
HAL Id: hal-02911998
https://hal.science/hal-02911998v1

Submitted on 29 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Stellar Masses of Giant Clumps in CANDELS and
Simulated Galaxies Using Machine Learning

Marc Huertas-Company, Yicheng Guo, Omri Ginzburg, Christoph T. Lee, Nir
Mandelker, Maxwell Metter, Joel R. Primack, Avishai Dekel, Daniel Ceverino,

Sandra M. Faber, et al.

To cite this version:
Marc Huertas-Company, Yicheng Guo, Omri Ginzburg, Christoph T. Lee, Nir Mandelker, et al.. Stel-
lar Masses of Giant Clumps in CANDELS and Simulated Galaxies Using Machine Learning. Monthly
Notices of the Royal Astronomical Society, 2020, 499 (1), pp.814-835. �10.1093/mnras/staa2777�.
�hal-02911998�

https://hal.science/hal-02911998v1
https://hal.archives-ouvertes.fr


MNRAS 499, 814–835 (2020) doi:10.1093/mnras/staa2777
Advance Access publication 2020 September 21

Stellar masses of giant clumps in CANDELS and simulated galaxies using
machine learning

Marc Huertas-Company ,1,2,3,4‹ Yicheng Guo,5 Omri Ginzburg,6 Christoph T. Lee,7 Nir Mandelker ,8,9

Maxwell Metter,5 Joel R. Primack,7 Avishai Dekel,6,7 Daniel Ceverino ,10 Sandra M. Faber,11

David C. Koo,11 Anton Koekemoer ,12 Gregory Snyder ,12 Mauro Giavalisco13 and Haowen Zhang14

1LERMA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, F-75014 Paris, France
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ABSTRACT
A significant fraction of high redshift star-forming disc galaxies are known to host giant clumps, whose nature and role in galaxy
evolution are yet to be understood. In this work, we first present a new method based on neural networks to detect clumps in
galaxy images. We use this method to detect clumps in the rest-frame optical and UV images of a complete sample of ∼1500 star
forming galaxies at 1 < z < 3 in the CANDELS survey as well as in images from the VELA zoom-in cosmological simulations.
We show that observational effects have a dramatic impact on the derived clump properties leading to an overestimation of the
clump mass up to a factor of 10, which highlights the importance of fair comparisons between observations and simulations
and the limitations of current HST data to study the resolved structure of distant galaxies. After correcting for these effects with
a mixture density network, we estimate that the clump stellar mass function follows a power law down to the completeness
limit (107 solar masses) with the majority of the clumps being less massive than 109 solar masses. This is in better agreement
with recent gravitational lensing based measurements. The simulations explored in this work overall reproduce the shape of the
observed clump stellar mass function and clumpy fractions when confronted under the same conditions, although they tend to
lie in the lower limit of the confidence intervals of the observations. This agreement suggests that most of the observed clumps
are formed in situ.

Key words: methods: data analysis – galaxies: evolution – galaxies: formation – galaxies: irregular – galaxies: star formation –
galaxies: structure.

1 IN T RO D U C T I O N

A prominent feature of distant star-forming galaxies is the frequent
presence of high-surface brightness concentrations, or ‘clumps’
embedded in a more uniform light distribution. Their origin and
evolution are important to understand many aspects of galaxy forma-
tion, e.g. gas accretion, feedback, bulge formation, and supermassive
black hole formation. Clumps are mostly identified in rest-frame
UV and emission-line (CO or H α) images of galaxies over a wide

� E-mail: marc.huertas@obspm.fr

redshift range (e.g. Giavalisco, Steidel & Macchetto 1996; Conselice
et al. 2004; Elmegreen & Elmegreen 2005; Ravindranath et al. 2006;
Elmegreen et al. 2007, 2009; Förster Schreiber et al. 2011; Guo et al.
2012, 2015, 2018; Wuyts et al. 2012; Murata et al. 2014; Shibuya
et al. 2016; Soto et al. 2017; Zanella et al. 2019; Larson et al. 2020;
Zick et al. 2020).

Clumps are a few orders of magnitude more massive than star-
forming regions in nearby galaxies (e.g. Elmegreen et al. 2007;
Genzel et al. 2008, 2011; Förster Schreiber et al. 2011; Guo et al.
2012, 2018; Dessauges-Zavadsky et al. 2017; Soto et al. 2017;
Zanella et al. 2019). Their specific star formation rates (sSFRs)
are higher than their surrounding areas by a factor of several (e.g.
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Genzel et al. 2008, 2011; Guo et al. 2012, 2018; Wuyts et al. 2012,
2013; Hemmati et al. 2014; Mieda et al. 2016; Fisher et al. 2017).
Their size is still uncertain and under intense debate. Some studies
with unlensed galaxies found the size to be ∼1 kpc (e.g. Elmegreen
et al. 2007; Förster Schreiber et al. 2011), but other studies with
gravitationally lensed galaxies found smaller sizes of a few hundred
or even tens of pc (e.g. Livermore et al. 2012; Zick et al. 2020).
Fisher et al. (2017) argue that observation resolution and sensitivity
as well as clustering of clumps result in an overestimate of clump
sizes. However, Cosens et al. (2018) conclude that the size of clumps
scales with their H α luminosity and there is no difference between
lensed and unlensed data.

The formation of clumps is related to the mass assembly processes
of galaxies at high redshifts. Clumps are thought to form through
gravitational instability in gas-rich turbulent discs, sometimes trig-
gered by external perturbations (e.g. Noguchi 1999; Immeli et al.
2004a,b; Bournaud, Elmegreen & Elmegreen 2007; Elmegreen,
Bournaud & Elmegreen 2008; Bournaud, Elmegreen & Martig 2009;
Dekel, Sari & Ceverino 2009; Ceverino, Dekel & Bournaud 2010;
Ceverino et al. 2012; Dekel & Burkert 2014; Inoue et al. 2016). This
scenario of violent disc instability is supported by some observations,
especially for massive clumpy galaxies (e.g. Elmegreen et al. 2007;
Bournaud et al. 2008; Genzel et al. 2008, 2011; Guo et al. 2012,
2015; Hinojosa-Goñi, Muñoz-Tuñón & Méndez-Abreu 2016; Mieda
et al. 2016; Fisher et al. 2017). Clumps, however, can also have an ex-
situ origin, that is, as minor mergers (e.g. Hopkins, Kereš & Murray
2013). Evidence of this scenario is also present in the literature (e.g.
Puech et al. 2009, 2010; Wuyts et al. 2014; Straughn et al. 2015;
Ribeiro et al. 2016). Guo et al. (2015) suggest that the formation
mechanisms depend on the mass of clumpy galaxies: clumps in
massive galaxies are formed through violent disc instability, while
those in lower mass galaxies are formed through minor mergers. If
that is the case, one would expect that the clump stellar mass function
(cSMF) of clumps changes as a function of galaxy mass.

The evolution of clumps determines their importance on the broad
picture of galaxy formation and evolution: whether clumps are
building blocks of galactic bulges or just a transient phenomenon.
Basically, two scenarios have been proposed. Some models and
simulations suggest that clumps can live long enough to migrate
towards the centres of their host galaxies, eventually merging into
the progenitors of today’s bulges (e.g. Bournaud et al. 2007, 2014;
Elmegreen et al. 2008; Ceverino et al. 2010, 2012; Mandelker et al.
2014, 2017). This scenario is supported by observed radial colour
gradients of clumps (e.g. Förster Schreiber et al. 2011; Guo et al.
2012, 2018; Shibuya et al. 2016; Soto et al. 2017). On the other
hand, some other models and simulations suggest that clumps are
self-disrupted by their powerful starburst-induced outflows on a
timescale of a few tens of Myr (e.g. Murray, Quataert & Thompson
2010; Genel et al. 2012; Hopkins et al. 2012, 2014; Buck et al.
2016; Oklopčić et al. 2017). The two scenarios distinguish between
different feedback models and strength, i.e. whether the feedback of
star formation is strong enough to destroy clumps in a short time-
scale (e.g. Moody et al. 2014).

An important parameter to understand clump formation and evo-
lution is their stellar mass. For example, as discussed in Dessauges-
Zavadsky & Adamo (2018), if clumps were formed in situ through
gravitational instability, the clump mass function would have a slope
of −2 (in logarithmic space) at its massive end. The contribution of
clump mass to the total mass of their galaxies is also important.
Clumps are found to contribute ∼ 10 per cent of the total UV
luminosity or SFR of their galaxies (e.g. Förster Schreiber et al.
2011; Guo et al. 2012, 2018; Wuyts et al. 2012; Mieda et al. 2016;

Rujopakarn et al. 2019), but their contribution to the total stellar
mass is still unknown, although it is believed to be small. Clump
mass can also be used as a diagnostic of clump evolution. For
example, whether the mass of clumps shows any radial variation can
be used to test the inward migration scenario (Bournaud et al. 2014).
Currently, however, robust measurements of stellar mass for a large
sample of clumps are still insufficient in the literature. A challenge
of obtaining a complete census of clump mass is to detect clumps in
a wavelength that traces stellar mass more than star formation. Rest-
frame optical provides a good choice and is accessible by current
observing facilities for clumps over a wide range of redshifts.

The capabilities of current observations pose another significant
challenge to properly measure physical parameters of clumps. Even
with the spatial resolution and sensitivity of HST, clumps at high
redshifts can only be marginally resolved or may even be unresolved.
Therefore, a clump observed by HST, let alone by ground-based
telescopes without Adaptive Optics correction, could be either a
single object or the blend of a few nearby smaller clumps. Some
authors argued that with a limited spatial resolution of ∼1 kpc (which
is equivalent to HST’s resolution for galaxies at z ∼ 1), many of the
giant clumps (with clump stellar mass MC� 108 M�) identified in
observations are actually the result of blending of smaller structures
or clustering of clumps (e.g. Tamburello et al. 2015; Dessauges-
Zavadsky et al. 2017; Benincasa et al. 2019; Meng & Gnedin 2020).
Dessauges-Zavadsky et al. (2017) also discuss that the sensitivity
threshold used for the clump selection strongly biases against clumps
at the low-mass end. Similarly, Fisher et al. (2017) even argue that
due to the effects of clump clustering, with a 1 kpc resolution, the
SFR surface density of clumps would be overestimated by up to a
factor of 20. Some authors (e.g. Buck et al. 2016; Oklopčić et al.
2017) argue that disc stars contaminate clump age measurement,
resulting in an artificially old clump age.

In order understand the nature of clumps, a direct comparison
between observations and models or simulations is needed. Obser-
vational effects related to limited image resolution and sensitivity,
such as point spread function (PSF) effects and realistic (and
correlated) noises, should be applied to simulations for each specific
observation. These forward-modelled simulations have been used in
previous studies for integrated galaxies(e.g. Huertas-Company et al.
2018). For small, faint sub-structures of galaxies, such as clumps,
using these forward-modelled simulations is particularly important,
because these sub-structures are severely affected by PSF and noise
in observations.

In this work, we perform several steps towards better quantifying
the stellar mass distribution of clumps in distant galaxies. First,
we develop a novel method for the detection of clumps based on
deep neural networks. The main advantage of this approach is that
it is significantly faster and more sensitive than previous methods
and therefore can be easily applied to large samples of galaxies in
different wavelengths such as the ones that will be soon available
(e.g. from JWST, Euclid, and WFIRST). We then apply our method
to the five fields of the CANDELS survey (Grogin et al. 2011;
Koekemoer et al. 2011) in up to seven different detection bands,
increasing the sample of clumps by a factor of 3 compared to previous
works on the same survey (Guo et al. 2015). More importantly, we
statistically quantify for the first time the contribution of clumps
to the galaxy stellar mass in a complete sample. We will use
state-of-the-art cosmological simulations forward modelled in the
CANDELS observational plane, namely the VELA hydrodynamic
zoom-in simulations (Ceverino et al. 2014), to carry out a direct
comparison between observations and simulations of clumps (see
also Ginzburg et al., in preparation). The forward-modelled VELA
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simulations also help to improve our clump study in two other
ways: (1) evaluating the completeness of our sample selection and
(2) understanding and correcting systematic and random errors of
physical parameter measurements.

