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1. Introduction

A branching process in a random environment is a natural and important
extension of the Galton-Watson process. In such a process, the offspring dis-
tributions of particles in n-th generation depend on an environment ξn at
time n. This process was first introduced by Smith and Wilkinson [27] when
the environment sequence (ξn) is independent and identically distributed,
and by Athreya and Karlin [2, 3] when the environment sequence is sta-
tionary and ergodic, where basic results have been established. This process
has attracted the attention of many authors in the last two decades, see
for example the recent book by Kersting and Vatutin [19] and many refer-
ences therein. The interest of study of such processes is growing in recent
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years, thanks to a large number of applications and interactions to other
scientific fields. See for example [1, 16, 17, 5, 33, 10, 11] for the single-type
case, and [29, 23, 32, 30, 21, 31] for the multi-type case. The current interest
of researchers mainly focuses on the multi-type case, as in this case many
important problems are open and challenging. All the papers cited above
on multi-type branching processes in random environments (MBPRE) con-
cern the critical or sub-critical cases (mainly on the survival probability),
except the paper [21] where asymptotic properties of P(Zn = z) are studied
for a super-critical MBPRE (Zn). Very recently, in [13, 14] we obtained a
theorem of Kesten-Stigum type and a criterion of Lp- convergence (p > 1)
for a suitable norming of the population size, for a super-critical MBPRE
(Zn). In this paper, also for a supercritical MBPRE (Zn), we will establish
a Berry-Esseen type bound for the rate of convergence in a central limit
theorem on (Zn), and prove the existence of harmonic moments of the limit
of the normalized population size. These results will play very important
role in the study of moderate and large deviations of (Zn), as we will see in
[15], to obtain results similar to those in [6, 22, 16] where the single type
case was considered.

Let us give a quick presentation of the model with some preliminary
results, and some explanations of the main results with key ideas in the
proof. For an integer d > 1, consider a d-type branching process Zn =
(Zn(1), · · · , Zn(d)), n > 0, in an independent and identically distributed
(i.i.d.) random environment ξ = (ξ0, ξ1, · · · ). In the sequel, we will denote
by (Zin) the process (Zn) starting with one initial particle of type i, which
means that Z0 = ei, where ei is the vector with 1 in the i-th place and 0
elsewhere. Denote byMd(R) the set of d× d matrices. We equip the space
Rd with the L1-norm ‖ · ‖. Let Mn ∈ Md(R) be the random matrix of the
conditioned means of the offspring distribution of n-th generation given the
environment, that is

Mn(i, j) = Eξ[Zn+1(j) | Zn = ei], 1 6 i, j 6 d,

where Eξ denotes the conditional expectation given the environment ξ. De-
fine the product matrix M0,n = M0 · · ·Mn, and the associated Lyapunov
exponent

γ := lim
n→+∞

1
n
E log ‖M0,n−1‖,

where ‖M0,n−1‖ is the L1-norm of the matrix M0,n−1.
Recently, the asymptotic behaviour of the MBPRE (Zin) under the su-

percritical condition γ > 0 has been studied in [13]. In particular, a strong
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law of large number for log ‖Zin‖ is proved: under appropriate conditions, it
holds that on the explosion event {‖Zin‖ → +∞},

lim
n→+∞

1
n

log ‖Zin‖ = γ a.s. (1.1)

The main objective in this paper is to establish a Berry-Esseen type theorem
on the rate of convergence in the central limit theorem for log ‖Zin‖: we will
show (cf. Theorem 2.5) that

sup
x∈R

∣∣∣∣P( log ‖Zin‖ − nγ
σ
√
n

6 x

)
− Φ(x)

∣∣∣∣ 6 C√
n
, (1.2)

where Φ(x) = 1√
2π
∫ x
−∞ e−t2/2 dt is the standard normal distribution func-

tion, σ2 = limn→+∞
1
nE[(log ‖MT

0,n−1x‖ − nγ)2] is the asymptotic variance
which is independent of x and C > 0 is a constant. This result is new for
d > 2; for a single type branching process (d = 1), Grama, Liu and Miqueu
proved (1.2) in [16, Theorem 1.1].

