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MAXIMAL-IN-TIME EXISTENCE AND UNIQUENESS OF STRONG SOLUTION OF A 3D

FLUID-STRUCTURE INTERACTION MODEL

DEBAYAN MAITY, JEAN-PIERRE RAYMOND, AND ARNAB ROY

Abstract. In this work, we study a system coupling the incompressible Navier-Stokes equations in a cylindrical

type domain with an elastic structure, governed by a damped shell equation, located at the lateral boundary of

the domain occupied by the fluid. We prove the existence of a unique maximal strong solution.

1. Introduction and main results

We study the interaction between a viscous, Newtonian, incompressible fluid and an elastic structure modelled
by a nonlinear damped shell equation. Let us consider a clamped thin cylindrical shell of length L and of reference
radius 1. For the fluid, the reference configuration is Ω, and the structure is located at the boundary Γs ⊂ ∂Ω,
where

Ω = (0, L)×B(0R2 , 1), B(0R2 , 1) = {(z2, z3) ∈ R2 | (z2
2 + z2

3)1/2 < 1},
Γs = {(z1, z2, z3) | z1 ∈ (0, L), z2

2 + z2
3 = 1}.

We shall also use ω = (0, L)× (0, 2π) to parametrize Γs:

Γs = {(z1, cos θ, sin θ) | z1 ∈ (0, L), θ ∈ (0, 2π)}.

When the fluid moves, it deforms the elastic structure which in turn influences the fluid motion. Let η(t, ·) denote
the displacement of the shell from the reference configuration Γs at time t. We assume that the displacement
η(t, ·) is only in the radial direction. Thus η(t, z1, θ) = η(t, z1, θ)er(θ) where er(θ) = (0, cos θ, sin θ) is the unit
vector in the radial direction, η(t, z1, θ) ∈ R and 1 +η(t, z1, θ) > 0. Therefore, the domain Ωη(t) occupied by the
fluid at time t > 0 and the lateral boundary Γsη(t) occupied by the elastic structure at time t > 0 are defined by

Ωη(t) =
{

(z1, x, y) ∈ R3 |
√
x2 + y2 < 1 + η(t, z1, θ), z1 ∈ (0, L), θ ∈ (0, 2π)

}
,

Γsη(t) =
{

(z1, x, y) ∈ R3 |
√
x2 + y2 = 1 + η(t, z1, θ), z1 ∈ (0, L), θ ∈ (0, 2π)

}
,

or in cylindrical coordinates by

Ωη(t) =
{

(z1, r, θ) ∈ R3 | 0 6 r < 1 + η(t, z1, θ), z1 ∈ (0, L), θ ∈ (0, 2π)
}
,

Γsη(t) =
{

(z1, r, θ) ∈ R3 | r = 1 + η(t, z1, θ), z1 ∈ (0, L), θ ∈ (0, 2π)
}
.

We set Γn = Γin ∪ Γout, where the inlet and outlet boundaries, Γin and Γout, are defined by

Γin =
{

(z1, x, y) ∈ R3 | 0 6
√
x2 + y2 < 1, z1 = 0

}
and

Γout =
{

(z1, x, y) ∈ R3 | 0 6
√
x2 + y2 < 1, z1 = L

}
.
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Remark 1.1. In the following, the Cartesian coordinates of points in R3 will be denoted by (z1, z2, z3) in the
reference configuration and by (z1, x, y) in the deformed configuration. When (z1, z2, z3) belongs to Ω (resp. Γs),
the corresponding cylindrical coordinates will be denoted by (z1, r, θ) (resp. (z1, θ)). A function f in Cartesian

coordinates (in the deformed configuration) defines a function f̃ in cylindrical coordinates via the identity

f̃(z1, r, θ) = f(z1, x, y).

Since no confusion is possible, to simplify the notation we will omit the superscript ,̃ and both the functions f

and f̃ will be denoted by f.

Remark 1.2. Since we write the structure equation in ω = (0, L) × (0, 2π), any function defined on Γs (or
Γsη(t)) must be viewed as a function defined on ω, 2π-periodic w. r. to θ.

For 0 < T 6∞, we set

Q̃T = ∪t∈(0,T ){t} × Ωη(t), QT = (0, T )× Ω, ωT = (0, T )× ω,
ΣsT = (0, T )× Γs, Σin

T = (0, T )× Γin, Σout
T = (0, T )× Γout.

In this paper, we want to study the following fluid-structure interaction system:

ρf (ut + (u · ∇)u)− div σ(u, p) = 0, div u = 0 in Q̃T ,

σ(u, p)n = 0 on Σin
T , σ(u, p)n = 0 on Σout

T ,

u(t, z1, 1 + η(t, z1, θ), θ) = ηt(t, z1, θ)er, for (t, z1, θ) ∈ (0, T )× ω,
ρshηtt + Lmemη + β1∆2

sη − β2∆sηt = H(u, p, η) in ωT ,

η = ∂η
∂n = 0 on (0, T )× ∂ω = (0, T )× ({0} ∪ {L})× (0, 2π),

η(0, ·) = η0
1 , ηt(0, ·) = η0

2 in ω, u(0, ·) = u0 in Ωη0
1
,

(1.1)

where ρf > 0 denotes the constant density of the fluid, u(t, ·) and p(t, ·) respectively denotes the fluid velocity
and the fluid pressure in Ωη(t). The fluid stress tensor σ(u, p) is given by

σ(u, p) = 2νε(u)− pIR3 , ε(u) =
1

2
(∇u +∇uT ), (1.2)

where ν > 0 is the constant fluid viscosity. In (1.1)4, the structure displacement η is assumed to satisfy a
viscoelastic cylindrical nonlinear Koiter shell equation, where ρs > 0 is the constant structure density, h is the
thickness of the structure, β1 > 0 is the bending coefficient, β2 > 0 is the damping coefficient, and H is the force
exerted by the fluid acting on the structure in the radial direction. When β2 = 0, that is to say when there is
no damping, this model is introduced in [29] and the differential operator Lmem is defined by

Lmemη =
h

2

[
(1 + η)

( EσP
1− σ2

P

η2
z1 +

E

1− σ2
P

(
η(η + 2) + η2

θ

))
− ∂

∂z1

( E

1− σ2
P

η3
z1 +

EσP
1− σ2

P

ηz1

(
η(η + 2) + η2

θ

))
− ∂

∂θ

( E

1− σ2
P

η2
z1ηθ +

EσP
1− σ2

P

ηz1

(
η(η + 2) + η2

θ

))
− E

1 + σP

( ∂
∂θ

(
η2
z1ηθ

)
+

∂

∂z1

(
η2
θηz1

))]
, (1.3)

where E is the Young’s modulus of elasticity and σP is the Poisson ratio. In the right hand side of equation
(1.1)4, H(u, p, η) is defined by

H(u, p, η) = −
√

(1 + η2
z1)(1 + η)2 + η2

θ

(
σ(u, p)ñ

)
|Γs
η(t)
· er, (1.4)

where

ñ =
1√

(1 + η2
z1)(1 + η)2 + η2

θ

(
− ηz1(1 + η), (1 + η) cos θ + ηθ sin θ, (1 + η) sin θ − ηθ cos θ

)
,
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is the unit normal to Γsη(t) outward Ωη(t). In (1.1)2 homogeneous Neumann boundary conditions are prescribed

at the inlet and outlet boundaries of the fluid, but nonhomogeneous boundary conditions of the form

σ(u, p)n = gin on Σin
T , σ(u, p)n = gout on Σout

T , (1.5)

with gin ∈ H1(0, T ; H1/2(Γin)) and gout ∈ H1(0, T ; H1/2(Γout)), could also be considered. Equation (1.1)3

corresponds to the equality of velocities at the interface Γsη(t) (i.e., no-slip boundary condition).

Remark 1.3. Let us make the following remarks.

1. For simplicity in the writing, we shall take ρf = 1 and all the structure parameters h, ρs, β1, β2 are also
taken equal to 1.

2. In view of Remark 1.2, the boundary condition of the structure stated in (1.1)5 reads as follows

η(t, 0, θ) = η(t, L, θ) =
∂η

∂z1
(t, 0, θ) =

∂η

∂z1
(t, L, θ) = 0, for all t ∈ [0, T ],

all θ ∈ [0, 2π], η is 2π-periodic with respect to θ.

3. In the rest of this article, to simplify the notation, we do not include the above periodicity condition
while writing the systems. For the same reason the notion of periodicity does not appear in the notation
of function spaces also.

Remark 1.4. In (1.1)4, ∆2
s and ∆s represent respectively the biharmonic and Laplace operators defined on ω.

More precisely

D(∆s) = H2(ω) ∩H1
0 (ω), ∆s =

∂2

∂z2
1

+
∂2

∂θ2
,

D(∆2
s) = H4(ω) ∩H2

0 (ω), ∆2
s =

(
∂2

∂z2
1

+
∂2

∂θ2

)2

.

The spaces H2
0 (ω) and H1

0 (ω) are introduced in Section 2.

This type of model is motivated by blood flow in human arteries. Actually, the blood is a nonhomogeneous
medium, composed of red blood cells, leukocytes (white blood cells) and thrombocytes (platelets) suspended
in blood plasma. However, in large vessels, blood can be considered as an incompressible, viscous Newtonian
fluid. An artery is a large blood vessel whose thickness is negligible in front of the radius of its section. For
more details about the modelling of such systems we refer to [27, 29, 5] and the references therein.

During the last two decades, there has been a considerable interest in fluid-structure interaction problems
involving moving interfaces. Generally speaking, these type of models can be classified into two types: either
the structure is moving inside the fluid or the structure is located at the boundary of the fluid domain. Since
in this article we are interested in studying FSI models where the structure is located at the boundary of the
fluid domain, below we mention related works from the literature concerning this case only.

Let us briefly review some existence results for such models. Chambolle et al. [7] proved the existence of
weak solutions for a FSI problem coupling a 3D viscous, incompressible fluid with a 2D viscoelastic plate, with
homogeneous Dirichlet boundary conditions on the fluid boundaries, as long as the structure does not touch the
fixed part of the fluid boundary. Grandmont [14] extended this result to undamped 2D elastic plates. In these
studies, the middle surface of the structure is assumed to be flat. Lengeler and Růžička [22] and Lengeler [21]
extended the above results to the case when the middle surface of the structure is no longer flat. In [22], the
fluid is assumed to be incompressible and Newtonian and the structure is a linear elastic Koiter shell, whereas
in [21] the interaction of an incompressible and generalized Newtonian fluid with a linear elastic Koiter shell
has been studied.

Recently Muha and Čanić [26] proved the existence of weak solutions for a class of 2D/1D FSI problems.
The fluid is viscous, Newtonian and driven by pressure data at the inflow and outflow boundaries, whereas the
structure is modelled either by a linear viscoelastic beam or by a linear elastic Koiter shell equation. The proof
is based on a splitting time discretization scheme. These results were extended by Muha and Čanić in [27] to
the 3D cylindrical domain where the structure is modelled by a linear elastic cylindrical Koiter shell, and in [29],
where the structure is described by a nonlinear cylindrical Koiter shell whose displacements are not necessarily
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radially symmetric. A FSI problem with two structural layers, a thick layer and a thin layer, was dealt in [28].
Bukač et. al [4] numerically solved the coupled FSI, with a linear viscoelastic cylindrical Koiter shell modeling
both radial and longitudinal displacements.

Concerning strong solutions, as far as we know, the first result was obtained by Beirao da Veiga [1]. The
author proved local in time existence and uniqueness of solution for small data for an interaction between a
2D fluid and a 1D viscoelastic beam with periodic boundary conditions in the axial direction of the vessel.
This result was extended by Lequeurre in [23] and [24], where the existence of a unique, local in time, strong
solution for any data was proved in the case when the structure is modeled by a clamped viscoelastic beam.
Local in time existence and uniqueness results, when the structure is purely elastic, have been recently obtained
by Grandmont, Hillairet and Lequeurre [16]. Casanova [6] proved local in time existence and uniqueness of
solutions with boundary data involving the pressure and when the structure is modeled as a viscoelastic beam.
Grandmont and Hillairet [15] proved global in time existence and uniqueness of solutions for any initial data in
a 2D/1D setting when the structure equation corresponds to a viscoelastic beam. Both in [15] and [16], periodic
boundary conditions in the vessel direction for the fluid were assumed.

In the context of strong solutions, as far as we are aware of, the only articles that deal with more general
geometry and nonlinearities in the structure model are Cheng, Coutand and Shkoller [9] and Cheng and Shkoller
[10]. In these papers, existence and uniqueness of local in time strong solution is proved for the interaction
between a viscous, incompressible fluid and thin nonlinear shells. In [9], the fluid is inside of a deformable
elastic structure of Wilmore type in 3D, whereas in [10] the fluid interacts with a nonlinear elastic shell of
Koiter type, both in 2D and 3D. However, in both works, whenever the 3D case is considered, the structure
has zero inertia. Moreover, in the 3D Koiter shell case, the result is obtained assuming that the thickness of
the shell is much smaller than the fluid viscosity. Also, in both works the structure is located on the entire
boundary.

In this present work, we prove the existence and uniqueness of a maximal strong solution to the system (1.1).
Here we want to emphasize that we consider a shell model with a damping, which is also the case in the references
mentioned above concerning the existence of strong solutions in three dimensions. In our case, the structure
is located at the lateral boundary of the cylinder (as in [27, 29]), and we prescribe homogeneous Neumann
boundary conditions at the inlet and outlet boundaries of the cylindrical domain (the case of nonhomogeneous
Neumann boundary conditions can also be considered, see (1.5)).

To state our main result, we need to introduce some notation. We set L2(Ω) = L2(Ω;R3) and Hs(Ω) =
Hs(Ω;R3) for s > 0. We shall use the same notation when Ω is replaced by Ωη for some η ∈ H3(ω)∩H2

0 (ω). We
also need to introduce function spaces for the fluid velocity and the fluid pressure depending on the displacement
η of the structure.

Definition 1.5. For a given η ∈ L2(0, T ;H4(ω))∩H2(0, T ;L2(ω)) satisfying 1+η(t, z1, θ) > 0 on [0, T ]×ω, and
setting η = η(0), we say that u belongs to L2(0, T ; H3/2+ε0(Ωη(·))) (resp. H1(0, T ; L2(Ωη(·))), C([0, T ]; H1(Ωη(·))))

when u(t, ·) is a mapping from Ωη(t) into R3 and when there exists X belonging to

H2(0, T ;L2(Ωη))∩H1(0, T ;H2(Ωη))∩L∞(0, T ;H3(Ωη)) such that, for all t ∈ [0, T ], X(t, ·) is a C1-diffeomorphism

from Ωη onto Ωη(t) and û, defined by û(t, z1, z2, z3) = u(t,X(t, z1, z2, z3)), belongs to L2(0, T ; H3/2+ε0(Ωη))

(resp. H1(0, T ; L2(Ωη)), C([0, T ]; H1(Ωη))). Similarly, we say that p belongs to L2(0, T ;H1/2+ε0(Ωη(·))) when
p(t, ·) is a mapping from Ωη(t) into R and when p̂, defined by p̂(t, z1, z2, z3) = p(t,X(t, z1, z2, z3)), belongs to

L2(0, T ;H1/2+ε0(Ωη)) (ε0 is determined in Theorem 4.2).

We look for solutions (u, p, η) to system (1.1) satisfying

u ∈ L2(0, T ; H3/2+ε0(Ωη(·))) ∩H1(0, T ; L2(Ωη(·))) ∩ C([0, T ]; H1(Ωη(·))),

p ∈ L2(0, T ;H1/2+ε0(Ωη(·))), div σ(u, p) ∈ L2(Q̃T ),
η ∈ L2(0, T ;H4(ω)) ∩H2(0, T ;L2(ω)),
1 + η(t, z1, θ) > 0 for all (t, z1, θ) ∈ [0, T ]× ω,

(1.6)

for some ε0 ∈ (0, 1/2).
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Definition 1.6. We say that a triplet (u, p, η) is a solution to system (1.1) when it satisfies (1.6), equation

(1.1)1 in the sense of distributions in Q̃T , equation (1.1)4 in the sense of distributions in ωT , equations (1.1)2,3,5

in the sense of traces, and the initial conditions stated in (1.1)6.

We are now in position to state the first existence and uniqueness result of the paper.

Theorem 1.7. Let (u0, η
0
1 , η

0
2) belong to H1(Ωη0

1
)×H3+ε0(ω)×H1(ω), for some ε0 ∈ (0, 1/2), and satisfy

div u0 = 0 in Ωη0
1
,

η0
1(0, θ) = η0

1(L, θ) =
∂η0

1

∂n (0, θ) =
∂η0

1

∂n (L, θ) = 0, θ ∈ (0, 2π),

η0
2(0, θ) = η0

2(L, θ) = 0, θ ∈ (0, 2π),

u0(z1, 1 + η0
1(z1, θ), θ) = η0

2(z1, θ)er for all z1 ∈ (0, L), θ ∈ (0, 2π)

min{1 + η0
1(z1, θ) | (z1, θ) ∈ [0, T ]× ω} > 0.