The analysis has two main parts: in Sections 2 and 3, we present the
neural network based clump detector and quantify its accuracy and
in Section 4, we apply the new method to a CANDELS subsample of
star-forming galaxies and a sample of simulated galaxies, quantify
the stellar mases of clumps and discuss clump abundances, clumpy
fractions, and contribution of clumps to the total galaxy mass in both
simulations and observations. Section 5 is a summary and discussion.

Throughout the paper, we adopt a flat �CDM cosmology with
�m = 0.3, �� = 0.7 and use the Hubble constant in terms of h ≡
H0/100 km s−1 Mpc−1 = 0.70. All magnitudes in this paper are in
AB scale (Oke 1974) unless otherwise noted.

2 ME T H O D F O R C L U M P D E T E C T I O N S

This section first describes the main method developed in this work
to detect clumps.

2.1 Model Architecture

The main purpose of this work is to identify the positions of all
off-centre clumps belonging to a galaxy in order to characterize
their properties. In terms of image processing, the problem can be
described as an instance segmentation problem, if one assumes that
all clumps have the same geometrical properties. This assumption
might not entirely be true. Zanella et al. (2019) identified, for
example, two populations of clumps with different size distributions.
However, at first order, clumps are small unresolved sources when
compared to the host galaxy.

Therefore, we decided to use state-of-the-art segmentation net-
works based on encoder–decoder Convolutional Neural Networks
(CNNs). We assume that the detection of the galaxy is done in a
previous step. The input for the network is hence a 128 × 128 pixels
stamp with a galaxy at its centre. The desired output is another
image with all pixels set to zero except for the pixels belonging
to clumps which are set to one. The required configuration is
therefore a fully convolutional network whose inputs and outputs
are images. We choose here a U-net type architecture (Ronneberger,
Fischer & Brox 2015) that has been proven to be very efficient for
image segmentation, especially in the bio-medical field but also in
astronomy (e.g. Hausen & Robertson 2019; Boucaud et al. 2020).

The encoder part of the network is a standard CNN which takes the
image and compresses it to a lower dimension latent space through
consecutive convolutions and pooling operations. The decoder part
reconstructs an image from the latent space through up-sampling
operations. The particularity of the U-net is that there are skipped
connections linking the encoder and decoder branches. This has been
shown to help in the reconstruction phase and therefore improves the
segmentation quality. We use a ReLu activation function in all layers
except the last one, which is left without activation. We decided to
leave the last layer without activation (instead of a Softmax) because
it improves the post processing of the detection image to build a
clump catalogue (see next section). A detailed representation of the
specific architecture used in this work is shown in Fig. 1.

2.2 Simulated training set

The neural network needs to be trained to detect clumps following
a supervised approach. To this purpose, a sample of galaxies where

Figure 1. Schematic representation of the network model used to detect
clumps in this work. We use a supervised U-net type of architecture (Ron-
neberger et al. 2015). The input stamp is contracted through successive
convolutions and then a new image containing the clump segmentation mask
is created through up sampling operations.

the positions of clumps are known is needed. Although there exist
catalogues of clumps in observed galaxies from the CANDELS
survey, for instance (e.g. Guo et al. 2015, hereafter Guo15), the
samples are typically too small for proper training. Furthermore,
training in real data would propagate any biases existing in the
original technique to our clump detector.

We decided then to train the network with simulated galaxies
only. We first generate galaxies using a single Sersic analytic
profile (Sersic 1968) using the code GALSIM (Rowe et al. 2015).
We allow parameters (e.g total flux, effective radius Re, Sersic index
n, axis ratios b/a) to vary following uniform random distributions
to cover all the observed range from star-forming galaxies in the
CANDELS survey (e.g. van der Wel et al. 2012; Dimauro et al.
2018). The exact selection of galaxies is described in Section 4.

More precisely, we generate galaxies randomly within the follow-
ing limits: 22 < mAB < 26 (optical bands) and 20 < mAB < 25 (NIR
bands); 0.3 < n < 2.0; 0.6 < log10Re < 1.1; 0.6 < b/a < 1.0, where
n is the galaxy Sersic index, Re is the semimajor effective radius
measured in kpc, and b/a is the axial ratio. To model clumps, we add
one or more small sources to each galaxy, generated using GALSIM

as n = 1 galaxies with effective radii between 1 and 2 pixels. The
number, fluxes, sizes, and positions of clumps are selected randomly,
but according to a variety of rules. Generally, we add between 1 and
4 clumps to each galaxy, except for small galaxies (log10Re < 0.8)
to which we add only 1 or 2 clumps to avoid crowding and to
reduce obscuring of the clumps by the galaxy centre. For a given
galaxy, we limit the combined flux of all clumps to be at most
45 per cent of the total flux (galaxy flux plus clump fluxes). We allow
the flux of individual clumps to range from a minimum of 6 per cent
to a maximum of 30 per cent of total flux. Finally, we choose clump
positions randomly within the annulus 0.5–2.0 Re. For every added
clump, we keep in a binary mask the position in the image where
it was added. Finally, the image is convolved with a real PSF from
the CANDELS survey and noise is added. To model the noise, real
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Figure 2. Example of clump detection performance on simulated GALSIM

test data set. The top left- and right-hand panels show the raw GALSIM test
image and true clump mask, respectively. The bottom left- and right-hand
panels show the model output (predicted clumps) and SExtractor detection,
respectively. This example galaxy contains two true clumps, both of which
are identified with high confidence and precision by the model even if they
are barely visible in the original image.

empty regions from the CANDELS fields are used in order to include
existing spatial correlations.

The procedure is the result of an iterative manual search to come
up with a configuration that produces the best results on real data. In
particular, we realized that simulating too faint clumps or galaxies
without clumps reduces the performance, even if fainter clumps
and clump-free galaxies do exist in the observations. In any case,
the above procedure should not be considered as unique and other
simulated samples can also produce accurate results.

The above procedure is repeated for seven different filters, four
in HST/ACS optical and three HST/WFC3 infrared: F435W (b
band), F606W (v band), F775W/F814W (i band), F850LP (z band),
F105W (Y band), F125W (J band), and F160W (H band) using the
corresponding noises and PSFs.

The top row of Fig. 2 shows an example of a simulated galaxy in
the v band with two clumps together with the final mask. Our goal is,
thus, to train the network to predict the mask (top right-hand panel
in the figure) given the image of the galaxy (top left-hand panel).
Notice that the clumps are barely visible in the image.

2.3 Training and detection procedure

With the training set, we proceed to train the U-net. We train
seven different models for the seven different detection bands
independently [F435W (b), F606W (v), F775W (i)] [F814W for
COSMOS, EGS and UDS, where F775W is not available), F850LP
(z, for GOODS-N and GOODS-S), F105W (Y), F125W (J), and
F160W (H)]. In all seven cases, we use a sample of 98 000 galaxies
for training while 2000 galaxies are kept for testing and evaluating
the accuracy (see Section 2.4). The network is trained following a

standard procedure. We use a weighted binary cross-entropy loss
to account for imbalance in the training set (the number of pixels
belonging to clumps is much smaller than the number of pixels
outside clumps) and an Adam optimizer. The initial learning rate
is set to 10−5 and decreased two times by a factor of 10 to ease
convergence.

As described in the previous section, the output of the network
is simply an image with values roughly ranging from 0 to 1. Zero
means that no clump is detected at that position and one means that
a clump is detected with high confidence. The output of the U-net
needs to be post-processed to decide whether there is a clump or not
and also to determine the position of the clump.

To do so, we use SEXTRACTOR (Bertin & Arnouts 1996) on the
detection image as a tool to only identify the positions of the detected
clumps in each stamp. We emphasize that SEXTRACTOR is only used
here to identify the centroids of the detected clumps by the neural
network. Any other labelling method could have been used at this
stage. This allows us to build a catalogue containing the positions
of all clumps in the stamp. The bottom panels of Fig. 2 illustrate an
example of the prediction steps for one galaxy with two simulated
clumps.

2.4 Accuracy of clump detections and flux measurements

We then quantify the accuracy of our clump detector with a set of
2000 galaxies not used for training.

Fig. 3 shows first the completeness and purity of the detection
as a function of the relative clump luminosity (top) and the clump
distance to the galaxy centre (bottom) for five photometric bands.
Completeness is defined as the fraction of simulated clumps that are
detected. Purity measures the fraction of true clumps among all the
detected clumps by the U-net. Generally speaking, the figure shows
that completeness is overall above 90 per cent in the observed optical
bands and slightly lower (∼ 80 per cent) in the infrared bands. This
is probably a consequence of the difference in spatial resolution
between the two cameras (ACS and WFC3) . Purity is generally
above 90–95 per cent. This value should be considered as a best
case, since the host galaxies are pure analytic profiles so it is very
unlikely that there are artifacts detected as clumps except at the very
faint end in which noise fluctuations can be sometimes detected as
clumps.

The top panel of Fig. 3 shows the completeness and purity
as a function of relative luminosity, which has been used in
previous works (e.g. Guo15) to select giant clumps. We define
the relative clump luminosity as the ratio between the measured
clump luminosity and the galaxy luminosity, i.e. Lclump/Lgalaxy).
Overall, completeness increases for brighter clumps. However, even
for the faintest clumps (Lclump/Lgalaxy ∼ 6 per cent), completeness
remains above 90 per cent (80 per cent) for the ACS (WFC3)
clumps.

The bottom panel of Fig. 3 shows that the accuracy of detections
does not significantly depend on the position of the clump within
the galaxy except perhaps at the very central parts where the central
bulges might be sometimes misidentified as clumps. We also observe
a decrease of purity at large galactocentric distances for the v band
detections. Since this is only appreciated in one filter, it is likely to
be a statistical fluctuation.

Besides detection, we require an accurate measurement of fluxes
given that one of the main purposes of this work is to derive clump
stellar masses via Stellar Energy Distribution (SED) fitting. Clump
fluxes are determined using a simple aperture photometry on each
position with a 4 pixel aperture radius as done in Guo15. The
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Figure 3. Completeness (dashed lines) and purity (solid lines) of clump
detections measured on the test simulated data set. The different panels show
the results as a function of (a) relative clump luminosity and (b) clump
radial position within the galaxy. The different colors correspond to different
detection bands as labelled. Completeness describes the fraction of true
clumps the model also finds, while Purity represents the fraction of predicted
clumps that are also true simulated clumps. The dashed vertical line in the
top panel indicates a value of relative luminosity of 8 per cent. Overall purity
and completeness remain above 80 − 90 per cent depending on the detection
band.

measured flux is background subtracted by removing the best-fitting
Sersic model from the host galaxy. In the case of simulations, since
the models are pure analytic profiles with known parameters, the
correction is straightforward and the flux coming from the galaxy disc
is decently removed. This is not the case for real observations, which
will be discussed in Section 4. We find that, overall, the clump fluxes
are recovered accurately with a scatter of ∼0.1 dex, with a small

Table 1. Comparison of the detection statistics of fake clumps inserted in
real CANDELS galaxies (see text for details) using the Guo15 detector and
our deep learning based method. The first column shows the results for all
clumps and the second column only for bright clumps (Lclump/Lgalaxy >

8 per cent). The first row shows the fraction of clumps detected by both
algorithms. The second row indicates the fraction detected by Guo15 and
not by the U-net, the third row clumps detected by the network and not by
Guo15, and finally the last row shows clumps which are not detected by either
of the two methods. Our DL method is overall more sensitive than the Guo15
approach.

