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T. Lagache1,2 and D. Holcman1,3 ∗

August 12, 2020

Abstract

Many viruses must enter the cell nucleus through small nanopores in order to
replicate. We model here viral motion as a stochastic process described
by the survival Fokker-Planck equation. We estimate the probability and
the conditional mean first passage time that a viral trajectory is absorbed
at a small nuclear pore before being terminated. The method is based on
the explicit Neuman-Green’s function. The cell nucleus is model as a three di-
mensional ball, covered with thousands of small absorbing windows. The minimum
distance between them defines the smallest spatial scale that is an unavoidable limit
for efficient stochastic simulations. Derived asymptotic formula agree with stochas-
tic simulations and reveal how small and large geometrical parameters define the
cytoplasmic stage of viral infection.

1 Introduction

Understanding the biophysical properties of particles such as molecules, proteins, DNA,
RNA, or viruses that are moving inside the crowded cellular environment [23] remains a
challenge both experimentally and theoretically. For example, vesicles or RNA granules
[10] have to reach small targets in order to deliver their payload or trigger protein synthe-
sis. If small DNA or plasmid can pass the cytoplasmic crowded organization, the motion
of larger ones is largerly impaired [9]. In some cases, large Brownian particles are trans-
ported intermittently along microtubules (MTs) inside the cytoplasm toward the nucleus.
Many viruses containing DNA have the ability to hijack the cellular transport machinery
to reach a nuclear pore and deliver their genetic material inside the nucleus [29, 11]. Viral
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trajectories can be monitored in vivo using live microscopy and for viruses such as Human
Immunodeficiency Virus or the Adeno-Associated Virus [1, 27], these trajectories consist
of alternating epochs of diffusion and directed motion. The precise driving force and
physical nature of these trajectories remains unclear. In addition inside the cytoplasm,
viruses can be trapped or degraded through several molecular pathways (including the
ubiquitin-proteasome).

To quantify the success of the early steps of viral infection, we previously modeled
single viral particle as individual stochastic processes [12, 17]. Our goal was to estimate
the success that a trajectory reaches a small window (nuclear pore) located on the nucleus
surface (Fig. 1). However, due to small size of the nuclear pore, Brownian simulations are
most of the time ineffective to estimate precisely the statistical moments associated with
the arrival time distribution. Thus, to study the dependency with respect to geometrical
and dynamical parameters, we analyzed the intermittent stochastic dynamics of viruses
along MTs and derived asymptotic formula for the conditional mean first passage time
(MFPT) 〈τ〉(n, ε) and the probability 〈P 〉(n, ε) that a single particle arrives to one over
n small targets with radius ε [12, 19]. However, these formula are valid when the number
of absorbing holes (targets) is not too large and that holes are well separated. We shall
extend here this previous analysis to the case of many small holes. This analysis relies on
the explicit expansion of the Neumann-Green’s function to order three [24], and is valid
for many interacting small holes [26, 15, 6].

In the limit of many absorbing holes distributed on a small spherical target
inside a bounded domain (a biological round cell), we compute here a novel
mean arrival time formula to an absorbing window, that falls into the Narrow
escape time (NET) framework [16] . This computation clarifies the depen-
dency of the NET with respect to the number of holes, their distribution,
the radius of the spherical target and the percentage of the target surface
covered by holes. This analysis extents the well-known homogenization for-
mula obtained by Berg and Purcell for mixed Neumann-Dirichlet boundary
conditions [3]. The paper is organized as follows. First, we recall our previous model
of viral particles and the stochastic description of trajectories. Second, we extend the
NET method to many absorbing holes and compute the mean arrival time formula using
an interaction matrix between holes. Then, computing the Neumann’s function around a
small reflecting sphere, we derive asymptotic formula for the probability and the condi-
tional mean time to reach one small window in the limit of a large number of absorbing
windows . Finally, we confirm our analysis with Brownian simulations. The new formula
improve our previous effort [12, 19] and can now be used to quantify more precisely the
first steps of viral infection in cells. In completely independent line of thoughts, a similar
NET formula was recently derived using matched asymptotics for Brownian motion [21].
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Figure 1: Schematic representation of the cell cytoplasm as a 3-dimensional domain
Ω. (Right): Stochastic trajectories, modeled by equation (2), with a diffusion and a drift terms.
They can be absorbed at small windows with radius ε � |Ω|1/3 located on the surface of the
nucleus ∂Sa. (Left): simplified geometry: the cell geometry is a ball (radius R) containing a
spherical nucleus surface, containing many small absorbing windows. The nucleus ball is of
radius a such that ε� a� |Ω|1/3.

2 Mean time to a small nuclear pore

Intermittent trajectories of a viral particle x(t) are described as realization of the switching
stochastic process [18]

dx =


√

2Ddw when x (t) is free

Vdt x (t) bound ,
(1)

where w is a standard 3d-Brownian motion, D the diffusion constant and V the velocity
of the directed motion along MTs. The switching dynamics depends on the attachment
and detachment rates [18]. In previous work [18, 19] we have coarse-grained this switching
process into by a steady-state stochastic equation

dx = b(x)dt+
√

2Ddw, (2)

where the effective drift b(x) is calibrated using the following criteria: inside the cytoplasm
Ω, the mean first passage time of stochastic processes (1) and (2) is the same. The steady-
state drift b(x) depends on the cell geometry, the number and distribution of MTs and
the rates of binding and unbinding to MTs.

To replicate most viruses have to reach a small pore, modeled as an absorbing disk of
radius ε � 1 located on the boundary ∂Sa of the nucleus. The external cell membrane
defines the boundary ∂Ω for the stochastic process equation (2). The cell cytoplasm is
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represented as the three-dimensional bounded domain Ω, whose boundary is ∂Ω
⋃
∂Sa.

It consists of a reflecting part except on the boundary ∂Na which consists of n small
absorbing windows located on the nucleus (fig. 1-left).

