N Carjan 
  
M Rizea 
  
Acceleration induced neutron emission in heavy nuclei

Keywords: N. Carjan, M. Rizea neutron emission, acceleration, moving potential, time-dependent Schrödinger equation

 

What if, like a fully-filled water tank, a nucleus will spill its less bound nucleons when accelerated? Most probable this could happen to neutrons since, contrary to protons, they are not protected by a Coulomb barrier.

In case the answer is "yes", we are dealing with a new way of neutron emission from nuclei.

Acceleration of heavy nuclei is an integral part of nuclear fission and reactions induced by heavy-ions. If neutrons are emitted during the acceleration of the fission fragments or when the projectile moves closer to or away from the target, one has to take into account this emission in the analysis of the data.

To give a first answer to this captivating question we choose a simple framework: the independent particle shell model [START_REF] Goeppert-Mayer | Nuclear Shell Structure[END_REF] and a simple scenario borrowed from the operating mode of a linear accelerator [START_REF] Wiedemann | Particle Accelerator Physics[END_REF]. We therefore solve the time-dependent Schrödinger equation with a moving mean-field of Woods-Saxon type and study the change in the neutron eigenstates during 10 -21 sec of constant acceleration followed by 10 -21 sec of constant velocity.

As in the independent particle shell model, we look at one neutron at a time. It moves in a mean field created by all other nucleons. At the same time it contributes to the potential seen by the others. If the nucleons are displaced, the nuclear density is displaced and, by selfconsistency, the potential follows. As for the shell model, our approach is expected to work for weakly bound nucleons.

The motion of a quantum particle in a moving one-dimensional potential well has been already studied in the field of control systems [START_REF] Rouchon | Control of a quantum particle in a moving potential well in[END_REF][START_REF] Beauchard | Controlla-bility of a quantum particle in a moving potential well[END_REF][START_REF] Miyashita | Conveyance of a quantum particle by a moving potential well[END_REF].

In our case, we consider a neutron in a moving nuclear potential that has axial symmetry. It is represented by a wave function solution of the Schrödinger equation

ih ∂Θ(ρ, z, t) ∂t = H(ρ, z, t)Θ(ρ, z, t), (1) 
where H is the single-particle Hamiltonian.

H = - h2 2m 1 ρ ∂ ∂ρ + ∂ 2 ∂ρ 2 + ∂ 2 ∂z 2 - Λ 2 ρ 2 +V (ρ, z -α(t)).
To cover nuclei from spherical to strongly deformed, the formalism is developed in cylindrical coordinates. α(t) describes the displacement of the potential in time along the z axis. Λ is the projection of the orbital angular momentum on the symmetry axis. For simplicity the spin-orbit term is neglected. By the Liouville transformation Φ = ρ 1/2 Θ, the first derivative with respect to ρ from H is removed, resulting a simplified Hamiltonian H of the form:

H = - h2 2m ∂ 2 ∂ρ 2 + ∂ 2 ∂z 2 - Λ 2 -1/4 ρ 2
+V (ρ, z -α(t)).

To solve the corresponding equation, a transformation of both the variable and the function from the non-inertial (laboratory) to the inertial (nuclear) system is convenient. It avoids an interpolation of the potential between the grid points at each time step. We will explain this transformation on the 1-D TDSE:

ih ∂Φ(t, z) ∂t = - h2 2m ∂ 2 Φ(t, z) ∂z 2 +V (z-α(t))Φ(t, z) (2) 
We go in the nuclear frame by the following changes of the variable z → q and of the function Φ → Ψ [START_REF] Butkovsky | Control of Quantum-Mechanical Processes and Systems[END_REF]:

q = z -α(t), Φ(t, z) = exp(u)Ψ(t, q) (3) where u = ib z α -α α + 1 2 t 0 α2 (t ′ )dt ′ .
By taking b = m h , it can be shown that Eq.(2) will be transformed in ih ∂Ψ(t, q) ∂t = -h2 2m

