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ABSTRACT
We consider the effects of weak gravitational lensing on observations of 196 spectroscopically
confirmed Type Ia Supernovae (SNe Ia) from years 1 to 3 of the Dark Energy Survey (DES). We
simultaneously measure both the angular correlation function and the non-Gaussian skewness
caused by weak lensing. This approach has the advantage of being insensitive to the intrinsic
dispersion of SNe Ia magnitudes. We model the amplitude of both effects as a function of
σ 8, and find σ 8 =1.2+0.9

−0.8. We also apply our method to a subsample of 488 SNe from the
Joint Light-curve Analysis (JLA; chosen to match the redshift range we use for this work),
and find σ 8 =0.8+1.1

−0.7. The comparable uncertainty in σ 8 between DES–SN and the larger
number of SNe from JLA highlights the benefits of homogeneity of the DES–SN sample, and
improvements in the calibration and data analysis.

Key words: cosmological parameters – cosmology: observations – large-scale structure of the
universe.

1 IN T RO D U C T I O N

Weak gravitational lensing (WL) is a key technique in observational
cosmology (e.g. Wittman et al. 2000; Schrabback et al. 2010;
Heymans et al. 2012; Hildebrandt et al. 2017), and also a key
target of the Dark Energy Survey (DES; The Dark Energy Survey
Collaboration 2005; Abbott et al. 2016; Becker et al. 2016; Abbott
et al. 2018; Omori et al. 2018; Baxter et al. 2019). Since WL

� E-mail: edward.macaulay@gmail.com

is sensitive to space-like perturbations to the background cosmo-
logical metric, WL observations are a crucial cosmological test
of theories of modified gravity (e.g. Schimd, Uzan & Riazuelo
2005; Schimd et al. 2007; Schmidt 2008; Tsujikawa & Tatekawa
2008).

The most established method of WL is the measurement of
coherent distortions in the shapes of galaxies, particularly the shear
(e.g. Joudaki et al. 2017; Troxel et al. 2018; Zuntz et al. 2018). WL
has also been detected in observations of the Cosmic Microwave
Backround (CMB; e.g. Omori et al. 2018; Planck Collaboration
VIII 2018b).
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WL is also expected to affect the magnitudes of standard candles.
Magnification due to WL has been detected in quasars (e.g. Scranton
et al. 2005; Bauer et al. 2011), and also studied with Type Ia
Supernovae (SNe Ia; e.g. Wambsganss et al. 1997; Valageas 2000;
Wang & Mukherjee 2004; Wang 2005; Dodelson & Vallinotto
2006). We note that WL is also expected to affect gravitational-wave
standard sirens, e.g. Shang & Haiman (2011) and Liao et al. (2017).

Overdense lines of sight enhance the focus of light rays, causing a
magnification in the observed brightness, whereas underdense lines
of sight lead to a de-magnification. Smith et al. (2014) estimated
the expected lensing magnification of SNe in the Joint Light-curve
Analysis (JLA) SN sample (Betoule et al. 2014). The expected
lensing magnification for each SN was calculated by integrating the
line-of-sight densities of galaxies observed by the Sloan Digital Sky
Survey (SDSS) Baryon Oscilation Spectroscopic Survey (Dawson
et al. 2013). A correlation between the magnitude residuals and the
expected lensing signal was found at the 1.7σ confidence level.

Since most lines of sight in the universe are underdense, and
only rare lines of sight are overdense, WL causes a characteristic
skewness in the distribution of magnitude residuals of standard
candles. The amount of lensing skewness depends on the contrast
between voids and overdensities, and as such depends on �m and
σ 8.

To provide fast calculations of 1D lensing statistics, Kainulainen
& Marra (2009) developed the turboGL code, which was devel-
oped further in Kainulainen & Marra (2011). These lensing statistics
were the basis for a series of papers developing a method to estimate
the likelihood of the lensing distribution of a SN sample (MeMo,
‘the Method of the Moments’; Marra, Quartin & Amendola 2013;
Quartin, Marra & Amendola 2014).