All
Lclump
Lgal

> 0.08

detected in both Guo15 and DL 51 per cent 82 per cent
detected in Guo15, not detected in DL 4 per cent 2 per cent
not detected in Guo15, detected in DL 22 per cent 10 per cent
neither detected in Guo15, nor in DL 23 per cent 5 per cent

increase in scatter for faint clumps. When several clumps are present,
the flux of each clump tends to be overestimated because flux from the
neighbouring clumps is included. It is worth noticing that the GALSIM

simulations do not include a realistic distribution of clumps. If
anything, the number of bright clumps is overestimated as compared
to reality (see Section 2.2). It is therefore reasonable to expect that
the effect of blending of two bright clumps in the observations is
small.

3 PE R F O R M A N C E O F C L U M P D E T E C TO R O N
REAL OBSERVATI ONS

The main goal of this work is to apply the clump detector trained
on simplistic analytic simulations to real observed galaxies. Training
on simulations is particularly dangerous in machine learning, where
a perfect match between the training and application data sets is
assumed. It is therefore critical to properly assess the performance
of our clump detector on real observations before moving to any
scientific analysis.

We adopt two different approaches to quantify the reliability of
the detections. We first quantify how fake clumps inserted on real
observed galaxies are detected. We then compare our results with
Guo15 detections on the same observed galaxies.

3.1 Detection of fake clumps on real galaxy images

Following the procedure presented in Guo15, we add fake clumps
into a sample of ∼1500 real CANDELS galaxies and measure how
well we recover them using the developed method. The procedure
to add clumps is fully described in Guo15 and we refer the reader
to the aforementioned work for more details. This test is intended
to quantify how our U-net based detector behaves when confronted
with realistic galaxy morphologies while keeping information on the
ground truth. For the sake of clarity, we only show the results of this
exercise in the F606W filter (i.e. rest-frame UV for z > 1 CANDELS
galaxies) but similar results are observed in the other bands. We
emphasize that such a data set could not have been used for training
since it contains a mix of true clumps and fake clumps, making it
difficult for the network to understand why some clumps need to be
ignored. Since the same galaxies were analysed also by Guo15, we
can also perform a direct comparison between the two methods on
the same sample.

Table 1 shows the statistics of the detections for the Guo15 method
and our approach. We show the statistics for all clumps first and
then for only the brightest clumps. As it can be seen, our method
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Figure 4. Detection completeness of fake clumps inserted on real CANDELS
galaxies for the deep learning based detector (blue solid line) and for the
Guo15 detector (red dotted–dashed line) in the v band (F606W) as a function
of the relative clump luminosity. The U-net clump detector, trained on simple
simulations, achieves an overall higher completeness than the Guo15 detector
on the same galaxies. The dotted vertical line indicates the clump relative
luminosity of 8 per cent used in Guo15 to select giant UV clumps.

recovers almost all clumps detected by Guo15 on the same galaxies
(only ∼ 4 per cent of clumps are detected by Guo15 and not by the
deep learning approach). This is an indication that even if trained
on simplistic simulations, the neural network model behaves as
expected. It detects indeed the same clumps as a more traditional
and well-tested approach would do. Although this might appear
surprising, a possible explanation is that this specific task does not
depend on the actual galaxy profile. The network essentially learned
to detect unresolved off-centre sources independent of the galaxy
shape. In addition, the neural network is able to detect a significant
number of clumps that were undetected by the Guo15 algorithm.
This is especially true when all clumps are considered, irrespective
of the relative luminosity. The fraction of clumps detected by the
U-net but not detected by Guo15 reaches ∼ 20 per cent. It suggests
that the clump detector presented in this work is more sensitive than
the previous algorithms. But when only bright clumps are considered
(rightmost column of table 1), the fraction of clumps undetected by
Guo15 drops to ∼ 10 per cent.

We further quantify the difference in completeness between the
two methods in Fig. 4, which shows the completeness of the
detections as a function of the relative clump luminosity. We clearly
observe that the Deep Learning (DL) clump detector has a higher
completeness over all the range of clump relative luminosities
explored. The difference is particularly pronounced at low relative
luminosities, which confirms the higher sensitivity of our clump
detector. It is particularly interesting that faint clumps are recovered
with fairly high completeness even if they were not included in the
original simulated training set. In this particular application, using
a cleaner training set with only bright clumps, helped the network
to generalize. We note also that the values of completeness reported
in Fig. 4 differ slightly from the values reported in Fig. 3 at similar
relative luminosities. This is because the samples are different. One

is made only of analytic profiles while the other is composed of real
galaxies with fake clumps.

3.2 Comparison with Guo15

We now perform a direct comparison with the existing real clump
detections on galaxies in common with the Guo15 sample. This
comparison is more complicated since the ground truth is not known.
Therefore, this section is more focused on exploring the abundances
and properties of the clumps detected with both methods to quantify
potential differences and biases. We recall that Guo15 only detected
clumps in the UV rest-frame bands, while with DL, we run all bands
for all galaxies. The comparison is performed here only for UV
rest-frame detections.

We first compare, in Fig. 5, the obtained relative clump Luminosity
Functions (cLFs) for different galaxy stellar mass and redshift bins
to the one of Guo15 for UV selected clumps (F606W for 1 < z <

2 and F775W for 2 < z < 3). Following Guo15, cLFs are derived
by counting the number of clumps in a given relative luminosity bin
and dividing by the total number of galaxies in the bin. Guo15 uses
only GOODS-S and UDS data. We use here all five CANDELS
fields. We see a relatively good agreement between the Guo15
results and ours. Interestingly, the figure also confirms that the
deep learning based detector presented here is more complete at
low clump relative luminosities. The incompleteness corrected lines
from Guo15 indeed better track our raw measurements down to a
clump relative luminosity of ∼ 3 per cent. However, the uncorrected
measurements begin to deviate from the DL sample at a higher
relative luminosity threshold. The figure also shows, for comparison,
the cLF of optically detected clumps (F125W for 1 < z < 2 and F160
for 2 <z< 3), which to our knowledge is the first time it is shown. The
figure clearly shows that UV rest-frame clumps tend to concentrate a
larger fraction of the total galaxy luminosity than optical rest-frame
clumps at all redshifts and stellar masses. The abundance of very
bright clumps (Lclump/Lgalaxy ∼ 8 per cent) is around a factor of 10
larger in the UV. This suggests a mild contribution of clumps to the
total stellar mass budget that motivates the scientific analysis of the
following sections.

The comparison of Fig. 5 suggests that the deep learning based
detections are more sensitive but recover globally the same pop-
ulation of clumps as the Guo15 algorithm in a given range of
clump luminosities. Since clumps are detected in this work with this
new method, it is important to properly understand the differences
between the populations of clumps detected with both methods
before moving to a scientific analysis. To that purpose, we plot in
Fig. 6 some clump and host galaxy properties. We first observe that
the DL detections cover essentially the same parameter space as the
Guo15 detections. However, they also probe regions in which the
Guo15 algorithm detects very few clumps. The clumps not detected
by the Guo15 algorithm tend to be at larger galactocentric distances
(r/re > 1.5) and in more extended galaxies as revealed by the top
panels of Fig. 6. This again suggests that the DL algorithm is more
sensitive and can detect clumps at lower surface brightnesses. As also
hinted by the LFs, clumps detected by the DL algorithm in rest-frame
optical extend to lower relative clump luminosities and such clumps
therefore tend to be slightly redder. We note, however, that in the
official Guo15 catalogue, very faint clumps (Lc/Lg < 3 per cent)
have been removed because they are considered unreliable. The DL
algorithm also tends to detect a population of bright clumps missed
by the Guo15 catalogue. A visual inspection reveals that those are
bright and large clumps at large distances from the galaxy centre.
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Figure 5. Relative optical and UV rest-frame cLFs in CANDELS. As
detailed in the text, for the optical (UV) rest-frame detections, we use filters
F125W (F606W) for z < 2 and F160W (F775W) for z > 2. The number
of clumps in each panel is normalized by the total amount of galaxies in
that bin so that it gives an indication of the average number of clumps per
galaxy. Each column shows a different redshift bin and each row corresponds
to a different galaxy stellar mass bin. The red squares are optical-rest-frame
selected clumps, while blue circles show UV rest-frame selected clumps.
Error bars indicate Poissonian uncertainties. The green dotted lines indicate
the measurements on GOODS-S performed by Guo15 in the UV rest frame
without incompleteness correction. The solid green line shows the results
when a correction for incompleteness is applied. The dashed–dotted, dashed,
and dotted vertical lines indicate a relative clump luminosity of 3, 5, and
8 per cent, respectively. The dashed horizontal line is shown for reference
and indicates a value of one clump / galaxy. Our measurements in the UV
rest frame agree reasonably well with the incompleteness corrected lines
from Guo15 down to a relative luminosity of 3 per cent, except for some
cases at z > 2 in which our detections lie slightly below Guo15 corrected
detections. This confirms the better sensitivity of the deep learning clump
detector.

They are most likely minor mergers that the Guo15 algorithm did
not select.

Overall, these tests confirm that our clump detector, even if trained
only on simplistic simulations, extrapolates surprisingly well to
real data and validates its application for a scientific analysis. We
emphasize that the goal of this comparison is not to reach a perfect
agreement with Guo15 since the approaches are different and both
contain misidentifications. The main idea is to verify that there is a
reasonable level of agreement between the two approaches, which
supports the fact that the U-net is behaving well when confronted
with real data.

4 STELLAR MASSES O F C LUMPS IN CANDELS
AND SI MULATED GALAXI ES

Based on the validation tests presented in the previous sections, we
now move to analyse the properties of clumps in the CANDELS
survey (Grogin et al. 2011; Koekemoer et al. 2011) and in the VELA
zoom-in hydrodynamic cosmological simulations (Ceverino et al.
2014; Zolotov et al. 2015) using our deep learning based detector.

4.1 Observational sample

We perform a similar selection to the one done by Guo15 but
covering the five CANDELS fields. More precisely, objects are
H band selected (15 < F160W < 24.5) between redshift 0.5 and
3. We then apply additional stellar mass cuts (9 < log10(M∗/M�)
< 12) for completeness reasons. Additionally, we include only
galaxies with axis ratios larger than 0.5 to avoid highly inclined
objects, although this also selects again prolate galaxies (Ceverino,
Primack & Dekel 2015; Tomassetti et al. 2016; Zhang et al. 2019).
We exclude very small galaxies (Re < 0.2 arscec in the H band) to
avoid spatial resolution related biases. We finally restrict our sample
to star-forming galaxies only, defined as objects with sSFR larger
than 10−10 yr−1. All physical quantities are taken from the official
CANDELS catalogues (Galametz et al. 2013; Guo et al. 2013;
Santini et al. 2015; Nayyeri et al. 2017; Stefanon et al. 2017; Barro
et al. 2019). We refer the reader to the mentioned works for details
on how these parameters are derived.

We run our seven trained models to detect clumps in seven different
bands when available. One of the main purposes of this work is to
quantify the distribution of clump masses and their contribution to
total galaxy masses. We therefore build a sample of clumps detected
in rest-frame optical, which traces older stellar population more
effectively than UV. To that purpose, we use detections in the NIR
bands: F125W (J) for 1 < z < 2 and F160W (H) for 2 < z < 3.
This selection corresponds roughly to a rest-frame band of 500 nm
which should allow to better probe the contribution of clumps to the
galaxy stellar mass budget than previous UV based selections. We
only consider clumps in the distance range 0.5Re < rc < 3Re from the
galaxy centre. The lower limit avoids contamination by the galaxy
bulge and the upper limit reduces contaminations from neighbouring
galaxies.