(1.7)

Then there exists a T > 0, depending only on the initial data (u0, η
0
1 , η

0
2), such that the system (1.1) admits a

strong solution in the sense of Definition 1.6.
When that solution is maximal-in-time, in the sense introduced in Proposition 3.4, it is unique in the class

of functions defined in (3.13).

One of the main difficulties in the analysis of fluid-structure interaction models as in (1.1) is that the fluid
equations are written in the deformed configuration (in Eulerian variables), while the structure equations are
written in the reference configuration (in Lagrangian variables). Since the fluid domain at time t is one of the
unknowns, we first rewrite the system in a fixed spatial domain. This can be achieved either by using a geometric
change of variables (defined through the displacement of the fluid-structure interface), or a Lagrangian change of
variables. In our case, it is more convenient to use a geometric change of variables. Next, we associate with the
nonlinear problem a linear one, involving non-homogeneous source terms. We show that the operator associated
to the linearized problem generates an analytic semigroup in a suitable Hilbert space. Another difficulty in
our problem comes from the choice of boundary conditions we have taken. Due to the presence of mixed
boundary conditions, we have to look for solutions in some appropriate weighted Sobolev spaces. Moreover, due
to the change of variables transforming the system in the deformed configuration to a system in the reference
configuration, the velocity in the reference configuration is no longer divergence free. Thus to solve the linear
fluid-structure problem, we have to solve problems with non zero divergence conditions. We use the Banach
fixed point theorem to prove our main result.

Before ending this review, we would like to mention that, since the end of the nineties, there are many
contributions studying the well posedness of different type of fluid-structure interaction problems. We cannot
mention all of the different configurations recently studied in the literature. But let us investigate if the method
used in the present paper could be used for two typical models. In the case when an elastic structure modeled
by the Lamé system of linear elasticity interacts with an incompressible viscous fluid, the existence of strong
solutions is obtained for higher regularities than that we consider here (see, e.g., [3, 11, 20, 33]). In that case
there is no hope of adapting our results to this type of model. At the opposite, the case of a smooth rigid body
immersed in an incompressible viscous fluid, see [35, 17], can be handled more easily because the boundary
of the rigid body remains regular. The analytic tools used here could be adapted to obtain the existence and
uniqueness of local in time strong solution for those coupled models in three dimensions.

The outline of the paper is as follows. In Section 2, we introduce notations of several functional spaces that we
will use later on. We introduce a change of variables and rewrite the system (1.1) in the reference configuration
in Section 3. Local in time existence for the system written in reference configuration is stated in Theorem 3.3.

Section 4 is devoted to rewriting the linearized fluid-structure system as an evolution equation. We rewrite
the Stokes system as an operator equation in Section 4.1, and the damped shell equation in Section 4.2. The
coupled linear fluid-structure system is rewritten as an evolution equation in Section 4.3. The analyticity of
the associated semigroup is studied in Section 4.4. Existence and regularity results for the nonhomogeneous
linear system are studied in Section 5. Estimates of the nonlinear terms in suitable norms are done in Section 6.
Section 7 is devoted to the proof of the main results, Theorem 1.7 and Theorem 3.3. Some technical results are
collected in Appendix A.
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2. Notation

We first introduce the spaces

H1
0 (ω) =

{
η ∈ H1(ω) | η(0, θ) = η(L, θ) = 0, for all θ ∈ (0, 2π)

}
,

H2
0 (ω) =

{
η ∈ H2(ω) ∩H1

0 (ω) | ∂η
∂z1

(0, θ) =
∂η

∂z1
(L, θ) = 0, for all θ ∈ (0, 2π)

}
.

For any η belonging to H3(ω) ∩H2
0 (ω), and satisfying

γη = min{1 + η(z1, θ) | (z1, θ) ∈ (0, L)× (0, 2π)} > 0, (2.1)

we set
Ωη =

{
(z1, r, θ) ∈ R3 | 0 6 r < 1 + η(z1, θ), z1 ∈ (0, L), θ ∈ (0, 2π)

}
,

Γsη =
{

(z1, r, θ) ∈ R3 | r = 1 + η(z1, θ), z1 ∈ (0, L), θ ∈ (0, 2π)
}
.

For σ > 1/2, γsη is the operator belonging to L(Hσ(Ωη), Hσ−1/2(ω)) and defined by(
γsηh

)
(z1, θ) = h(z1, 1 + η(z1, θ), θ) for all (z1, θ) ∈ ω, (2.2)

where h(z1, 1 + η(z1, θ), θ) is nothing but the trace of h ∈ Hσ(Ωη) on Γsη.

We use boldface letters, L2(Ωη) = L2(Ωη;R3) and Hσ(Ωη) = Hσ(Ωη;R3), for functional spaces for the fluid
velocity. For u ∈ L2(Ωη), we denote by u1, u2 and u3 the components of u.

For an arbitrary integer ` > 0 and for −1 < δ < 1, we denote by H`
δ(Ωη) and H`

δ(Ωη) the weighted Sobolev

spaces (see [25, section 6.2.1]), respectively defined as the closure of C∞(Ωη;R3) and C∞(Ωη) for the norms

‖u‖2H`
δ(Ωη) =

∑
|α|6`

3∑
i=1

∫
Ωη

r2δ
0 r

2δ
L |Dαui|2 dz1dz2dz3,

‖p‖2H`δ(Ωη) =
∑
|α|6`

∫
Ωη

r2δ
0 r

2δ
L |Dαp|2 dz1dz2dz3,

where r0 (respectively rL) is the distance to ∂Γin (respectively ∂Γout), and Dα denotes the partial differential
operator associated to the multi-index α = (α1, α2, α3). Here,

r0 =

[
z2

1 +

(√
z2

2 + z2
3 − 1

)2
] 1

2

, rL =

[
(L− z1)2 +

(√
z2

2 + z2
3 − 1

)2
] 1

2

.

Notice that r0 > z1 and rL > (L− z1).
If δ > 0, we have H`(Ωη) ⊂ H`

δ(Ωη). We also introduce the following spaces

V0(Ωη) =
{
u ∈ L2(Ωη) | div u = 0

}
,

V0
n,Γsη

(Ωη) =
{
u ∈ L2(Ωη) | div u = 0 in Ωη, u · n = 0 on Γsη

}
,

Vσ
Γsη

(Ωη) =
{
u ∈ Hσ(Ωη) ∩V0(Ωη) | u = 0 on Γsη

}
, σ >

1

2
,

Vσ
n,Γsη

(Ωη) =
{
u ∈ H1(Ωη) ∩V0(Ωη) | u · n = 0 on Γsη

}
, σ >

1

2
,

Hσ
Γn(Ωη) = {f ∈ Hσ(Ωη) | f = 0 on Γn} , σ >

1

2
.

For −∞ < t0 < t1 < +∞, we set

H2,1
δ (Qt0,t1η ) = L2(t0, t1; H2

δ(Ωη)) ∩H1(t0, t1; L2(Ωη)),

Hr,s(ω × (t0, t1)) = L2(t0, t1;Hr(ω)) ∩Hs(t0, t1;L2(ω)), r, s > 0.

(H1
δ (Ωη))′ is the dual of H1

δ (Ωη) with L2(Ωη) as pivot space.

When (t0, t1) = (0, T ), we shall simplify the notation by setting QTη = Q0,T
η and ωT = ω × (0, T ).
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3. System rewritten in the initial configuration

The domain occupied by the fluid depends on the displacement η of the structure. For −∞ < t0 < t1 < +∞,
we consider displacement η belonging to

E(t0, t1) = L2(t0, t1;H4(ω) ∩H2
0 (ω)) ∩H2(t0, t1;L2(ω)),

and satisfying

γη(t0, t1) = min{1 + η(t, z1, θ) | (t, z1, θ) ∈ [t0, t1]× ω} > 0. (3.1)

For η belonging to H3(ω) ∩H2
0 (ω) and satisfying (2.1), we introduce the spaces

Eη(t0, t1) = {η ∈ E(t0, t1) | η(t0) = η}
and for γ > 0, Eη(t0, t1; γ) = {η ∈ Eη(t0, t1) | γη(t0, t1) > γ}.

For η ∈ Eη(t0, t1; γ) with γ > 0, we introduce the mapping Xη(t, ·) : Ω 7−→ Ωη(t) defined by

Xη(t, z1, z2, z3) = (z1, z2, z3) + (0, z2, z3)ψ(r)η(t, z1, θ), with r =
√
z2

2 + z2
3 , (3.2)

where ψ is a C∞ nondecreasing function from [0, 1] into [0, 1] satisfying

ψ(r) = 0 for all r ∈
[
0, 1/4

]
and ψ(r) = 1 for all r ∈ [3/4, 1].

Similarly, if η ∈ H3(ω) ∩H2
0 (ω) satisfies (2.1), we set

Xη(z1, z2, z3) = (z1, z2, z3) + (0, z2, z3)ψ(r)η(z1, θ), with r =
√
z2

2 + z2
3 . (3.3)

We look for conditions ensuring that Xη(t, ·) is a C1-diffeomorphism from Ω onto Ωη(t).

Lemma 3.1. (i) Let −∞ < t0 < t1 < +∞ and γ be positive. For all η belonging to E(t0, t1) and satisfying
γη(t0, t1) > 0, the mapping Xη defined in (3.2) satisfies

• Xη(t,Γs) = Γsη(t), Xη(t,Γin) = Γin and Xη(t,Γout) = Γout for all t ∈ [t0, t1],

• Xη(t0,Ω) = Ωη(t0),

• Xη ∈ L2(t0, t1;H4(Ω)) ∩H2(t0, t1;L2(Ω)),
• Xη ∈ H1(t0, t1;H2(Ω)) ∩ L∞(t0, t1;H3(Ω)).

Moreover, for all t ∈ [t0, t1], Xη(t, ·) is a C1-diffeomorphism from Ω onto Ωη(t).

(ii) If η ∈ H3(ω) ∩ H2
0 (ω) satisfies (2.1), the mapping Xη defined in (3.3) is a C1-diffeomorphism from Ω

onto Ωη, and it satisfies

• Xη(Γs) = Γsη, Xη(Γin) = Γin and Xη(Γout) = Γout,

• Xη ∈ H3(Ω).

(iii) With the assumptions stated in (i) and (ii), the mapping Xη,η, defined by

Xη,η(t, ·) = Xη(t, (Xη)−1(·)) for all t ∈ (t0, t1), (3.4)

belongs to H2(t0, t1;L2(Ωη)) ∩H1(t0, t1;H2(Ωη)) ∩ L∞(t0, t1;H3(Ωη)).

Proof. Step 1. The first part of (i) is an obvious consequence of the definition of Xη. Let us prove that Xη(t, ·)
is a C1-diffeomorphism from Ω onto Ωη(t) for t ∈ [t0, t1]. For that we express Xη in cylindrical coordinates. To

show that Xη(t, ·) is a C1-diffeomorphism from Ω onto Ωη(t), it is sufficient to show that the mapping

Xη(t, ·) : (z1, θ, r) 7→ (ζ1, ϕ, ρ) = (z1, θ, r(1 + ψ(r)η(t, z1, θ)))

is a C1-diffeomorphism from Ω = (0, L)× [0, 2π)× [0, 1) into Ωη(t) = {(ζ1, ϕ, ρ) ∈ (0, L)× [0, 2π)×R+ | 0 6 ρ <
η(t, z1, ϕ)}. It is clear that Xη(t, ·) is a map of class C1 from Ω onto Ωη(t). Moreover, for all η ∈ R satisfying
1 + η > γ, due to the definition of ψ, the mapping

r 7→ ρ = r(1 + ψ(r)η)

is invertible from [0, 1) into [0, 1 + η). Let us denote its inverse by χ(ρ, η). It is clear that (ρ, η) 7→ χ(ρ, η) is of
class C1 from {(ρ, η) | 0 6 ρ < 1 + η, γ − 1 6 η <∞} onto [0, 1]× [γ − 1,∞).
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Let us set Yη(t, ζ1, ϕ, ρ) = (t, ζ1, ϕ, χ(ρ, η(t, ζ1, ϕ))). It is clear that, for all t ∈ [t0, t1], Yη(t, ·) is the inverse
of Xη(t, ·) and is of class C1.

Step 2. The results stated in (ii) can be proved similarly. The result stated in (iii) is an easy consequence
of (i) and (ii). The proof is complete. �

Before rewriting the system (1.1) in the initial configuration Ωη0
1
, we first define a family of nonlinear terms

indexed by an arbitrary initial displacement η.
For all η ∈ H3(ω) ∩H2

0 (ω) satisfying (2.1), and for −∞ < t0 < t1 < +∞, we first introduce the space

B(Qt0,t1η )

=
{

(v, p, η) ∈ (H2,1
δ0

(Qt0,t1η ) ∩ C([t0, t1]; H1(Ωη)))× L2(t0, t1;H1
δ0

(Ωη))× Eη(t0, t1)

| v = ηter on (t0, t1)× Γsη

}
,

where δ0 ∈ (0, 1/2) is the parameter introduced in Theorem 4.2. The condition v = ηter on (t0, t1)×Γsη, in the

definition of B(Qt0,t1η ), is needed in the proof of Lemma 6.8. We equip B(Qt0,t1η ) with the norm

|||(v, p, η)|||
B(Q

t0,t1
η )

:= ‖v‖
H2,1
δ0

(Q
t0,t1
η )

+ ‖v‖L∞(t0,t1;H1(Ωη))

+‖p‖L2(t0,t1;H1
δ0

(Ωη)) + ‖η‖E(t0,t1),
(3.5)

where
‖η‖E(t0,t1)

= ‖η‖H4,2(ω×(t0,t1)) + ‖η‖L∞(t0,t1;H3(ω)) + ‖ηt‖H2,1(ω×(t0,t1)) + ‖ηt‖L∞(t0,t1;H1(ω)).

We denote by Yη the inverse of Xη. For all ξ ∈ Eη(t0, t1) satisfying γξ(t0, t1) > 0, Xη,ξ(t, ·) is the diffeomorphism
from Ωη into Ωξ(t) introduced in (3.4). We set

Jη,ξ(t, z) = (Jj,kη,ξ)16j,k63 = [∇Xη,ξ]
−1(t, z) for (t, z) ∈ (t0, t1)× Ωη. (3.6)

If η and ξ satisfy the conditions mentioned above, and if (v, q, ξ) belongs to B(Qt0,t1η ), we define the nonlinear

terms F̂η(v, q, ξ) =
(
F̂η,i(v, q, ξ)

)
16i63

and Ĝη(v, ξ), in Qt0,t1η = (t0, t1)× Ωη, by

F̂η,i(v, q, ξ) = − (v − ∂tXη,ξ) · J>η,ξ∇vi + ν
∑
j,k,l

∂2vi
∂zl∂zk

(
Jk,jη,ξJ

l,j
η,ξ − δk,jδl,j

)
+ ν

∑
j,k,l

∂vi
∂zk

∂

∂zl
(Jk,jη,ξ )J l,jη,ξ + ((IR3 − J>η,ξ)∇q)i, i = 1, 2, 3, (3.7)

and

Ĝη(v, ξ) = ∇v : (IR3 − J>η,ξ), (3.8)

where ∂t denotes the partial derivative with respect to t. The nonlinear term Ĥη(v, q, ξ) is defined in (t0, t1)×ω
by

Ĥη(v, q, ξ) = −νγsη
((
∇vJη,ξ + (∇vJη,ξ)

>) (cof(∇Xη,ξ)− IR3) eη

)
· er

− νγsη
((
∇v(Jη,ξ − IR3) + [∇v(Jη,ξ − IR3)]>

)
eη

)
· er

+ γsη

(
q
(
cof(∇Xη,ξ)− IR3

)
eη

)
· er, (3.9)

where eη is the unit normal to Γsη exterior to Ωη, and γsη is defined in (2.2).

For any η0
1 satisfying the assumptions of Theorem 1.7, we consider the following change of unknowns

û(t, ζ) = u(t,Xη0
1 ,η

(t, ζ)), p̂(t, ζ) = p(t,Xη0
1 ,η

(t, ζ)). (3.10)
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The system satisfied by (û, p̂, η) is the following

ût − div σ(û, p̂) = F̂η0
1
(û, p̂, η)− ν∇Ĝη0

1
(û, η) in (0, T )× Ωη0

1
,

div û = Ĝη0
1
(û, η) in (0, T )× Ωη0

1
,

û(t, z1, 1 + η0
1 , θ) = ηt(t, z1, θ)er, for (t, z1, θ) ∈ (0, T )× ω,

σ(û, p̂)n = 0 on (0, T )× Γin, σ(û, p̂)n = 0 on (0, T )× Γout,

û(0) = u0(Xη0
1
(·)) in Ωη0

1
, (3.11)

ηtt + Lmemη + ∆2
sη −∆sηt =

− γsη0
1
(σ(û, p̂)eη0

1
) · er + Ĥη0

1
(û, p̂, η) in (0, T )× ω,

η = ηz = 0 on (0, T )× {0, L} × (0, 2π),

η(0) = η0
1 , ηt(0) = η0

2 in ω.