We model the degradation activity in the cytoplasm by a steady-state killing rate k(x)
and a trajectory described by equation (2) can be terminated before reaching the absorbing
boundary ∂Na . The survival probability density function (SPDF) is the solution of the
forward Fokker-Planck equation (FPE) [13]

∂p(x, t)

∂t
= ∆p(x, t)−∇ · b(x)p(x, t)− k(x)p(x, t)

p (x, 0) = pi (x)
(3)

with the boundary conditions:

p(x, t) = 0 on ∂Na and (4)

J(x, t).nx = 0 on ∂Ω
⋃

(∂Sa − ∂Na) (5)

where the flux density vector is

J(x, t) = −D∇p(x, t) + b(x)p(x, t). (6)

where nx is the normal vector at point x.
We recall that the mean probability 〈P 〉 and the conditional MFPT 〈τ〉 (averaged

over a uniform particle distribution) to reach the boundary ∂Na before termination is
expressed using the total time spent at a point

p̃(x) =

∫ ∞
0

p(x, t)dt (7)

and

q(x) =

∫ ∞
0

tp(x, t)dt (8)

[12]. The expressions of the probability and arrival time with respect to the solution of
the FPE are

〈P 〉(n, ε) = 1−
∫

Ω

k(x)p̃(x)dx, (9)

and

〈τ〉(n, ε) =

∫
Ω

p̃(x)dx−
∫

Ω

k(x)q(x)dx

1−
∫

Ω

k(x)p̃(x)dx
. (10)
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For a drift b (x) = −∇Φ (x), an asymptotic expansion with the small parameter ε reveals
that [12] 

〈P 〉(n, ε) = e−
Φ0
D

1

4Dnε

∫
Ω

e−
Φ(x)
D k(x)dx + e−

Φ0
D

〈τ〉(n, ε) =

1

4Dnε

∫
Ω

e−
Φ(x)
D dx

1

4Dnε

∫
Ω

e−
Φ(x)
D k(x)dx + e−

Φ0
D

,

(11)

where Φ0 is the constant value of the radial potential Φ(x) on the centered nucleus where
the nuclear pores are uniformly distributed. The range of validity of these asymptotic
expressions has been explored with Brownian simulations for a single hole [17]. However,
these formulas do not account for the possible interactions between the small absorbing
pores, and for a large number of nuclear pores n� 1,

lim
n→∞,nε2�1

〈τ〉(n, ε) = 0, (12)

which shows the limitation of the previous formula.
Early results demonstrated that holes’ interactions can drastically affect the
MFPT, especially when the distance between the holes tends to zero [26, 15].
Refined analysis using analytical expression of the Green’s function in the
unit disk, sphere or ball based on solving a linear system of equations for the
fluxes at each window revealed how the MFPT depends on the position of the
windows [8, 6, 24, 5]. In particular, the optimal configuration of windows that
minimizes the MFPT was related to the classical Fekete problem of minimizing
the Coulomb energy on a ball [8, 6, 24, 7].
However, the linear system of equations for the flux at each window does not
hold when windows are distributed on the surface of ball with a small radius (of
the order of few window size). We shall derive here the correction term that
accounts for the nuclear geometry. First, we derive the narrow escape time
for a stochastic particle (with a drift) in the presence of a killing field k(x) to
reach an absorbing window. Second, by computing analytically the Neumann
function for a reflecting ball, we derive a coupled system of equations for
the fluxes at each interacting window covering the ball (spherical nucleus).
Finally, for a large number of holes, we use a mean-field approximation and
obtain formulas for the probability 〈P 〉 and the mean time 〈τ〉, valid for a
large range of parameters ε (window size) and n, generalizing formula (11)
and extending previous attempts to homogenize mixed Dirichlet-Neumann
boundary conditions [3, 30, 2, 25]. We summarize now the main asymptotic
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formula (86) and (87). We define the function

F (n, a, ε) =
naDε(

πa+ ε log
(
ε
a

)
+ nε (1− 2α0 − α2

0 log (α0))
) (13)

with

α0 =


ε

a
for uniformly randomly distributed windows,

1√
n

for regularly distributed windows.

(14)

Using the same notations as in formula (11), when the drift is pointing towards
the nucleus center and the potential Φ(x) = Φ0 is constant at nuclear surface,
the probability and MFPT formulas are

〈P 〉 =
4πF (n, a, ε)e−

Φ0
D∫

Ω
k(x)e−

φ(x)
D dx + 4πF (n, a, ε)e−

Φ0
D

, (15)

and

〈τ〉 =

∫
Ω
e−

φ(x)
D dx∫

Ω
k(x)e−

φ(x)
D dx + 4πF (n, a, ε)e−

Φ0
D

. (16)

Finally, we test the robustness of our asymptotic formula against Brownian
simulations and apply our formula to describe viral trafficking to a nuclear
pore (n ≈ 2, 000� 1 [22]) covering the nucleus.

3 Asymptotic derivations of the mean time 〈τ〉 and

the probability 〈P 〉
The n−absorbing windows ∂Na =

⋃n
i=1 ∂Ωi have the same radius ε, centered at positions

(xi)
n
i=1. The steady state SPDF p is solution of equation (3) [13].
The associated Neumann-Green function N (x,x0) is solution of the differential equa-

tion [12]

∆N (x,x0) = −δx0(x), x ∈ Ω,

∂N
∂n

(x,x0) = − 1

|∂Ω|
, for x ∈ ∂Ω. (17)

We recall that p̃(x) =
∫∞

0
p(x, t)dt is solution of equation

∆p̃ (x)−∇ · (b (x) p̃ (x))− k (x) p̃ (x) = −pi (x) , (18)
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where pi (x) is the normalized probability density function for the initial point∫
Ω

pi (x) = 1. (19)

The boundary conditions for equation (18) are given by

p̃(x) = 0 on ∂Na =
n⋃
i=1

∂Ωi (20)

and

J̃(x).nx = 0 on ∂Ω
⋃

(∂Sa − ∂Na) (21)

where the steady-state probability flux is given by

J̃(x) = −D∇p̃(x) + b(x)p̃(x). (22)

We recall that the average arrival probability [12] is given by

〈P 〉 =

∫
∂Na

J̃(x).nxdx = 1−
∫

Ω

k(x)p̃(x)dx. (23)

Thus we shall compute here p̃. For this, we compute the following integral

I =

∫
Ω

(∆p̃(x)−∇ · (b(x)p̃(x))− k(x)p̃(x))N (x,x0)dSx

−
∫

Ω

∆N (x,x0)p̃(x)dx. (24)

Using the definition of the Neumann-Green function (17) and that p̃ is solution of equation
(18), we obtain

I = −
∫

Ω

pi(x)N (x,x0) + p̃(x0). (25)