Although the neural network model is run in all five CANDELS
fields and the catalogue is released with this work, the following anal-
ysis uses data only from the two fields (GOODS-S and GOODS-N)
that include seven bands/clump in order to have a better photometric
coverage (the other three fields do not have F435W nor F850LP
coverage). The final sample used for scientific analysis consists of
1575 galaxies and 3733 detected clumps.

4.2 Simulated sample

We use here the VELA zoom-in hydrodynamic cosmological
simulation suite presented and analysed in a variety of previous
works (Ceverino et al. 2014, 2015; Zolotov et al. 2015; Tacchella
et al. 2016a,b; Tomassetti et al. 2016; Huertas-Company et al. 2018).
We refer the reader to the aforementioned works for a detailed
description of the simulations. Very briefly, the simulation is made of
35 galaxies simulated with best spatial resolution of 17–35 physical
pc and was run with the ART (Adaptive Refinement Tree) code
(Kravtsov, Klypin & Khokhlov 1997; Kravtsov 2003; Ceverino &
Klypin 2009). One important feature for this work is that the high
spatial resolution allows tracing the cosmological streams that feed
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Clumps with machine learning 821

Figure 6. Comparison of the properties of clumps and host galaxies detected with deep learning and with the Guo15 method. The red line shows clumps
detected by both methods. The blue line indicates clumps only detected by deep learning. The green line shows only the clumps detected by Guo15. Host galaxy
properties are shown in the top row. From left- to right-hand panel: galaxy stellar mass, galaxy effective radii, and galaxy surface brightness. Clump properties
are shown in the bottom row. From left- to right-hand panel: distance to galaxy centre, relative UV flux, and U–V colour.

galaxies at high redshift, including mergers and smooth flows, and
they resolve the physical phenomena that govern the formation of
clumps in the simulation. We stress that full box simulations such as
Illustris TNG100 have a typical resolution of ∼1 kpc (Pillepich et al.
2018) which prevents properly resolving clump formation. Even
the recently completed TNG50 simulation (Pillepich et al. 2019)
does not have enough spatial resolution to resolve the formation of
clumps, which requires resolution better than 100 pc. In addition to
the high spatial resolution, another advantage of using the VELA
simulations is that the properties of clumps are well studied and
understood. In Mandelker et al. (2014, 2017), clumps were detected
in the VELA galaxies at many time-steps by using both the gas and
stellar components in three dimension (3D). More details can be
found in the aforementioned works.

Following the approach presented in Simons et al. (2019) and
Huertas-Company et al. (2018), we forward model the 35 galaxies
with the radiative transfer code SUNRISE1(Jonsson 2006; Jonsson &
Primack 2010; Jonsson, Groves & Cox 2010) and generate HST-like
images of galaxies in time-steps of ∼100 Myrs in the redshift range
1 < z < 3 and with the same filters used for the observational
sample. We add real noise from the CANDELS survey to the

1Sunrise is freely available at https://bitbucket.org/lutorm/sunrise. Sunrise
images of the VELA simulated galaxies are available online at MAST – see
https://archive.stsci.edu/prepds/vela/

different generated stamps using the procedure outlined in Huertas-
Company et al. (2018). We call the images generated that way
VELA Candelized images. The images have been produced using 19
different projections (camera orientations – see Huertas-Company
et al. 2018 and Simons et al. 2019 for details). We use here
only cameras 12–18 which are fully randomly oriented between
time-steps and are thus independent of the box coordinates and
angular momentum. This should indeed be closer to real observa-
tions. Additionally, structural parameters are derived for simulated
galaxies by fitting Sersic models using GALFIT as for the observa-
tions that we use to apply the same selections (Re > 0.2 arcsec,
b/a > 0.5).

4.3 Stellar masses of clumps through SED fitting

Quantifying the contribution of clumps to the galaxy mass re-
quires a proper estimation of the stellar masses of the detected
clumps. We use standard SED fitting to estimate the stellar pop-
ulation properties of the clumps in both observed and simulated
galaxies.

We first match the optical selected clumps in the six other detection
bands. We consider that a clump has been detected in another filter
if there is a detection within four pixels of the optical rest-frame
detections. Whenever a clump is not detected, we set its flux to 0 in
that filter and it is, thus, not used for the fit. Following this procedure,
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∼ 70 per cent of the optical detected clumps are detected in at least
three bands.

We follow the procedure described in Section 2.4 for the esti-
mation of clump fluxes. In summary, the clump flux is obtained by
performing a four pixel aperture photometry at the clump position
after removing the flux coming from the disc at the same position
and correcting for the PSF aperture. To account for the PSF, we
apply a factor of 1.28 (1.55) to the aperture fluxes measured with the
ACS (WFC3) cameras. These factors are calibrated by computing
the ratio of four pixel aperture fluxes over total fluxes in ACS
and WFC3 PSFs. The factor is slightly larger for WFC3 because
the PSFs are wider. The disc flux is computed by using the best
Sersic model for each galaxy in the H band (van der Wel et al.
2012 for the observations). Since structural parameters can change
with wavelength, we use the multiwavelength fits to the 2D surface
brightness profiles of H-band selected galaxies brighter than H =
23.5 published in Dimauro et al. (2018) to check that using the
values derived in the H band does not significantly change the
final clump flux for the brighter galaxies for which we have the
structural parameters measured in all wavelengths. Therefore, we
assumed that the same will be true for the fainter galaxies and
decided to keep the H-band measurements for all galaxies to preserve
homogeneity.

We then perform a fit of the seven band clump SEDs built as
explained in the previous section using the Bayesian code BAG-
PIPES (Carnall et al. 2018). Given the poor photometric coverage of
our data, we use a simple tau model for all the clumps with a Calzetti
et al. (2000) dust attenuation law. We use BC03 models (Bruzual &
Charlot 2003) and a Kroupa IMF (Kroupa 2001). The redshift
is fixed at the galaxy spectroscopic redshift when available; if
not, the best photometric redshift is used. For the simulations,
we use the known redshift. We are fully aware that a simplistic
tau model is probably not the best Star Formation History (SFH)
model for a clump. We tried an alternative model with constant
SFH and the derived stellar masses are essentially the same. As
we will discuss in the following sections, a possible route for
improvement is the use of non-parametric approaches (e.g. Lower
et al. 2020) but this is for now out of the scope of this work. The
top panel of Fig. 7 shows an example of the best-fitting model of an
observed clump which has been detected in the seven photometric
bands.

The analysis in the forthcoming sections uses exclusively the
stellar mass of the clump. Although the spectral resolution of our data
is poor, we find that stellar masses are relatively well constrained by
the SED fitting procedure with a typical 1σ confidence interval from
the posterior distribution of ∼0.3 dex. For the cases where fewer than
three photometric values are used, the stellar mass uncertainties are
around ∼0.6−0.7 dex. This is certainly high and must be kept in
mind when analysing the results presented in the following sections.
Having access to the full posterior enables us to propagate the errors
on to the different measurements, as we will discuss as well in the
following sections. Fig. 8 shows some examples of galaxies with
detected massive clumps observed both in the optical and UV rest
frames.

Other quantities, such as metallicities and ages are significantly
more degenerate, as can be appreciated in the corner plot of
Fig. 7. This is naturally expected from a model constrained with
only a few data points. It therefore becomes difficult to use such
data for any scientific analysis. Hence, we have decided not to
discuss clump ages in this work. This will be done in forthcoming
dedicated work using an alternative approach (Ginzburg et al. in
preparation).

(a)

(b)

Figure 7. Example of fitting of a clump SED. The (a) measured fluxes of
clumps in seven different bands (blue filled circles) along with the best-fitting
spectrum. The shaded yellow region indicates the 1σ confidence interval
from the posterior distribution. (b) Corner plot including several parameters
estimated from the best-fitting model. Stellar mass is the best constrained
parameter with a typical uncertainty of 0.3 dex.

4.4 Impact of observational effects on clump stellar masses and
completeness

The comparison with simulations allows us to quantify the impact
of observational effects on the derived clump properties from the
CANDELS images. Given that the true stellar mass of the clumps is
known in the simulation, we can use this as an estimator of the
completeness of our deep learning based detector and to assess
the accuracy of the clump mass measurements. We use the clumps
identified in 3D by Mandelker et al. (2017) as a reference and then
match with the 2D detections. Given the much lower resolution of the
Candelized images, it is difficult to associate a 2D detection with one
unique 3D clump because of blending (see e.g. Moody et al. 2014;
Meng & Gnedin 2020). Therefore, in order to perform the matching
between 2D and 3D, we follow an alternative approach. We divide
the Candelized image in small boxes of 10 × 10 pixels (∼4.8 kpc)
and compute the total stellar mass in clumps in the region from the
original 3D simulations that falls within each box. We essentially
use the clump stellar mass in the catalogues from Mandelker et al.
(2017) and add all the clump stellar masses in the 10 × 10 pixels
region. We then consider that there has been a detection if there is a
2D clump inside the box and associate to the 2D detection the total
clump mass computed. We find that ∼ 10 per cent of the 2D clumps

MNRAS 499, 814–835 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/499/1/814/5909601 by guest on 29 M
ay 2024



Clumps with machine learning 823

Figure 8. Example of clumpy galaxies with 1 < z < 2 in the F125W and F606W filters with detected massive clumps (log10Mc/M� > 7) sorted by increasing
galaxy stellar mass. The red squares indicate the positions of the clumps. Only massive clumps are shown. The solid, dotted, and dashed red circles show
distances of 0.5, 2, and 3Re, respectively. Each stamp is 64 × 64 pixels (∼ 30 × 30 kpc).

cannot be associated with a 3D clumps which is consistent with our
purity estimations of ∼ 90 per cent.

4.4.1 Completeness

We first quantify the completeness of the detections. Fig. 9 plots the
fraction of 3D clumps detected in 2D as a function of the the total
3D clump stellar mass in the 10 × 10 boxes described previously for
two different redshift and galaxy stellar mass bins. The figure also
shows the completeness as a function of the ratio between the mass
of the clump and the mass of the galaxy. We see that our detector
detects ∼ 80 per cent of 3D clumps above a stellar mass of ∼107 solar
masses at z < 2 and that the success rate drops below this mass. At
higher redshifts (z > 2), the completeness starts decreasing at slightly
larger masses because galaxies are fainter, but the impact is mild. The
dependence with the galaxy stellar mass is more pronounced. Clump
detections in massive galaxies are less complete. The reason for this
is that the contrast of a clump at fixed mass is weaker in a massive
system. This is indeed reflected in the right-hand panel of Fig. 9. The

detections are ∼ 80 per cent complete down to a relative clump mass
of ∼ 1 per cent, which corresponds to different clump stellar masses
for massive and low mass galaxies. For simplicity, in the following,
we will restrict our analysis to clumps more massive than 107 solar
masses. This selection avoids incompleteness related biases on the
global population. We shall keep in mind, however, when interpreting
the results that the massive end of the galaxy population might be
more affected by incompleteness.

4.4.2 Clump stellar mass accuracy

We now look at how well clump stellar masses are recovered from
the images using our procedure. We show, in the left-hand panel
of Fig. 10, the comparison between the stellar mass for a given 2D
detection and the true 3D mass in the associated region (computed
by adding up the masses of all 3D clumps projected into the region).
Although there is a clear correlation between the true clump masses
and the estimated ones, the figure very clearly shows that our SED
based method severely overestimates the clump stellar mass by
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Figure 9. Calibration of the deep learning based clump detector completeness with numerical simulations. The figure shows the fraction of 3D clumps detected
in the 2D mock Candelized images from the VELA numerical simulation as a function of the true clump stellar mass from the 3D simulations (left-hand and
middle panels) and as a function of the ratio between clump mass and galaxy mass (right-hand panel). The true mass is computed by adding all clump masses
within a 10 × 10 pixel region (see text for details). In the left-hand, panel each line shows a different redshift bin as labelled. In the middle panel, the lines
indicated different galaxy stellar mass bins. In the right-hand panel, the completeness is shown as a function of ratio between the clump mass and the galaxy
mass. The dotted and dashed vertical lines show clump masses of 107 and 107.5 solar masses, respectively. The clump detector detects ∼ 80 per cent of all
clumps more massive than 107 solar masses and relative masses larger than ∼ 1 per cent. Below these thresholds, the completeness starts decreasing. Since the
threshold of ∼ 1 per cent corresponds to different clump masses depending on the galaxy mass, we measure a difference in completeness for low mass and
massive galaxies in the middle panel.

