 1 — Jﬁ,nHHS/?ﬂ‘(QW)) H‘PHH(}O(Qﬁ)a

0 lw
‘5‘2 J

H/2+5 (Qq)

where s € (0,1/2) such that 1+ s+ g > 3/2. Therefore, with the above estimate and with (6.5);, we obtain

o 0u ,
H ot aUk O3 = J7)
L2(0,T5(H}, (9))")
< Otk el 220,720 (H(Sk,j 7;| L322 (0,T;H(0,L; L (B(0,14))))
- Ha.‘]i’i ) el 20,7200 185 = Tl s 0. 73213022 ()
% Lo (0,T; HV/2+2 Q7))
< CT°.

o .
In the above estimate we have used the fact that —Jg%

= (. Similarly, for all 1 < j,k < 3,

0z; =0
(280 o) [ (2s,)
aZ (% N’ (Héo(QW)),!Héo(QW) a aZj at mn
Ouy, 0 i
<o )| el oy
0z, L2(@) ot mn Ho (@) 5o ()

where s € (0,1) such that s+ 1/2+ ey > 3/2. Let us fix such s. We want to estimate L?(0,T’; H*(5)) norm of
Oy Jm,n- We write

) 0 _ )
57 = —VXg, ( 5 VX7, ,,) VX; ) =—Jan ((%VX”’") Jm-

Applying [18, Proposition B1], Lemma 6.6 and Lemma 6.5, we obtain

C”Jn n||L°°(0TH2(Q,,))||8tVXn 77||L2 0,T;H* (7))
ClIVnellL20,;m5 () < CT®.

1Tt 20,715 (0)) S
<

Combining the above two estimates, we get

6uk 0
55 onn L2(0,T3(H}, (0))')
811,]@ a k,j «
Sc‘az 8tJ"" < CT*.
3 Lo (0,T;L2 (927)) L2(0,T;H* (7))
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Thus we have proved

< CT". (6.11)
L2(0,T5(HY, (97))")

05
| 0t
We obtain (6.9)1, by combining (6.10)-(6.11). We can prove the Lipschitz estimate in a similar manner. O

Estimate of ’;qﬁ.

Lemma 6.9. There exist positive constant C’ﬁ and o, depending on > 0, v > 0, and Qz such that, for all
0<T <1, adl(Q,p,n) € BQL;v, 1), (@, p",n') € B(QF;7, 1) and (6%, 5%, 7%) € B(QL;~, 1), we have

||H( u,p, )2 0,115 () < CgT?,

||H (Alaﬁl n ) 7:2 (A2vl/)\2 n )||L2(0,T;L2(w)) (612)
< CpTell@h phont) — (@2,5%,7%)ll s qr)-

Proof. Let us recall ﬁﬁ is defined in (3.9). With (6.6);, we have
|7 (Vi = Tos) + [V — Te)] eq) - e,

< C||y(Vatsy — ) + V(g — )] )|

< CHVG||L2(O7T;H1/2+SO(Qﬁ)) ||Jﬁ,77 — Igs ||Loo(0,T;H3/2+s(Qﬁ)) < CTY, s€(0,1/2).

Nlz2(0,7;He0 (w))

L2(0,T;H'/2t=0(Q5))

In a similar manner, with (6.6), we obtain the following estimate of the last term of ﬁﬁ
H'Vn( (cof (VX79) — Ina) e57) - eTHLQ(O,T;HEO(w))
< Cp(cof(VX7,) — IRS)||L2(O,T;H1/2+50(Qﬁ))
< Ol 20,1 m1/2420 () 1€0f (VX7 0) = Irs (| Lo (0,0, pr3/24 00y < CT
Finally, using Lemma 6.4, Lemma 6.5 and [18, Proposition B1], we estimate the second term of H as follows:
||wy%((Vﬁ(Z = Igs) + [VUu(Jz,y — IRB)]T)BW) 'eT||L2(0,T;H50 (w))
< C||v(Viiy — Is) + Vil — T)] ") |

< CHﬁ||L2(O,T;H3/2+EO(QW))HJﬁ,n - IR?’”LOO(O,T;HS/“S(QW)) <OTe.