Definition 3.2. We say that a triplet (û, p̂, η) ∈ B(QT
η0

1
) is a strong solution to system (3.11), over the time

interval (0, T ), when η satisfies (3.1), when equation (3.11)1,2 is satisfied in the sense of distributions in QT
η0

1
,

equation (3.11)6,7 in the sense of distributions in ωT , equations (3.11)3,4,8 in the sense of traces, and the initial
conditions stated in (3.11)5,9.

We say that (û, p̂, η) is a maximal strong solution to system (3.11) over the time interval [0, Tm) when either
Tm = ∞, or Tm < ∞ and, for all 0 < T < Tm, (û, p̂, η) is a strong solution to system (3.11) over the time
interval [0, T ], and it satisfies

lim
T→Tm

(
|||(û, p̂, η)|||B(QT

η0
1

) + max
{
|1 + η(T, z1, θ)|−1 | (z1, θ) ∈ ω

})
=∞. (3.12)

We prove the following existence and uniqueness result for system (3.11).

Theorem 3.3. Let (u0, η
0
1 , η

0
2) ∈ H1(Ωη0

1
)×H3+ε0(ω)×H1(ω), for some ε0 > 0, be such that (1.7) is satisfied.

Then the system (3.11) admits a unique maximal strong solution. Both the maximal time of existence and the
solution are unique.

To establish the equivalence between solutions to system (1.1) and solutions to system (3.11), we need to
introduce the spaces L2(0, T ; H2

δ0
(Ωη(·))) and L2(0, T ;H1

δ0
(Ωη(·))). These spaces can be defined as we did in

Definition 1.5. We also need to introduce the following class of functions

u ∈ L2(0, T ; H2
δ0

(Ωη(·))) ∩H1(0, T ; L2(Ωη(·))) ∩ C([0, T ]; H1(Ωη(·))),
p ∈ L2(0, T ;H1

δ0
(Ωη(·))), div σ(u, p) ∈ L2(0, T ;L2(Ωη(·))),

η ∈ L2(0, T ;H4(ω)) ∩H2(0, T ;L2(ω)),
γη(T ) = min{1 + η(t, z1, θ) | (t, z1, θ) ∈ [0, T ]× ω} > 0.

(3.13)

We now state a proposition whose proof is obvious.

Proposition 3.4. A triplet (u, p, η), satisfying (3.13), is solution (respectively a maximal strong solution) to
system (1.1) in the sense of Definition 1.6 if and only if the triplet (û, p̂, η), where (û, p̂) is defined in (3.10),
belongs to B(QT

η0
1
) and is a solution (respectively a maximal strong solution) to system (3.11) over the time

interval (0, T ), in the sense of Definition 3.2.

Let us notice that the definition of maximal strong solution for system (1.1) is introduced in the above
proposition via the equivalence between solutions to system (1.1) and solutions to system (3.11).

4. Study of the linearized system

Throughout this section, we assume that η satisfies the following conditions

η ∈ H3+ε0(ω) ∩H2
0 (ω) and γη > 0, (4.1)

where γη is defined in (2.1), and ε0 ∈ (0, 1/2) is the exponent appearing in Theorem 4.1.



10 DEBAYAN MAITY, JEAN-PIERRE RAYMOND, AND ARNAB ROY

To study system (3.11), we are going to prove regularity results for the solutions to the following nonhomo-
geneous linear system

vt − div σ(v, p) = f − ν∇g, div v = g in (0, T )× Ωη,

v = ζ2er on (0, T )× Γsη,

σ(v, p)n = 0 on (0, T )× Γin, σ(v, p)n = 0 on (0, T )× Γout,

v(0) = v0 in Ωη,

ζ1,t = ζ2 in (0, T )× ω,

ζ2,t + ∆2
sζ1 −∆sζ2 = −γsη

(
σ(v, p)eη

)
· er + h in (0, T )× ω,

ζ1 = ∂ζ1
∂z1

= 0 on (0, T )× {0, L} × (0, 2π),

ζ1(0) = ζ0
1 , ζ2(0) = ζ0

2 in ω.

(4.2)

To rewrite (4.2) when g = 0 as an evolution equation and to study the properties of the associated semigroup,
we are going to follow the approach in [31, 32]. The idea is to decompose the fluid velocity v, satisfying (4.2)1−4

when g = 0, into two parts Pv and (I − P )v, where P is the Leray projector introduced in Lemma 4.4. The
part Pv satisfies the Stokes equations in a suitable space and (I −P )v satisfies an algebraic equation. Next we
determine an expression for the pressure, which can be broken down into two parts, one which depends on Pv
and another one which depends on η2. This allows us to eliminate the pressure term from the structure equation
(4.2)6 and to rewrite the system as an evolution equation for (Pv, ζ1, ζ2).

4.1. The steady Stokes equation with nonhomogeneous boundary condition. We consider the follow-
ing nonhomogenous Stokes equation

−div σ(w, π) = f , div w = 0 in Ωη,

w = g on Γsη, σ(w, π)n = 0 on Γn.
(4.3)

Theorem 4.1. Let us assume that η ≡ 0. If f ∈ L2(Ω) and g ∈ H3/2(Γs). The system (4.3) admits a unique
solution (w, π) belonging to H2

δ0
(Ω)×H1

δ0
(Ω) satisfying

‖w‖H2
δ0

(Ω) + ‖π‖H1
δ0

(Ω) 6 C(‖f‖L2(Ω) + ‖g‖H3/2(Γs)),

for some 0 < δ0 < 1/2. In particular, setting ε0 =
(

1
2 − δ0

)
∈ (0, 1/2), we have

‖w‖H3/2+ε0 (Ω) + ‖π‖H1/2+ε0 (Ω) 6 C(‖f‖L2(Ω) + ‖g‖H3/2(Γs)). (4.4)

Proof. This result follows from [25, Theorem 9.1.5]. �

Theorem 4.2. We assume that η belongs to H3+ε0(ω) ∩ H2
0 (ω), where ε0 =

(
1
2 − δ0

)
and δ0 is the exponent

introduced in Theorem 4.1, and that (2.1) is satisfied. If f ∈ L2(Ωη) and g ∈ H3/2(Γsη), the system (4.3) admits

a unique solution (w, π) belonging to H2
δ0

(Ωη)×H1
δ0

(Ωη), and satisfying

‖w‖H2
δ0

(Ωη) + ‖π‖H1
δ0

(Ωη) 6 C(‖f‖L2(Ωη) + ‖g‖H3/2(Γsη)),

and

‖w‖H3/2+ε0 (Ωη) + ‖π‖H1/2+ε0 (Ωη) 6 C(‖f‖L2(Ωη) + ‖g‖H3/2(Γsη)). (4.5)

In the above estimates, the constant C depends on ‖η‖H3+ε0 (ω) and on γη > 0 introduced in (2.1).

Proof. First, from [25, Theorem 9.1.5] it follows that (4.3) admits a unique solution (w, π) ∈ H1(Ωη)× L2(Ωη)
satisfying

‖w‖H1(Ωη) + ‖π‖L2(Ωη) 6 C(‖f‖L2(Ωη) + ‖g‖H3/2(Γsη)). (4.6)

The result in [25, Theorem 9.1.5] is proved for polyhedral domains, but the adaptation to Ωη can be easily done.
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The proof of (4.5) mainly follows from Theorem 4.1, a localization argument, and (4.6). Let us give the main
ideas of the proof. For ε > 0, let us set

Ωη,ε =
⋃

z1∈(ε,L−ε)

{z1} × {(z2, z3) ∈ R2 | (z2
2 + z2

3)1/2 < 1 + η(z1, θ))},

with (cos θ, sin θ) =
(

z2
(z2

2+z2
3)1/2 ,

z3
(z2

2+z2
3)1/2

)
. Since Γsη is of class C2, from the classical regularity results for the

Stokes equation, it can be shown that

‖w|Ωη,ε‖H2(Ωη,ε) + ‖π|Ωη,ε‖H1
δ0

(Ωη,ε) 6 C(ε)(‖f‖L2(Ωη) + ‖g‖H3/2(Γsη)).

The regularity of (w, π) in Ωcη,ε = Ωη \Ωη,ε, can be deduced from the regularity of (w̃, π̃) = (w, π) ◦ (Xη)−1 in

Ω. We set Ωε = (ε, L − ε) × B(0R2 , 1) and Ωcε = Ω \ Ωε. Using a localization argument and Theorem 4.1, we
can prove that

‖w̃|Ωcε‖H2
δ0

(Ωcε)
+ ‖π̃|Ωcε‖H1

δ0
(Ωcε)
6 C(‖f‖L2(Ωη)) + ‖g‖H3/2(Γη)s).

provided that ε > 0 is small enough. For that, we have to notice that
limε→0 ‖∂2

zj ,zk
Xη ∂

2
zj ,z`

Xη − δk,jδ`,j‖H1((0,ε)∪(L−ε,L);L∞B(0R2 ,1)) = 0, and to use nonlinear estimates as those
proved in Section 6. �

Remark 4.3. From now on, δ0 and ε0 are the exponents appearing in Theorem 4.1. Throughout Section 4, we
assume that η satisfies the assumptions of Theorem 4.2.

We want to rewrite the stationary Stokes equation (4.3) in an operator formulation and to obtain an expression
of the pressure π in terms of f ,g and w. To this aim, we introduce the Leray projector in the case of mixed
Dirichlet-Neumann boundary conditions. Let us notice that this projector is different from the classical Leray
projector corresponding to the case where only Dirichlet boundary conditions are prescribed on the whole
boundary.

Lemma 4.4. We have the following orthogonal decomposition of the space L2(Ωη):

L2(Ωη) = V0
n,Γsη

(Ωη)⊕∇H1
Γn

(Ωη), where

V0
n,Γsη

(Ωη) =
{
u ∈ L2(Ωη) | div u = 0 in Ωη, u · eη = 0 on Γsη

}
and

H1
Γn

(Ωη) =
{
p ∈ H1(Ωη) | p = 0 on Γn

}
.

The orthogonal projection P from L2(Ωη) onto V0
n,Γsη

(Ωη) is defined by P f = f −∇q1 −∇q2, where

q1 ∈ H1
0 (Ωη), ∆q1 = div f in Ωη, and

q2 ∈ H1
Γn

(Ωη), ∆q2 = 0 in Ωη,
∂q2

∂n
= (f −∇q1) · eη on Γsη.

(4.7)

In (4.7) n is the unit normal to ∂Ωη exterior to Ωη, and n|Γsη = eη. We set

Npf = q1 + q2, (4.8)

and we have (I − P )f = ∇Np(f) and Np ∈ L(L2(Ωη), H1(Ωη)).
Moreover the restriction of P to H1

Γsη
(Ωη) belongs to L(H1

Γsη
(Ωη),V1

n,Γsη
(Ωη))).

Proof. For the proof of the above result we refer to [30, Lemma 2.2]. The fact that P belongs to L(H1
Γsη

(Ωη),V1
n,Γsη

(Ωη)))

may be proved with Lemma A.1. �

Formally, the pressure π in system (4.3) is the solution of the following elliptic equation

∆π = div f in Ωη,

∂π

∂n
= f · eη + ν∆w · eη on Γsη, π = 2νε(w)n · n on Γn.

(4.9)

Since the solution w of system (4.3) belongs to H2
δ0

(Ωη), and not to H2(Ωη), we cannot define ∆w · n as an

element in H−1/2(Γsη). Moreover f · eη is not defined on Γsη when f ∈ L2(Ωη). This is why the equation (4.9)
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is not well posed. To overcome that difficulty, we write π in the form π = q + ρ, where q = Np(f) and ρ is the
formal solution of the following elliptic equation

∆ρ = 0 in Ωη,
∂ρ

∂n
= ν∆w · eη on Γsη, ρ = 2νε(w)n · n on Γn.

Following [13, Section 4.2], we introduce the operator Nb ∈ L(H2
δ0

(Ωη), L2(Ωη)) defined by Nbw = ρ, where ρ
is the solution of the variational problem

Find ρ ∈ L2(Ωη) such that∫
Ωη

ρ ξ = 2ν

∫
Ωη

ε(w) : ∇2ϕ− 2ν

∫
Γsη

ε(w)eη · ∇ϕ, for all ξ ∈ L2(Ωη),
(4.10)

and where ϕ ∈ H1(Ωη) is the solution to the equation

∆ϕ = ξ in Ωη,
∂ϕ

∂n
= 0 on Γsη, ϕ = 0 on Γn. (4.11)

From Theorem A.1, it follows that ϕ belongs to H2(Ωη). Therefore, all the terms in (4.10) are well defined.
Actually, using the Lax-Milgram Lemma, we can prove that problem (4.10) admits a unique solution ρ ∈ L2(Ωη),
and therefore Nb is a well defined operator belonging to L(H2

δ0
(Ωη), L2(Ωη)).

We now introduce the Stokes operator (A0,D(A0)) in V0
n,Γsη

(Ωη). We set

D(A0) =
{

u ∈ V1
Γsη

(Ωη) ∩H2
δ0

(Ωη) | div σ(u, Nbu) ∈ L2(Ωη),

σ(u, Nbu)n = 0 on Γn

}
and A0u = P div σ(u, Nbu),

where δ0 is introduced in Theorem 4.2. Below we prove the analyticity of the semigroup generated by the Stokes
operator A0.

Theorem 4.5. The operator (A0,D(A0)) is the generator of an analytic semigroup on V0
n,Γsη

(Ωη) and its

resolvent is compact.

Proof. There exists λ0 > 0 large enough such that, for all u ∈ D(A0), we have

〈(λ0I −A0)u,u〉V0
n,Γs

η
(Ωη) > ν‖u‖2V1

Γs
η

(Ωη). (4.12)

Then we can use [2, Theorem 2.12, pp. 115] to conclude that (A0,D(A0)) generates an analytic semigroup on
V0
n,Γsη

(Ωη).

Now, from Theorem 4.2, it follows that −A−1
0 is a bounded operator from V0

n,Γsη
(Ωη) into V1

Γsη
(Ωη). Since

the imbedding from V1
Γsη

(Ωη) into V0
n,Γsη

(Ωη) is compact, the proof is complete. �

Let us now introduce several operators which are needed to rewrite the system (4.3) in the form of an operator
equation. We first introduce the Dirichlet operatorsD ∈ L(H3/2(Γsη),H2

δ0
(Ωη)) andDp ∈ L(H3/2(Γsη), H1

δ0
(Ωη)),

defined by
(Dg, Dpg) = (w, π), (4.13)

where (w, π) is the solution to system (4.3) when f ≡ 0.
In order to rewrite the stationary Stokes equation (4.3) as an operator equation, we need to use the so-called

extrapolation method. We can easily verify that A0 can be considered as an isomorphism from D(A0) into
V0
n,Γsη

(Ωη), and that (A0,D(A0)) is a self-adjoint operator in V0
n,Γsη

(Ωη). Thus, using the so-called transposition

method A0 can also be considered as an isomorphism from V0
n,Γsη

(Ωη) into (D(A0))′ (where (D(A0))′ is the dual

of D(A0) with V0
n,Γsη

(Ωη) as pivot space). By this way we can say that A0 with domain V0
n,Γsη

(Ωη) is an

unbounded operator in (D(A0))′. That corresponds to a particular use of the extrapolation method.
We now rewrite the stationary Stokes equation (4.3) as an operator equation, thanks to the following propo-

sition.
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Proposition 4.6. Let f belong to L2(Ωη) and g belong to H3/2(Γsη). A pair (w, π) ∈ H2
δ0

(Ωη)×H1
δ0

(Ωη) is a

solution to equation (4.3) if and only if

−A0Pw +A0PDg = P f in (D(A0))′,

(I − P )w = (I − P )Dg, and π = Nb(w) +Np(f).
(4.14)

Proof. First notice that, since Pw − PDg belongs to V0
n,Γsη

(Ωη), the first equation in (4.14) is well defined in

(D(A0))′.
Let (w, π) ∈ H2

δ0
(Ωη)×H1

δ0
(Ωη) be the solution to equation (4.3). We set

ŵ = w −Dg and π̂ = π −Dpg.

The pair (ŵ, π̂) satisfies

−div σ(ŵ, π̂) = f , div ŵ = 0, in Ωη, ŵ = 0 on Γsη, σ(ŵ, π̂)n = 0 on Γn. (4.15)

It implies that ŵ ∈ D(A0), and we have −A0P ŵ = −A0ŵ = P f . Since (I − P )w = (I − P )(P ŵ + Dg) =
(I − P )Dg, we obtain

−A0Pw +A0PDg = P f , (I − P )w = (I − P )Dg.