Instead of enforcing a fiducial distribution for the SN magnitude
residuals, MeMo is based on empirical fitting functions for the first,
second, third, and fourth moments of the residuals of SNe distance
measurements, which have been calibrated to N-body simulations
as a function of redshift and parameters �m, σ 8, and the intrinsic
dispersion in SN magnitudes, σ int. In Castro & Quartin (2014),
MeMo was applied to the JLA sample, finding σ8 = 0.84+0.28

−0.65 (at
the one-standard deviation confidence level).

The effect of WL on SN magnitudes shares some similarities with
the effects of Peculiar Velocities (PVs), although there are also some
significant contrasts (Gordon, Land & Slosar 2007; Neill, Hudson &
Conley 2007; Davis et al. 2011; Castro, Quartin & Benitez-Herrera
2016; Garcia, Quartin & Siffert 2019). Both effects are sensitive
to cosmological density fluctuations. However, PVs are sensitive
to large-scale (∼Gpc) density fluctuations, whereas WL is most
sensitive to far smaller (<Mpc) scales.

Although WL directly affects the observed magnitudes, PVs
mainly1 affect the redshift; the apparent effect on the magnitude
residual is due to comparing the theoretical magnitude at the PV-
affected redshift, instead of the ‘true’ cosmological redshift.

While both effects are similar in magnitude at z ∼ 0.2, PVs
dominate at lower redshifts, while WL becomes dominant at higher
redshifts. Over the redshift range 0.1 < z < 0.3, the two effects are
similar in magnitude (Macaulay et al. 2017).

Since many SNe in the JLA catalogue are within this redshift
range, in Macaulay et al. (2017) we built on the WL MeMo method
to include the effects of PVs on the moments of magnitude residuals.
Modelling both PVs and WL allows for a simultaneous test of the

1There is a direct effect on the observed magnitude from the ‘(1 + z)’ term
in the luminosity distance, although this is not the dominant effect.

Figure 1. The angular coordinates of the four DES supernova fields. Due to
the large angular separations between fields, we do not consider correlations
between different fields. The points have been colour-coded by redshift; blue
for lowest z, and red for highest z.

consistency of Newtonian and lensing metric perturbations, which
is a key prediction of the �CDM model (e.g. Hu & Jain 2004;
Knox, Song & Tyson 2006; Kunz & Sapone 2007; Zhang et al.
2007; Bertschinger & Zukin 2008; Simpson et al. 2013).

However, in this paper, we consider only the effects of WL, since
the effect of PVs is sub-dominant, due to the absence of low redshift
(z < 0.2) SNe in the DES–SN sample.

In addition to the effect on the moments of residuals, WL
also causes correlations in the magnitudes. Scovacricchi et al.
(2017) modelled the signal-to-noise ratio of the lensing correlation
function, and forecast the signal-to-noise ratio of a WL detection
by LSST. Scovacricchi et al. (2017) showed that for a SN survey
the size of DES–SN (196 SN), the effects of WL on the correlation
function would not be detectable. Nevertheless, measurements of
the correlation function (however noisy), may still place upper limits
on the effect of WL on the magnitude residuals.

Since the correlation function is (in principle) independent of the
skewness, we can combine both observations. However, we may
expect covariance between the two different types of measurements,
since both observations are drawn from the same sample of data. To
account for any covariance, we build on the bootstrap resampling
method used in Macaulay et al. (2017) to allow for two different
types of observable. We describe this method further, as well as the
relevant theory and details of the observations, in Section 2. We
discuss our results and conclusions in Section 3.

2 DATA A N D M E T H O D O L O G Y

We study 196 new spectroscopically confirmed SNe Ia from the
DES. The observation and reduction of the sample is described in
a series of papers in Brout et al. (2019a,b), D’Andrea et al. (2018),
Lasker et al. (2019), and Kessler et al. (2019). The cosmological
analysis of the sample is described in Abbott et al. (2019), who
found a value of �m = 0.331 ± 0.038 for a flat �CDM cosmology.
This is the fiducial cosmology we assume throughout this work.

We illustrate the angular coordinates of the SNe in Fig. 1.
The SNe are located in the four DES SNe fields, chosen to overlap

with other well-studied fields: ‘S’ (SDSS Stripe 82), ‘X’ (XMM-
LSS), ‘C’ (Chandra Deep Field South), ‘E’ (Elais-S1).
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We also compare our results from DES–SN to SN from the JLA
sample (Betoule et al. 2014). The full JLA sample consists of 740
SNe spanning a redshift range up to z = 1.4. We consider only a
sub-sample of 488 in the redshift range of our lensing model, 0.2 <

z < 0.5.
For both DES–SN and JLA, we consider the distance–redshift

relation fixed (using the best-fit cosmology for each survey), since
the ∼10 per cent uncertainty in the distance–redshift relation is
small compared to the ∼ 100 per cent uncertainty in the lensing
signal.