Moreover, using the Green’s identity:∫
Ω

(N (x,x0)∆p̃(x)− p̃(x)∆N (x,x0)) dx = (26)∫
∂Ω

(
N (x,x0)

∂p̃(x)

∂n
− p̃(x)

∂N (x,x0)

∂n

)
. (27)

we get another expression for I

I =

∫
∂Ω

(
N (x,x0)

∂p̃(x)

∂n
− p̃(x)

∂N (x,x0)

∂n

)
+

∫
Ω

(−∇ · (b(x)p̃(x))− k(x)p̃(x))N (x,x0)dx. (28)
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Using an integration by part, we have∫
Ω

(−∇ · (b(x)p̃(x)))N (x,x0)dx =

∫
Ω

(b(x)p̃(x))∇N (x,x0)dx (29)

−
∫
∂Ω

(b(x) · nx) p̃(x)N (x,x0)dSx. (30)

By definition of the boundary condition of Neumann-Green function N ,∫
∂Ω

p̃(x)
∂N (x,x0)

∂n
dSx = − 1

|∂Ω|

∫
∂Ω

p̃(x)dSx (31)

We conclude that

I = −
∫
∂Na

J̃(x).nxN (x,x0)dx +

∫
Ω

b(x).∇N (x,x0)p̃(x)dx

−
∫

Ω

k(x)p̃(x)N (x,x0)dx +
1

|∂Ω|

∫
∂Ω

p̃(x)dSx. (32)

Finally, merging the two relations (32) and (25) for the integral I, we get the identity:∫
Ω

(k(x)p̃(x)− pi(x))N (x,x0)dx = −
∫
∂Na

J̃(x).nxN (x,x0)dx

+

∫
Ω

b(x).∇N (x,x0)p̃(x)dx

+
1

|∂Ω|

∫
∂Ω

p̃(x)dx− p̃(x0). (33)

When the vector field is the gradient of a potential b = −∇Φ, we shall use the following
approximation [12] for the solution

p̃(x) = Cεe
−Φ(x)

D , (34)

where Cε is a constant that depend on ε, which tends to ∞ when ε tends to 0. We shall
now only retain in relation (33) leading order terms in ε. For a smooth initial distributions
pi, the integral ∫

Ω

pi(x)N (x,x0)dx = O(1) (35)

is uniformly bounded when ε → 0 (the proof was given in [14] by deriving the regular
Laplace equation satisfied by the function x0 →

∫
Ω
pi(x)N (x,x0)dx). All other terms

diverge. We shall also consider here the case of a small degradation rate k(x) � 1. In
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that case, we will neglect the term
∫

Ω
k(x)p̃(x)N (x,x0)dx compared to all other terms in

(33). With these approximations, relation (33) can be written at leading order as

p̃(x0) +O (1) = −
∫
∂Na

J̃(x).nxN (x,x0)dSx +

∫
Ω

b(x).∇N (x,x0)p̃(x)dx

+
1

|∂Ω|

∫
∂Ω

p̃(x)dx. (36)

For an initial point x0 at a distance O (1) away from any absorbing window, the Neumann
function N (x,x0) is uniformly bounded for x ∈ ∂Ωa. In addition, integrating relation
(18) over Ω, we obtain∫

∂Na

J̃(x).nxdSx = 1−
∫

Ω

k(x)p̃(x)dx = 〈P 〉 ∈ [0, 1]. (37)

Thus for x ∈ ∂Na the absorbing boundary, the flux J̃(x).nx = −D∂p̃(x)

∂nx

> 0 and thus

the integral
∫
∂Na

J̃(x).nxN (x,x0)dSx is uniformly bounded in x0 ∈ Ω. Thus for x0 at a
distance O (1) away from the absorbing windows, relation (36) can be written

1

|∂Ω|

∫
∂Ω

p̃(x)dx +

∫
Ω

b(x).∇N (x,x0)p̃(x)dx = p̃(x0), (38)

which is the integral solution p̃(x0) = Cεe
−Φ(x0)

D for the Fokker-Planck equation with no
absorbing windows.

1

|∂Ω|

∫
∂Ω

p̃(x)dx +

∫
Ω

b(x).∇N (x,x0)p̃(x)dx = Cεe
−Φ(x0)

D +O (1) . (39)

We shall now take y ∈ ∂Na in relation (36)

0 = −
∫
∂Na

J̃(x).nxN (x,y)dSx +

∫
Ω

b(x).∇N (x,y)p̃(x)dx

+
1

|∂Ω|

∫
∂Ω

p̃(x)dx. (40)

Using relation (39), we finally obtain

0 = −
∫
∂Na

J̃(x).nxN (x,x0)dx + Cεe
−Φ(x0)

D (1 + o(1)), (41)

(because we removed in the two integrals a boundary layer near the absorbing windows).
We shall now compute

∫
∂Na

J̃(x).nxN (x,x0)dx =
∑n

i=1

∫
∂Ωi

J̃(x).nxN (x,x0)dx, by de-
composing the flux (

J̃(x).nx

)
x∈∂Ωi

= gi(x) + fi(x), (42)
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where the leading order gi(s) with

s = |x− xi| (43)

into

gi(s) =
gi0√
ε2 − s2

, (44)

and gi0 a constant and fi is a regular function such that∫ ε

0

fi(s)ds = O(εgi0). (45)

Choosing y = xi at the center of each absorbing windows, we get that p̃(xi) = 0. For
i 6= j, and |xi − xj| � ε and for x ∈ ∂Ωj,

N (x,xi) = N (xj,xi) +O(ε). (46)

Consequently, using the flux expansion (42), we get∫
∂Na

J̃(x).nxN (x,xi)dx =

∫
∂Ωi

(gi(x) + fi(x))N (x,xi)dx

+
n∑

j=1,j 6=i

(N (xj,xi) + 0(ε))

∫
∂Ωj

(gj(x) + fj(x)) dx. (47)

For xi ∈ ∂Sa, the Neumann-Green’s function N (x,xi) can be written as [28]:

N (x,xi) =
1

2πD|x− xi|
+
L(xi) +N(xi)

8πD
log

(
1

|x− xi|

)
+ ωxi(x), (48)

where L(xi) and N(xi) are the principal curvatures of ∂Sa at xi and ωxi(x) is the regular
part of the Green function, which is bounded for x in Ω. However, when the absorbing
small patches are located on the boundary of a small ball of radius a, expansion (48) is

not sufficient because the second term −1
4πaD

log
(

1
|xi−xj |

)
become much larger than the

first term 1
2πD|xi−xj | when |xi − xj| ≈ a, and a� |Ω| 13 . A different expansion is needed

that we shall now discuss.