Now we want to determine the expression of the pressure π. Let ξ ∈ L2(Ωη) and ϕ ∈ H2(Ωη) be the solution
of (4.11). We first notice that the function q̂ = Np(f) and ϕ obey∫

Ωη

f · ∇ϕ =

∫
Ωη

∇q̂ · ∇ϕ.

With a Green’s formula, we have

−
∫

Ωη

∇q̂ · ∇ϕ =

∫
Ωη

q̂∆ϕ =

∫
Ωη

Np(f) ξ.

Multiplying (4.3)1 by ∇ϕ, where ϕ is the solution to (4.11), and integrating over Ωη, we obtain

−
∫

Ωη

f · ∇ϕ−
∫

Ωη

div σ(w, π) · ∇ϕ = 0. (4.16)

Integrating by parts and using (4.11), we deduce that

−
∫

Ωη

f · ∇ϕ+ 2ν

∫
Ωη

ε(w) : ∇2ϕ− 2ν

∫
Γsη

ε(w)eη · ∇ϕ−
∫

Ωη

π ξ = 0.

By combining the above identities and by using the definition of the operators Np and Nb, we have∫
Ωη

π ξ =

∫
Ωη

Nb(w) ξ +

∫
Ωη

Np(f) ξ for all ξ ∈ L2(Ωη).

Therefore,

π = Nb(w) +Np(f).

To prove the converse statement, we notice that equation (4.14) admits at most one solution. Indeed if
−A0Pw = 0 and (I − P )w = 0, then w = 0. Thus equation (4.14) admits a unique solution, which is the
solution to (4.3). �

4.2. Damped shell equation. In this subsection we study only the structure equation:

η1,t − η2 = 0 and η2,t + ∆2
sη1 −∆sη2 = 0 in (0, T )× ω,

η1(0) = η0
1 , η2(0) = η0

2 in ω,

η(t, 0, θ) = η(t, L, θ) = ηz(t, 0, θ) = ηz(t, L, θ) = 0, ∀t ∈ (0, T ), θ ∈ [0, 2π].

(4.17)

Let us introduce the Hilbert space

Hs = H2
0 (ω)× L2(ω), (4.18)
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equipped with the inner product

((η1, η2), (ξ1, ξ2))Hs = (−∆sη1,−∆sξ1)L2(ω) + (η2, ξ2)L2(ω).

We now define the unbounded operator (As,D(As;Hs)) in Hs by

D(As;Hs) =
(
H4(ω) ∩H2

0 (ω)
)
×H2

0 (ω) and

As =

(
0 I
−∆2

s ∆s

)
.

(4.19)

Proposition 4.7. The unbounded operator (As,D(As;Hs)) generates an analytic semigroup of contractions on
Hs.

Proof. See [8, Proposition 3.1]. �

We have the following regularity result.

Proposition 4.8. If (η0
1 , η

0
2) belongs to H2

0 (ω) × L2(ω), then system (4.17) admits a unique solution (η1, η2)

belonging to H3,3/2(ωT )×H1,1/2(ωT ).

Proof. Let us set V = [D(As;Hs), Hs]1/2 =
(
H3(ω) ∩H2

0 (ω)
)
× H1

0 (ω). Let V ′ be the dual of V with Hs as
pivot space, we have

V ′ = H1
0 (ω)×H−1(ω).

Since (As,D(As;Hs)) generates an analytic semigroup on Hs, for (η0
1 , η

0
2) ∈ Hs, the solution (η1, η2) to system

(4.17) belongs to L2(0, T ;V ) ∩H1(0, T ;V ′) (see [2, Part II, Chapter 3, Corollary 2.1]). Thus, we have

η1 ∈ L2(0, T ;H3(ω)) ∩H1(0, T ;H1
0 (ω)),

η2 = η1,t ∈ L2(0, T ;H1
0 (ω)) ∩H1(0, T ;H−1(ω)).

Finally, by interpolation we obtain η1 ∈ H3,3/2(ωT ) and η2 ∈ H1,1/2(ωT ). �

4.3. Rewriting system (4.2) as an evolution equation. In this subsection we rewrite the system (4.2) when
g = 0 as an evolution equation. Let us set

Dsη2 = D(η2er), (4.20)

where D is defined in (4.13).
We also introduce the operator Ns ∈ L(L2(Γsη), H1(Ωη)) defined by Nsh = q, where q ∈ H1(Ωη) is the

solution to the equation

∆q = 0 in Ωη,
∂q

∂n
= h on Γsη, q = 0 on Γn. (4.21)

Remark 4.9. Due to Remark 1.2, the operator Ds defined in (4.20) can be viewed as a bounded operator from
H3/2(Ωη) onto H2

δ0
(Ωη), i.e. Ds ∈ L(H3/2(ω),H2

δ0
(Ωη)). Similarly, the operator Ns defined in (4.21) can be

viewed as an operator belonging to L(L2(ω), H1(Ωη)).

We have the following proposition.

Proposition 4.10. Let us assume that η2 ∈ H2,1(ωT ). A pair (v, p) ∈ L2(0, T ; H2
δ0

(Ωη)) ∩H1(0, T ; L2(Ωη))×
L2(0, T ;H1

δ0
(Ωη)) is a solution of system

vt − div σ(v, p) = 0, div v = 0 in QTη ,

v = η2er on Γsη × (0, T ), σ(v, p)n = 0 on Σin
T ∪ Σout

T , (4.22)

v(0) = v0 in Ωη,

if and only if

Pv′ = A0Pv −A0PDsη2, Pv(0) = Pv0 in Ωη,

(I − P )v = (I − P )Dsη2, and p = Nb(v)−Nsη2,t. (4.23)
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Proof. According to Proposition 4.6, the system (4.22) is equivalent to

Pv′ = A0Pv −A0PDsη2, Pv(0) = Pv0 in Ωη,

(I − P )v = (I − P )Dsη2, p = Nb(v) +Np(−vt).

From the definitions of the operator Np (defined in (4.8)) and of Ns in (4.21), one can easily verify that

Np(−vt) = −Nsη2,t.

Thus the proof is complete. �

Using the expression of the pressure obtained in Proposition 4.10, we can now rewrite the equation (4.2)6

satisfied by ζ2 when g = 0 as follows

(I + γsηNs)ζ2,t + ∆2
sζ1 −∆sζ2 = γsηNb(v)− γsη

(
2νε(v)eη

)
· er. (4.24)

We want to rewrite the system (4.2) as an evolution equation for (Pv, ζ1, ζ2) when g = 0. Therefore we need to
express the right hand side of (4.24) in terms Pv, ζ1 and ζ2. By writing v = Pv + (I − P )v and using the fact
that (I − P )v = (I − P )Dsζ2, (4.24) can be written as

(I + γsηNs)ζ2,t + ∆2
sζ1 −∆sζ2

= γsηNb(Pv − PDsζ2 +Dsζ2)− γsη
(

2νε(Pv − PDsζ2 +Dsζ2)er

)
· er.

(4.25)

Lemma 4.11. The operator Ks = I + γsηNs ∈ L(L2(ω)) is an automorphism in Hε0(ω).

Proof. The proof can be adapted from that of [32, Lemma 3.2]. �

Now we are in a position to write the system satisfied by (Pv, η1, η2) as an evolution equation. Let us recall
that the space Hs and the unbounded operator As are defined in (4.18) and (4.19). We equip the Hilbert space

H = V0
n,Γsη

(Ωη)×H2
0 (ω)× L2(ω) = V0

n,Γsη
(Ωη)×Hs, (4.26)

with the inner product

((v, η1, η2), (u, ξ1, ξ2))H = (v,u)L2(Ωη) + (−∆sη1,−∆sξ1)L2(ω) + (η2, ξ2)L2(ω).

We define the unbounded operator (A,D(A; H)) in H by

D(A; H) =
{

(Pv, η1, η2) ∈ V0
n,Γsη

(Ωη)×D(As;Hs)

| A0(Pv − PDsη2) ∈ V0
n,Γsη

(Ωη)
}
,

and A = A1 + B1 + B2 + B3 + B4, with

A1 =

A0 0 (−A0)PDs

0 0 I
0 −∆2

s ∆s

 , (4.27)

B1

Pv
η1

η2

 =

 0
0

K−1
s γsηNb(Pv − PDsη2 +Dsη2)

 , (4.28)

B2

Pv
η1

η2

 =

 0
0

−K−1
s

[
γsη

(
2νε(Pv − PDsη2 +Dsη2)er

)
· er
]
 (4.29)

and

B3

Pv
η1

η2

 =

 0
0

−(K−1
s − I)∆2

sη1

 , B4

Pv
η1

η2

 =

 0
0

(K−1
s − I)∆sη2

 . (4.30)
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Combining Proposition 4.10 and the operators introduced above, we write system (4.2) when g = 0 as an
evolution equation.

Theorem 4.12. Let v ∈ L2(0, T ; H2
δ0

(Ωη)) ∩ H1(0, T ; L2(Ωη)), p ∈ L2(0,∞;H1
δ0

(Ωη)), η1 ∈ H4,2(ωT ), η2 ∈
H2,1(ωT ). Then (v, p, η1, η2) is a solution of (4.2) if and only if

d

dt

Pv
η1

η2

 = A

Pv
η1

η2

 ,

Pv(0)
η1(0)
η2(0)

 =

Pv0

0
η0

2

 ,

(I − P )v = (I − P )Dsη2, (4.31)

p = Nb(Pv − PDsη2 +Dsη2)−Nsη2,t.

In the following subsections we will show that (A,D(A; H)) is the infinitesimal generator of an analytic
semigroup on H.

4.4. Analyticity of (etA)t>0 on H. In this subsection, we prove the following theorem.

Theorem 4.13. The operator (A,D(A; H)) is the infinitesimal generator of an analytic semigroup on H.

The proof of this theorem is divided into several parts. We first show that the operator A1, defined in (4.27),
generates an analytic semigroup. Then we show that the operators Bi, for i = 1, 2, 3, 4, can be treated as
perturbations of the operator A1.

For λ0 ∈ R and ε ∈ (0, π), let us define the sector Sε,λ0 by

Sε,λ0
= {λ ∈ C | |arg(λ− λ0)| < ε} .

Theorem 4.14. There exists λ0 ∈ R and ε ∈ (π/2, π) such that the sector Sε,λ0
is contained in the resolvent

set of A1 and there exists a constant C > 0 such that∥∥(λI −A1)−1
∥∥ 6 C

|λ|
, for all λ ∈ Sε,λ0 .

In particular, the operator (A1,D(A; H)) is infinitesimal generator of an analytic semigroup on H.

Proof. We can prove this result with the help of Theorem 4.5, Proposition 4.7, Proposition 4.8 by following [32,
Theorem 3.5] and [32, Theorem 3.6] . �

Lemma 4.15. The operators (B1,D(A; H)) and (B2,D(A; H)), defined in (4.28) and (4.29), are A1-bounded
with relative bound zero, i.e., for all δ > 0, there exists Cδ > 0 such that

‖B1(Pv, η1, η2)>‖H + ‖B2(Pv, η1, η2)>‖H 6 δ‖A1(Pv, η1, η2)>‖H + Cδ‖(Pv, η1, η2)>‖H,
for all (Pv, η1, η2) ∈ D(A; H) (see [19]).

Proof. Let us first prove that, for all (Pv, η1, η2) ∈ D(A; H), Nb(Pv−PDsη2 +Dsη2) belongs to H1/2+ε0(Ωη).
Since (A1,D(A1; H)) generates a semigroup on H, for all (f , g, h)> ∈ H, we have a unique solution (Pv, η1, η2) ∈
D(A1; H) to the following system

(λI −A1)

Pv
η1

η2

 =

f
g
h

 , (I − P )v = PDsη2,

for some λ > 0. Notice that (Pv, η1, η2) satisfies the above system if and only if (v, p, η1, η2) satisfies the following
system

λv − div σ(v, p) = f , div v = 0 in Ωη,

v = η2er on Γsη, σ(v, p)n = 0 on Γn,

λη1 − η2 = g in ω,

λη2 + ∆2
sη1 −∆sη2 = h in ω,

η(0, θ) = η(L, θ) = ∂η
∂z1

(0, θ) = ∂η
∂z1

(L, θ) = 0, for all θ ∈ (0, 2π).

(4.32)
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Let us note that the solution (v, p, η1, η2) to the above system can be determined by solving first the system
satisfied by (η1, η2) and next the system satisfied by (v, p). For every (g, h) ∈ H2

0 (ω)×L2(ω), it is easy to check
that (η1, η2) belongs to H4(ω) ∩H2

0 (ω) ×H2
0 (ω). Next, using Theorem 4.2, we obtain (v, p) ∈ H3/2+ε0(Ωη) ×

H1/2+ε0(Ωη). Proceeding as in Proposition 4.10, the pressure p in (4.32) can be expressed as

p = Nb(Pv − PDsη2 +Dsη2)− λNsη2.

SinceNs ∈ L(L2(ω), H1(Ωη)), we obtain thatNb(Pv−PDsη2+Dsη2) belongs toH1/2+ε0(Ωη). Thus Lemma 4.11
yields that K−1

s γsηNb(Pv− PDsη2 +Dsη2) belongs to Hε0(Ωη). Therefore the operator B1 ∈ L(D(A; H),H) is
a compact operator.

Since Pv − PDsη2 +Dsη2 belongs to H3/2+ε0(Ωη), using Lemma 4.11 it is easy to see that

K−1
s

[
γsη

(
2νε(Pv − PDsη2 +Dsη2)eη

)
· er
]
∈ Hε0(ω).

Thus B2 is also a compact operator. Therefore B1 and B2 are A1-bounded with relative bound zero (see [12,
Section 3.4, Lemma 2.13]). �

Lemma 4.16. There exists 0 6 θ < 1 such that the operators (B3,D(A; H)) and (B4,D(A; H)) are bounded
from D((−A1)θ) into H.

Proof. The proof may be adapted from that of [32, Lemma 3.9]. �

Proof of Theorem 4.13. The proof of Theorem 4.13 follows from Theorem 4.14, Lemma 4.15 and Lemma 4.16.
�

5. Nonhomogeneous linear system

Throughout this section, we assume that η satisfies (4.1).
To transform the system (4.2) when g 6= 0 into an equivalent one in which g will be zero, we consider the

following problem

−div σ(w, q) = −ν∇g, div w = g in Ωη,

w = 0 on Γsη, σ(w, q)n = 0 on Γn.
(5.1)

We first recall the following regularity result.

Proposition 5.1. Let g belong to L2(0, T ;H1(Ωη)) ∩ H1(0, T ; (H1
δ0

(Ωη))′) and satisfy g|Γn = 0. The system

(5.1) admits a unique solution (w, q) ∈ H2,1
δ0

(QT )× L2(0, T ;H1
δ0

(Ωη)) and

‖w‖H2,1
δ0

(QTη ) + ‖q‖L2(0,T ;H1
δ0

(Ωη)) 6 C‖g‖L2(0,T ;H1(Ωη))∩H1(0,T ;(H1
δ0

(Ωη))′),

‖w(0)‖H1(Ωη) 6 C‖g(0)‖L2(Ωη),

where the constant C is independent of time T and δ0 is defined as in Theorem 4.2.

Proof. Using the same arguments as in the proof of Theorem 4.2, the proposition follows from [25, Theorem
9.4.5] and Lemma A.3. �

Theorem 5.2. For all (v0, ζ
0
1 , ζ

0
2 ) ∈ H1(Ωη) × (H3(ω) ∩ H2

0 (ω)) × H1
0 (ω), all f ∈ L2(0, T ; L2(Ωη)), g ∈

L2(0, T ;H1(Ωη)) ∩H1(0, T ; (H1
δ0

(Ωη))′) with g|Γn = 0, and h ∈ L2(0, T ;L2(ω)), satisfying

div v0 = g(0, ·) in Ωη, v0(z1, 1, θ) = ζ0
2 (z1, θ)er for all z1 ∈ (0, L), θ ∈ (0, 2π),

the system (4.2) admits a unique solution (v, p, ζ1, ζ2) ∈ H2,1
δ0

(Ωη × (0, T )) × L2(0, T ;H1
δ0

(Ωη)) × H4,2(ω ×
(0, T ))×H2,1(ω× (0, T )). Moreover, there exists a constant Cη, depending on η but independent of T > 0, such
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that

‖v‖H2,1
δ0

(Ωη×(0,T )) + ‖v‖L∞(0,T ;H1(Ωη)) + ‖p‖L2(0,T ;H1
δ0

(Ωη)) + ‖ζ1‖H4,2(ω×(0,T ))

+ ‖ζ1‖L∞(0,T ;H3(ω)) + ‖ζ2‖H2,1(ω×(0,T )) + ‖ζ2‖L∞(0,T ;H1(ω))

6 Cη
(
‖v0‖H1(Ωη) + ‖ζ0

1‖H3(ω) + ‖ζ0
2‖H1

0 (ω) + ‖f‖L2(0,T ;L2(Ωη))

+ ‖g‖L2(0,T ;H1(Ωη)) + ‖g‖H1(0,T ;(H1
δ0

(Ωη))′) + ‖h‖L2(0,T ;L2(ω))

)
. (5.2)

If, in addition, h belongs to L2(0, T ;Hε0(ω)), then the function t 7→ min(t, 1)ζ1(t) satisfies

‖t 7→ min(t, 1)ζ1(t)‖C([0,T ];H3+ε0 (ω))

6 Cη
(
‖v0‖H1(Ωη) + ‖ζ0

1‖H3(ω) + ‖ζ0
2‖H1

0 (ω) + ‖f‖L2(0,T ;L2(Ωη))

+ ‖g‖L2(0,T ;H1(Ωη)) + ‖g‖H1(0,T ;(H1
δ0

(Ωη))′) + ‖h‖L2(0,T ;Hε0 (ω))

)
. (5.3)

Remark 5.3. The estimate in (5.3) yields that, for all t ∈ (0,min(T, 1)], we have

‖ζ1(t)‖H3+ε0 (ω)

6
Cη
t

(
‖v0‖H1(Ωη) + ‖ζ0

1‖H3(ω) + ‖ζ0
2‖H1

0 (ω) + ‖f‖L2(0,T ;L2(Ωη))

+‖g‖L2(0,T ;H1(Ωη)) + ‖g‖H1(0,T ;(H1
δ0

(Ωη))′) + ‖h‖L2(0,T ;Hε0 (ω))

)
.