We consider two different effects caused by WL on SN mag-
nitudes: the correlation in the residuals (due to the fact that the
lensing signal will be similar for close lines of sight), and the
skewness (caused by the asymmetry of over and underdensities
of dark matter). We anticipate that with the final SN sample from
DES, the correlation function will be of particular interest, due to
the high angular density of the SN in the small area (30 deg2) of the
SN survey. We base our treatment of the skewness on the MeMo
approach (Marra, Quartin & Amendola 2013; Castro & Quartin
2014; Quartin, Marra & Amendola 2014).

2.1 MeMo

MeMo is based on minimizing the χ2 given by

χ2 =
∑

i

�μiC
−1
i �μ

ᵀ
i , (1)

where �μi is a vector given by

�μi = μObs
i − μMeMo

i . (2)

Here, μObs
i is a vector of the observed first, second, third, and fourth

moments of the distance moduli of the SN within the ith redshift
bin, and Ci is the corresponding data covariance matrix of this
vector. μMeMo

i is the theoretical expectation from the MeMo fitting
functions.

The theoretical expectations for the moments are calculated from
fitting functions, in terms of z, �m, and σ 8. The fitting functions for
the second, third, and fourth moments are shown in full in equations
(6), (7), and (8) in Marra et al. (2013). We note that the even moments
both depend on the intrinsic dispersion of SN magnitudes, whereas
– under the assumption that the intrinsic dispersion is Gaussian –
the third moment depends only on the cosmological parameters.

The functions are based on theturboGL code, and tested against
simulation results by Hilbert et al. (2008) and Takahashi et al.
(2011). This approach has the advantage of computational efficiency
in evaluating the moments, however, it is limited to the range of
parameters used to evaluate the moments, and the cosmological
model used in the simulations (flat �CDM).

Castro et al. (2018) used simulations to study the effect of
baryonic physics on 1-point lensing statistics, finding that the effect
of baryons could double the probability of highly lensed objects.

In Castro & Quartin (2014), Ci was calculated analytically based
on observations of higher moments of the SN residuals. However, in
Macaulay et al. (2017), we found that the necessity of the analytical
estimation of the data covariance matrix on measurements of high
moments (up to the 8th) could lead to biases in the estimation of
Ci . Instead, we adopted a bootstrap re-sampling method, based
only on the directly observed moments (i.e. up to the fourth). This
bootstrap resampling method naturally allows for the covariance to
be estimated between different types of observables, which is the
approach we take here to include covariance between observations
of the correlation function and the skewness of the SN.

2.2 Correlations

The correlation function of magnitude residuals due to weak lensing
is given by

〈�μi, �μj 〉 =
(

5

ln 10

)2 (
1

2π

) ∫ ∞

0
	Pκ (	)J0(	�)d	, (3)

where J0 is the Bessel function of the zeroth kind (Bartelmann &
Schneider 2001). Pκ (	) is the angular power spectrum of the lensing
convergence, κ , which is related to the matter power spectrum Pδ

by

Pκ (	) = 9H 4
0 �2

m

4c4

∫ χH

0
dχ

W 2(χ )

a2(χ )
Pδ

(
	

χ
, χ

)
, (4)

where W is the redshift distribution of the sources, and a is the scale
factor, both as a function of comoving distance, χ . H0 is the Hubble
parameter, �m is the total matter density, and c is the speed of
light. We calculate Pκ (	) with CAMBSources (Challinor & Lewis
2011), based on the redshift distribution of the SNe. To quantify the
SNe redshift distribution, we use kernel density estimation (KDE)
based on the redshifts of the SNe.

In this work, we focus on small scale (� < 30 arcmin) angular
correlations. This is because the strongest correlation is expected at
� < 10 arcmin scales (as can be seen in Fig. 3).