∂ 2 Ψ(t, q) ∂q 2 + V (q)Ψ(t, q) (4) +mq α(t)Ψ(t, q).
To eliminate the linear term in q (which tends to ∞ as q → ∞), a further function transformation is performed [START_REF] Chou | Time-dependent Schrodinger equation with Markovian outgoing wave boundary conditions: Applications to quantum tunneling dynamics and photoionization[END_REF] 

Ψ(t, q) = exp -i λ h χ(t, q) (5) 
with

λ(t, q) = qm t 0 α(t ′ )dt ′ = qβ(t).
In our particular case α(t)

= 1 2 At 2 . α = At, α = A, λ = Bqt, B = mA u = ib zAt - 1 3 A 2 t 3
and the equation for χ assumes the form:

ih ∂χ(t, q) ∂t = - h2 2m ∂ 2 χ(t, q) ∂q 2 + 2 hi Bt ∂χ(t, q) ∂q - 1 h2 B 2 t 2 χ(t, q) + V (q)χ(t, q). (6) 
The advantage of these transformations is that they lead to equations in which the potential depends on a time-independent variable, the dependence on α(t) being transferred in the coefficients of Eqs.(4), [START_REF] Butkovsky | Control of Quantum-Mechanical Processes and Systems[END_REF].

Since the potential moves along the z-axis, the inclusion of the second coordinate ρ is straightforward. We therefore work with the variables ρ and q on a finite numerical grid: [0,160]x[-256,256], ∆ρ = ∆q =1/8 fm. For the time evolution we use the step ∆t =1/128 ×10 -22 sec. The equations ( 4) and ( 6) are solved numerically by the Crank-Nicolson method. One obtains a linear system which is solved by a routine based on the Strong Implicit Procedure [START_REF] Jesshope | SIPSOL -suite of subprograms for the solution of the linear equations arising from elliptic partial differential equations[END_REF]. As initial so-lutions (at t = 0) we consider eigenfunctions of the original Hamiltonian.

The propagation in time is done in two steps. We consider a quadratic α(t) and use Eq.( 6) for 10 -21 sec. Then we consider a linear α(t) and use Eq.( 4) without the α term for another 10 -21 sec. At any time, by performing the inverse tranformations, we can retrieve the solution Φ(ρ, z, t) of the original equation. For the 1st step we choose the constant acceleration A=0.5[10 44 f m/sec 2 ] resulting a constant velocity v =5[10 22 f m/sec]=0.167c for the 2nd step. c is the speed of light. As first example, we take spherical 236 U and study 3 neutron states with Λ=0 around the Fermi level. The parameters of the Woods-Saxon potential are fitted to single-particle and single-hole states in the 208 Pb region [START_REF] Rost | Proton shell-model potential for lead and the stability of superheavy nuclei[END_REF].

Fig. 1 shows the result for the 14th eigenstate laying at -4.8 MeV. For T > 0, the wave packet exhibits a changing asymmetry with respect to the ρ axis indicative of an oscillation. In fact, we are dealing with an oscillation over the usual vibration of a quasistationary state. A similar vibration causes the barrier asaults in the Gamow picture of α decay [START_REF] Gurwitz | Decay width and shift of a quasistationary state[END_REF]. The presence of the neutron inside the nucleus, measured by N in , decreases from 1.00 (at T=0) to 0.88 (at T=10). A neutron, initially occupying this state, has therefore 12% chance to be emitted during the acceleration phase. For T > 10 the oscillatory motion continues. At T=20 N in reaches an even lower value (0.86) because at T=10 the wave packet has short unbound tails which will inevitably leave the nucleus.