Figure 10. Relation between true clump stellar masses derived from the 3D simulation and stellar masses estimated through SED fitting on the mock Candelized
images (see text for details on how both 3D and 2D clumps are matched). Each point is a clump. The colour code indicates the distance of the clump to the
galaxy centre normalized by the effective radius. The dotted line indicates the median values and the dashed black lines the standard deviation. (a) The y-axis
shows the values directly obtained from the SED fitting procedure. Although there is a correlation between the true and estimated clump masses, the masses
derived in 2D severely overestimate the true clump stellar masses. (b) The y-axis shows the corrected values with a mixture density network (see text for details).
Once the correction is applied, the mass measurements from the 2D images better agree with the 3D mass measurements and also the scatter is reduced. A bias
remains, especially at the high mass end. (c) The y-axis shows the corrected values with the same mixture density network but modified to account for the prior
of the VELA distribution. The bias at the high mass end is reduced.

about an order of magnitude. This is true even after adding up all
the masses of all clumps in the box. Although surprising, these
results are in agreement with previous works, which also estimate
that the different observational effects can lead to a factor of 10
overestimation of the mass (Cava et al. 2018; Meng & Gnedin
2020).

There are several reasons that can explain this big difference.
One is obviously spatial resolution, which causes clumps to be
blended in the 2D images. We have estimated that each 2D detection
corresponds on average to three 3D clumps (see also Moody et al.
2014). Even if this is partially taken into account by adding up the

stellar mass of all 3D clumps in a region, blending causes the 2D
clump region to also be contaminated by emission from the galaxy
which in turn overestimates the mass. The colour code of Fig. 10
shows the distance of each clump to the galaxy centre. Clumps for
which the stellar mass is most overestimated indeed tend to be in
the inner regions where the emission from the galaxy is stronger.
This confirms that contamination from the galaxy flux certainly
contributes to the overestimation. Another possibility is that the
SFHs adopted to fit the SEDs are not adapted for clumps, which
are expected to have bursty star formation histories. We recall that
we also tried constant SFHs without major changes in the resulting
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masses. However, the effect of the adopted SFH is something to
be investigated in future work by using for example non-parametric
SFHs (e.g. Lower et al. 2020). Overall, these large errors suggest
that with current data, it is very difficult to establish constraints on
individual clump properties. However, it is reasonable to assume that
the same biases will be present in the real CANDELS observations.
Therefore, we can still learn about clump formation by comparing
simulations and observations provided they are confronted under
comparable conditions, as we will show in the following sections.

4.4.3 Clump stellar mass correction

In addition, we can go a step further and use the relation shown
in Fig. 10 to correct the derived stellar masses of the 2D detected
clumps if one assumes that the 3D mass is the true mass. The figure
shows indeed that there is a correlation between the 3D mass and
the estimated mass in 2D with secondary dependences on other
parameters such as the clump distance. It should be possible therefore
to find a function hw so that m3D = hw(m2D, �θ ), where m3D and m2D

are the 3D and 2D clump stellar masses, respectively and �θ is a
vector containing any other secondary parameters. Since we do not
know a priori the analytic form of hw , we model it with a mixture
density network. We define �θ as a 6D vector containing the clump
distance to the centre which we have seen correlates with the stellar
mass difference, the inclination of the galaxy (b/a), the effective
radius of the galaxy (Re), and the Sersic index (n) derived from
the best Sersic fit, the stellar mass of the galaxy, and the redshift.
We model the posterior distribution with a Gaussian probability
density function (q(m3D|(m2D, �θ )) ∼ N (μ, σ 2)) and train the neural
network to maximize the log likelihood of the true clump mass value.
We then use the mean of the posterior distribution to compute the
estimated m̃3D. We train the network using the clump measurements
in the simulated images obtained with all random camera projections
except one, which is used to test. Since the different projections
are fully random, the clump 2D masses and the best-fitting Sersic
parameters of the galaxies can be considered as independent across
projections. Once trained, we use the learned model, hw , to test the
correction on the clumps detected on the camera not used for training.
The results are shown in the middle panel of Fig. 10 for camera 15,
but similar results are obtained for other camera orientations.

We can easily see that the corrected 2D masses are now in much
better agreement with the 3D measurements. This proves that it is
possible to recover the intrinsic 3D clump mass (in the 10 × 10
box) given the 2D measurement. We note that the correction does
not significantly depend on the exact architecture used for the neural
network nor on the initialization of it. We tried 50 different random
models, including more complex posteriors modelled with a mixture
of Gaussians and changing the number or layers and number of units
in each layer. This model uncertainty will be incorporated into the
error budget in the following sections. We have also tried adding
additional parameters to the network such as clumps colors and
luminosities without any significant impact.

Although the correlation shown in the middle panel of Fig. 10
represents a significant improvement compared with the uncorrected
values, we notice that the estimator is still biased at the low and high
mass ends. As a matter of fact, at the high mass end, the predictions
are under estimated and the opposite happens at the low mass end.
This is important because it means that the current estimator will
tend not to estimate clump masses larger than 109 solar masses,
which could bias our results when applied to real observations. The
reason for this bias is that the posterior distribution q(m3D|(m2D, �θ ))

estimated by the mixture density network represents in fact the
posterior under the training prior p̃(m3D). Since the VELA sample
used for training contains very few clumps with masses at the edges
of the distribution, i.e. larger than 109 and smaller than 106 solar
masses, the estimator tends to shift the posterior towards the prior to
minimize the risk of failure.

In order to correct for that effect, we attempt to estimate a posterior
p(m3D|(m2D, �θ )) under a flat prior p(m3D) by renormalizing the
posterior distribution under the VELA prior (p̃(m3D)) using the
following relation

p(m3D|(m2D, �θ )) ∝ p(m3D)

p̃(m3D)
q(m3D|(m2D, �θ )).

Since p(m3D) is a constant, it simply implies dividing the posterior
estimated by the density network by the VELA prior. The result
of applying the posterior under a flat prior to estimate the clump
mass is shown in the right-hand panel of Fig. 10. We can see that the
estimator is now less biased especially at the edges of the distribution.
The scatter also tends to increase. This is because the estimated
values are no longer pushed towards the average value of the prior
distribution, which is around 107 solar masses.

In the following sections, we will analyse the impact of these dif-
ferent corrections on the derived clump properties in the observations
and in the forward modelled simulations.

4.5 Clump Stellar Mass Function

We start our analysis by focusing on the clump stellar mass function
(cSMF) which can provide interesting clues about the physical
processes governing clump formation. For example, several works
have pointed out that the slope of the cSMF might be indicative of
the formation mechanisms (e.g. Elmegreen et al. 2006; Dessauges-
Zavadsky & Adamo 2018; Elmegreen 2018). If clumps are formed
by turbulence driven fragmentation of gas clouds, the resulting slope
α of the cSMF is expected to be around −2 (Elmegreen 2018).
Also, clumps formed ex-situ are expected to be on average more
massive than in situ formed clumps (Mandelker et al. 2017) so the
distribution of clump stellar mass can also provide clues about the
origin of the clumps.

4.5.1 Impact of observational effects on the cSMF

Before analysing the cSMF, it is important to first calibrate the
amount of information that can be recovered from the CANDELS-
like images, given the large uncertainties in the clumps stellar masses
reported in the previous subsection. To that purpose, we first compare
the cSMF derived using the detections performed on the Candelized
VELA simulation with the cSMF obtained using the raw 3D output
from the VELA simulations analysed by Mandelker et al. (2017).
This is shown in the left-hand panel of Fig. 11. The values are normal-
ized by the total amount of galaxies in a given bin. The sample only
contains 35 galaxies. However, since images are produced in every
time-step, using only one camera results in a sample of few hundred
images in the redshift range of interest (1 < z < 3). For this exercise
of building the mass functions, we consider each image as if it was an
independent galaxy with a given stellar mass and redshift. Since the
galaxy sample is still small, we compute the cSMF for all galaxies
together (9 < log10(M∗/M�) < 11). The shaded region indicates how
the results change depending on the camera orientation used.

First of all, we see a dramatic difference between the cSMF
derived with the Candelized images and the true 3D based cSMF.
The Candelized cSMF peaks at a clump mass of ∼108.5, while
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826 M. Huertas-Company et al.

Figure 11. cSMFs of simulated galaxies (red squares) and observations (black filled circles). (a) Uncorrected stellar masses. (b) Corrected stellar masses with
a mixture density network using the VELA sample as a training set (see text for details). (c) Corrected stellar masses with a flat prior. We include galaxies in the
stellar mass range 9 < log10M∗/M� < 11 and with redshifts between 1 and 3. The black filled circles are the average measurement in CANDELS over a set of
random samples with the same size and stellar mass and redshift distribution as the simulated sample. The shaded blue region indicates the confidence interval
of the observations inferred through Monte Carlo sampling of the main observational sample (see text for details). The filled red squares are the measurements
performed on the VELA Candelized images and the shaded red regions indicate confidence intervals from using different camera orientations and different
neural network models for correction. The green stars (triangles) are the measurements in the VELA simulation using the simulation metadata in 3D (Mandelker
et al. 2017) for in situ (ex-situ) clumps. The red dashed and dotted vertical lines indicate clump masses of 107.5 and 108.5 solar masses, respectively. The green
dashed horizontal line indicates a reference value of one clump/galaxy.

the 3D mass function shows a power-law increase at low masses
without any flattening as opposed to the observations. This big
difference between 3D and 2D cSMFs is expected, given the several
systematics that affect the measurements in the Candelized images
reported in the previous subsections. One is obviously incomplete-
ness. Because Candelized images are affected by noise, low mass
clumps are not detected by our clump detector as already discussed
in Subsection 4.4. Additionally, clump blending can also contribute
to lower the normalization of the cSMF. The HST PSF is ∼1 kpc in
the redshift range of interest which means that on average one HST
clump corresponds to approximately three 3D clumps. Although
completeness and blending can contribute to change the slope, they
are not enough to change the shape of the cSMF so dramatically.
A key and dominant effect comes from the systematic errors in the
SED based estimations of clump stellar masses shown in Fig. 10.
Both the systematic clump mass overestimation and Eddington
bias (Eddington 1913) will tend to change the shape of the cSMF by
over populating the high mass end and decreasing the slope as we
seem to see. In appendix A, we show indeed that a combination of
these effects can reconcile the intrinsic 3D cSMF with the observed
one. This suggests that, with current data and no correction, it is
difficult to use the shape of the cSMF as a constraining parameter
for clump formation.