2.3 Combined observations likelihood

In this paper, we simultaneously fit for the correlation and skewness
caused by gravitational lensing, by minimizing the χ2 given by

χ2 = �μ C−1 �μ
ᵀ, (5)

where (as with MeMo), �μ is the difference between theory and
observation vectors. We note that since our estimate of the data
covariance matrix does not depend on σ 8, minimizing this χ2 is
equivalent to likelihood maximization (for a fixed data covariance
matrix). The vector μ is constructed by concatenating the vectors
for the two different types of observations:

μ = [
μij , μ3

]
, (6)

where μij is the correlation vector (as a function of angular
separation), and μ3 is the third moment vector (as a function of
redshift). We use four bins of angular separation and five redshift
bins.

We choose the redshift binning to match the redshift bins
in Abbott et al. (2019; within the redshift range used here).
We have verified that the method is stable when changing the
number of redshift or angular bins. This stability is a aided
by the bootstrap-resampling method used to estimate the covari-
ance matrix: increasing the number of bins naturally increases
the correlations in the off-diagonal elements of the covariance
matrix.

We do not include the second and fourth moments, since the
unique lensing skewness is captured by the third moment, and
the even moments are sensitive to the model of the SN intrinsic
dispersion. The implicit assumption of this choice is that the intrinsic
dispersion of the magnitudes has zero skewness. We use emcee
(Foreman-Mackey et al. 2013) to probe our likelihood.

2.4 Covariance matrix

In a similar manner to Macaulay et al. (2017), we use a bootstrap re-
sampling method to estimate the data covariance matrix. To estimate

MNRAS 496, 4051–4059 (2020)
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Figure 2. Illustrating the data covariance matrix. The upper left corner of
the matrix is from the angular correlation function, and the lower right corner
is from the skewness measurements. The bootstrap resampling method
we use to estimate the covariance matrix allows us to estimate the cross-
correlations between these two types of observable, shown in the off diagonal
blocks.

Figure 3. Measurements of the lensing correlation function measured from
the MICE simulation to theoretical expectations from CAMBSources. The
solid black line is the expected correlation function assuming a non-linear
power spectrum, and the black-dashed line assumes a linear power spectrum.
The grey-shaded regions illustrate the one standard deviation regions of
these functions, due to small differences in the redshift distributions of
each realization. The blue hexagonal points illustrate the average measured
lensing correlation function from the MICE simulation.

C, we randomly sample (with replacement) from the genuine sample
of SNe Ia. For each random sample, we calculate a combined
data vector, consisting of the correlation and skewness vectors.
We repeat this process of sampling to generate an ensemble of
measurements, from which we can directly calculate an estimate of
the covariance matrix. The advantage of this approach is that we can
naturally estimate the covariance between the two different types of
observable (the correlation and the skewness). The data covariance
matrix is illustrated in Fig. 2.

2.5 Simulations

To verify our methodology against a fiducial cosmology, we
generate realizations of DES–SN by drawing samples from the
MICE simulation (Fosalba et al. 2015) with selection functions to
match the genuine observations. We note that we use the simulations
only as a test of the methodology; they do not directly contribute to
the analysis of the genuine data (e.g. we do not use the simulations
to estimate the data covariance matrix, etc.).

We start with a 3000 deg2 light-cone from MICE, comprising
over one million simulated galaxies. We then perform an angular
selection cut, to match the 30 deg2 area of the SN fields in DES. We
match the footprints of the DES SNe fields, e.g. three patches for
the C and X fields, and two for the E and S fields, so that the angular
footprint matches the genuine DES fields. Over 10 000 simulated
galaxies pass this angular selection cut.

We next sub-sample to match the number and redshift distribution
of DES–SN. We approximate the redshift probability distribution
function of DES–SN with a 1D KDE in redshift. To generate
each simulated realization, we then draw 196 galaxies from the
supersample of 10 000, with a probability ascribed to each galaxy
given by the 1D KDE. Each realization thus matches the angular
and redshift distribution of the genuine sample.

For each of these galaxies, we take the value of the lensing
convergence, κ , as estimated by the MICE simulation, and calculate
the magnitude residual �μ due to κ , using

�μ = 5 log10(1 − κ) (7)

(Bartelmann & Schneider 2001). To include the effect of the intrinsic
dispersion for a SN, we then add to the lensed-only residual
�μ a noise term, sampled from a Gaussian distribution (with
standard deviation of 0.1 mag). This �μ thus approximates a SN
magnitude residual, including the intrinsic dispersion and lensing
magnification.