Let us briefly explain our approach for proving (1.2). It is heavily based
on the fundamental martingale (W i

n) associated to the process (Zin) defined
in [13]. For each n, k > 0, denote by ρn,n+k the spectral radius of the ma-
trix Mn,n+k = Mn · · ·Mn+k. By the Perron-Frobenius theorem, ρn,n+k is an
eigenvalue of Mn,n+k, and there exists a non negative eigenvector Un,n+k
associated to ρn,n+k with ‖Un,n+k‖ = 1. According to Hennion [20, Lemma
3.3 and Theorem 1], under conditions, the limit

Un,∞ := lim
k→∞

Un,n+k (1.3)

exists a.s., with Un,∞ > 0 and ‖Un,∞‖ = 1; moreover the sequence (Un,∞)
satisfies the relation

MnUn+1,∞ = λnUn,∞, (1.4)

where λn, n > 0 are positive random scalars called the pseudo-spectral radii
of the random matrices (Mn). Set λ0,n = λ0 · · ·λn. By iteration of (1.4), we
obtain

Mn,n+kUn+k+1,∞ = λn,n+kUn,∞, n, k > 0. (1.5)

Then, we define the martingale (W i
n) as follows (see [13]):

W i
0 = 1, W i

n = 〈Zin, Un,∞〉
λ0,n−1U0,∞(i) , n > 1. (1.6)
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From (1.6) the following relations between log ‖Zin‖ and log ‖M0,n−1(i, ·)‖
hold:

log ‖Zin‖ 6 log ‖M0,n−1(i, ·)‖+ logW i
n − min

16j6d
logUn,∞(j), (1.7)

log ‖Zin‖ > log ‖M0,n−1(i, ·)‖+ logW i
n + min

16j6d
logUn,∞(j). (1.8)

From these relations, since the limit W i = limn→+∞W
i
n exists a.s. (as (W i

n)
is a non-negative martingale), and (Un,∞) is a stationary sequence of random
variables, these two terms will be negligible in the limit properties that
we consider. Actually, using the relations (1.7) and (1.8) we can infer the
limiting behaviour of log ‖Zin‖ from that of log ‖M0,n−1(i, ·)‖ by giving a
tight control of the quantities logW i

n and logUn,∞(j). For log ‖M0,n−1(i, ·)‖
we use the Berry-Esseen bound proved in Xiao, Grama and Liu [34].

An important step in our approach is to establish sufficient conditions
for the existence of the harmonic moments E(W i)−a of the limit W i =
limn→+∞W

i
n. This is the second objective of the paper. Actually the ex-

istence of the harmonic moments E(W i)−a will give us a suitable control
of the sequence (logW i

n), which will be one of the key arguments to prove
(1.2).

Our study of the harmonic moments E(W i)−a is composed of two steps.
In the first step, under a strong assumption on the offspring distributions

given the environment ξ (see H2), we establish a necessary condition and a
sufficient condition for the existence of E(W i)−a for all 1 6 i 6 d. Set

κ1(a) := lim
n→+∞

(
E‖M0,n−1‖a

∥∥∥ n−1∏
k=0

P1(ξk)
∥∥∥
∞

)1/n
, a > 0, (1.9)

where ‖·‖∞ denotes the L∞-norm onMd(R), and P1(ξk) is the random ma-
trix whose (i, j)-th component is the probability to produce 1 particle which
is of type j by a particle of type i in generation k, given the environment ξ.
Then we will prove in Theorem 2.1 the following implications:

κ1(a) < 1⇒ max
16i6d

E(W i)−a < +∞⇒ κ1(a) 6 1. (1.10)

In particular, the solution a0 > 0 of the equation κ1(a0) = 1 is the crit-
ical value for the existence of the harmonic moments, in the sense that
max16i6d E(W i)−a < +∞ for a < a0, and max16i6d E(W i)−a = +∞ for
a > a0. For the single type case (d = 1), Huang and Liu proved in [22] that
κ1(a) < 1 is a necessary and sufficient for the existence of the harmonic
moment E(W 1)−a. Therefore, our result (1.10) generalizes that of the single
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type case, except that we don’t know if the harmonic moments exists for
the critical exponent a0.