The most probable direction of emission is 180 • with respect to the displacement of the nucleus as in classical mechanics. There is however a weaker branch at ≈ 150 • which has a quantum origin. It is known that the tunneling path of a metastable state is mainly dictated by its quantum numbers [START_REF] Talou | Time-dependent approach to bidimensional quantum tunneling: application to the proton emission from deformed nuclei[END_REF][START_REF] Carjan | Angular distribution of protons emitted from oriented nuclei: toward imaging single-particle wave functions[END_REF]. In other words the emission preserves the spatial distribution of the respective state. Hence we expect a 2nd peak at 125 • in the nuclear system which translates into an emission at 150 • in the laboratory system. Fig. 2 shows the time dependence of a neutron states with energy (-3.4 MeV) above the Fermi level. 49% of this wave function is emitted, in the same interval of time, through strong oscillations. Predictably, the emission starts earlier and is more intense. As for Φ 0 14 , there are also two directions of emission: one intense at 180 • and one weak at an angle between 180 • and 90 • .

A wave function with energy lower than the Fermi level was found to oscillate during both regimes: quadratic and linear α(t). It doesn't however succeed to escape: its presence inside the nucleus doesn't change.

The percentage of the wave packet that leaves the nucleus, N in (0) -N in (T), is a measure of the neutron emission probability. We have plotted this quantity as a function of time for Φ 0 14 and Φ 0 15 in Fig. 3. As expected, neutrons that are less bound have higher emission probability. One can observe the effect of the oscillation of the wave function in the mean-field and the plateau at large times (the emission is gradually reduced when the acceleration is turned off) .

Summing up, we start with an eigenstate that, due to acceleration, becomes wave packet, i.e., it occupies with time dependent probabilities neighbouring states (oscillation) including some in the continuum (emission).

For a better understanding of the physics involved, we divide the total energy in the laboratory system in significant terms:

Φ|H|Φ = - h2 2m Ψ * ∂ 2 Ψ ∂ρ 2 + Ψ * ∂ 2 Ψ ∂q 2 dρdq + h2 2m b 2 α2 |Ψ| 2 dρdq - h2 2m 2ib α Ψ * ∂Ψ ∂q dρdq + h2 2m Λ 2 -1/4 1 ρ 2 |Ψ| 2 dρdq + V (ρ, q)|Ψ| 2 dρdq. (7)
The 1st term is the average kinetic energy in the nuclear frame. The 2nd term reduces to m α2 /2; it is the extra kinetic energy due to the velocity of the potential. The 3rd term reduces to α < p > where < p > is the average momentum in the nuclear frame. It represents the variation of the neutron energy due to the interaction with the moving wall of the potential; equivalent to the "one-body" dissipation [START_REF] Blocki | One-Body Dissipation and the Super-Viscidity of Nuclei[END_REF]. The last two terms are the average centrifugal and nuclear potentials respectively.

The sum E1+E4+E5 i.e., the average neutron energy in the nuclear frame, slightly in- creases up to T=10 and stays constant afterwards. After T=10 the oscillations of E are due only to E3 as clearly seen in Fig. 4.

In the absence of correlations the oscillations last long time. In reality, with increasing excitation energy, the time between collisions decreases and the oscillations are slowly damped due to the onset of correlations.

Finally we study the effect of nuclear deformation on the neutron emission due to acceleration of the nucleus along the deformation axis. For this we describe the nuclear shape by a pure Cassini oval with a prolate deformation parameter ǫ=0.52. It represents the shape isomer of 236 U [START_REF] Pashkevich | On the asymmetric deformation of fissioning nuclei[END_REF]. The results for two neutron states, one below and one above the Fermi level, are presented in Figs. 5 and6 respectively. The emission probability is again larger in the latter case: N in = 0.77 vs 0.39. One can also notice that the emission at angles smaller than 180 • to the z-axis is much intenser than in the previous cases. It is because a quasi-stationary state in a deformed nucleus tunnels most probably pependicularly to the deformation axis [START_REF] Strottman | New Aspects in the Decay of Quasi-Stationary States by Multidimensional Tunneling[END_REF], irrespective if the barrier is lower or higher along this direction. It is what happens here: the emission occurs at 90 The neutron energy in the laboratory system (red), in the nuclear system (blue) and the energy due to the interaction with the moving potential (green).