3.1 Computing the flux at small absorbing windows located on
a small internal ball

The solution of the Neumann’s equation

D∆Ñ (x,x0) = −δ(x− x0), for x ∈ R3

D
∂Ñ
∂n

(x,x0) = 0, for x ∈ Sa. (49)
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is equal for |x0| = |x| = a to (see appendix)

Ñ (x,x0) =
1

2πD|x− x0|
+

1

4πaD
log

(
|x− x0|

2a+ |x− x0|

)
. (50)

Thus for x and x0 in the neighborhood of the sphere Sa, we have

N (x,x0) = Ñ (x,x0) +O(1). (51)

Consequently, using the geodesic distance s = d(P,xi), the flux term in relation (47) can
now be computed∫

∂Na

J̃(x).nxN (x,xi)dx =

∫ ε

0

(
gi0√
ε2 − s2

+ fi(s)

)
(52)(

1

2πDs
+

1

4πaD
log

(
s

2a+ s

)
+O(1)

)
2πsds

+
n∑

j=1,j 6=i

(N (xj,xi) + 0(ε))

∫ ε

0

(
gj0√
ε2 − s2

+ fj(s)

)
2πsds.

Using condition (45), we obtain:∫
∂Na

J̃(x).nxN (x,x0)dx =
gi0
D

(π
2

+
ε

2a
log
( ε
a

)
+O(ε)

)
+ 2πε

n∑
j=1,j 6=i

N (xj,xi)g
j
0 (1 +O(ε))) . (53)

We recall that the constant gi0 is of order gi0 = O

(
1

nε

)
, and that

N (xj,xi) = O

(
1

|xi − xj|

)
= O

(
1

a

)
, (54)

thus we rewrite the flux condition as∫
∂Na

J̃(x).nxN (x,x0)dx =
gi0
D

(π
2

+
ε

2a
log
( ε
a

))
(55)

+ 2πε
n∑

j=1,j 6=i

N (xj,xi)g
j
0 +O

( ε
a

)
+O

(
1

n

)
.

Injecting (56) in (41), for y = xi, we obtain the system of n equations for the n+1
variables (g1

0, ..g
n
0 , Cε):( π

2D
+

ε

2aD
log
( ε
a

))
gi0 + 2πε

n∑
j=1,j 6=i

N (xj,xi)g
j
0 = Cεe

−Φ(xi)

D +O (1) . (56)
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To close the system of equation, we use the compatibility condition (37) with expression
(42) and approximation (34) for the function p̃:

2πε
n∑
i=1

gi0 = 1− Cε
∫

Ω

k(x)e−
Φ(x)
D dx +O (1) . (57)

Finally, we obtain a linear system of n + 1 equations (56-57) for the flux constant gi0,
i ≤ i ≤ n and for the constant Cε summarized here:

π

2D
+

ε

2aD
log
( ε
a

)
gi0 + 2πε

n∑
j=1,j 6=i

N (xj,xi)g
j
0 = Cεe

−Φ(xi)

D +O (1) , for 1 ≤ i ≤ n

2πε
n∑
i=1

gi0 = 1− Cε
∫

Ω

k(x)e−
Φ(x)
D dx +O (1)

(58)

We will now obtain asymptotic estimates for Cε, 〈P 〉 and 〈τ〉, by solving the linear system
of equations (58) in the small ε limit. We recall the expressions for probability (34) and
the arrival time:

〈P 〉 = 1− Cε
∫

Ω

k(x)e−
Φ(x)
D dx and 〈τ〉 = Cε

∫
Ω

e−
Φ(x)
D dx, (59)

where this last identity is derived in the small killing rate limit |k(x)| � 1 [12]. In the
next section, we derive the asymptotic expressions for quantities in (59).

4 Mean field approximation and asymptotics formula

for 〈τ〉 and 〈P 〉 for n� 1
ε

We derive now expressions for 〈P 〉 and 〈τ〉 in the limit n � 1 and absorbing windows
are distributed with respect to a density ρ(x) over the spherical nucleus Sa. By summing
equation (56) for 1 ≤ i ≤ n, we obtain that( π

2D
+

ε

2aD
log
( ε
a

)) n∑
i=1

gi0 + 2πε
n∑
i=1

gi0

n∑
j=1,j 6=i

N (xj,xi) = Cε

n∑
i=1

e−
Φ(xi)

D +O (n) . (60)

When xi is located at the north pole, the distance |xi − xj| with jth located at position
xj(θ, φ) is given by |xi − xj| = 2a sin

(
φ
2

)
and the Neumann function is

Ñ (xj(θ, φ),xi) =
1

4πaD

(
1

sin
(
φ
2

) + log

(
sin
(
φ
2

)
1 + sin

(
φ
2

))) . (61)
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We use now that the probability density function ρi(φ) of the j 6= i windows (north pole
i) is normalized ∫ π

0

2πa2ρi(φ) sin(φ)dφ = 1, (62)

thus

lim
n→∞

1

n

n∑
j=1,j 6=i

N (xj,xi) =

∫ π

0

1

4πaD

(
1

sin
(
φ
2

) + log

(
sin
(
φ
2

)
1 + sin

(
φ
2

))) ρi(φ)2πa2 sin(φ)dφ

=
a

2D

∫ π

0

(
1

sin
(
φ
2

) + log

(
sin
(
φ
2

)
1 + sin

(
φ
2

))) ρi(φ) sin(φ)dφ. (63)

In addition, we have the limit of the partial sum

lim
n→∞

1

n

n∑
i=1

e−
Φ(xi)

D = a2

∫ 2π

0

∫ π

0

e−
Φ(φ,θ)
D ρ(φ)dφdθ, (64)

We now re-write relation (60) using the two integrals

I i1 =

∫ π

0

(
1

sin
(
φ
2

) + log

(
sin
(
φ
2

)
1 + sin

(
φ
2

))) ρi(φ) sin(φ)dφ, (65)

I2 =

∫ 2π

0

∫ π

0

e−
Φ(φ,θ)
D ρ(φ, θ) sin(φ)dφdθ, (66)

so that ( π

2D
+

ε

2aD
log
( ε
a

)) n∑
i=1

gi0 +
naπε

D

n∑
i=1

gi0I
i
1 = Cεna

2I2 +O (n) . (67)