Since the regularity results used to prove (5.2) and (5.3) are based on the regularity results obtained in Section
4, the constant Cη depends on ‖η‖H3+ε0 (ω) and on γη > 0.

Proof. Step 1. Proof of (5.2), except the L∞(0, T ; H1(Ωη))-estimate. We set ṽ = v −w and p̃ = p− q, where
(w, q) is the solution of the equation (5.1). Proceeding as in Theorem 4.12, it is easy to see that (ṽ, p̃, ζ1, ζ2) is
the solution to

d

dt

P ṽ
ζ1
ζ2

 = A

P ṽ
ζ1
ζ2

+

PF
0
H

 ,

P ṽ(0)
ζ1(0)
ζ2(0)

 =

P (v0 −w(0))
ζ0
1

ζ0
2

 ,

(I − P )ṽ = (I − P )Dsζ2, (5.4)

p̃ = Nb(P ṽ − PDsζ2 +Dsζ2)−Nsζ2,t + q1 + q2,

where

F = f −wt, H = K−1
s

(
−γsη

(
σ(w, q)eη

)
· er + h+ γs(q1 + q2)

)
, (5.5)

with

q1 ∈ H1
0 (Ωη), ∆q1 = div F in Ωη, and

q2 ∈ H1
Γn(Ωη), ∆q2 = 0 in Ωη,

∂q2

∂n
= (F−∇q1) · n on Γsη.

We can easily verify that P (v0 −w(0)−Dsζ2) = v0 −w(0)−Dsζ2 ∈ V1
Γsη

(Ωη). From the expression of F and

H in (5.5) and using Proposition 5.1, it is easy to see that

‖PF‖L2(0,T ;V0
n,Γs

η
(Ωη)) + ‖H‖L2(0,T ;L2(ω))

6 C
(
‖f‖L2(0,T ;L2(Ωη)) + ‖g‖L2(0,T ;H1(Ωη))∩H1(0,T ;(H1

δ0
(Ωη))′) + ‖h‖L2(0,T ;L2(ω))

)
,

(5.6)

where the constant C is independent of T. To obtain the regularity of (P ṽ, ζ1, ζ2), we will use a maximal
regularity result for analytic semigroups (see [2, Theorem 3.1, Chapter 1]). In order to obtain estimates with
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continuity constant independent of time T , we have to distinguish the cases where T 6 1 and T > 1. For that,

we set T̂ = max(1, T ). If T > 1, we set F = F and H = H. If T < 1, we set

F =

{
F if 0 < t 6 T

0 if T < t 6 T̂
, H =

{
H if 0 < t 6 T

0 if T < t 6 T̂
.

Obviously, PF ∈ L2(0, T̂ ; V0
n,Γsη

(Ωη)) and H ∈ L2(0, T̂ ;L2(ω)). Instead of (5.4), we consider the following

problem

d

dt

Pv

ζ1

ζ2

 = A

Pv

ζ1

ζ2

+

PF
0
H

 t ∈ (0, T̂ ),

Pv(0)

ζ1(0)

ζ2(0)

 =

P (v0 −w(0))
ζ0
1

ζ0
2

 .

Let us recall that A generates an analytic semigroup on H (Theorem 4.13). As in [13, Proposition 6.14], we can

show that [D(A; H),H]1/2 = {(Pv, η1, η2) ∈ V
3/4+ε0/2
n,Γsη

(Ωη)×H3(ω)∩H2
0 (ω)×H1

0 (ω)) | (Pv, η1, η2)−PDsη2 ∈
V1

Γsη
(Ωη)}. Thus (P (v0 − w(0)), ζ0

1 , ζ
0
2 ) belongs to [D(A; H),H]1/2, and from [2, Theorem 3.1,Chapter 1], it

follows that (Pv, ζ1, ζ2) belongs to L2(0, T̂ ;D(A; H)) ∩H1(0, T̂ ; H) and

‖Pv‖H1(0,T̂ ;V0
n,Γs

η
(Ωη)) + ‖ζ1‖H4,2(ωT̂ ) + ‖ζ2‖H2,1(ωT̂ )

6 C
(
‖v0‖H1(Ωη) + ‖ζ0

1‖H3(ω) + ‖ζ0
2‖H1

0 (ω)

+‖PF‖L2(0,T ;V0
n,Γs

η
(Ωη)) + ‖H‖L2(0,T ;L2(ω))

)
,

(5.7)

where the positive constant C is independent of T.Next, using the continuous embeddingsH1(0, T̂ ; V0
n,Γsη

(Ωη)) ↪→
L∞(0, T̂ ; L2(Ωη)), H4,2(ωT̂ ) ↪→ L∞(0, T̂ ;H3(ω)) and H2,1(ωT̂ ) ↪→ L∞(0, T̂ ;H1(ω)), we obtain

Pv ∈ L∞(0, T̂ ;L2(Ωη)), ζ1 ∈ L∞(0, T̂ ;H3(ω)) and ζ2 ∈ L∞(0, T̂ ;H1(ω)). Therefore

‖Pv‖L∞(0,T̂ ;L2(Ωη)) + ‖ζ1‖L∞(0,T̂ ;H3(ω)) + ‖ζ2‖L∞(0,T̂ ;H1(ω))

6 C(‖Pv‖H1(0,T̂ ;V0
n,Γs

η
(Ωη)) + ‖ζ1‖H4,2(ωT̂ ) + ‖ζ2‖H2,1(ωT̂ )). (5.8)

Notice that, by construction, (P ṽ, ζ1, ζ2) = (Pv, ζ1, ζ2) in [0, T ]. Thus (P ṽ, ζ1, ζ2) belongs toH1(0, T ; V0
n,Γsη

(Ωη))∩
L∞(0, T ; L2(Ωη))×H4,2(ωT )∩L∞(0, T ;H3(ω))×H2,1(ωT )∩L∞(0, T ;H1(ω)) and using (5.7) - (5.8), we obtain

‖P ṽ‖H1(0,T ;V0
n,Γs

η
(Ωη))∩L∞(0,T ;L2(Ωη)) + ‖ζ1‖H4,2(ωT )∩L∞(0,T ;H3(ω))

+‖ζ2‖H2,1(ωT )∩L∞(0,T ;H1(ω))

6 ‖Pv‖H1(0,T̂ ;V0
n,Γs

η
(Ωη))∩L∞(0,T̂ ;L2(Ωη)) + ‖ζ1‖H4,2(ωT̂ )∩L∞(0,T̂ ;H3(ω))

+‖ζ2‖H2,1(ωT̂ )∩L∞(0,T̂ ;H1(ω))

6 C
(
‖v0‖H1(Ωη) + ‖ζ0

1‖H3(ω) + ‖ζ0
2‖H1

0 (ω)

+‖PF‖L2(0,T ;V0
n,Γs

η
(Ωη)) + ‖H‖L2(0,T ;L2(ω))

)
.

(5.9)

Next using the fact that Ds ∈ L(L2(ω),L2(Ωη)) (see Lemma A.2), we have

‖(I − P )ṽ‖H1(0,T ;L2(Ωη))∩L∞(0,T ;L2(Ωη))

= ‖(I − P )Dsζ2‖H1(0,T ;L2(Ωη))∩L∞(0,T ;L2(Ωη))

6 C‖ζ2‖H2,1(ωT )∩L∞(0,T ;L2(ω)), (5.10)
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where the constant C is independent of T. To estimate the space regularity of ṽ and p̃ we consider the following
system

− div σ(ṽ, p̃) = f −wt − ṽt, div ṽ = 0, in Ωη,

ṽ = ζ2er, on Γsη, σ(ṽ, p̃)n = 0 on Γin, σ(ṽ, p̃)n = 0 on Γout.

As f − wt − ṽt ∈ L2(0, T ; L2(Ωη)) and ζ2 ∈ L2(0, T ;H2
0 (ω)), Theorem 4.2 yields that (ṽ, p̃) belongs to

L2(0, T ; H2
δ0

(Ωη))× L2(0, T ;H1
δ0

(Ωη)) and

‖ṽ‖L2(0,T ;H2
δ0

(Ωη)) + ‖p̃‖L2(0,T ;H1
δ0

(Ωη)) 6 C
(
‖f −wt − ṽt‖L2(0,T ;L2(Ωη)) + ‖ζ2‖L2(0,T ;H2

0 (ω))

)
, (5.11)

where the constant C is independent of T. Since v = ṽ + w and p = p̃+ q, Proposition 5.1 and estimates (5.6),
(5.9) - (5.11) yields

‖v‖H2,1
δ0

(QTη ) + ‖v‖L∞(0,T ;L2(Ωη)) + ‖p‖L2(0,T ;H1
δ0

(Ωη)) + ‖ζ1‖H4,2(ωT )

+‖ζ1‖L∞(0,T ;H3(ω)) + ‖ζ2‖H2,1(ωT ) + ‖ζ2‖L∞(0,T ;H1(ω))

6 C
(
‖v0‖H1(Ωη) + ‖ζ3‖H1

0 (ω) + ‖ζ0
2‖H1

0 (ω) + ‖f‖L2(0,T ;L2(Ωη))

+‖g‖L2(0,T ;H1(Ωη)) + ‖g‖H1(0,T ;(H1
δ0

(Ωη)′)) + ‖h‖L2(0,T ;L2(ω))

)
,

(5.12)

where the constant C is independent of T.

Step 2. Proof of the L∞(0, T ; H1(Ωη))-estimate. We have to show that v ∈ L∞(0, T ; H1(Ωη)). Multiplying
(4.2)1 by vt and integrating by parts over Ωη, we obtain

‖vt(t, ·)‖2L2(Ωη) + 2ν

∫
Ωη

ε(v) : ∇vt

6
1

2
‖vt(t, ·)‖2L2(Ωη) +

1

2
‖f(t, ·)− ν∇g(t, ·)‖2L2(Ωη)

+
1

2
‖p(t, ·)‖2H1

δ0
(Ωη) +

1

2
‖gt(t, ·)‖2(H1

δ0
(Ωη))′ +

1

2
‖σ(v, p)(t, ·)n‖2L2(Γsη)

+
1

2
‖ζ2,t(t, ·)er‖2L2(Γsη)

)
.

The above estimate yields

d

dt

3∑
i,j=1

∫
Ωη

∣∣∣∣∂vi∂zj
+
∂vj
∂zi

∣∣∣∣2 6 C(‖f(t, ·)‖2L2(Ωη) + ‖g(t, ·)‖2H1(Ωη) + ‖gt(t, ·)‖2(H1
δ0

(Ωη))′

+ ‖p(t, ·)‖2H1
δ0

(Ωη) + ‖v(t, ·)‖2H2
δ0

(Ωη) + ‖ζ2,t(t, ·)‖2L2(ω)

)
.

Integrating the above inequality over [0, T ] and applying Korn’s inequality, one can easily check that

‖v‖L∞(0,T ;H1(Ωη)) 6 C
(
‖v0‖H1(Ωη) + ‖f‖L2(0,T ;L2(Ωη)) + ‖g‖L2(0,T ;H1(Ωη))

+ ‖g‖H1(0,T ;(H1
δ0

(Ωη))′) + ‖v‖L2(0,T ;H2
δ0

(Ωη)) + ‖v‖L∞(0,T ;L2(Ωη))

+ ‖p‖L2(0,T ;H1
δ0

(Ωη)) + ‖ζ2‖H2,1(ωT )

)
,

where C is independent of T. The above estimate together with (5.12) gives (5.2).

Step 3. Proof of (5.3). Let us set Hε0
s = H2+ε0

0 (ω) × Hε0(ω) and D(As;H
ε0
s ) =

(
H4+ε0(ω) ∩H2

0 (ω)
)
×

H2+ε0
0 (ω). From [8, Theorem 1.2], we know that (As,D(As;H

ε0
s )) is the infinitesimal generator of an analytic

semigroup of contractions on Hε0
s . Since −γsη

(
σ(v, p)eη

)
· er + h ∈ L2(0, T ;Hε0(ω)), if (ζ0

1 , ζ
0
2 ) belonged

to H3+ε0(ω) ∩ H2
0 (ω) × H1+ε0

0 (ω), then ζ1 would be in C([0, T ];H3+ε0(ω)). We know that ζ0
1 belongs to

H3+ε0(ω)∩H2
0 (ω), but ζ0

2 only belongs to H1
0 (ω) and not to H1+ε0

0 (ω). But, due to the regularizing effect of the
semigroup (etAs)t>0, we can expect that ζ1(t) belongs to H3+ε0(ω) for t > 0. To obtain an estimate for ζ1(t) in
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H3+ε0(ω), and for ζ2(t) in H1+ε0(ω), for t ∈ (0, 1), it is sufficient to write the system satisfied by (tv, tp, tζ1, tζ2)
over the time interval [0, 1], and to use the fact that (As,D(As;H

ε0
s )) is the infinitesimal generator of an analytic

semigroup on Hε0
s . When t > 1, the estimate of ζ1 in C([1, T ];H3+ε0(ω)) can be deduced from the regularity

of (ζ1(1), ζ2(1)) ∈ H3+ε0(ω) ∩H2
0 (ω) ×H1+ε0

0 (ω), and from the fact that (As,D(As;H
ε0
s )) is the infinitesimal

generator of an analytic semigroup on Hε0
s . �

6. Estimates of the nonlinear terms

Throughout this section, we assume that η satisfies (4.1).

We are going to obtain different estimates for the nonlinear terms F̂η and Ĝη defined in Qt0,t1η = Ωη× (t0, t1),

and Ĥη and Lmem defined in ω × (t0, t1), introduced in (3.7) - (3.9) and in (1.3). For notational simplicity we
shall only treat the case where (t0, t1) = (0, T ).

6.1. Preliminary results. Let us first recall some lemmas which we shall use later on. The first lemma is a
direct consequence of [17, Lemma 1]:

Lemma 6.1. Let Z be a Banach space and 1/2 < s 6 1. Then there is a bounded extension operator from
{f ∈ Hs(0, T ;Z) | f(0) = 0} to Hs(0,∞;Z) with a norm bounded independently of T.

Lemma 6.2. Let Z be a Banach space space and 1/2 < s 6 1. Then there exist a constant C > 0 and α > 0,
depending only on s but independent of T , such that

‖f‖C([0,T ];Z) 6 CT
α‖f‖Hs(0,T ;Z), for all f ∈ Hs(0, T ;Z) satisfying f(0) = 0.

By using C([0, T ];Z) rather than L∞(0, T ;Z) we avoid talking about weak and strong measurability.

Proof. Let us fix 1/2 < s1 < s. With Lemma 6.1 and by interpolation, we have

‖f‖C([0,T ];Z) 6 C‖f‖Hs1 (0,T ;Z) 6 C‖f‖
s1/s
Hs(0,T ;Z)‖f‖

(s−s1)/s
L2(0,T ;Z),

with C independent of T since f(0) = 0. Hölder’s inequality implies that

‖f‖C([0,T ];Z) 6 CT
(s−s1)/(2s)‖f‖s1/sHs(0,T ;Z)‖f‖

(s−s1)/s
C([0,T ];Z).

Simplifying the above estimate by ‖f‖(s−s1)/s
C([0,T ];Z), we obtain

‖f‖C([0,T ];Z) 6 CT
(s−s1)/(2s1)‖f‖Hs(0,T ;Z).

�

Now we prove several lemmas used to estimate the nonlinear terms. We set

B(0R2 , 1 + η(z1, ·)) = {(z2, z3) ∈ R2 | (z2
2 + z2

3)1/2 < 1 + η(z1, θ))},

with (cos θ, sin θ) =
(

z2
(z2

2+z2
3)1/2 ,

z3
(z2

2+z2
3)1/2

)
.