L2(0,T5H/2¥20(Q))

Thus (6.12), is proved. The Lipschitz estimate can be proved in a similar manner. O

Estimate of Z,.cm-
Lemma 6.10. There exist positive constants C’_g and «, depending on >0, v > 0, and Qx such that, for all
0<T<1,dl(8pn) €BQfv,n), @, P0n'") € BQF;7, 1) and (6*,p°,1°) € B(QF;7, 1), we have
|LmemnllL2(0,1; 570 (w)) < C2T*,
||«§fmem771 - fmemn2 ||L2(0 T;L2%(w)) (6.13)
< CTo||(@,p',n') — (@2,%,1 )||B(QT)

Proof. Using Lemma 6.5, we can estimate the several terms of .%,c.,,n as follows

EO’p
(L+n) o2 2 < Oz (L + Mo 0,7:82 @) 11| 22 (0,75 5190 ()
Op L2(0,T;H®0 (w))
<COT*,
and
E 9,
< OTY2 0|13 < 0.1 115 (w0} -
1+op ae(nzlne) L2 (00 w) lInll7 (0,T;H3(w))
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The other estimates can be obtained similarly. Thus (6.13); is proved and (6.13)2 can be deduced with the
same arguments. O

7. PROOFS OF THEOREM 3.3 AND THEOREM 1.7

Proof of Theorem 3.3. Step 1. Local in time existence. We choose p > 0 and M > 0 such that

ol () + 1215420 @) + Imallir ) <M = 2C,0 M, (7.1)
where C)o is the continuity constant in (5.2) corresponding to 7 = n). Let us set
V= 777?/27 with ’Yn? = mln{l + U?(Zla 9) | (Zla 9) € w} > 0.
We recall that the norm ||| B(Q7,) and the ball B (ng;*y, ) are introduced in (3.5) and (6.7) respectively. We
ny 1

consider the following system

~

t, — div o(6,5) = Fo(®, ¢, k) — vV G0 (@, k), divi=Gpo(®,k) inQ,

u=nmne, on(0,T)x Ff]?,
o(@,p)n=0on X o(d,p)n =0 on B,
u(0) =ug o X, in Qypo, (7.2)

Nt + AZn — Agny = —Yo (O(Gﬁ)eng) ‘e,
+Hop (8,9, k) — Lipemk 0 (0,T) x w,
0
=T —0 on(0,T) % {0,L} x (0,2n),
82’1
where the nonlinear terms are defined as in (3.7)-(3.9).

To prove the existence of a strong solution to system (3.11), we are going to show that there exists 0 < T' < 1
such that the mapping

n

N : (¢’w7 k) H (671/7\’ 77)7
where (0, p,n) is the solution to system (7.2), is a strict contraction in B(Qz;o; CANE
1
Applying Theorem 5.2 to system (7.2), we obtain
I(u, B, 77)”|B(Q:(1)) < Cpo (HuoHHl(Q,,g) 172 sy + 1721 13 ()
+ [|Fo (B, 9, k)||L2(o,T;L2(Q,]?)) + (G (@, k)||Lz(o,T;Hl(Qn?))mﬂl(o,T;(Hgo(Qn?))/)

+ IR0 (®, % W)l 20 ri22w)) + | Zmembll 20 722 ) - (7:3)

where C,po is the constant appearing in (5.2) corresponding to 77 = 1?. Since (®,,k) € B( Zi,;'y,,u)7 applying
Lemma 6.7 - Lemma 6.10, estimate (7.3) becomes
(4, p, 77)|||B(Q§?) SCpM +Cp(Cr+ Cs+ Cq + Cp)T.
Therefore, with the choice of p in (7.1), we can choose T > 0 small enough to have
IV(®, ¥, k)'”B(Q:?) < p
Using the continuous embedding L>(0, T; H>/?*51(w)) < L (wr), with Lemma 6.5, we obtain