For identically distributed windows 1 ≤ i ≤ n, I i1 = I1. Using the compatibility condition
(57) in equation (67), we obtain(

1

4Dε
+

1

4πaD
log
( ε
a

)
+
na

2D
I1

)(
1− Cε

∫
Ω

k(x)e−
Φ(x)
D dx

)
= Cεna

2I2 +O (n) . (68)

Thus we obtain to leading order

Cε =
πa+ ε log

(
ε
a

)
+ 2nπa2εI1(

πa+ ε log
(
ε
a

)
+ 2nπa2εI1

) ∫
Ω
k(x)e−

Φ(x)
D dx + 4πna3DεI2

. (69)

To further compute for the probability 〈P 〉 and the MFPT 〈τ〉 using expression (69), we
shall now consider two distributions of windows:

1. Random distribution,

2. Uniform distribution.
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4.1 Effect of randomly distributed narrow windows located on
a sphere on the arrival time

When there n � 1 non-overlapping windows randomly distributed on the sphere, the
probability distribution of windows is given by

ρ(φ, θ) = ρi(φ) =
1

4πa2
1{φ>2 arcsin( εa)}, (70)

for all 1 ≤ i ≤ n. The condition
{
φ > 2 arcsin

(
ε
a

)}
ensures non-overlapping. Using the

change of variable y = sin
(
φ
2

)
, we re-write integral (65)

I1 =
1

πa2

∫ 1

ε
a

(
1

y
+ log

(
y

1 + y

))
ydy =

1

2πa2

[
x+ log (1 + x) + x2 log

(
x

1 + x

)]1

ε
a

, (71)

that is

I1 =
1

2πa2

(
1− 2

ε

a
− ε2

a2
log
( ε
a

))
. (72)

In addition, we have for the second integral (66)

I2 =
1

4πa2

∫ 2π

0

∫ π

2 arcsin( εa)
e−

Φ(φ,θ)
D sin(φ)dφdθ. (73)

Replacing in equation (69), I1 and I2 by expressions (72) and (73), we obtain to leading
order for randomly distributed windows,

Crand
ε =

1∫
Ω

k(x)e−
Φ(x)
D dx + C(n, ε)

∫ 2π

0

∫ π

2 ε
a

e−
Φ(φ,θ)
D sin(φ)dφdθ

, (74)

where

C(n, ε) =
naDε

πa+ ε
(
1− nε2

a2

)
log
(
ε
a

)
+ nε

(
1− 2 ε

a

) . (75)

4.2 Effect of regularly distributed windows located on the sur-
face Sa on the mean time

For small windows regularly distributed on a sphere, the density was computed in [7]:

ρ(φ) = 1{φ>arccos(1− 2
n)} 1

4πa2
, (76)
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leading to with the first integral (65) to

I1 =
1

2πa2

[
x+ log (1 + x) + x2 log

(
x

1 + x

)]1

1
2

arccos(1− 2
n)
, (77)

and for n� 1

I1 =
1

2πa2

(
1− 2√

n
+

log(n)

2n

)
+ o(

log(n)

2n
). (78)

In addition, for second integral (66) we have

I2 =
1

4πa2

∫ 2π

0

∫ π

2 arccos(1− 2
n)
e−

Φ(φ,θ)
D sin(φ)dφdθ. (79)

Replacing in equation (69), I1 and I2 by expressions (78) and (79) respectively, we obtain

Chom
ε =

1∫
Ω
k(x)e−

Φ(x)
D dx + C̃ε,n

∫ 2π

0

∫ π
4√
n

e−
Φ(φ,θ)
D sin(φ)dφdθ

. (80)

where

C̃ε,n =
naDε

πa+ ε log
(√

nε
a

)
+ nε

(
1− 2√

n

) (81)

Using formula (74) and (80) in expression (59), we obtain the asymptotic expressions
for the probability and the condition MFPT that a stochastic particle reaches a small
windows

〈P 〉 =
F (n, a, ε)

∫ 2π

0

∫ π
α0
e−

Φ(φ,θ)
D sin(φ)dφdθ∫

Ω
k(x)e−

Φ(x)
D dx + F (n, a, ε)

∫ 2π

0

∫ π
α0
e−

Φ(φ,θ)
D sin(φ)dφdθ

, (82)

and

〈τ〉 =

∫
Ω
e−

φ(x)
D dx∫

Ω
k(x)e−

Φ(x)
D dx + F (n, a, ε)

∫ 2π

0

∫ π
α0
e−

Φ(φ,θ)
D sin(φ)dφdθ

(83)

where

F (n, a, ε) =
naDε(

πa+ ε log
(
ε
a

)
+ nε (1− 2α0 − α2

0 log (α0))
) (84)
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and

α0 =


ε

a
for randomly distributed windows,

1√
n

for regularly distributed windows.

(85)

When the drift is pointing towards the nucleus center and the potential Φ(x) = Φ0 is
constant at the nuclear surface, then the probability and MFPT formulas reduce to

〈P 〉 =
4πF (n, a, ε)e−

Φ0
D∫

Ω
k(x)e−

φ(x)
D dx + 4πF (n, a, ε)e−

Φ0
D

, (86)

and

〈τ〉 =

∫
Ω
e−

φ(x)
D dx∫

Ω
k(x)e−

φ(x)
D dx + 4πF (n, a, ε)e−

Φ0
D

. (87)

When the drift ΦSa restricted to Sa has a single global minima Φm at position x0(φ0, θ0) ∈
Sa, we approximate integral I2 using Laplace’s method. In the small diffusion limit
D � Φ(x) and large n, we get

I2 =
1

4πa2

∫ 2π

0

∫ π

2 arccos(1− 2
n)
e−

Φ(φ,θ)
D sin(φ)dφdθ ≈ D

4a2

√
det
[
−HΦSa

(x0)
]e−Φm

D (88)

where det
[
HΦSa

(x0)
]

is the determinant of the Hessian matrix of potential ΦSa at x0.
The probability and MFPT to a nuclear pore are then given by

〈P 〉 =
πDF (n, a, ε)

√
det−1

[
HΦSa

(x0)
]
e−

Φm
D∫

Ω
k(x)e−

Φ(x)
D dx + πDF (n, a, ε)