In Fig. 3, we illustrate the measured correlation function from
the MICE simulations. Since the signal from each realization is low,
we measure the correlation function for 10 000 realizations, and
show the average. We compare the simulated measurements to the
expected theoretical linear and non-linear correlation function for
the fiducial cosmology used in the MICE simulation.

The theoretical correlation function depends on the redshift
distribution of the sources, which varies between realizations due
to sampling noise. We re-calculate the theory for each redshift
distribution, and illustrate the range in Fig. 3.

We can see in Fig. 3 that MICE most closely matches the linear
theory for angular scales of � > 6 arcmin. For smaller angular
scales, MICE is closer to the non-linear theory. This may be due to
the resolution of the MICE simulation.

MICE is based on a GADGET-2 simulation (Springel 2005) with
a box width of 3072 h−1 Mpc, and a softening length of 50 h−1

kpc. To construct the simulated light-cones Fosalba et al. (2015)
sample the simulation into 265 radially concentric ‘onion shells’
over the redshift range 0 < z < 1.4, each corresponding to a
time of approximately 35 megayears per shell. To calculate the
lensing convergence maps, Fosalba et al. (2015) pixelate each
shell using a Healpix angular tessellation with a Healpix
resolution of Nside = 4096. This tessellation corresponds to an
effective angular resolution of 0.85 arcmin. This resolution remains
constant in redshift, since each shell is tessellated with the same
Nside = 4096. This limit may be too coarse to fully resolve the rare,
dense structures predicted by the theoretical non-linear correlation
function.

MNRAS 496, 4051–4059 (2020)
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Weak lensing of SNe Ia from DES 4055

Even though the resolution of the MICE simulation is
0.85 arcmin, we believe there are at least two effects that may
introduce suppression of the correlation function out to angular
scales larger than the resolution limit. First, feedback from smaller
scales will not be able to affect structure formation at larger scales. In
other words, the simulation will not resolve additional gravitational
accretion from dense, sub-resolution structures. Secondly, even if
structure at scales greater than 0.85 arcmin were perfectly resolved,
we would still expect the correlation function to be underestimated
for these scales, if the density of structure at sub-resolution scales
remains underestimated, since the correlation function depends on
the product of the densities across a range of angular scales.

We note that Fosalba et al. (2015) also find that for angular
scales approaching 1 arcmin (	 ∼ 10 000), the convergence power
spectrum underestimates the non-linear theoretical expectation by
∼30 per cent. This divergence can be seen in fig. 2 of Fosalba et al.
(2015), particularly for 	 close to 10 000.

We note that since the correlation function is an integral of the
power spectrum across a range of scales, if the power spectrum
is systematically underestimated across the range of integration, a
given scale in the correlation function will be underestimated by a
greater amount than the direct value of the power spectrum at the
direct scale corresponding to the scale in the correlation function.
We believe this is consistent with the results in Fig. 3 for the angular
correlation function from the MICE simulation.

We believe there is a clear opportunity for future work to improve
simulation of the small-scale lensing convergence power spectrum.
However, we emphasize that since the current data places only large
upper limits on the correlation function, this is not a limiting factor
for this analysis.

When fitting for the correlation function, we assume a fiducial
form for the function (given by the background cosmology and
redshift distribution of the sources), and scale the amplitude
according to the value of σ 8. To fit for the genuine data, we use
CAMBSources to calculate the matter power spectrum and lensing
window function, with HALOFIT (Smith et al. 2003) to calculate
the non-linear power spectrum.

However, we can see in Fig. 3 that this will overpredict the
lensing signal in the simulated data. As such, when we fit for
simulated catalogues, instead of using either the linear or non-linear
correlation functions, we take the ensemble average correlation
function in Fig. 3 as the fiducial.

Although we parametrize the amplitude of the density pertur-
bations with σ 8, we note that the physical scale of the density
perturbations which affect SN lensing are at smaller physical scales
(or higher k values, in the case of the power spectrum) than the
8 Mpc scale directly associated with σ 8. Our assumption is that
once we have set the amplitude of the density perturbations (via
σ 8), we can extrapolate the scale of density fluctuations to smaller
scales. Our use of σ 8 as a parameter is to set the relative scale of
the density fluctuations, and not necessarily as a direct probe of
structure at 8 Mpc scales.