17 = 1| o0 () < CT,

where the constant C is independent of T. By choosing 7' > 0 small enough, we get 1 + n(t, z1,0) > ~ for all
(t,21,0) € (0,T) x w. Therefore, ' maps B(Q:O;%,u) into itself. Now we will show that N is a contraction
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in B( f?;’y,u). Let (®!,4', k) and (@2, 2, k?) belong to B( %;’y,u). For j = 1,2, we set N'(®7,¢7 k7)) :=

(09, p?,n?). Using Theorem 5.2, Lemma 6.7, Lemma 6.8 and Lemma 6.9, we obtain
H‘ (ﬁ17p17 771) - (GQ’pQ’ 772)|||B(QTO)
n?

< Cp(Cp+ Cg+ O+ Co)T || (@101, K1) = (@2,0% 1) || g -

Thus N is a contraction in B(Q:O;%u) for T > 0 small enough. The proof of the local in time existence is
1
complete.

Step 2. We prove that any local-in-time strong solution (u,p,n), over [0, T1], to the nonlinear system (3.11) can
be extended to a maximal strong solution. We look for functions (v, q, &) € B (QZ;O)’ with T > T3, such that
1
3.3, = @P)(®) forall € (0.7 -
(v, q,€) is a strong solution to (3.11) over [0, 7. '

For a given quadruplet (v,q, &, T) satisfying (7.4), we set

T=sup{T 2T | (¥v,q,&T) satisfies (7.4)}.

If there exists (v, q, &, T) satisfying (7.4) for all T < T= 00, the proof is complete.
We assume that (v,q,&,T) satisfies (7.4) for all T < T < oo. We have to show that (3.12) holds for

~

(u,p,n) = (v,¢,¢) and T,,, = T. We argue by contradiction. We assume that
i (153, +max {1+ 601,01 | (1.6 €5} ) < . (75)
T—T 1

Thus, we have

1.3 por, = g <00, min{l +£(t,21,0) | (21,0) €3, t € [0,T]} = 77 > 0.

We are going to show that the solution (V,q, &) can be extended to [f, T + e], for some € > 0, so that (v,q,¢&)
is solution to system (3.11) over the time interval [0,7 + ¢].

Rather than considering the system (3.11) over the time interval [T, 7], we are going to rewrite it in the
configuration Qg(?)'

We set 7 = £(T). From estimates (5.3), (6.12);, and (6.13);, knowing that T > 0, it follows that 7 €
H3% 0 (w) N HE (w). With (7.5), we have 1+7(21,60) > 7 for some 7 > 0. We look for displacements ¢ satisfying

Ee HY>(wx (T,7)) and &(T)=¢&(T) =7 (7.6)

We look for a solution (v, g, E), over the time interval (f, 7) with 7 > f, to the system

Vi —divo(v,q) = Fo(V, 3, &) —vVG(¥,€) i (T,7) x O,

div v = G(v,€) in (T,7) x O,

V=¢e, on(T,7)xT%,

o(v,p)n=0o0n (T,7) x Ty, o(V,p)n=0on (T,7) X Tous,

V(T) = VT, Xg0) in O, (7.7)