Thus B(0R2 , 1+η(z1, ·)) depends on z1. To simplify the notation, we shall simply write B(0, 1+η) for B(0R2 , 1+
η(z1, ·)). We say that a function g belongs to H1(0, L;L∞(B(0, 1 + η))) if and only if g ◦ Xη belongs to
H1(0, L;L∞(B(0R2 , 1))).

Lemma 6.3. Let f ∈ L2
δ0

(Ωη) and g ∈ H1(0, L;L∞(B(0, 1 + η)) with g = 0 on Γn. Then fg belongs to L2(Ωη)
and

‖fg‖L2(Ωη) 6 C‖f‖L2
δ0

(Ωη)‖g‖H1(0,L;L∞(B(0,1+η))).

Proof. Since g = 0 on Γn, we get

|g(z1, z2, z3)| =
∣∣∣∣∫ z1

0

gz1(s, z2, z3) ds

∣∣∣∣ 6 z1/2
1

(∫ L

0

g2
z1(s, z2, z3) ds

)1/2

.
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In a similar manner we obtain

|g(z1, z2, z3)| 6 (L− z1)1/2

(∫ L

0

g2
z1(s, z2, z3) ds

)1/2

.

Using the above estimates we obtain∫ L/2

0

∫
B(0,1+η)

f2g2 dz2dz3dz1

6
∫ L/2

0

∫
B(0,1+η)

f2 z1

(∫ L

0

g2
z1(s, z2, z3) ds

)
dz2dz3dz1

6 ‖gz1‖2L2(0,L;L∞(B(0,1+η)))

∫ L/2

0

∫
B(0,1+η)

z2δ0
1 (L− z1)2δ0f2 z1−2δ0

1

(L− z1)2δ0
dz2dz3dz1

6 (L/2)1−4δ0‖g‖2H1(0,L;L∞(B(0,1+η)))

∫ L/2

0

∫
B(0,1+η)

z2δ0
1 (L− z1)2δ0f2 dz2dz3dz1,

where in the last inequality, we crucially use the fact that δ0 < 1/2. Also observe that, z1 < r0 and (L−z1) < rL.
Hence, the above inequality becomes∫ L/2

0

∫
B(0,1+η)

f2g2 dz2dz3dz1

6 (L/2)1−4δ0‖g‖2H1(0,L;L∞(B(0,1+η)))

∫ L/2

0

∫
B(0,1+η)

r2δ0
0 r2δ0

L f2 dz2dz3dz1. (6.1)

Similarly, we can obtain∫ L

L/2

∫
B(0,1+η)

f2g2 dz2dz3dz1

6 (L/2)1−4δ0‖g‖2H1(0,L;L∞(B(0,1+η)))

∫ L

L/2

∫
B(0,1+η)

r2δ0
0 r2δ0

L f2 dz2dz3dz1. (6.2)

Combining estimates (6.1)-(6.2), we complete the proof of the lemma. �

Lemma 6.4. Let s belong to (1/2, 1/2 + ε0) and µ > 0. Then there exists a constant Cs > 0, depending only
on η, µ and s, such that, for all 0 < T < 1 and all u satisfying ‖u‖L∞(0,T ;L2(Ωη))∩L2(0,T ;H3/2+ε0 (Ωη)) 6 µ, we
have

‖u‖L2(0,T ;H1+s(Ωη)) 6 Cs T
1+2ε0−2s

2(3+2ε0) .

Proof. By interpolation we have

‖u(t, ·)‖H1+s(Ωη) 6 C(Ωη, s)‖u(t, ·)‖
2(1+s)
3+2ε0

H3/2+ε0 (Ωη)
‖u(t, ·)‖

1+2ε0−2s
3+2ε0

L2(Ωη) .

Therefore a simple application of Hölder’s inequality yields

‖u‖L2(0,T ;H1+s(Ωη))

6 C‖u‖
1+2ε0−2s

3+2ε0

L∞(0,T ;L2(Ωη))

(∫ T

0

‖u(t, ·)‖
4(1+s)
3+2ε0

H3/2+ε0 (Ωη)
dt

)1/2

6 CT
1+2ε0−2s

2(3+2ε0) ‖u‖
1+2ε0−2s

3+2ε0

L∞(0,T ;L2(Ωη))‖u‖
2(1+s)
3+2ε0

L2(0,T ;H3/2+ε0 (Ωη))

6 CT
1+2ε0−2s

2(3+2ε0) .

�
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Lemma 6.5. There exist positive constants Cs and Cs1 , depending only on µ > 0, η, s ∈ (0, 1/2), and s1 ∈ [0, 1),
such that, for all 0 < T < 1 and all η ∈ Eη(0, T ) satisfying ‖η‖E(0,T ) 6 µ, we have

‖η − η‖L∞(0,T ;H5/2+s(ω)) 6 Cs T
α,

‖∇η‖H3/4−s/2(0,T ;H3/2+s(Ωη))∩L∞(0,T ;H2(Ωη)) 6 Cs,
‖∇η‖H3/4−s/2(0,T ;H1(0,L;L∞(B(0,1+η)))) 6 Cs,
‖∂tη‖L∞(0,T ;H1(Ωη)) + ‖∂t∇η‖L2(0,T ;Hs(Ωη)) 6 Cs,
‖η‖L2(0,T ;H3+s1 (ω)) + ‖∇ηt‖L2(0,T ;Hs1 (ω)) 6 Cs1 T

α1 ,

(6.3)

where α only depends on s ∈ (0, 1/2) and α1 on s1 ∈ [0, 1).

Proof. By interpolation, we have

‖η − η‖H3/4−s/2(0,T ;H5/2+s(ω)) 6 C‖η − η‖
(1+2s)/4
L2(0,T ;H4(ω))‖η − η‖

(3−2s)/4
H1(0,T ;H2(ω)) 6 Cµ,

where C independent of T since η(0) = η (see Lemma 6.1). Since (3/4− s/2) ∈ (1/2, 3/4), applying Lemma 6.2
we conclude that

‖η − η‖L∞(0,T ;H5/2+s(ω)) 6 CT
α,

with constant C independent of T.
The estimates (6.3)2−4 follow from the bound ‖η‖E(0,T ) 6 µ. The estimates of η in L2(0, T ;H3+s1(ω)) and

∇ηt in L2(0, T ;Hs1(ω)) are similar to that in the proof of Lemma 6.4. �

Estimates of Xη,η and Jη,η.

Lemma 6.6. There exists a positive constant C, depending only on µ > 0, γ > 0, η and s ∈ (0, 1/2), such that,
for all 0 < T < 1, and all η ∈ Eη(0, T ; γ) satisfying ‖η‖E(0,T ) 6 µ, Xη,η and Jη,η defined in (3.4) and (3.6)
satisfy

‖∇Xη,η‖H3/4−s/2(0,T ;H3/2+s(Ωη))∩L∞(0,T ;H2(Ωη)) 6 C,

‖∇Xη,η‖H3/4−s/2(0,T ;H1(0,L;L∞(B(0,1+η)))) 6 C,

‖∂tXη,η
‖L∞(0,T ;H1(Ωη)) + ‖∂t∇Xη,η

‖L2(0,T ;Hs(Ωη)) 6 C,

‖cof(∇Xη,η)‖H3/4−s/2(0,T ;H3/2+s(Ωη))∩L∞(0,T ;H2(Ωη)) 6 C,

‖cof(∇Xη,η)‖H3/4−s/2(0,T ;H1(0,L;L∞(B(0,1+η)))) 6 C,

‖det(∇Xη,η)‖H3/4−s/2(0,T ;H3/2+s(Ωη))∩L∞(0,T ;H2(Ωη)) 6 C,

‖det(∇Xη,η)‖H3/4−s/2(0,T ;H1(0,L;L∞(B(0,1+η)))) 6 C,

‖Jη,η‖H3/4−s/2(0,T ;H3/2+s(Ωη))∩L∞(0,T ;H2(Ωη)) 6 C,

‖Jη,η‖H3/4−s/2(0,T ;H1(0,L;L∞(B(0,1+η)))) 6 C.

(6.4)

Moreover, for all 0 < s < 1/2 and 0 < α < (1− 2s)/(6− 4s), we have

‖Jη,η − I‖L∞w (0,T ;H1(0,L;L∞(B(0,1+η))))

6 CTα‖Jη,η − I‖H3/4−s/2(0,T ;H1(0,L;L∞(B(0,1+η)))),

‖Jη,η ⊗ Jη,η − I ⊗ I‖L∞w (0,T ;H1(0,L;L∞(B(0,1+η))))

6 CTα‖Jη,η ⊗ Jη,η − I ⊗ I‖H3/4−s/2(0,T ;H1(0,L;L∞(B(0,1+η)))),

(6.5)

where (Jη,η ⊗ Jη,η − I ⊗ I)k,l =
∑3
j=1(Jk,jη,ηJ

l,j
η,η − δk,jδl,j), and L∞w (0, T ;H1(0, L;L∞(B(0, 1 + η)))) is the space

of bounded and weakly measurable functions from (0, T ) to H1(0, L;L∞(B(0, 1 + η))). For all 0 < s < 1/2 and
0 < α < (1− 2s)/(6− 4s), we have

‖Jη,η − I‖L∞(0,T ;H3/2+s(Ωη)) 6 CT
α,

‖cof(∇Xη,η)− I‖L∞(0,T ;H3/2+s(Ωη)) 6 CT
α.

(6.6)
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Proof. Step 1. Proof of (6.4). From the definition of Xη,η, it follows that ‖∇Xη,η‖Z 6 C‖∇η‖Z , ‖∂tXη,η‖Z 6
C‖∂tη‖Z , and ‖∂t∇Xη,η‖Z 6 C‖∂t∇η‖Z , for the various spaces Z involved in the estimates (6.4)1−3. Thus
(6.4)1−3 follow from (6.3)2−4.

To estimate the norms of cof(∇Xη,η) and det(∇Xη,η), we note that the spaces H3/4−s/2(0, T ;H3/2+s(Ωη)),

L∞(0, T ;H2(Ωη)) and H3/4−s/2(0, T ;H1(0, L;L∞(B(0, 1 + η)))) are algebras for s ∈ (0, 1/2). The estimates
with constants independent of T follows from [33, Lemma A.1].

Observe that, if η ∈ Eη(0, T ; γ) then det(∇Xη,η) > m > 0 in Ωη × (0, T ). Finally, we estimate Jη,η by using
Lemma A.4 and the following relation

Jη,η =
1

det(∇Xη,η)
cof(∇Xη,η).

Step 2. Proof of (6.5) and (6.6). To prove (6.5)1 it is enough to notice that (Jη,η − I) |t=0 = 0, and to
use Lemma 6.2. The estimate (6.5)2 can be deduced from (6.5)1 and (6.4)9 and the fact that the space
H3/4−s/2(0, T ;H1(0, L;L∞(B(0, 1 + η)))) is an algebra for s ∈ (0, 1/2).

Estimate (6.6) can be proved with Lemma 6.2 and (6.4)8. �

6.2. Lipschitz estimates. We introduce the space

B(Qt0,t1η ; γ) =
{

(v, p, η) ∈ B(Qt0,t1η ) | η ∈ Eη(0, T ; γ)
}
.

We define the ball B(Qt0,t1η ; γ, µ) in B(Qt0,t1η ; γ) as follows

B(Qt0,t1η ; γ, µ) =
{

(v, p, η) ∈ B(Qt0,t1η ; γ) | |||(v, p, η)|||
B(Q

t0,t1
η )

6 µ
}
. (6.7)

As mentioned at the begining of the section, for notational simplicity, we only treat the case where (t0, t1) =
(0, T ). But all what follows is valid for an arbitrary interval (t0, t1).

Estimate of F̂η.

Lemma 6.7. There exist positive constants CF̂ and α, depending on µ > 0, γ > 0, and η such that, for all

0 < T < 1, all (û, p̂, η) ∈ B(QTη ; γ, µ), (û1, p̂1, η1) ∈ B(QTη ; γ, µ) and (û2, p̂2, η2) ∈ B(QTη ; γ, µ), we have

‖F̂η(û, p̂, η)‖L2(0,T ;L2(Ωη)) 6 CF̂T
α,

‖F̂η(û1, p̂1, η1)− F̂η(û2, p̂2, η2)‖L2(0,T ;L2(Ωη)) 6 CF̂T
α‖(û1, p̂1, η1)− (û2, p̂2, η2)‖B(QTη ).

(6.8)

Proof. Step 1. Let us prove (6.8)1. Let us recall that F̂η,i is defined in (3.7). With [18, Proposition B1],

Lemma 6.4, and Lemma 6.6, we estimate the first term of F̂η,i as follows: For s fixed in (1/2, 1/2 + ε0), we have∥∥(û− ∂tXη,η) · J>η,η∇ûi
∥∥
L2(0,T ;L2(Ωη))

6 C
(
‖û‖L∞(0,T ;H1(Ωη)) + ‖∂tXη,η‖L∞(0,T ;H1(Ωη))

)
× ‖∇ûi‖L2(0,T ;Hs(Ωη))‖Jη,η‖L∞(0,T ;H2(Ωη))

6 CTα.

From (6.5)2 and Lemma 6.3, we estimate the second term of F̂η,i as follows∥∥∥∥∥∥ν
∑
j,k,l

∂2ûi
∂zl∂zk

(
Jk,jη,ηJ

l,j
η,η − δk,jδl,j

)∥∥∥∥∥∥
L2(0,T ;L2(Ωη))

6 ν
∑
j,k,l

∥∥∥∥ ∂2ûi
∂zl∂zk

∥∥∥∥
L2(0,T ;L2

δ0
(Ωη))

‖Jk,jη,ηJ
l,j
η,η − δk,jδl,j‖L∞w (0,T ;H1(0,L;L∞(B(0,1+η))))

6 CTα.



3D FLUID STRUCTURE INTERACTION MODEL 25

To estimate the third term of F̂η,i, we use [18, Proposition B1], Lemma 6.4 and Lemma 6.6. We obtain∥∥∥∥∥∥ν
∑
j,k,l

∂ûi
∂zk

∂

∂zl
(Jk,jη,η)J l,jη,η

∥∥∥∥∥∥
L2(0,T ;L2(Ωη))

6 ν
∑
j,k,l

∥∥∥∥∂ûi∂zk

∥∥∥∥
L2(0,T ;Hs(Ωη))

∥∥∥∥ ∂

∂zl
(Jk,jη,η)

∥∥∥∥
L∞(0,T ;H1(Ωη))

∥∥∥J l,jη,η∥∥∥
L∞(0,T ;H2(Ωη))

6 CTα, for all s ∈ (1/2, 1/2 + ε0).

With (6.5)1 and Lemma 6.3, we obtain the following estimate of the last term of F̂η,i∥∥(I − J>η,η)∇p̂
∥∥
L2(0,T ;L2(Ωη))

6 ‖I − J>η,η‖L∞w (0,T ;H1(0,L;L∞(B(0,1+η))))‖∇p‖L2(0,T ;L2
δ0

(Ωη)) 6 CT
α.

This completes the proof of (6.8)1.

Step 2. Let us prove (6.8)2. That Lipschitz estimate can be proved as in Step 1. However, for clarity, let us

explain how the Lipschitz estimate can be proved for the second term in F̂η. We have∑
j,k,l

∂2û1
i

∂zl∂zk

(
Jk,jη,η1J

l,j
η,η1 − δk,jδl,j

)
−
∑
j,k,l

∂2û2
i

∂zl∂zk

(
Jk,jη,η2J

l,j
η,η2 − δk,jδl,j

)
=
∑
j,k,l

∂2û1
i

∂zl∂zk
Jk,jη,η1

(
J l,jη,η1 − J l,jη,η2

)
+
∑
j,k,l

∂2û1
i

∂zl∂zk

(
Jk,jη,η1 − Jk,jη,η2

)
J l,jη,η2

+
∑
j,k,l

(
∂2û1

i

∂zl∂zk
− ∂2û2

i

∂zl∂zk

)(
Jk,jη,η2J

l,j
η,η2 − δk,jδl,j

)
.

All terms can be estimated as in Step 1, but we notice that
(
Jk,jη,η2J

l,j
η,η2 − δk,jδl,j

)
|t=0 = 0 is used in an essential

way. �

Estimate of Ĝη.

Lemma 6.8. There exist positive constants CĜ and α, depending on µ > 0, γ > 0, and η such that, for all

0 < T < 1, all (û, p̂, η) ∈ B(QTη ; γ, µ), (û1, p̂1, η1) ∈ B(QTη ; γ, µ) and (û2, p̂2, η2) ∈ B(QTη ; γ, µ), we have

‖Ĝη(û, η)‖L2(0,T ;H1(Ωη))∩H1(0,T ;(H1
δ0

(Ωη))′) 6 CĜT
α,

‖Ĝη(û1, η1)− Ĝη(û2, η2)‖L2(0,T ;H1(Ωη))∩H1(0,T ;(H1
δ0

(Ωη))′)

6 CĜT
α‖(û1, p̂1, η1)− (û2, p̂2, η2)‖B(QTη ).

(6.9)

Proof. Let us recall Ĝη is defined in (3.8). Let us note that Jη,η(0, ·) = I and Jη,η = I on Γn. Thus

Ĝη(0, ·) = 0 in Ωη and Ĝη = 0 on Γn.