We also test the skewness from the MICE simulation against the
theoretical expectation from MeMo, shown in Fig. 4. We find that
for z > 0.5 the MICE simulation underpredicts the effect of lensing
moments compared to the MeMo fitting function.

We believe this is consistent with the underprediction of correla-
tions at small angular scales seen in Fig. 3. Both the high z skewness
and the small � correlation function rely on the simulation of small,
rare, dense lines of sight, which demand high simulation resolution,
and accurate modelling of the complicated baryonic physics that
affects these small scales.

Figure 4. In this figure, we compare measurements of the lensing skewness
from the MICE simulation to the corresponding theory from the MeMo
fitting function. We note that MICE appears to underpredict the skewness,
compared to the MeMo fitting function for z > 0.5.

Castro et al. (2018) found that introducing baryons has a signifi-
cant effect on the lensing probability density function (although at
scales that would not be resolved by the 0.85 arcmin resolution of
MICE).

As we consider the lensing signal for lines of sight at increasingly
high redshift, the chance of finding a rare, dense structure (causing
high magnification) will increase. If these structures are not resolved
in the simulation, we would expect the measured skewness to be
less than expectations. As such, we do not fit for any moments for
SNe with z > 0.5 for the real or simulated data sets. Although this
redshift cut reduces our sensitivity to the most highly lensed SNe,
the sparseness of the DES–SN sample at these redshifts also makes
robust measurements of the skewness difficult.

3 D I SCUSSI ON OF RESULTS A ND
C O N C L U S I O N S

The results of the fits to 100 simulated data sets are shown in Fig. 5.
We plot the likelihood for each simulation, and also illustrate the
average of the likelihoods, to verify that the results are consistent
with the input of the simulation.

We note that the simulated realizations tend to cluster in two
groups: a large fraction that recovers a lower value of σ 8 than
the simulation input, and a small fraction that recovers a higher
value. We believe that this is because of the non-Gaussian lensing
probability distribution function, combined with the limited size of
each realization. Due to the low likelihood of sampling from the
high magnification tail, many of the realizations of 196 SNe will
not have any samples drawn with high magnification, which will
lead to low values of σ 8. Conversely, a minority of the samples will
have several magnified SNe, leading to an overestimated value of
σ 8. We believe this causes the distribution of simulated realizations
in Fig. 5; with many realizations underestimating σ 8, and a smaller
sample overestimating σ 8. However, we note that the ensemble
average of the realizations is not biased.

We also show in Fig. 5 the equivalent fit to the genuine DES–
SN data. We find σ 8 =1.2+0.9

−0.8, suggesting a possibility for WL at
the ∼1.3σ level. We note that the uncertainty of our measurement
is consistent with the uncertainties from the simulated data. In
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Table 1. A summary of σ 8 measurements with SN–WL. We note that with the same method, DES–SN achieves smaller
uncertainty than JLA, despite being a smaller sample. We also note in a comparison of methods (both with JLA), that the
method in this work achieves similar uncertainty to that of Macaulay et al. (2017), without the imposition of a constant,
Gaussian model for the SN intrinsic dispersion. Although the smallest uncertainties in this comparison are from Castro
& Quartin (2014), we note that this work makes the least conservative assumptions here as to the measurements of the
moments, and the estimation of the data-covariance matrix (as discussed further in Macaulay et al. 2017).

Reference Sample Method σ 8 Value

Castro & Quartin (2014) JLA Variance+Skewness+Kurtosis 0.8+0.3
−0.7

Macaulay et al. (2017) JLA Variance+Skewness+Kurtosis 1.6+0.5
−1.0

This Work JLA Skewness+Correlation 0.8+1.1
−0.7

This Work DES–SN Skewness+Correlation 1.2+0.9
−0.8

Figure 5. Constraints on σ 8 from the genuine DES–SN sample, and also
simulated realizations of the sample. Individual fits to simulated realizations
are shown in thin blue lines, and the average of these fits is shown with a
thick, blue-dashed line. The input value of σ 8 used in the simulation is
shown with the thin, black vertical dashed line. The thick red line illustrates
the constraints from the genuine sample, with the one-standard deviation
uncertainty range shown with the shaded region.