€t + Limemé + A2E — A& =

—15(0(V,@ex) e, + Hy(v.5.€)  in (T,7) xw,

E= ot =
1) =¢T), &) =&T) inw,

0 on (T,7)x {0,L} x (0,27),
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where Xﬁm? = Xn? o Y5. We consider the system

v, —divo(v,q) = fﬁ(v, q,¢) — VVQ%(V, ¢) in (T,7) x Oz,

div v = Gy(v,¢) i (T,7) x Q,

V=(e on(T,7)xT%,

c(v,pn=0o0n (T,7) x T, o(¥,p)n=0on (T,7) x Cout,

V(T) = VT, Xy 0) in O, (7.8)
€t + LmemC + A2 — A& =

— (0¥ Dex) e, + Hy(v,p,¢)  in (T,7) x w,

06 _
021
T)=¢T), &T)=&(T) mnw

£= 0 on (f, 7) x {0, L} x (0, 2m),

&(
We set
¥=97/2, and = Chuzs+ pp.
T

We introduce the mapping N from B( 537, 1) into B(QWT’T), defined by

N, : (v,q,0) — (v,q,8),

where (V,,€) is the solution to system (7.8) over [T, 7].
7

Applying Theorem 5.2 to system (7.8), as in Step 1, we can prove that N is a contraction in B( ﬁ’T; ¥, i) for
7—T > 0 small enough. Thus the system (7.7) admits a solution over the time interval (f, 7) in B( %’T; ¥, 1)

for 7 — T > 0 small enough. We can extend the triplet (v, ¢, &), defined over (0, f), to (JA“, 7) by setting

V(t2) = v(t, Ya(t, 2),  qlt2) = q(t, Yq(t, 2)), &t 21,0) = £(¢ 21,0).

We can show that (V,q,€) is solution to (3.11) over [0,7]. We have a contradiction with the definition of 7.
Thus (7.5) is false and (3.12) is proved. We have proved that any local-in-time strong solution may be extended
to a maximal strong solution.

Step 3. Uniqueness of mazimal solution. Let us prove that system (3.11) admits a unique maximal solution.
Let (0, p,n) be a maximal solution to system (3.11) over [0,Ty,), and let (v, q,§) be another maximal solution
to system (3.11) over [0, ). Let us assume that Ty, < Th. Let us set

~

T = sup {t € [0,Tw) | (@5.7)(7) = (¥,3,€)(7) for all 7 € [O,t}}.

T = Twm = fm , then the two maximal solutions are identical and the proof is complete.
IfT =T, < Ty, then

. ~ 1 _
i (150, + mox (|1 + 11,0 | (21.6) € 9}

= (1.8 0sqqnp, + max {14 G20 L) (1.0 €3} ) < o,

which is in contradiction with the fact that (4,p, ) is a maximal solution to system (3.11) over [0,7},). Thus
the proof is complete in that case too.

Let us examine the last case T < T, m- We have to treat separately the cases when T > 0 and the case when
T = 0. The case when T = 0 can be treated with the arguments in Step 1. Let us treat the case when T >0.
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For T < 7 < Ty, we consider the system (3.11) over the time interval (0, 7). We set

H1 = H|(ﬁ7ﬁ7 77)”|B(Qf0) e e rmn{l + 77(2'1, evt) | (Zl7 0) Ew, te [Oaf]}a
1

~.

M2 = ‘”(V, a\a £)|||B(Q7A"O) ) Y2 = mln{l + g(zlv gvt) | (217 0) € w? te [OvT}}»

[ =2p1 + 22, and 7§ =min{y1/2,72/2}.

We set 77 = 5(T)). From (5.3), we know that 77 € H3+<0(T,) and that 1+ 7(z1,6) > ¥ for some 5 > 0.
Let (u,p,n) (resp. (v,q,§)) be a solution of (1.1) associated with the solution (u,p,n) (resp. (v,q,€)) of
(3.11). We set

l~l(t, C) = u(tv Xﬁ,n (t, C))ﬂ ﬁ(t, C) = p(t, Xﬁﬂl (ta C))a
V(t,¢) = V(t, X5,(t.C)) and  §(t,¢) = q(t, X5(t,C)) for all t € [T, Ty).