First we estimate the L2(0, T ;H1(Ωη))-norm of Ĝη. The terms

∂

∂zi
Ĝη(û, η) =

∑
j,k

∂2ûk
∂zj∂zi

(δj,k − Jk,jη,η)− ∂ûk
∂zj

∂

∂zi
Jk,jη,η

are similar to those in F̂η. Thus, proceeding as in the proof of Lemma 6.7, we obtain

‖Ĝη(û, η)‖L2(0,T ;H1(Ωη)) 6 CT
α. (6.10)
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Next we estimate the H1(0, T ; (H1
δ0

(Ωη))′)-norm of Ĝη. We calculate

∂

∂t
Ĝη(û, η) =

∑
j,k

∂

∂t

∂ûk
∂zj

(δj,k − Jk,jη,η)− ∂ûk
∂zj

∂

∂t
Jk,jη,η .

Let ϕ ∈ H1
δ0

(Ωη). For all 1 6 j, k 6 3, and all t ∈ (0, T ), we have〈
∂

∂t

∂ûk
∂zj

(δj,k − Jk,jη,η), ϕ

〉
(H1

δ0
(Ωη))′,H1

δ0
(Ωη)

= −
∫

Ωη

∂ûk
∂t

(δj,k − Jk,jη,η)
∂ϕ

∂zj
+

∫
Ωη

∂ûk
∂t

∂

∂zj
Jk,jη,ηϕ+

∫
Γsη

(ηtter)k(δj,k − Jk,jη,η)|Γsηϕ|Γsη

6 C
(
‖ûk,t‖L2(Ωη) ‖I − Jη,η‖H1(0,L;L∞(B(0,1+η)))

+ ‖ûk,t‖L2(Ωη)

∥∥∥∥ ∂

∂zj
Jk,jη,η

∥∥∥∥
H1/2+s(Ωη)

+ ‖ηtt‖L2(ω)‖I − Jη,η‖H3/2+s(Ωη)

)
‖ϕ‖H1

δ0
(Ωη),

where s ∈ (0, 1/2) such that 1 + s+ ε0 > 3/2. Therefore, with the above estimate and with (6.5)1, we obtain∥∥∥∥ ∂∂t ∂ûk∂zj
(δj,k − Jk,jη,η)

∥∥∥∥
L2(0,T ;(H1

δ0
(Ωη))′)

6 C‖ûk,t‖L2(0,T ;L2(Ωη))

(
‖δk,j − Jk,jη,η‖L∞w (0,T ;H1(0,L;L∞(B(0,1+η))))

+

∥∥∥∥ ∂

∂zj
Jk,jη,η

∥∥∥∥
L∞(0,T ;H1/2+s(Ωη))

)
+ ‖ηtt‖L2(0,T ;L2(ω))‖δj,k − Jk,jη,η‖L∞(0,T ;H3/2+s(Ωη))

6 CTα.

In the above estimate we have used the fact that
∂

∂zj
Jk,jη,η

∣∣∣
t=0

= 0. Similarly, for all 1 6 j, k 6 3,〈
∂ûk
∂zj

∂

∂t
Jk,jη,η , ϕ

〉
(H1

δ0
(Ωη))′,H1

δ0
(Ωη)

=

∫
Ωη

∂ûk
∂zj

(
∂

∂t
Jk,jη,ηϕ

)

6 C

∥∥∥∥∂ûk∂zj
(t, ·)

∥∥∥∥
L2(Ωη)

∥∥∥∥ ∂∂tJk,jη,η(t, ·)
∥∥∥∥
Hs(Ωη)

‖ϕ‖H1
δ0

(Ωη),

where s ∈ (0, 1) such that s+ 1/2 + ε0 > 3/2. Let us fix such s. We want to estimate L2(0, T ;Hs(Ωη)) norm of
∂tJη,η. We write

∂

∂t
Jη,η = −∇X−1

η,η

(
∂

∂t
∇Xη,η

)
∇X−1

η,η = −Jη,η
(
∂

∂t
∇Xη,η

)
Jη,η.

Applying [18, Proposition B1], Lemma 6.6 and Lemma 6.5, we obtain

‖Jη,η,t‖L2(0,T ;Hs(Ωη)) 6 C‖Jη,η‖
2
L∞(0,T ;H2(Ωη))‖∂t∇Xη,η‖L2(0,T ;Hs(Ωη))

6 C‖∇ηt‖L2(0,T ;Hs(Ωη)) 6 CT
α.

Combining the above two estimates, we get∥∥∥∥∂ûk∂zj

∂

∂t
Jk,jη,η

∥∥∥∥
L2(0,T ;(H1

δ0
(Ωη))′)

6 C

∥∥∥∥∂ûk∂zj

∥∥∥∥
L∞(0,T ;L2(Ωη))

∥∥∥∥ ∂∂tJk,jη,η
∥∥∥∥
L2(0,T ;Hs(Ωη))

6 CTα.
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Thus we have proved ∥∥∥∥ ∂∂t Ĝη(û, η)

∥∥∥∥
L2(0,T ;(H1

δ0
(Ωη))′)

6 CTα. (6.11)

We obtain (6.9)1, by combining (6.10)-(6.11). We can prove the Lipschitz estimate in a similar manner. �

Estimate of Ĥη.
Lemma 6.9. There exist positive constant CĤ and α, depending on µ > 0, γ > 0, and Ωη such that, for all

0 < T < 1, all (û, p̂, η) ∈ B(QTη ; γ, µ), (û1, p̂1, η1) ∈ B(QTη ; γ, µ) and (û2, p̂2, η2) ∈ B(QTη ; γ, µ), we have

‖Ĥη(û, p̂, η)‖L2(0,T ;Hε0 (ω)) 6 CĤT
α,

‖Ĥη(û1, p̂1, η1)− Ĥη(û2, p̂2, η2)‖L2(0,T ;L2(ω))

6 CĤT
α‖(û1, p̂1, η1)− (û2, p̂2, η2)‖B(QTη ).

(6.12)

Proof. Let us recall Ĥη is defined in (3.9). With (6.6)1, we have∥∥∥νγsη((∇û(Jη,η − IR3) + [∇û(Jη,η − IR3)]>
)
eη

)
· er
∥∥∥
L2(0,T ;Hε0 (ω))

6 C
∥∥∥ν(∇û(Jη,η − IR3) + [∇û(Jη,η − IR3)]>

)∥∥∥
L2(0,T ;H1/2+ε0 (Ωη))

6 C‖∇û‖L2(0,T ;H1/2+ε0 (Ωη))‖Jη,η − IR3‖L∞(0,T ;H3/2+s(Ωη)) 6 CT
α, s ∈ (0, 1/2).

In a similar manner, with (6.6), we obtain the following estimate of the last term of Ĥη :∥∥γsη(p̂ (cof(∇Xη,η)− IR3) eη
)
· er
∥∥
L2(0,T ;Hε0 (ω))

6 C ‖p̂ (cof(∇Xη,η)− IR3)‖L2(0,T ;H1/2+ε0 (Ωη))

6 C‖p̂‖L2(0,T ;H1/2+ε0 (Ωη)) ‖cof(∇Xη,η)− IR3‖L∞(0,T ;H3/2+s(Ωη)) 6 CT
α.

Finally, using Lemma 6.4, Lemma 6.5 and [18, Proposition B1], we estimate the second term of Ĥ as follows:∥∥νγsη((∇û(Z − IR3) + [∇û(Jη,η − IR3)]>
)
eη
)
· er
∥∥
L2(0,T ;Hε0 (ω))

6 C
∥∥∥ν(∇û(Jη,η − IR3) + [∇û(Jη,η − IR3)]>

)∥∥∥
L2(0,T ;H1/2+ε0 (Ω))

6 C‖û‖L2(0,T ;H3/2+ε0 (Ωη))‖Jη,η − IR3‖L∞(0,T ;H3/2+s(Ωη)) 6 CT
α.

Thus (6.12)1 is proved. The Lipschitz estimate can be proved in a similar manner. �

Estimate of Lmem.

Lemma 6.10. There exist positive constants CL and α, depending on µ > 0, γ > 0, and Ωη such that, for all
0 < T < 1, all (û, p̂, η) ∈ B(QTη ; γ, µ), (û1, p̂1, η1) ∈ B(QTη ; γ, µ) and (û2, p̂2, η2) ∈ B(QTη ; γ, µ), we have

‖Lmemη‖L2(0,T ;Hε0 (ω)) 6 CL T
α,

‖Lmemη
1 −Lmemη

2‖L2(0,T ;L2(ω))

6 CL T
α‖(û1, p̂1, η1)− (û2, p̂2, η2)‖B(QTη ).

(6.13)

Proof. Using Lemma 6.5, we can estimate the several terms of Lmemη as follows∥∥∥∥(1 + η)
EσP

1− σ2
P

η2
z1

∥∥∥∥
L2(0,T ;Hε0 (ω))

6 C‖ηz1(1 + η)‖L∞(0,T ;H2(ω))‖η‖L2(0,T ;H1+ε0 (ω))

6 CTα,

and∥∥∥∥ E

1 + σP

∂

∂θ
(η2
z1ηθ)

∥∥∥∥
L2(0,T ;Hε0 (ω))

6 CT 1/2‖η‖3L∞(0,T ;H3(ω)).
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The other estimates can be obtained similarly. Thus (6.13)1 is proved and (6.13)2 can be deduced with the
same arguments. �

7. Proofs of Theorem 3.3 and Theorem 1.7

Proof of Theorem 3.3. Step 1. Local in time existence. We choose µ > 0 and M > 0 such that

‖u0‖H1(Ω
η0
1

) + ‖η0
1‖H3+ε0 (ω) + ‖η0

2‖H1(ω) 6M µ = 2Cη0
1
M, (7.1)

where Cη0
1

is the continuity constant in (5.2) corresponding to η = η0
1 . Let us set

γ = γη0
1
/2, with γη0

1
= min{1 + η0

1(z1, θ) | (z1, θ) ∈ ω} > 0.

We recall that the norm |||·|||B(QT
η0
1

) and the ball B(QT
η0

1
; γ, µ) are introduced in (3.5) and (6.7) respectively. We

consider the following system

ût − div σ(û, p̂) = F̂η0
1
(Φ, ψ, k)− ν∇Ĝη0

1
(Φ, k), div û = Ĝη0

1
(Φ, k) in QTη0

1
,

û = ηter on (0, T )× Γsη0
1
,

σ(û, p̂)n = 0 on Σin
T , σ(û, p̂)n = 0 on Σout

T ,

û(0) = u0 ◦Xη0
1

in Ωη0
1
, (7.2)

ηtt + ∆2
sη −∆sηt = −γsη0

1

(
σ(û, p̂)eη0

1

)
· er

+ Ĥη0
1
(Φ, ψ, k)−Lmemk in (0, T )× ω,

η =
∂η

∂z1
= 0 on (0, T )× {0, L} × (0, 2π),

η(0) = η0
1 , ηt(0) = η0

2 in (0, L),

where the nonlinear terms are defined as in (3.7)-(3.9).
To prove the existence of a strong solution to system (3.11), we are going to show that there exists 0 < T < 1

such that the mapping

N : (Φ, ψ, k) 7→ (û, p̂, η),

where (û, p̂, η) is the solution to system (7.2), is a strict contraction in B(QT
η0

1
; γ, µ).

Applying Theorem 5.2 to system (7.2), we obtain

|||(û, p̂, η)|||B(QT
η0
1

) 6 Cη0
1

(
‖u0‖H1(Ω

η0
1

) + ‖η0
1‖H3(ω) + ‖η0

2‖H1
0 (ω)

+ ‖F̂η0
1
(Φ, ψ, k)‖L2(0,T ;L2(Ω

η0
1

)) + ‖Ĝη0
1
(Φ, k)‖L2(0,T ;H1(Ω

η0
1

))∩H1(0,T ;(H1
δ0

(Ω
η0
1

))′)

+ ‖Ĥη0
1
(Φ, ψ, k)‖L2(0,T ;L2(ω)) + ‖Lmemk‖L2(0,T ;L2(ω))

)
. (7.3)

where Cη0
1

is the constant appearing in (5.2) corresponding to η = η0
1 . Since (Φ, ψ, k) ∈ B(QT

η0
1
; γ, µ), applying

Lemma 6.7 - Lemma 6.10, estimate (7.3) becomes

|||(û, p̂, η)|||B(QT
η0
1

) 6 Cη0
1
M + Cη0

1
(CF̂ + CĜ + CĤ + CL )Tα.

Therefore, with the choice of µ in (7.1), we can choose T > 0 small enough to have

|||N (Φ, ψ, k)|||B(QT
η0
1

) 6 µ.

Using the continuous embedding L∞(0, T ;H5/2+s1(ω)) ↪→ L∞(ωT ), with Lemma 6.5, we obtain

‖η − η0
1‖L∞(ωT ) 6 CT

α1 ,

where the constant C is independent of T. By choosing T > 0 small enough, we get 1 + η(t, z1, θ) > γ for all
(t, z1, θ) ∈ (0, T ) × ω. Therefore, N maps B(QT

η0
1
; γ, µ) into itself. Now we will show that N is a contraction
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in B(QT
η0

1
; γ, µ). Let (Φ1, ψ1, k1) and (Φ2, ψ2, k2) belong to B(QT

η0
1
; γ, µ). For j = 1, 2, we set N (Φj , ψj , kj) :=

(ûj , pj , ηj). Using Theorem 5.2, Lemma 6.7, Lemma 6.8 and Lemma 6.9, we obtain∣∣∣∣∣∣(û1, p1, η1)− (û2, p2, η2)
∣∣∣∣∣∣
B(QT

η0
1

)

6 Cη0
1
(CF̂ + CĜ + CĤ + CL )Tα

∣∣∣∣∣∣(Φ1, ψ1, k1)− (Φ2, ψ2, k2)
∣∣∣∣∣∣
B(QT

η0
1

)
.

Thus N is a contraction in B(QT
η0

1
; γ, µ) for T > 0 small enough. The proof of the local in time existence is

complete.

Step 2. We prove that any local-in-time strong solution (û, p̂, η), over [0, T1], to the nonlinear system (3.11) can
be extended to a maximal strong solution. We look for functions (v̂, q̂, ξ) ∈ B(QT

η0
1
), with T > T1, such that

(v̂, q̂, ξ)(t) = (û, p̂, η)(t) for all t ∈ [0, T1],

(v̂, q̂, ξ) is a strong solution to (3.11) over [0, T ].
(7.4)

For a given quadruplet (v̂, q̂, ξ, T ) satisfying (7.4), we set

T̂ = sup{T > T1 | (v̂, q̂, ξ, T ) satisfies (7.4)}.

If there exists (v̂, q̂, ξ, T ) satisfying (7.4) for all T < T̂ =∞, the proof is complete.

We assume that (v̂, q̂, ξ, T ) satisfies (7.4) for all T < T̂ < ∞. We have to show that (3.12) holds for

(û, p̂, η) = (v̂, q̂, ξ) and Tm = T̂ . We argue by contradiction. We assume that

lim
T→T̂

(
|||(v̂, q̂, ξ)|||B(QT

η0
1

) + max
{
|1 + ξ(T, z1, θ)|−1 | (z1, θ) ∈ ω

})
<∞. (7.5)

Thus, we have

|||(v̂, q̂, ξ)|||
B(QT̂

η0
1

)
= µT̂ <∞, min{1 + ξ(t, z1, θ) | (z1, θ) ∈ ω, t ∈ [0, T̂ ]} = γT̂ > 0.

We are going to show that the solution (v̂, q̂, ξ) can be extended to [T̂ , T̂ + ε], for some ε > 0, so that (v̂, q̂, ξ)

is solution to system (3.11) over the time interval [0, T̂ + ε].

Rather than considering the system (3.11) over the time interval [T̂ , τ ], we are going to rewrite it in the
configuration Ωξ(T̂ ).