√
det−1

[
HΦSa

(x0)
]
e−

Φm
D

, (89)

and

〈τ〉 =

∫
Ω
e−

φ(x)
D dx∫

Ω
k(x)e−

Φ(x)
D dx + πDF (n, a, ε)

√
det−1

[
HΦSa

(x0)
]
e−

Φm
D

. (90)

A second Laplace’s method can be used to estimate the volume integral. If the global
minimum ΦΩ is attained at a point xg ∈ Ω,∫

Ω

e−
φ(x)
D dx ≈ (πD)3/2√

det [HΦ(xg)]
e−

ΦΩ
D . (91)

We conclude this section by indicating that the formulas presented above can be used to
estimate the probability and the mean time for a viral particle to reach a nuclear pore
inside the nucleus.
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4.3 Effect of changing the window coverage on the escape time

For a large number of windows n � 1, distributed over a small target Sa of a domain Ω
and covering a proportion σ = nπε2

|∂Sa| of the surface ∂Sa of Sa, the leading order term in the
NET for a Brownian particle to one of the small window was computed asymptotically
using electrostatic consideration [25]

〈τ〉ES =
|Ω|
D

(
1

CSa
+
f(σ)

4nε

)
, (92)

where |Ω| is the volume, CSa the capacity of the surface ∂Sa containing the absorbing
windows, and f(σ) an unknown function that whose leading order is given by f(σ) = 1 as
σ tends to 0 [3]. When the surface Sa is a sphere of radius a, the capacitance CSa = 4πa,
and the MFPT is given by

〈τ〉ES =
|Ω|
D

(
1

4πa
+
f(σ)

4nε

)
. (93)

Here, for a Brownian particle (no drift and no killing measure), the MFPT (equation (83))
reduces to

〈τ〉Φ=0,k=0 ≈
|Ω|
D

(
1

4πa
+

1

4nε

(
1− nε

πa

(
2α0 − α2

0 log(α0) +
1

n
log
( ε
a

))))
. (94)

Thus, we identify the function

f(σ) = 1− 8
σ

π
+

ε

aπ
(1− 4σ) log

( ε
a

)
+ o

( ε
a

)
, (95)

when non-overlapping absorbing holes are randomly distributed and

f(σ) = 1− 4

√
σ

π
+

ε

aπ
log
(√

σ
)

+ o
( ε
a

)
, (96)

when absorbing holes are regularly distributed (equally spaced). We end this section

with two remarks. First, for a coverage σ << 1, 8σ
π
< 4

√
σ
π

and the MFPT of
a Brownian particle to an absorbing hole is larger for randomly compared to
regularly distributed (equally spaced) holes. This regular distribution shall
be close to the arrangement of Fekete points on a sphere that minimizes
the MFPT [7]. Second, formulas (95) and (96) derived here by accounting
for two window coverage predict that the MFPT formula is different than
previously reported based on an effective approximation where f(σ) = 1 − σ
[30] or on an interpolation procedure using Brownian simulations for which

f(σ) = 1− σ
1 + 3.8σ1.25 [2]. This latter difference may arise from the differences in

the windows’ arrangement.
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5 Comparison of asymptotic formula with respect to

Brownian simulations

We compare our asymptotic formula for the probability (82) and conditional MFPT (83)
with Monte-Carlo simulations when the number of holes n, their coverage of the nuclear
surface σ = nπε2

4πa2 , or the distance r0 between drift and cell centers vary. We model the cell
as a ball of radius R and the nucleus as a centered sphere Sa (radius a) uniformly covered
by n small absorbing pores (radius ε) (Figure 1 right). Stochastic particles are reflected
on the external membrane r = R and on r = a except on all windows ∂Na =

⋃n
i=1 ∂Ωi,

centered at random locations (xi)
n
i=1. To explore how the number of holes and their

coverage impact the probability and conditional MFPT, we first use a constant radial
drift B directed toward the nucleus (with a potential Φ(r) = −Br). We consider a
constant killing rate k(x) = k0 and consequently, using function

G(D,B, a) =
4πe−

Ba
D

|Ω|

(
D

B
a2 + 2

(
D

B

)2

a+ 2

(
D

B

)3
)

(97)

expressions (86-87) simplify to

〈P 〉 =
e−

Ba
D

〈τ〉Φ=0,k=0 (G(D,B, a)−G(D,B,R)) k + e−
Ba
D

, (98)

and

〈τ〉 =
〈τ〉Φ=0,k=0 (G(D,B, a)−G(D,B,R))

〈τ〉Φ=0,k=0 (G(D,B, a)−G(D,B,R)) k + e−
Ba
D

. (99)

In Figure 2a, we compare these expressions to stochastic simulations for an
increasing number of holes while maintaining constant the ratio σ = nπε2

4πa2 = 2%
of the nucleus surface covered by the absorbing windows. This ratio was
calibrated using a surface covered by 2, 000 pores of 25nm diameter on the
nucleus of a chinese hamster ovary cell [22]) (parameters are summarized in
table 1).

We evaluate the convergence of the Monte-Carlo simulations by computing
the difference between two independent runs and stop the iteration when it
is less than 5%. The converge is attained for N > 10, 000 runs with a time
step dt < 0.001/

√
n. These values show that Monte-Carlo simulations become

rapidly intractable as the number of absorbing holes increases, confirming
the need of asymptotic formula to analyse the passage time to many small
holes. We limited our simulations to the range 1 ≤ n ≤ 30. In this range, we
observe that the asymptotic formula we derived match the simulation results.
The remaining difference between the simulation results and the formula is
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probably due to higher order terms in asymptotic formula, that were recently
discussed in [21]. Our analysis show that the conditional MFPT (respectively
the probability) rapidly decreases (respectively increases) with the number of
holes, the MFPT decreasing by 40% for n = 30 (MFPT = 160s) compared to
n = 1 (MFPT = 270s) and the probability being more than doubled (55% for
n = 30 compared to 26% for n = 1). We also compare Monte-Carlo simulations
to previous formula (11) that does not account for hole interactions (f(σ) = 0
in expression (95)), and observe a significant mismatch even for few (n > 5)
absorbing holes.