nuclear system. Due to the displacement of the nucleus however, in the laboratory system, the emission occurs at slightly larger angles (≈ 110 • ). Hence there is a qualitative difference between spherical and strongly deformed nuclei: in the latter case, the direction imposed by quantum mechanics competes in intensity with the classically expected direction of emission. Since in the present calculation the potential moves in the z-direction (Eq. ( 2)), one can study nuclei with the deformation axes aligned with the velocity vector (axial symmetry). In heavy-ion reactions however a deformed projectile approches a target with different orientations of the deformation axes. For a quantitative evaluation, an average over all orientations has to be performed.

This type of neutron emission doesn't occur only during the acceleration of a nucleus but also during the slowing down (A<0) of a projectile when it approaches a target. Among possible effects, an increase of the neutron-transfer cross section is expected.

The chosen value of A (0.5) is two times larger than the acceleration during the Coulomb repulsion of two equal fission fragments from 236 U separated by D cm = 20 fm (A=0.249) but comparable with that for the collision of two 236 U nuclei at the same distance of approach (A=0.498). In conclusion, the excitation of the fission fragments during their acceleration (separation) is improbable. On the other hand, a heavy projectile could become excited (even emit neutrons) when it approaches a heavy target or moves away from it. For a quantitative answer a dedicated study is necessary. The acceleration produced in Coulomb interactions is not constant, it depends on D cm . A high level can be however maintained for 10 -21 sec, a short time at the scale of the above mentioned processes (10 -20 sec).

A heavy-ion of mass m and charge q in an electric field E is accelerated along the field lines; a = qE/m = 0.376

× 10 23 × E[f m/s 2 ] with E in [V /m].
To attain an acceleration comparable with the one used above requires E = 10 21 [V /m] i.e., a much too large value.

A comment on the peculiarity of accelerating a heavy-ion is appropriate. Altough all forces that produce the acceleration of heavy ions (such as the Coulomb force or the force qE exerted by an electric field E on a charge q) act only on protons, the neutrons follow. To decouple the two fields one needs extreme conditions. For instance to excite an isovector giant dipole resonance, a relativistic projectile is necessary [START_REF] Stetcu | Relativistic Coulomb Excitation within the Time Dependent Superfluid Local Density Approximation[END_REF].

The process of acceleration induced neutron emission has similarities with the realease of neutrons at scission i.e., during the last stage of nuclear fission [START_REF] Rizea | Dynamical Scission Model[END_REF][START_REF] Carjan | Similarities between calculated scission-neutron properties and experimental data on prompt[END_REF]. They are both due to a fast change of the poten- tial in which they move that transforms each neutron state into a wave packet with components in the continuum. In the case of scission neutrons however, it is the shape of the potential and not its position that changes.

A more quantitative evaluation of this process requires a time-dependent, selfconsistent microscopic approach [19]. At present it is a difficult task considering the large numerical grid that is necessary.

We are grateful to Gurgen Ter-Akopian and Jorgen Randrup for their interest in this work and illuminating discussions. 
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 1 Figure 1: (Color online) Time evolution of |Φ 0 14 | 2 during (left) and after (right) acceleration for spherical 236 U . N in is the norm inside the dotted circle defined by V 0 /100. T is the time in 10 -22 sec.
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 2 Figure 2: (Color online) The same as in Fig. 1 but for Φ 0 15 .
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 334 Figure 3: (Color online) The neutron emission probability as a function of time for Φ 0 14 and Φ 0 15 .
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 5 Figure 5: (Color online) Time evolution of |Φ 0 17 | 2 during (left) and after (right) acceleration for the shape isomer (deformation parameter ǫ=0.52) of 236 U . N in is the norm inside the dotted ellipse defined by V 0 /100. T is the time in 10 -22 sec.

Figure 6 :

 6 Figure 6: (Color online) The same as in Fig.5 but for |Φ 0 19 | 2 .
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