The left-hand panel of Fig. 11 also includes the measurements
obtained on observed CANDELS galaxies. Due to the small sample
size and the VELA halo masses being roughly uniformly distributed
in log mass, the VELA galaxies’ stellar mass distribution is different
from that of our CANDELS mass-complete sample. To take that into
account for a fair comparison, we create 100 samples from the parent
CANDELS sample of equal size as the VELA sample to reproduce
the number, stellar mass, and redshift distributions of the VELA
sample. We call these samples the CANDELS-VELA samples. The
cSMF for the CANDELS-VELA samples are plotted in the shaded
red regions of Fig. 11, which provide an estimate of the confidence
interval. Although the observational points tend to lie above the
simulated ones, an important result is that, overall, the simulated
points lie within the confidence interval of the observations. Addi-

tionally, the shapes of the cSMFs are very similar. This means that
the VELA simulations predict globally the correct number of clumps
when compared with observations under comparable conditions. It
also means that even if the observed cSMF differs from the true
one, the same systematics seem to apply to both observations and
simulations when the latter are forward modelled to the observational
plane. This clearly demonstrates that it is of capital importance to
compare observations and simulations under the same conditions,
especially in the low signal-to-noise ratio (S/N) and low resolution
regimes. It also highlights the limitations of current HST data to study
the resolved structure of high redshift galaxies and the importance
of future JWST observations.

4.5.2 Corrected cSMF

In this work, we go a step further and try to correct the estimated
clump stellar masses to recover the intrinsic cSMF. The middle
and right-hand panels of Fig. 11 show the corrected SMFs using
the neural network trained as detailed in Section 4.4. We show the
results of the two different priors. We clearly see that the corrected
observed cSMFs do agree significantly better with the intrinsic 3D
mass function. This confirms that the correction applied is effective.
In particular, the peak of the cSMF is now shifted to lower masses
and the mass function presents a steep decrease between 107 and
109 solar masses. Between ∼107 and ∼109, the impact of the prior
applied in the correction is rather small. Most of the differences are
seen in the high mass end, where the flat prior correction tends to
predict more clumps. The uncertainties are also large. As we have
seen, the VELA prior prediction tends to underestimate the number
of clumps above 108.5−9 solar masses. The flat prior prediction will
tend to compensate for the lack of training points on the massive end.
By doing so, it will also tend to overestimate the number of massive
clumps as the correction boosts the posterior distribution outside the
training values. Overall, the exact abundances remain quite uncertain
given the lack of training points. However, both corrections should
bracket the range of possible values.

MNRAS 499, 814–835 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/499/1/814/5909601 by guest on 29 M
ay 2024
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Table 2. Measured slopes of the best power-law fit (log (dN/dM) = −α ×
log M + log constant) to the cSMF for different samples. The columns indicate
two different corrections, using a flat or VELA prior (see text for details).
The first row reports the slope measured using the 3D identified clumps
in the VELA simulation. The second row shows the slope measured when
the corrected Candelized measurements are used on VELA. The third and
forth rows indicate the slopes for observed galaxies sampled according to
the VELA distribution and for all CANDELS data, respectively. We show
the results for all galaxies and also divided in two broad stellar mass bins as
labelled.

−α w/ VELA prior −α w/ flat prior

9 < log (M∗/M�) < 11

VELA in situ −1.35 ± 0.15 −1.35 ± 0.15
VELA Candelized −1.55 ± 0.34 −0.79 ± 0.54
CANDELS (VELA sample) −0.71 ± .0.14 −0.72 ± 0.13
CANDELS (All sample) −0.95 ± 0.48 −0.61 ± 0.17
9 < log (M∗/M�) < 10.2

VELA in situ −1.49 ± 0.02 −1.49 ± 0.02
VELA Candelized −1.06 ± 0.76 −1.25 ± 0.52
CANDELS (VELA sample) −0.45 ± .0.21 −1.00 ± 0.23
10.2 < log (M∗/M�) < 11

VELA in situ −1.38 ± 0.07 −1.38 ± 0.07
VELA Candelized −0.80 ± 0.38 −0.51 ± 0.59
CANDELS (VELA sample) −0.38 ± 0.19 −0.52 ± .0.37

As a way of quantifying how well the intrinsic cSMF can be
recovered at least in the range of masses in which the correction is
more stable, we also report in table 2 the slopes of the best power-
law model fits (log (dN/dM) = −α × log M + log constant) to the
VELA 3D, VELA Candelized, and VELA-CANDELS samples after
the correction of the stellar masses is applied. We restrict to the mass
range 107.5−108.5, where the mass function is better constrained.
Although the true 3D clump mass function has a steeper slope than
the measured with the corrected values, it is within the confidence
intervals of the derived slopes with both the VELA and flat prior.
This suggests that the correction enables us to recover to some extent
the intrinsic slope and shape of the 3D cSMF. The reason why
the recovered slope is still shallower than the intrinsic one might
be related to both errors in the correction and also completeness
and blending effects. We note, however, that the relative agreement
between CANDELS and VELA is independent of the correction
applied as both cSMFs agree even when uncorrected values are used.
It is also worth noticing that the slope measured for the 3D cSMF
is shallower than the value of −2 (see table 2) even if the clumps
are known to be formed in situ. This is not entirely surprising. The
measured slope is expected to be shallower than the birth slope given
that clumps of different masses have different lifetimes (Tacchella,
Forbes & Caplar 2020).

Given that the correction applied seems to allow the recovery of
the intrinsic cSMF at least in broad terms, we now move to explore
the corrected cSMF using the whole CANDELS data set. This is, of
course, more risky, as the CANDELS sample necessarily contains
more galaxies not well covered by the VELA training set, so the
results need to be taken with caution. This is shown in Fig. 12.
We show both the uncorrected and corrected cSMFs with the two
different priors. The shaded region in the figure shows the range of
solutions obtained using 50 different neural network models and the
black points are the average values.

First of all we see that, although there is some range of possible
solutions, the global shape of the mass function is consistent across
the different neural network models. Overall, the correction has a

Figure 12. cSMF in CANDELS. Empty triangles indicate uncorrected
values. Filled circles indicate corrected values with a flat prior and empty
circles show corrected clump masses using a VELA prior (see text for details).
The y-axis is normalized with the total number of galaxies in that bin so that
it provides an indication of the average number of clumps per galaxy. Error
bars indicate Poisson uncertainties. The blue and red shaded regions indicate
the range of solutions depending on the neural network model applied for
correction. The dashed red line indicates the best power-law fit: log (dN/dM) =
−α × log M + log constant for clumps more massive than 107 solar masses.
The best-fitting value of the slopes α for both the flat (αf) and VELA (αv)
priors based corrections are given in Table 2. The dashed and dotted vertical
red lines indicate clump stellar masses of 107.5 and 108.5, respectively. The
dash–dotted green horizontal line is shown for reference and indicates a value
of one clump/galaxy.

similar effect on the cSFMs as the one reported for VELA, which
is reassuring. Namely, the peak of the cSMFs is displaced towards
lower masses from ∼108.5 to ∼107.5. Overall, the cSMF presents
a steep increase with decreasing clump mass until reaching a peak
close to the 107 solar masses for corrected masses and starts declining
again at lower masses with a shallower slope. The peak of the cSMF
is most probably due to incompleteness as it matches reasonably
well the value estimated in Fig. 9 and there is no particular physical
reason to expect a flattening at the low mass end.

Another interesting result is that regardless of the correction
applied, the majority of the clumps have stellar masses lower than
109 solar masses. The abundances of massive clumps are poorly
constrained though, as they depend on the prior used to correct
masses. The correction using flat prior tends to estimate large
abundances of massive clumps. As previously explained, this is an
upper limit, as the correction applied boosts the posterior distribution
beyond the training regime. However, the fact that the cSMF tends to
peak at masses close to 107 is a robust result that is not significantly
affected by the correction applied. This order of magnitude for
the typical clump masses is also in better agreement with recent
independent measurements of clump masses using gravitational
lensing techniques.

4.5.3 Implications for the formation and origin of clumps

Although significantly affected by uncertainties, the derived cSMF
and the comparison with simulations allow us to speculate about the
nature of giant clumps in high redshift galaxies.
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Figure 13. Same as Fig. 11, but divided in bins of galaxy stellar mass. The top row shows clumps in low mass galaxies (9 < log (M∗/M� < 10.2). The bottom
row shows massive galaxies (10.2 < log (M∗/M� < 11). Since the detection of clumps is less complete for massive galaxies, we measure a shallower slope of
the cSMF in massive galaxies (see text for details).

First of all, our results suggest that the majority of the clumps
detected in high redshift galaxies are less massive than 109 solar
masses. Although our results do not allow us to put strong constraints
on the abundances of very massive clumps, it seems clear that the bulk
of the population has lower masses. This is an important assessment,
as some previous works have estimated that high redshift clumps
are frequently more massive than 109 solar masses (e.g. Förster
Schreiber et al. 2011; Zanella et al. 2019). Our results suggest that
these measurements might have been affected by similar systematic
biases raised in this work, as pointed out for example in Cava et al.
(2018) using gravitationally lensed data. The different selections can
perhaps also explain some of the differences, as the aforementioned
works do not analyse complete samples and might have biased their
selection towards galaxies with prominent clumps.

Secondly, our results also show that the simulations globally repro-
duce the shape of the observed cSMF irrespective of any correction
applied. This agreement between simulated and observed cSMFs
potentially puts some constraints on the origin of clumps detected
in the observations. In the VELA simulations, the majority of the
clumps are formed in situ and therefore ex-situ clumps alone could
not account for the agreement observed in Fig. 11. Furthermore,
ex-situ clumps are predicted to be significantly more massive than
in situ clumps. This implies that the majority of observed clumps in
CANDELS must have an in situ origin. In order to further assess this,
we perform a match of the 2D Candelized clumps with the 3D clumps
as done in Subsection 4.4 and flag all 2D clumps which correspond
to an ex-situ clump in the simulation. We find that only five clumps

(four at z < 1 and one at z > 2) among the 186 detected clumps are
flagged as ex-situ. This represents ∼ 2 per cent of the clumps and
has basically no effect in the derived cSMF. Therefore, the observed
agreement between observations and simulations must be driven by
in situ clumps. This is the first time that evidence of an in situ origin
for most clumps is shown through direct comparison of observations
with numerical simulations.

An interesting question related to the clump origin is whether it
depends on the galaxy properties such as stellar mass. Given that
our results seem to point towards an in situ origin of clumps, one
might wonder if the galaxy properties affect the shape of the cSMF.
Although our sample is small, we address this issue in Fig. 13, where
we show the cSMFs for simulated and observed galaxies in two
broad galaxy stellar mass bins. The different slope measurements
are also reported in Table 2. The effect of galaxy stellar mass on
the intrinsic 3D cSMF is very mild, suggesting that galaxy stellar
mass has little effect on the properties of formed clumps. This is
not entirely surprising. The work by Inoue et al. (2016) shows that
external events such as minor mergers often trigger the formation
of clumps. However, we see that the slopes derived from the 2D
Candelized data tend to be shallower in massive galaxies. We argue
that this is most likely related to incompleteness. As discussed in
Section 4.4, lower mass clumps detected in massive galaxies are less
complete. This implies a decrease of the cSMF at the low mass end
as seen in Fig. 13, which in turn results in a shallower slope. We do
not think it has a physical origin as the effect is not seen in 3D. It
illustrates how completeness can affect the measurement of the slope.
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Figure 14. Total fraction of stellar mass in clumps more massive than 107 solar masses in CANDELS star-forming galaxies as a function of (a) stellar mass,
(b) �log sSFR, and (c) �log Re. Each colour/symbol shows a different redshift bin as labelled. Error bars are computed through multiple samples of the stellar
mass posterior distributions. Shaded regions are model uncertainties due to the correction applied to the clump stellar masses. On average, clumps account for
∼ 2 − 5 per cent of the total stellar mass. Clumps tend to represent a larger fraction of the stellar mass in low mass, high sSFR, and large radius galaxies.

4.6 Contribution of clumps to stellar mass

In order to better investigate how the clump abundances depend on
different galaxy properties without being affected by small numbers,
we adopt a summary statistic which measures the total fraction of
stellar mass (C∗) contained in clumps. C∗ is directly related to the
integral of the cSMF and can be estimated by dividing the total clump
stellar mass by the total galaxy mass in a given sample. For the sake
of clarity, we only report results using corrected masses with a flat
prior, although the main trends do not change if a VELA prior is
used. We therefore set here a lower limit of 107 solar masses for the
clumps to avoid incompleteness issues.