Figure 6. The observed angular correlation function of the JLA and DES–
SN samples. The fiducial angular correlation function is illustrated with the
blue line, and the allowed range of σ 8 from DES–SN is shown with the
shaded region. We note that the measured points are highly correlated, and
in some cases we can place only upper limits on the angular correlation
function.

Figure 7. The measured skewness of the JLA and DES–SN samples. The
blue-shaded region illustrates the range of lensing skewness given the range
of the best-fitting σ 8 from the DES–SN sample (σ 8 = 1.2+0.9

−0.8).

Figs 6 and 7, we plot the observed angular correlation function
and skewness for DES–SN.

Albeit within large (∼100 per cent) uncertainties, we note that
our value is consistent with the value of σ 8 = 0.8120 ± 0.0073
derived by Planck Collaboration VI (2018a) from measurements of
the CMB, assuming a �CDM model. The values are summarised
in Table 1.

Perhaps of more significance than the best-fitting value of σ 8, we
emphasize the lower limit of 0.4. We note that this lower limit is
not sensitive to the value of the intrinsic dispersion of the SNe Ia,
as with, e.g. Castro & Quartin (2014) and Macaulay et al. (2017).
We assume only that the intrinsic dispersion is uncorrelated (i.e.
genuinely intrinsic to each SN), and does not introduce additional
skewness. Beyond these assumptions, the model requires no further
assumption as to the intrinsic dispersion of the SNe (such as redshift
independence).

Although far from a detection of WL in SNe, this lower limit on
σ 8 suggests some possibility for WL, consistent with the statistical
limitations of the size of the sample (e.g. Scovacricchi et al. 2017).
We note that the limits on WL is consistent with the lensing results
found by Smith et al. (2014), who found limits on the lensing signal
with a significance of 1.7σ . The value of σ 8 and significance of
the lensing signal is also consistent with the values from Macaulay
et al. (2017).

We repeat our measurement with the JLA sample. As with DES–
SN, we restrict the redshift range to z > 0.17, to minimize sensitivity
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to PV. We also restrict the redshift range to z < 0.5 (again, as with
DES–SN), since we believe that the systematic uncertainties in
theoretical modelling and simulation of extreme-small-scale weak
lensing at high redshift is currently insufficient, even given the large
statistical uncertainties of WL in current SNe surveys. After these
redshift cuts, we have 488 SNe from the JLA sample, and find σ 8

= 0.8+1.1
−0.7.

We note that the range of uncertainty σ 8 from JLA of 1.8 is larger
than the range from DES–SN, of 1.7, despite the larger number
of 488 SNe in the JLA sub-sample than the 196 from DES. We
believe this is due to the homogeneity of the DES–SN sample, and
improvements in photometric calibration.

We note that our values with both DES–SN and JLA are consistent
with the value from Castro & Quartin (2014), studying JLA, who
found σ8 = 0.84+0.28

−0.65. Comparing directly to our value with JLA of
σ 8 = 0.8+1.1

−0.7, we note that although our uncertainty is larger, there
are several differences between the two analyses.

In this work, we do not include SNe at z > 0.5, and do not
include the second and fourth moments. Also, while the bootstrap re-
sampling method we use here to estimate the data-covariance matrix
allows us to estimate the covariance between the third moment and
the correlation function, this method leads to larger uncertainties
than the analytical covariance matrix used by Castro & Quartin
(2014).

Although the statistical uncertainty on the value of σ 8 is far
from competitive with lensing measurements from galaxy shear
techniques, we note the added value nature of the measurement;
placing limits on WL from observations taken to probe the distance–
redshift relation.

We reiterate the conclusions from Scovacricchi et al. (2017)
of the potential to place competitive constraints on WL with the
next generations of SNe surveys, such as LSST (LSST Science
Collaboration 2009; LSST Dark Energy Science Collaboration
2012; Ivezić et al. 2019), Euclid (Laureijs et al. 2011; Astier et al.
2014; Amendola et al. 2018), and WFIRST (Hounsell et al. 2018).
We also emphasize the need for improved modelling of simulations
and theory of the high redshift, small angular-scale lensing effects
that will be required to fully realize the potential for SN–WL.
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