We can easily check that the function (v, q,¢) = (0, p,n) — (v, q, §) satisfies the system (4.2), over the interval
(T, 7), with

v(T) =0, m(T)=0, m()=0,

h = Hﬁ(ﬁJAja 77) - Hﬁ(v7§a 6) - Diﬂmemn + gmemg-

~

Using the Lipschitz estimates for ]?ﬁ, éﬁ, M, and Lrnem in B( %’Tﬁ, i), with Theorem 5.2, we can show
that

Notice that the Lipschitz estimates of Lemmas 6.7, 6.8, 6.9, and 6.10 can be used, over the interval (f,T),
because J5 |t:f = Jne ‘t:f =1T.
Thus, if 7 > T is such that

Is oz

C(Cz+ Cg+ Cp + Co)(r = T) < 1,

we have

~

(v,q,Q)(t) =0 fortel[T,]
Thus (4, 7,7)(t) = (V,p,€)(t) for all t € [T,7], from which we deduce that (&,7,7)(t) = (v,p,&)(t) for all
t € [T, 7], and the proof is complete. O

Finally, we prove our main result:

Proof of Theorem 1.7. Let us assume that (ug,7?,79) € HY(Q) x H3T*(w) x H!(w) satisfies (1.7). From
Theorem 3.3, it follows that the system (3.11) admits a unique maximal strong solution (u,p,n) over the
interval (0,7y,), and (U,p,n) € B(QZO) for all 0 < T' < Tp,. Since v, (T) > 0, X(¢,-) is a C'-diffeomorphism

from Q into Q,;) (Lemma 3.1). Thus there is a unique Y (¢,-) from €, ;) onto € such that Y(¢,-) = X (¢,-)"".
We set

u(tv <1, $7y) = ﬁ(tv Y(tv 21, ‘T7y))a
p(t, z1,2,y) = pt, Y (L, 21,2, y)) for all (z1,2,y) € Q77(t)-

One can easily check that (u, p, ) satisfy the original system (1.1) over the time interval (0,T") for all 0 < T < Ty,
and that

u € L2(0, Ty H2T40(Q, ) N H' (0, T; L*(Q,,(.))) N C([0, T); H (Q,(5)),
p € L0, T; HY* =0 (Q, ), div o(u,p) € L*(Qr),
ne H4’2(WT).

for all 0 < T' < Ty,. Due to Proposition 3.4, the uniqueness of solution (u,p,n) to system (1.1), in the class of
functions satisfying (3.13), follows from the uniqueness of solution to system (3.11). O
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APPENDIX A. TECHNICAL RESULTS
Throughout this section, we assume that 77 satisfies (4.1).

Theorem A.1. Let £ € L*(Q5). Then the solution ¢ to the problem

: dyp s
—Ap = ¢ in O, %:OonFﬁ, p=0o0onT,,
belongs to H? ().

Proof. There may be a loss of regularity for ¢ at the junctions {(0,22,23) : 23 + 23 = 1} and {(L, 29, 23) :
23 + 22 = 1}. At first we want to study the regularity at the junction {(0,z22,23) : 23 + 25 = 1}, the other
junction can be studied in the similar way. To study the regularity of ¢, we extend the equation satisfied by
by using a symmetry argument. Let us set
~ n(—21,0), e (—L,0
i(a) = {1200 = e (CL0)
77(217 9)7 21 S (07 L)7
Q= (—L, L) x B(0,1+17),
f%: {(z1,7cos0,rsinf) | r =1+17(z1,0), z1 € (=L,L), 0 € (0,2m)},
~ T AL <2, ) € _L7O
D(z1,22,23) = pla 22 2), a1 € )
¢(z1,22,23), 21 €(0,L)
ny {_f(—zl, 22, Z3)) 21 S (_L7O)

€21, 22, 23) = €(z1,22,23), 21 €(0,L).