4.6.1 Observations

The left-hand panel of Fig. 14 shows C∗ as a function of galaxy
stellar mass and redshift for all our CANDELS sample. Error bars
are computed by performing 100 Monte Carlo simulations through
the sampling of the posteriors of the clump stellar masses. For every
iteration, we sample the posterior to associate a stellar mass to
every clump and recompute C∗. The reported values of C∗ are then
the median values of the different realizations and the error bars
correspond to the standard deviation from the different samples. The
shaded regions show the range of values depending on the neural
network model used to correct the stellar masses among the 100
realizations. The figure first shows that C∗ decreases with increasing
galaxy mass. For galaxies more massive than 1010 solar masses,
clumps contain on average between ∼ 2 and ∼ 5 per cent of the
total stellar mass. The fraction increases for low mass galaxies,
reaching 10 − 15 per cent although the uncertainties are large. This
large uncertainty at low masses is driven by low statistics and the
uncertainties regarding the amount of massive clumps reported in
the previous section. Higher redshift galaxies tend also to have
larger fractions of mass in clumps since the red points in Fig. 14
are systematically above the blue ones.

The average value of ∼ 2 − 5 per cent of the stellar mass seems to
be smaller than values reported in the literature with smaller samples
too. Förster Schreiber et al. (2011) quotes for example fractions of ∼
10 − 20 per cent of the galaxy stellar mass in clumps using a sample
of six galaxies. In the recent work by Zanella et al. (2019), the authors

analysed ∼50 star-forming galaxies and found that ∼ 20 per cent of
the stellar mass is in compact clumps which should be comparable
to our selection. There are several reasons why our measurements
are smaller. First of all, and most importantly, we are correcting the
clump stellar masses for the overestimation reported in Section 4.4.
This correction primarily reduces the clump stellar masses by an
order of magnitude, therefore reducing their contribution to the total
galaxy mass. We assume that previous measurements could have
suffered from similar overestimations and thus reported larger values.
However, even if we use uncorrected clump mass measurements, C∗
typically reaches values of ∼ 5 − 7 per cent, which is still smaller
than other reported values. Another factor is that our analysis is made
on a complete sample of galaxies (1500 as opposed to a few tens). Our
sample thus contains clumpy galaxies but also galaxies which do not
host any clump, so the overall stellar mass fraction decreases. Wuyts
et al. (2012) measured indeed a value of C∗ ∼ 7.5 per cent using
both clumpy and non-clumpy galaxies, which is in better agreement
with our uncorrected measurements. Additionally, the Zanella et al.
(2019) sample, for example, is dominated by galaxies with stellar
masses lower than 1010 solar masses for which we also measure a
larger contribution of clumps (Fig. 14a). Approximately 10 per cent
of their sample is made of starbursts which can also boost the obtained
stellar mass fractions.

Our mass complete sample allows us to also investigate how the
abundance of clumps depends on galaxy properties, which is more
difficult with incomplete samples such as the ones usually explored
in the previous works. We focus here on effective radius (Re) and
sSFR. There are indeed well-established scaling relations between
stellar mass and size and stellar mass and SFR (the star formation
main sequence) which have been extensively studied (e.g. Whitaker
et al. 2012; van der Wel et al. 2014) and are thought to be central
for describing major evolutionary tracks of galaxies (e.g. Barro et al.
2014; Rodrı́guez-Puebla et al. 2017; Chen et al. 2019; Lin et al.
2019). Our goal is to investigate whether clumps can provide clues
about the physics of galaxies along these tracks.

We therefore start by analysing whether clumps are more likely
to be formed in galaxies which deviate from these median scaling
relations. We adopt here �log sSFR and �log Re as main proxies,
which precisely measure how far the sSFR and the effective radius
are from the median log10(M∗/M�)–log10sSFR and log10(M∗/M�)–
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Figure 15. Fraction of stellar mass in clumps more massive than 107 solar masses in CANDELS and VELA star-forming galaxies as a function of (a) stellar
mass, (b) �log sSFR, and (c) �log Re. All galaxies are in the redshift range 1 < z < 3. The red filled squares are the measurements for simulated galaxies and
the light red shaded region represents the uncertainty due to the different camera projections and corrections applied. The light blue shaded region indicates the
range populated by observations sampled with the same stellar mass and redshift distributions as the simulated galaxies (see text for details). The black filled
circles show the average values for the observations. Overall simulations tend to lie in the lower limits of the observations but are still compatible, although the
dependence with galaxy stellar mass seem to differ.

log10Re relations. � values have the advantage of taking into account
the mass dependence and allow us to explore the average relation
without further binning in galaxy stellar mass. We use the best-
fitting relations from Fang et al. (2018) as reference values for the
CANDELS galaxy scaling relations. Positive/negative values of �

values therefore indicate galaxies above/below the median scaling
relation at fixed stellar mass.

The middle and right-hand panels of Fig. 14 show the dependence
of C∗ with �log sSFR and �log Re, respectively. First, we see that
there is very little dependence of the clump contribution with the
relative position of galaxies in the main sequence. The value of C∗
is almost constant, although there is a hint of a slight increasing
trend in galaxies with a larger sSFR than the average of the same
mass. Since the sSFR is expected to correlate with the gas mass
density, one would naturally expect a larger contribution of clumps
in galaxies above the main sequence. Several reasons can account for
this weak correlation. Errors in both quantities (clump mass fractions
and sSFR) can wash out the trend. The difference in the SFRs in our
sample might not be large enough to notice a strong effect on the
clump properties (recall, we select only galaxies with log sSFR >

−10). Some theoretical works (e.g. Inoue et al. 2016) have also shown
that clump formation is generally triggered by external perturbations
such as minor mergers. This can also contribute to explain the lack
of correlation with the main-sequence offset. We also note that this
weak correlation is independent of the galaxy stellar mass. If the
sample is restricted to massive galaxies only, we see a similar trend.

In the right-hand panel of Fig. 14, we plot the dependence of
C∗ with �log Re. We observe here a clear dependence. Galaxies
with larger effective radii than the average in galaxies of the same
stellar mass have a higher fraction of their mass in clumps reaching
up to ∼ 8 per cent at z > 2, which is three times the value for
smaller galaxies. We recall that the stellar mass dependence has
been removed. If this increasing trend was driven by different mass
distributions, the opposite trend would have been expected, since
large galaxies are also more massive and thus C∗ is smaller. This
result is therefore suggesting that clumps are perhaps more efficiently
detected in large galaxies. This is interesting, because large and small

galaxies of the same mass are expected to have similar gas mass
densities given the lack of size gradients in the star formation main
sequence (Lin et al. 2019) so, if anything, large galaxies should have
lower densities. The fact that clumps seem to represent a higher
fraction of the stellar mass in large galaxies cannot be explained only
by global differences in the gas densities and must be a consequence
of other physical processes or some sort of observational bias.
Limited spatial resolution could for example contribute to such a
trend. Small galaxies are indeed less well resolved and it is therefore
harder to detect clumps in those systems. We recall, however, that
we have already selected galaxies with effective radii larger than
0.2 arcsec (4 pixels). We also exclude all clumps in the central regions
(<0.5Re) which should be more affected by limited spatial resolution
in small galaxies. A visual inspection shows that even the smallest
galaxies in our selection appear to be well-resolved. We hence think
that this increasing trend is not driven by central clumps not being
detected in small galaxies. We investigate this further in the following
sections.

4.6.2 Simulations

With the purpose of better interpreting the observed trends, we
investigate now the behaviour of C∗ in the VELA Candelized
simulations. As done in Subsection 4.5.1, in order to perform a fair
comparison, we sample the observational data set 100 times to build
CANDELS-VELA subsamples of comparable size to the simulated
one and with the same stellar mass and redshift distributions. Fig. 15
shows the fraction of mass in clumps for VELA and CANDELS as
a function of stellar mass, �log sSFR, and �log Re bins. �log sSFR
and �log Re are computed in VELA using the same reference fit used
for the observations from Fang et al. (2018). We also checked that
the distributions in both data sets are comparable. We do not separate
galaxies in redshift bins because of the small statistics. The width of
the shaded regions in the figure indicate the range of values obtained
in the observations within the 100 samples and in the different camera
orientations for the simulations. The uncertainty can be quite large
given the small size of the considered samples.
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Figure 16. Clumpy fraction in star-forming CANDELS galaxies as a function of (a) stellar mass, (b) �log sSFR, and (c) �log Re. The clumpy fraction measures
the fraction of galaxies with at least one massive (log10Mc/M� > 7) off centred clump. Different symbols show different redshift bins as labelled. Error bars are
obtained by performing multiple samples of the posterior distributions and the shaded red regions indicate uncertainties arising from the correction applied to
clump masses (see text for details). On average ∼ 20 per cent of the galaxies, in the redshift range considered, host massive off-centred clumps with a trend of
larger fractions in massive and large galaxies. The clumpy fraction does not depend on the relative position of galaxies in the star-forming main sequence.

We see that the simulations overall predict a fraction of ∼
2 − 3 per cent of mass in clumps. This is in the lower limit of the
confidence values from the observations. This is expected given the
agreement of the cSMFs shown in the previous subsection. Despite
the small numbers, there are two main trends that are still visible
in the VELA-CANDELS sample. C∗ decreases with increasing
galaxy stellar mass. This trend does not seem to be seen in VELA
though, where the relation with stellar mass is flat and even slightly
increases at the high mass end. This is a potential element which
might be worth investigating further with increased statistics as it
seems to point out that low mass galaxies do not form clumps as
efficiently as in the observations. However, one should keep in mind
the large uncertainties at low masses. Another trend which remains in
CANDELS is the tendency for a larger fraction of mass in clumps for
large galaxies at fixed mass, as can be seen in the rightmost panel of
Fig. 15. A similar trend appears in VELA although with a shallower
slope. Notice that if the trend with galaxy size was uniquely due to
an observational bias, one would have expected to see a similar trend
in the VELA Candelized data. The fact that the trends are different
suggests that there is indeed a physical origin for the correlation.
Finally, both observations and simulations show no dependence of
C∗ with �log sSFR which confirms that even if clumps are formed
in situ, the dependence with sSFR is not necessarily strong.

4.7 Clumpy fractions

In order to gain insights into how clumps are formed, it is also
useful to quantify the abundance of clumps in galaxies of different
properties. This is typically done with the so-called clumpy fraction
which measures the fraction of galaxies considered as clumpy, i.e.
which host at least one off-centred clump. This quantity is of course
related to the fraction of stellar mass in clumps discussed in the
previous subsection, but it is not exactly the same. The clumpy
fraction is an indicator of the frequency at which galaxies form
clumps. However, this quantity strongly depends on the stellar mass
threshold used to select clumps and define a galaxy as clumpy. With
low enough threshold, a normal, nearby star forming region could be
called clumpy. In Guo15, the authors emphasize thus the importance
of setting a threshold to distinguish actual giant clumps from

regular star forming regions observed in nearby spirals. By using
simulations of redshifted local galaxies, they find that an ∼ 8 per cent
threshold of the UV luminosity is a good choice to select giant
clumps.

In this work, we have access to the stellar masses of clumps
in addition to luminosities and therefore we can establish clumpy
fractions defined by stellar mass instead of luminosity, which should
be more directly comparable to simulations of galaxy formation.
Given our completeness limits, we define a galaxy as clumpy if it
contains at least one clump more massive than 107 solar masses.
This mass threshold removes normal local-like star forming regions
which are rarely more massive than 106 solar masses. The definition
is of course arbitrary, but it is physically motivated and provides a
benchmark for comparison with simulations.