In a second ensemble of simulations, we kept constant the number of ab-
sorbing holes (n = 10) and we vary the coverage by absorbing windows σ = nε2

a2

from 2% to 50% (fig. 2b). We observe that formula (99) and (98) with the
coverage function f(σ) given by expression (95) match simulations even for
high coverage (σ ≤ 30%) before a small difference appears. We also plotted
MFPT and the probability with no correction for holes’ coverage (f(σ) = 1),
and observe that they deviate significantly from simulations for σ ≥ 5%.
We also studied the conditional MFPT and probability for off-center drift.
This question is particularly relevant in modeling viral trafficking as the vec-
tor field for the drift is centered at the centrosome, which close to the nucleus.
We kept n = 10 and σ = 2% and vary the distance r0 between the domain and
and the drift center from r0 = 0 to r0 = R = 20µm (Fig. 2c). The asymptotic
formula (82) and (83) for the MFPT and the probability that a stochastic virus
reaches an absorbing pore can be made more explicit by using a potential with
an off-center constant drift B equals to

Φ(r0, r, φ) = B
√
r2 + r2

0 − 2rr0 cos(φ). (100)

Using this expression, the surface integral
∫ π

0
e−

Φ(r0,r,φ)
D sin(φ)dφ and the volume

integral
∫ R
a

∫ π
0
e−

Φ(r0,r,φ)
D r2 sin(φ)dφdr in expressions (82) and (83) can be com-

puted numerically.
These formula match the results of stochastic simulations in the entire

interval of r0 ∈ [0, 20µm]. The variance increases drastically with the distance
r0. This high variability is due to the random configuration of the n = 10 holes
that vary between simulations runs: if an absorbing window is located next
to the drift center, the MFPT will be lower than the results obtained from an
homogeneous distributed windows.

Finally, it has been hypothesized that large viruses characterized by small
diffusion constant could be trapped to the centrosome and need to be propel
actively to get back-transported toward the nucleus [4]. We thus plotted here
the MFPT and the probability that a large virus with decreased diffusion
D′ = D/10 = 0.13µm2s−1 reaches a nuclear pore with respect to the distance
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r0 between the centrosome and the nucleus. We found that the probability
decreases drastically for r0 ≥ 5, and falls to approximately 0 for r0 ≥ 8µm
suggesting that large viruses should use a different routing strategy, involving
a combination of passive diffusion and retrograde transport to move from the
centrosome toward the nucleus surface.
We conclude that Monte-Carlo simulations have shown that the asymptotic
formula derived here are valid in large range of parameters. Moreover, the
geometry of the cell, the nuclear pores configuration and the viral motion affect
the ability of a single virus to reach a nuclear pore to deliver its genome.

6 Conclusion

We extended here the asymptotic formula for the NET and the probability that a stochas-
tic viral particle reaches a nuclear pores originally developed in [12]. We also obtained a
refinement of the classical Berg-Purcell formula for a Brownian particle to get absorbed
on a partially reflected sphere.

The present approach applies to an intermittent dynamics with alternative periods
of free diffusion and directed motion along MTs. This dynamics characterizes a large
class of cellular transport. When the intermittent particle can be degraded (through the
ubiquitin-proteasome machinery or trapped in the crowded cytoplasm), the asymptotical
formula for the probability 〈P 〉 and the mean time 〈τ〉 to reach a small absorbing target
among n accounts for the geometrical interactions between the windows. When the tar-
gets co-localize on a small domain Sa, the asymptotics of 〈P 〉 and 〈τ〉 are derived in the

limit |Sa||Ω| � 1. We confirmed the validity of asymptotics formula for the probability 〈P 〉
and the mean time 〈τ〉 respectively using Brownian simulations.
These formulas provide an estimate for the arrival time of DNA viruses to a
small nuclear pore. Contrary to the classical narrow escape asymptotic where
the leader order term contains most of the geometry, here the O(1)−term ac-
counts for the interactions between windows, discussed in [24, 6]. For viruses,
where the number of nuclear pores is very high (n ≈ 2, 000, σ = 2% [22]) making
Brownian simulations intractable, our formula predict that 〈τ〉 = 90 seconds
and 〈P 〉 = 74% which is close to the MFPT 〈τ〉 = 78 seconds and the probability
〈P 〉 = 78% to reach a completely absorbing nucleus. Moreover, these estimates
are far from the ones derived in [12] with formula (11) for a single big pore
covering σ = 2% of the nucleus (〈τ〉 = 268 seconds and 〈P 〉 = 26%). This shows
that the fragmentation of absorbing targets in many smaller targets renders
the overall absorption process much more efficient.
Finally, MTs along which viruses are transported point towards the centro-
some which is close to the nucleus leading to an off-center effective potential.
Our formula shows that the distance of drift to cell center decreases the prob-
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Figure 2: Conditional MFPT 〈τ〉 and probability 〈P 〉 for a virus to reach an absorbing
nuclear pore. a- Centered drift, absorbing surface coverage ratio σ = 2%. For a
centered drift, the MFPT (equation (99)) and probability (equation (98)) formula (blue) is
compared to stochastic simulations (black, bars = ±1 standard error) for an increasing number

of absorbing windows, distributed randomly. The coverage ratio σ = nπε2

4πa2 of absorbing windows
to nuclear surface is fixed to σ = 2% [22]. Plot of the asymptotics formula (9) (corresponding
to f(σ) = 0 in equation (95)) that neglects windows interactions (red). b- Centered drift,
number of pores n = 10 fixed. Same as in a, but now the number of random, absorbing
pores is fixed to n = 10. We plot the formula without coverage correction (f(σ) = 1 in equation
(95)). c- Non-centered drift, coverage σ = 2% and number of pores n = 10 fixed. We
shifted the drift-center at a distance 0 ≤ r0 ≤ R from the center and compare MFPT (83) and
probability (82) as in a. The coverage ratio σ = 2% and the number of pores n = 10 are kept
constant. The asymptotic formula for a smaller diffusion D′ = 0.13µm2s−1 = D/10 and a ratio
B/D′ = 1.5µm−1 are shown (dashed blue). We used 10000 stochastic trajectories with a time
step dt = 0.001/

√
n. Parameters are summarized in table 1.
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ability that a virus reaches a nuclear pore before being degraded, and that
large viruses with small diffusion coefficient are even more affected. Indeed,
for a distance r0 = 6µm just above the nucleus radius a = 5µm, our formula
predicts that the viral probability 〈P 〉 is decreased to 56%, and falls to 4.8% and
0.0004% when the diffusion coefficient is divided by 10 (D = 0.13µm2s−1) or 100
(D = 0.013µm2s−1). The latter small diffusion coefficient has been reported for
many large viruses (table 1 in [29]), and other mechanisms such as retrograde
transport of viruses from the centrosome to the nucleus might be involved in
viral trafficking to optimize the delivery of their genome to the nucleus.
It would certainly be valuable to extend the present work by considering
the exact mechanism, where large molecules are being imported through nu-
clear pores. Such model should account for cargo molecules that transport
large molecules though the pore, which is an energy costly process (ATP-
dependent). Such model should be further coarse-grained into a steady-state
Robin boundary condition, instead of using the pure absorbing condition at
the windows, as we did here. The constant in the Robin term should then be
carefully derived from the model equations, see also [21].