We set η = ξ(T̂ ). From estimates (5.3), (6.12)1, and (6.13)1, knowing that T̂ > 0, it follows that η ∈
H3+ε0(ω)∩H2

0 (ω). With (7.5), we have 1 + η(z1, θ) > γ for some γ > 0. We look for displacements ξ̃ satisfying

ξ̃ ∈ H4,2(ω × (T̂ , τ)) and ξ̃(T̂ ) = ξ(T̂ ) = η. (7.6)

We look for a solution (ṽ, q̃, ξ̃), over the time interval (T̂ , τ) with τ > T̂ , to the system

ṽt − div σ(ṽ, q̃) = F̂η(ṽ, q̃, ξ̃)− ν∇Ĝη(ṽ, ξ̃) in (T̂ , τ)× Ωη,

div ṽ = Ĝη(ṽ, ξ̃) in (T̂ , τ)× Ωη,

ṽ = ξ̃ter on (T̂ , τ)× Γsη,

σ(ṽ, p̃)n = 0 on (T̂ , τ)× Γin, σ(ṽ, p̃)n = 0 on (T̂ , τ)× Γout,

ṽ(T̂ ) = v̂(T̂ ,Xη,η0
1
) in Ωη, (7.7)

ξ̃tt + Lmemξ̃ + ∆2
s ξ̃ −∆sξ̃t =

− γsη
(
σ(ṽ, q̃)eη

)
· er + Ĥη(ṽ, p̃, ξ) in (T̂ , τ)× ω,

ξ̃ =
∂ξ̃

∂z1
= 0 on (T̂ , τ)× {0, L} × (0, 2π),

ξ̃(T̂ ) = ξ(T̂ ), ξ̃t(T̂ ) = ξt(T̂ ) in ω,
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where Xη,η0
1

= Xη0
1
◦ Yη. We consider the system

ṽt − div σ(ṽ, q̃) = F̂η(v, q, ζ)− ν∇Ĝη(v, ζ) in (T̂ , τ)× Ωη,

div ṽ = Ĝη(v, ζ) in (T̂ , τ)× Ωη,

ṽ = ζ̃ter on (T̂ , τ)× Γsη,

σ(ṽ, p̃)n = 0 on (T̂ , τ)× Γin, σ(ṽ, p̃)n = 0 on (T̂ , τ)× Γout,

ṽ(T̂ ) = v̂(T̂ ,Xη,η0
1
) in Ωη, (7.8)

ξ̃tt + Lmemζ + ∆2
s ξ̃ −∆sξ̃t =

− γsη
(
σ(ṽ, q̃)eη

)
· er + Ĥη(v, p, ζ) in (T̂ , τ)× ω,

ξ̃ =
∂ξ̃

∂z1
= 0 on (T̂ , τ)× {0, L} × (0, 2π),

ξ̃(T̂ ) = ξ(T̂ ), ξ̃t(T̂ ) = ξt(T̂ ) in ω.

We set

γ̃ = γT̂ /2, and µ̃ = CηµT̂ + µT̂ .

We introduce the mapping Ñτ from B(QT̂ ,τη ; γ̃, µ̃) into B(QT̂ ,τη ), defined by

Ñτ : (v, q, ζ) 7→ (ṽ, q̃, ξ̃),

where (ṽ, q̃, ξ̃) is the solution to system (7.8) over [T̂ , τ ].

Applying Theorem 5.2 to system (7.8), as in Step 1, we can prove that Ñτ is a contraction in B(QT̂ ,τη ; γ̃, µ̃) for

τ − T̂ > 0 small enough. Thus the system (7.7) admits a solution over the time interval (T̂ , τ) in B̃(QT̂ ,τη ; γ̃, µ̃)

for τ − T̂ > 0 small enough. We can extend the triplet (v̂, q̂, ξ), defined over (0, T̂ ), to (T̂ , τ) by setting

v̂(t, z) = ṽ(t, Yη(t, z)), q̂(t, z) = q̃(t, Yη(t, z)), ξ(t, z1, θ) = ξ̃(t, z1, θ).

We can show that (v̂, q̂, ξ) is solution to (3.11) over [0, τ ]. We have a contradiction with the definition of T̂ .
Thus (7.5) is false and (3.12) is proved. We have proved that any local-in-time strong solution may be extended
to a maximal strong solution.

Step 3. Uniqueness of maximal solution. Let us prove that system (3.11) admits a unique maximal solution.
Let (û, p̂, η) be a maximal solution to system (3.11) over [0, Tm), and let (v̂, q̂, ξ) be another maximal solution

to system (3.11) over [0, T̃m). Let us assume that Tm 6 T̃m. Let us set

T̂ = sup
{
t ∈ [0, Tm) | (û, p̂, η)(τ) = (v̂, q̂, ξ)(τ) for all τ ∈ [0, t]

}
.

If T̂ = Tm = T̃m, then the two maximal solutions are identical and the proof is complete.

If T̂ = Tm < T̃m, then

lim
T→Tm

(
|||(û, p̂, η)|||B(QT

η0
1

) + max
{
|1 + η(z1, θ, T )|−1 | (z1, θ) ∈ ω

})
=

(
|||(v̂, q̂, ξ)|||B(QTm

η0
1

) + max
{
|1 + ξ(z1, θ, Tm)|−1 | (z1, θ) ∈ ω

})
<∞,

which is in contradiction with the fact that (û, p̂, η) is a maximal solution to system (3.11) over [0, Tm). Thus
the proof is complete in that case too.

Let us examine the last case T̂ < Tm. We have to treat separately the cases when T̂ > 0 and the case when

T̂ = 0. The case when T̂ = 0 can be treated with the arguments in Step 1. Let us treat the case when T̂ > 0.
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For T̂ < τ < Tm, we consider the system (3.11) over the time interval (0, τ). We set

µ1 = |||(û, p̂, η)|||
B(QT̂

η0
1

)
, γ1 = min{1 + η(z1, θ, t) | (z1, θ) ∈ ω, t ∈ [0, T̂ ]},

µ2 = |||(v̂, q̂, ξ)|||
B(QT̂

η0
1

)
, γ2 = min{1 + ξ(z1, θ, t) | (z1, θ) ∈ ω, t ∈ [0, T̂ ]},

µ̂ = 2µ1 + 2µ2, and γ̂ = min{γ1/2, γ2/2}.

We set η = η(T̂ ). From (5.3), we know that η ∈ H3+ε0(Γs) and that 1 + η(z1, θ) > γ for some γ > 0.
Let (u, p, η) (resp. (v, q, ξ)) be a solution of (1.1) associated with the solution (û, p̂, η) (resp. (v̂, q̂, ξ)) of

(3.11). We set

ũ(t, ζ) = u(t,Xη,η(t, ζ)), p̃(t, ζ) = p(t,Xη,η(t, ζ)),

ṽ(t, ζ) = v̂(t,Xη,η(t, ζ)) and q̃(t, ζ) = q(t,Xη,η(t, ζ)) for all t ∈ [T̂ , Tm).

We can easily check that the function (v, q, ζ) = (ũ, p̃, η)− (ṽ, q̃, ξ) satisfies the system (4.2), over the interval

(T̂ , τ), with

v(T̂ ) = 0, η1(T̂ ) = 0, η2(T̂ ) = 0,

f = F̂η(ũ, p̃, η)− F̂η(ṽ, q̃, ξ), g = Ĝη(ũ, η)− Ĝη(ṽ, ξ),

h = Ĥη(ũ, p̃, η)− Ĥη(ṽ, p̃, ξ)−Lmemη + Lmemξ.

Using the Lipschitz estimates for F̂η, Ĝη, Ĥη, and Lmem in B(QT̂ ,τη ; γ̂, µ̂), with Theorem 5.2, we can show
that

|||(v, q, ζ)|||
B(QT̂ ,τη )

6 Cη(CF̂ + CĜ + CĤ + CL )(τ − T̂ )α |||(v, q, ζ)|||
B(QT̂ ,τη )

.

Notice that the Lipschitz estimates of Lemmas 6.7, 6.8, 6.9, and 6.10 can be used, over the interval (T̂ , τ),
because Jη,η

∣∣
t=T̂ = Jη,ξ

∣∣
t=T̂ = I .

Thus, if τ > T̂ is such that

Cη(CF̂ + CĜ + CĤ + CL )(τ − T̂ )α < 1,

we have

(v, q, ζ)(t) = 0 for t ∈ [T̂ , τ ].

Thus (ũ, p̃, η)(t) = (ṽ, p̃, ξ)(t) for all t ∈ [T̂ , τ ], from which we deduce that (û, p̂, η)(t) = (v̂, p̂, ξ)(t) for all

t ∈ [T̂ , τ ], and the proof is complete. �

Finally, we prove our main result:

Proof of Theorem 1.7. Let us assume that (u0, η
0
1 , η

0
2) ∈ H1(Ω) × H3+ε0(ω) × H1(ω) satisfies (1.7). From

Theorem 3.3, it follows that the system (3.11) admits a unique maximal strong solution (û, p̂, η) over the
interval (0, Tm), and (û, p̂, η) ∈ B(QT

η0
1
) for all 0 < T < Tm. Since γη(T ) > 0, X(t, ·) is a C1-diffeomorphism

from Ω into Ωη(t) (Lemma 3.1). Thus there is a unique Y (t, ·) from Ωη(t) onto Ω such that Y (t, ·) = X(t, ·)−1.
We set

u(t, z1, x, y) = û(t, Y (t, z1, x, y)),

p(t, z1, x, y) = p̂(t, Y (t, z1, x, y)) for all (z1, x, y) ∈ Ωη(t).

One can easily check that (u, p, η) satisfy the original system (1.1) over the time interval (0, T ) for all 0 < T < Tm,
and that

u ∈ L2(0, T ; H3/2+ε0(Ωη(·))) ∩H1(0, T ; L2(Ωη(·))) ∩ C([0, T ]; H1(Ωη(·))),

p ∈ L2(0, T ;H1/2+ε0(Ωη(·))), div σ(u, p) ∈ L2(Q̃T ),

η ∈ H4,2(ωT ).

for all 0 < T < Tm. Due to Proposition 3.4, the uniqueness of solution (u, p, η) to system (1.1), in the class of
functions satisfying (3.13), follows from the uniqueness of solution to system (3.11). �



32 DEBAYAN MAITY, JEAN-PIERRE RAYMOND, AND ARNAB ROY

Appendix A. Technical results

Throughout this section, we assume that η satisfies (4.1).

Theorem A.1. Let ξ ∈ L2(Ωη). Then the solution ϕ to the problem

−∆ϕ = ξ in Ωη,
∂ϕ

∂n
= 0 on Γsη, ϕ = 0 on Γn,

belongs to H2(Ωη).

Proof. There may be a loss of regularity for ϕ at the junctions {(0, z2, z3) : z2
2 + z2

3 = 1} and {(L, z2, z3) :
z2

2 + z2
3 = 1}. At first we want to study the regularity at the junction {(0, z2, z3) : z2

2 + z2
3 = 1}, the other

junction can be studied in the similar way. To study the regularity of ϕ, we extend the equation satisfied by ϕ
by using a symmetry argument. Let us set

η̃(z1, θ) =

{
η(−z1, θ), z1 ∈ (−L, 0)

η(z1, θ), z1 ∈ (0, L),

Ω̃η = (−L,L)×B(0, 1 + η̃),

Γ̃sη = {(z1, r cos θ, r sin θ) | r = 1 + η̃(z1, θ), z1 ∈ (−L,L), θ ∈ (0, 2π)} ,

ϕ̃(z1, z2, z3) =

{
−ϕ(−z1, z2, z3), z1 ∈ (−L, 0)

ϕ(z1, z2, z3), z1 ∈ (0, L)

ξ̃(z1, z2, z3) =

{
−ξ(−z1, z2, z3), z1 ∈ (−L, 0)

ξ(z1, z2, z3), z1 ∈ (0, L).

Thus Γ̃sη is of class C2, because η̃ belongs to H3+ε0((−L,L)× (0, 2π)), and ϕ̃ is solution to the equation

−∆ϕ̃ = ξ̃ in Ω̃η,
∂ϕ̃

∂n
= 0 on Γ̃sη, ϕ̃ = 0 on ({−L} ∪ {L})×B(0, 1 + η̃),

and ϕ̃ belongs to H2(Ω̃η,ε), where Ω̃η,ε =
⋃
z1∈(−L+ε,L−ε){z1}×B(0, 1+η̃(z1, ·)) and ε > 0. By similar argument,

we can deal with the other junction {(L, z2, z3) : z2
2 + z2

3 < 1}. �

Lemma A.2. The operator Ds ∈ L(H3/2(ω); H2
δ0

(Ωη))), defined in (4.20), may be extended as a bounded

operator from L2(ω) to L2(Ωη).

Proof. We recall that Dsη2 = D(η2er) = Dg. We consider the following equation

−div σ(v, q) = Φ, div v = 0 in Ωη, v = 0 on Γsη, σ(v, q)n = 0 on Γn. (A.1)

From [25, Theorem 9.4.5], it follows that (v, q) satisfies the estimate

‖v‖H2
δ0

(Ωη) + ‖q‖H1
δ0

(Ωη) 6 C‖Φ‖L2(Ωη).

Using the mixed variational formulations satisfied by (w, π) and (v, q) (as introduced in [25, page 384]), we have∫
Ωη

Φ ·w =
∫

Ωη
f · v −

∫
Γsη
σ(v, q)n · g.

Hence, we have

‖w‖L2(Ωη) 6 C
(
‖f‖L2(Ωη) + ‖g‖L2(Γsη)

)
.

�

Lemma A.3. Let us assume that g ∈ H1(Ωη) and g = 0 on Γn. Then the solution (w, π) ∈ H2
δ0

(Ωη)×H1
δ0

(Ωη)
to the equation

−div σ(w, π) = −ν∇g, div w = g in Ωη, w = 0 on Γsη, σ(w, π)n = 0 on Γn, (A.2)



3D FLUID STRUCTURE INTERACTION MODEL 33

satisfies the following estimate

‖w‖L2(Ωη) 6 C‖g‖(H1
δ0

(Ωη))′ .

Proof. Let Φ belong to L2(Ωη) and (v, q) be the solution of (A.1). Using the mixed variational formulations
satisfied by (w, π) and (v, q), we can verify that∫

Ωη

Φ ·w = −
∫

Ωη

q g.

Thus

‖w‖L2(Ωη) = sup
‖Φ‖L2(Ωη)=1

∣∣∣∣∣
∫

Ωη

Φ ·w

∣∣∣∣∣ = sup
‖Φ‖L2(Ωη)=1

∣∣∣∣∣
∫

Ωη

q g

∣∣∣∣∣
6 sup
‖Φ‖L2(Ωη)=1

‖g‖(H1
δ0

(Ωη))′‖q‖H1
δ0

(Ωη) 6 C‖g‖(H1
δ0

(Ωη))′ .

�

Lemma A.4. Let s ∈ (0, 1/2). If f ∈ H3/4−s/2(0, T ;H3/2+s(Ωη)) ∩L∞(0, T ;H2(Ωη) ∩H3/4−s/2(0, T ;H1(0, L;

L∞(B(0, 1 + η)))) and 0 < m 6 f(x, t) in Ωη × (0, T ), then 1/f belongs to H3/4−s/2(0, T ;H3/2+s(Ωη)) ∩
L∞(0, T ;H2(Ωη)) ∩H3/4−s/2(0, T ;H1(0, L;L∞(B(0, 1 + η)))), and it satisfies the following estimate:

‖1/f‖L∞(0,T ;H2(Ωη)) 6 C(1 + ‖f‖L∞(0,T ;H2(Ωη)))‖f‖L∞(0,T ;H2(Ωη)),

‖1/f‖H3/4−s/2(0,T ;H3/2+s(Ωη)) 6
C

‖f‖2L∞(0,T ;H2(Ωη))

‖f‖H3/4−s/2(0,T ;H3/2+s(Ωη)),

‖1/f‖H3/4−s/2(0,T ;H1(0,L;L∞(B(0,1+η))))

6
C

‖f‖2L∞(0,T ;H2(Ωη))

‖f‖H3/4−s/2(0,T ;H1(0,L;L∞(B(0,1+η)))),

with C is independent of T .

Proof. Let G be a C∞, nonnegative function such that G(0) = 0 and G(r) = 1/r for r > m. From [34, Theorem
2, pp. 336], for all t > 0, we get

‖G(f(t))‖2H2(Ωη) 6 C
(
1 + ‖f(t)‖L∞(Ωη)

)2 ‖f(t)‖2H2(Ωη)

6 C
(
1 + ‖f‖L∞(0,T ;H2(Ωη))

)2 ‖f(t)‖2H2(Ωη).

By taking the supremum with respect to t in the above estimate, we have

‖G(f(t))‖L∞(0,T ;H2(Ωη)) 6 C
(
1 + ‖f‖L∞(0,T ;H2(Ωη))

)
‖f‖L∞(0,T ;H2(Ωη)).

With [18, Proposition B1], we can estimate

‖1/f‖H3/4−s/2(0,T ;H3/2+s(Ωη)) =

∫ T

0

∫ T

0

‖1/f(t)− 1/f(τ)‖H3/2+s(Ωη)

|t− τ |5/2−s

6
C

‖f‖2L∞(0,T ;H2(Ωη))

∫ T

0

∫ T

0

‖f(t)− f(τ)‖H3/2+s(Ωη)

|t− τ |5/2−s

6 C
‖f‖H3/4−s/2(0,T ;H3/2+s(Ωη))

‖f‖2L∞(0,T ;H2(Ωη))

.

The last estimate can be proved similarly. �
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