4.7.1 Observations

Fig. 16 shows the clumpy fractions as a function of stellar mass and
redshift. As for the total mass contribution, the reported values are
obtained through Monte Carlo sampling of the posterior distribution
of the stellar masses derived through SED fitting. We first see that
massive galaxies [log (M∗/M�) > 10] have larger clumpy fractions
than lower mass galaxies [log (M∗/M�) < 10]. Around ∼ 40 per cent
of galaxies more massive than 1010 solar masses present massive
clumps. This fraction drops to 10 − 20 per cent for ∼109 solar
mass galaxies. This is a direct consequence of the clump mass
threshold used to define clumpy galaxies. It is less frequent to have
such massive clumps in low mass galaxies since they represent a
significant fraction of the total galaxy mass. However, Fig. 14 shows
that even if less frequent, the integrated contribution of clumps to
the stellar mass budget is larger in these low mass systems. Another
interesting result of Fig. 16 is that there is a very mild evolution
with redshift especially for massive galaxies. The two redshift bins
considered present very similar values. This behaviour is in contrast
with the clumpy fractions reported using UV luminosities (Guo15;
Shibuya et al. 2016, among others) which can reach up to 65 per cent
values at z ∼ 2 and significantly decrease towards low redshifts, down
to < 20 per cent especially for massive galaxies. Our results imply
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that, even if UV clumps are very frequent at high redshift, the clump
contribution to the stellar mass does not evolve much.

We additionally explore, in Fig. 16, the dependence of the clumpy
fractions with �log Re and �log sSFR. We observe that the clumpy
fraction does not significantly depend on the sSFR. Galaxies above
and below the main sequence of star formation have very similar
clump frequencies. Even if this might appear surprising considering
that in-situ clump formation is very dependent on the gas mass
density which is expected to be higher in galaxies with large sSFRs,
we have already seen that the contribution of clumps to the stellar
mass also shows very little dependence on the sSFR.

In the right-hand panel of Fig. 16, we plot the clumpy fraction as a
function of �log Re. We report an increasing clumpy fraction in large
galaxies as compared with small galaxies of the same mass. Around
forty per cent of galaxies above the median mass-size relation have
at least one massive clump. The fraction decreases to ∼ 20 per cent
for galaxies below the mass-size relation. This result, combined with
the plot of Fig. 14 implies that large galaxies not only have more
massive clumps but also are more likely to host at least one such
clump. We recall that the stellar mass dependence has been removed,
so the dependence with size is at fixed mass and it is not a mere
consequence of the mass dependence reported.

This can again be a consequence of spatial resolution. Clumps
too close to the galaxy centres in physical distance are difficult to
detect because of the central regions being too bright. Alternatively,
a more physical explanation implies that the outskirts of big discs
seem to have physical conditions which favour the formation of
clumps. This might appear counter intuitive in the first place. At fixed
galaxy properties (e.g. stellar mass, velocity dispersion), increasing
the size will result in an increase of the Toomre parameter Q (i.e.
increased stability), which should result, in turn, in fewer clumps.
However, Inoue et al. (2016) have shown that Q is not necessarily
a good predictor for clumps, as in many cases their formation is
triggered by minor mergers. In some cases of protoclumps, Q is
significantly above unity. Additionally, in a recent paper, Dekel
et al. (2020) suggest that clumpy star-forming rings formed by high
angular momentum streams can survive in large discs after the main
compaction event of galaxies. This mechanism could also explain
the larger number of clumps in large galaxies that we observe.

4.7.2 Simulations

We now compare the clumpy fractions, defined in both VELA
and CANDELS as the fraction of galaxies hosting at least one
massive clump. This is shown in Fig. 17. We see a general good
agreement between observed and simulated data sets although
simulations tend to predict clumpy fractions in the higher region
of the confidence interval. Both samples indeed present clumpy
fractions around 20 − 40 per cent in the considered redshift range.
The VELA simulation presents a clear dependence of the clumpy
fraction with galaxy stellar mass. More massive galaxies are almost
twice as likely to host a massive clump than lower mass ones, which
is also seen in CANDELS. The left-hand panel of Fig. 16 in which
the complete CANDELS sample is included shows this trend more
clearly. Massive galaxies have larger clumpy fractions because we set
a mass limit for the clumps and it is obviously less frequent to have
such a massive clump when the galaxy mass is smaller. However, it
seems that the VELA simulation overpredicts the fraction of massive
clumpy galaxies.

Interestingly, the clumpy fraction does not seem to depend on sSFR
either in the simulations even if most of the clumps are formed in
situ. Regarding size dependence, we observe again that observations

present a clear trend. The trend is again less pronounced in the VELA
simulations.

5 SU M M A RY A N D C O N C L U S I O N S

In the first part of this work, we have presented a neural network
based clump detector. The neural network takes a stamp of a galaxy
and produces a binary image with the pixels belonging to a clump
set to one. The model is trained on simple analytic simulations made
of Sersic profiles with added clumps and it reaches a purity and
completeness around ∼ 90 per cent based on an independent test
set. We have shown that the neural network model generalizes well
to real data, even if trained on simulations, reaching comparable and
even higher sensitivity on real observations than previously published
methods and requiring less computational time.

Based on these results, we have applied the clump detector to
a sample of ∼9000 star-forming galaxies in CANDELS in up
to seven different photometric bands. The catalogue of detections
is released with this work. We then derive the stellar masses of
optically selected clumps through a Bayesian fit to the SEDs in
two CANDELS fields (GOOD-S and GOODS-N) for which seven
photometric bands are available in the redshift range 1 < z < 3.
This corresponds to ∼1500 galaxies and ∼3000 clumps. The same
procedure is applied to forward modelled zoom-in cosmological
simulations of 35 galaxies as they evolve in the redshift range z =
3–1, including all observational effects. Properties of the clumps
in the VELA simulations are reported in Mandelker et al. (2014),
(2017), which found that the vast majority of clumps form in situ.
We analyse simulated galaxies with exactly the same methods as for
the observations and compare with an observational data set of the
same size and similar redshift and stellar mass distributions.

Our main results are:

(i) Limits in angular resolution and S/N in the photometry have a
dramatic impact on the derived clumps stellar masses and therefore
on the measured cSMF by flattening the low mass end and moving
clumps towards larger masses. We have shown that this big difference
between intrinsic and measured cSMFs is essentially due to a
combination of incompleteness, clump blending, background light
contamination, and overestimation of the clump stellar masses. This
highlights the importance of comparing observations and simulations
of galaxy formation under comparable conditions. It also suggests
that it is difficult to extract accurate properties of individual high
redshift clumps with the currently available data.

(ii) By calibrating with numerical simulations, we have shown
that these effects can be partially corrected using a simple multilayer
perceptron to recover the intrinsic cSMF. We essentially perform a
simple regression between the estimated SED clump mass and the
3D clump masses including some additional galaxy parameters. Once
corrected, we find that the cSMF follows a power law with a slope
of −0.61 ± 0.17 above the completeness limit, which we estimate
at ∼107 solar masses, with the majority of the clumps less massive
than 109 solar masses. Although the exact abundance of very massive
clumps remains unconstrained with our data and methodology, this
result tends to challenge previous observational works which found
that many of the observed clumps at high redshift could be more
massive than 109 solar masses. Our clump stellar masses are also
in better agreement with recent measurements based gravitational
lensing.

(iii) The cSMF of simulated galaxies overall agrees with the
corrected observed one when compared under the same conditions,
suggesting an in situ origin for the majority of the observed clumps.
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Figure 17. Clumpy fraction in CANDELS and VELA star-forming galaxies as a function of (a) stellar mass, (b) �log sSFR, and (c) �log Re. The clumpy
fraction measures the fraction of galaxies with at least one massive (log10Mc/M� > 7) off centred clump. The shaded blue regions are the confidence intervals
derived for the observations by randomly creating CANDELS-VELA samples with the same size, mass, and redshift distribution as the simulated galaxies (see
text for details). The black filled circles show the average values. The red filled squares are the values measured in the VELA simulations. Overall simulations
tend to be in the confidence interval of the observations.

We emphasize that this agreement is independent of the corrections
applied to the clump stellar masses. If simulations and observations
are compared under the same conditions, without corrections, both
SMFs follow very similar trends.

(iv) Using corrected clump masses, we estimate that the fraction
of galaxy stellar mass in massive clumps (>107 solar masses) is of
the order of ∼ 2 − 5 per cent, with a slight increase at z > 2. This
is smaller than the values reported for the stellar mass fractions in
previous studies with incomplete data sets which did not correct for
clump mass overestimation. The simulations analysed also predict a
similar fraction of mass in clumps.

(v) We find indications that low mass galaxies (<1010 solar
masses) and larger radius galaxies at fixed mass tend to present a
larger clump contribution, which can reach up to ∼ 7 − 15 per cent.
However, the mass fraction in clumps shows very little dependence
on sSFR. The explored simulations also find a weak dependence
with sSFR and an increasing contribution of clumps to the galaxy
stellar mass in larger galaxies although with a weaker trend. This
might be an indication of enhanced clump formation efficiency at
large galacto-centric distances.

(vi) We measure that ∼ 20 − 40 per cent of star-forming galaxies
present an off-centred clump more massive than 107 solar masses,
which also agrees reasonably well with the predictions of numerical
simulations explored in this work.

This work highlights the importance of comparing simulations
and observations in a consistent way. We also have shown that with
the currently available data, it is very difficult to establish accurate
properties of clumps and hence the need for new observing facilities
such as JWST.

In future work, we will discuss clump life times using a similar
approach as the one presented here (Ginzburg et al. in preparation).
We also plan to extend the comparison of clump properties to other
recent simulated data sets such as the new generation of VELA
simulations which uses a stronger feedback and hence has a potential
impact on clumps, in order to establish statistical constraints on the
feedback mechanisms. A more refined SED fitting method involving
more complex star formation histories is another potential follow-up
of this work.
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Figure A1. Effect of mass measurement errors and clump blending on the
derived cSMF. Empty squares show the cSMF derived from the simulation
metadata in 3D (Mandelker et al. 2017). The red filled squares show the cSMF
measured from the Candelized images. The shaded region indicates the range
of obtained cSMFs when mass errors and blending effects are added to the
intrinsic 3D VELA cSMF (see text for details). A combination of severe
measurement errors and clump blending can globally explain the differences
between the Candelized and 3D cSMFs.

Zolotov A. et al., 2015, MNRAS, 450, 2327

APPENDIX A : EFFECTS O N THE CSMF OF
M E A S U R E M E N T E R RO R S A N D C L U M P
B L E N D I N G

One of the important results we have highlighted in this work
is that the cSMFs estimated from the Candelized images differ

significantly from the ones derived directly from the simulation
output. In Section 4, we have shown that this large difference might
be due to a combination of mass measurement errors and clump
blending. In this appendix, we further explore the impact of these
two effects in the cSMFs using simple simulations. We start from
the intrinsic 3D VELA cSMF and randomly add to the stellar mass
of every clump more massive than 107 solar masses a Gaussian error
of 1 dex with a standard deviation of 0.3 dex based on the results of

Fig. 10 and recompute the cSMF with the randomly assigned masses.
We repeat this 50 times. We then assume than only ∼ 80 per cent
of the clumps are detected (Fig. 9) and that, on average every 2D
detection corresponds to approximately three 3D clumps because of
blending (Fig. 10) and renormalize the cSMF accordingly. The results
of this exercise are shown in Fig. A1. The shaded region indicates
the region occupied by the different realizations. We see that the
Candelized cSMF and the 3D cSMF after applying the observational
effects just described tend to agree much better. In particular, we
see that the high mass end gets populated and that the slope is
flattened. This supports our idea that the big difference between 3D
and Candelized cSMFs comes from a combination of blending and
mass measurement errors.
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