Parameter Description Value
D Diffusion constant of the virus D = 1.3µm2s−1

for the Associated-Adeno-Virus [27]
B Drift B = 0.2µms−1 [17]
σ % of the nuclear surface covered σ = 2% [22]

by n nuclear pores
k Degradation rate k = 1/360s−1 (10 times the rate observed

for gene vectors [20])
R Radius of the cell R = 20µm (Chinese hamster ovary cell)
a Radius of the nucleus a = 5µm[22]

Table 1: Numerical parameters used for Brownian simulations

7 Appendix

We derive in this appendix the asymptotic of the Neumann’s function N (xi,xj) for two
absorbing patches of size ε located on the surface of a small ball of radius a. Expansion
(48) is insufficient and we shall now derive a two parameter expansion in a and ε. We start

by observing that the log-term −1
4πaD

log
(

1
|xi−xj |

)
can be much larger than the leading
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order term 1
2πD|xi−xj | when |xi − xj| ≈ a, for a � |Ω| 13 . Consequently, we shall re-

examine the log-term expansion. For x and x0 in the neighborhood of the sphere Sa, we
expand the Neumann function N (x,x0)

N (x,x0) = Ñ (x,x0) +O(1), (101)

where Ñ (x,x0) is solution with D = 1 of the Laplace equation

∆Ñ (x,x0) = −δ(x− x0) for x ∈ R3

∂Ñ
∂n

(x,x0) = 0 for x ∈ Sa. (102)

To compute the log-term, we first decompose Ñ (x,x0) = 1
4π|x−x0| + Φ(x,x0) where Φ is

solution of the system:

∆Φ(x,x0) = 0, for x ∈ R3

∂Φ

∂n
(x,x0) = − ∂

∂n

(
1

4π|x− x0|

)
, for x ∈ Sa. (103)

To solve equation (103), we choose a coordinate system for which the point source x = x0

is on the positive z−axis. Since aΦ = 0 and Φ is axisymmetric, it has the series expansion

Φ(x,x0) =
∞∑
n=0

bn(|x0|)
Pn(cos(θ))

|x|n+1
, (104)

where Pn are the Legendre polynomials of integer n, θ is the angle between x and the
north pole and bn(|x0|) are coefficients, determined from boundary condition (103).
For x ∈ Sa and ρ = |x|,

∂Φ

∂n
(x,x0) =

∂Φ

∂ρ
(ρ = a) = −

∞∑
n=0

(n+ 1) bn(|x0|)
an+2

Pn(cos(θ). (105)

For |x| < |x0|, we have the expansion

1

4π|x− x0|
=

1

4π

∞∑
n=0

|x|n

|x0|n+1
Pn (cos (θ)) , (106)

which leads to the boundary condition:

− ∂

∂ρ

(
1

4π|x− x0|

)
(ρ = a) = − 1

4π

∞∑
n=0

nan−1

|x0|n+1
Pn (cos (θ)) . (107)
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Injecting relations (105-107) into the boundary condition (103), we obtain that for all
n ≥ 0:

bn(|x0|) =
1

4π

na2n+1

(n+ 1)|x0|n+1
. (108)

The Neumann function Ñ (x,x0) is then given by:

Ñ (x,x0) =
1

4π|x− x0|
+

1

4π

∞∑
n=0

na2n+1

(n+ 1)|x|n+1|x0|n+1
Pn(cos(θ)), (109)

that we rewrite

Ñ (x,x0) =
1

4π|x− x0|
+

1

4π

∞∑
n=0

(
a2n+1

|x|n+1|x0|n+1
− a2n+1

(n+ 1)|x|n+1|x0|n+1

)
Pn(cos(θ)).(110)

Using expansion (106), we have for the first term of (110),

1

4π

∞∑
n=0

a2n+1

|x|n+1|x0|n+1
Pn(cos(θ)) =

a

4π|x0||x− a2x0

|x0|2 |
. (111)

To compute the second term I(ρ) = −
∑∞

n=0
a2n+1

(n+1)ρn+1|x0|n+1Pn(cos(θ)), we differentiate

I ′(ρ) =
∞∑
n=0

a2n+1

ρn+2|x0|n+1
Pn(cos(θ)) =

a

ρ|x0||x− a2x0

|x0|2 |
, (112)

that is

I ′(ρ) =
1

ρa
(

1 + |x0|2ρ2

a4 − 2 |x0|ρ
a2 cos(θ)

) 1
2

. (113)

Because limρ→∞ l(ρ) = 0, we have:

l(ρ) = −
∫ ∞
ρ

I ′(s)ds = −
∫ ∞
ρ

ds

sa
(

1 + |x0|2s2
a4 − 2 |x0|s

a2 cos(θ)
) 1

2

. (114)

Thus,

l(ρ) =
1

a
log


|x0|ρ
a2 (1− cos(θ))

1− |x0|ρ
a2 cos(θ) +

(
1 +

(
|x0|ρ
a2

)2

− 2 |x0|ρ
a2 cos(θ)

) 1
2

. (115)
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Finally, we obtain the expression of the Neumann function Ñ (x,x0) and the exact de-
pendency with respect to the inner ball of radius a:

Ñ (x,x0) =
1

4π|x− x0|
+

a

4πD|x0||x− a2x0

|x0|2 |

+
1

4πa
log


|x0||x|
a2 (1− cos(θ))

1− |x0||x|
a2 cos(θ) +

(
1 +

(
|x0||x|
a2

)2

− 2 |x0||x|
a2 cos(θ)

) 1
2

.(116)

When x and x0 are on the sphere Sa, |x0| = |x| = a, we have

Ñ (x,x0) =
1

2π|x− x0|
+

1

4πa
log

(
|x− x0|

2a+ |x− x0|

)
. (117)
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