Thus f% is of class C?, because 7 belongs to H37¢0((—L, L) x (0,27)), and ¢ is solution to the equation

L s = 0 ~s  ~
—Ap = £ in Q, a—i =0onlg @=0on ({-L}U{L})x B(0,1+17),
and ¢ belongs to H? (ﬁﬁ,a), where ﬁﬁ,a =U.,e(-11e,1-) 171} x B(0,147)(21,-)) and € > 0. By similar argument,
we can deal with the other junction {(L, 22, 23) : 23 + 23 < 1}. a

Lemma A.2. The operator Dy € E(HS/Q(w);H?;O(Qﬁ))), defined in (4.20), may be extended as a bounded
operator from L?(w) to L*(Q).

Proof. We recall that Dgny = D(n9e,.) = Dg. We consider the following equation
—divo(v,q) =®, divv=0inQz v=0only, o(v,gJn=0o0nT),. (A1)
From [25, Theorem 9.4.5], it follows that (v, ¢) satisfies the estimate
HV”HEO(QW) + HQHH(}O(QW) < Ol|®@[Lz(q,)-
Using the mixed variational formulations satisfied by (w, 7) and (v, q) (as introduced in [25, page 384]), we have
fszﬁq) W= fszﬁf v fl“%U(V7Q)n -3
Hence, we have
Iwliza) < € (IEleay) + lelers) ) -
O

Lemma A.3. Let us assume that g € H*(Q) and g = 0 on T, Then the solution (w,m) € H3 (Q) x Hj (%)
to the equation

—divo(w,m) = —vVg, divw =g in Qz w=0onT7, o(w,m)n=0 on [, (A.2)
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satisfies the following estimate
Wl < C”Q”(H(}O(Qﬁ))"

Proof. Let ® belong to L?(€25;) and (v, q) be the solution of (A.1). Using the mixed variational formulations
satisfied by (w,7) and (v, q), we can verify that

o fos

Qx
Thus
[Wlreoy = sup / ®-wi = sup / q9
” ||L2(QW):1 7 ”q’HLQ(QW):l QW
< s gl @y lallag @) < Cllglla, @q)-
®llL2 =1 ’ 0

O

Lemma A.4. Let s € (0,1/2). If f € H3/473/2(0,T; H3/?+5(Q5)) N L>(0, T; H*(Qy) N H3/4=3/2(0,T; H(0, L;
L>®(B(0,1+7)))) and 0 < m < f(z,t) in Qn x (0,T), then 1/f belongs to H3/*=5/2(0,T; H3/2+5(Q5)) N
L>(0,T; H*(Q)) N H3/4=3/2(0,T; H*(0, L; L>(B(0,1 +7)))), and it satisfies the following estimate:

||1/f||L°°(0,T;H2(Q;)) c(1+ ||fHL°c(o T;H?(Q7 )||fHL<>°(0 T;H2(Q7))>
C

[T

11/ fll msra—sr2o,m5m3/2+5 () < £l ezsra=sr20,1m3/2 45 ()

||1/f||H3/4—s/2(o,T;H1(o,L;Loo(B(o,Hﬁ))))
C

S 1= o zomom)

| £l frsra=sr2 (0,707 (0,;L5 (B(0,147))))»

with C' is independent of T'.

Proof. Let G be a C*°, nonnegative function such that G(0) = 0 and G(r) = 1/r for r > m. From [34, Theorem
2, pp. 336], for all ¢ > 0, we get

IG(f(t ))”H?(Q )y SC(L+FO) ey S )| R
C (L4 [If | oo, m200m) I £ (2 Mz y)-
By taking the supremum with respect to t in the above estimate, we have
IG(f ()L 0,125 < C (L + [ £l Lo o,msm2 @) 1 2o 0,7552(02)) -

With [18, Proposition B1], we can estimate

H1/fHH3/475/2(0,T;H3/2+3(Q

/ /T 1L/ F#) = L/ F ()l rss2+s o)

t _ 7—|5/2 s

/ / 1£() ||H3/2+é(Q )
||fHLoo(OTH2 Q) |t*7|5/2 8

Hf||H3/4 5/2(0,T;H3/2+s ( n))

<C
||f‘||L°O (O,T;HZ(Qn))

The last estimate can be proved similarly. O
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