In the second step, we assume weaker conditions than in the first step
(see H3), and we prove the existence of a small exponent a > 0 such that
for all 1 6 i 6 d,

E(W i)−a < +∞, (1.11)

(cf. Theorem 2.3). Unfortunately, in this case we have no information on
the maximal value of the exponent a > 0 for which (1.11) holds: we cannot
identify the critical exponent.

The outline of the paper is as follows. We introduce some necessary no-
tation and present the main results in Section 2. Section 3 is devoted to
the study of the harmonic moments of W i for any 1 6 i 6 d. We prove in
Section 5 the Berry-Esseen type theorem for log ‖Zin‖.

2. Notation and main results

For d > 1, let Rd be the d-dimensional space of vectors. We equip Rd with
the scalar product and the L1-norm respectively defined by

〈x, y〉 :=
d∑
i=1

x(i) y(i) and ‖x‖ :=
d∑
i=1
|x(i)|, x, y ∈ Rd.

Set S = {x ∈ Rd : x > 0, ‖x‖ = 1} for the intersection of the unit sphere
with the positive quadrant. For each 1 6 i 6 d, ei will be the d-dimensional
vector with 1 in the i-th place and 0 elsewhere. Let 0 = (0, · · · , 0) ∈ Rd be
the vector with all coordinates equal to 0. Denote by N = {0, 1, . . .} the set
of non-negative integers. Set 1A for the indicator of an event A.

Denote byMd(R) the set of d× d matrices with entries in R, and define
the operator norm with respect to L1 vectorial norm by

‖M‖ := sup
x∈S
‖Mx‖, M ∈Md(R).

In addition we equip Rd andMd(R) with the L∞-norms:

‖x‖∞ := max
16i6d

|x(i)|, x ∈ Rd;

‖M‖∞ := sup
‖x‖∞=1

‖Mx‖∞, M ∈Md(R).

For a matrix or a vector X, we write X > 0 when all the entries of X are
strictly positive.
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Now we give a precise definition of the multi-type branching process in
random environment (MBPRE). The environment ξ = (ξn)n>0 is a sequence
of independent and identically distributed (i.i.d.) random variables taking
values in an abstract space X. To each realization of ξn correspond d proba-
bility distributions on Nd identified by the probability generating functions

f rn(s) =
∞∑

k1,··· ,kd=0
prk1,··· ,kd(ξn)sk1

1 · · · s
kd
d , s = (s1, . . . , sd) ∈ [0, 1]d,

where 1 6 r 6 d. The d-type branching process Zn = (Zn(1), · · · , Zn(d)),
n > 0, in the random environment ξ is a process with values in Nd such that
Z0 ∈ Nd is a fixed vector, and for all n > 0,

Zn+1 =
d∑
r=1

Zn(r)∑
l=1

N r
l,n. (2.1)

where N r
l,n = (N r

l,n(1), · · · , N r
l,n(d)) is a random vector whose j-th compo-

nentN r
l,n(j) represents the offspring of type j at time n+1 of the l-th particle

of type r in generation n, and Zn(j) is the total number of particles of type
j in generation n. Conditioned on the environment ξ, the random vectors
N r
l,n indexed by l > 1, n > 0 and 1 6 r 6 d are independent, each N r

l,n has
the same probability generating function f rn. In the sequel, the process Zn
will be noted Zin when Z0 = ei, which corresponds to the MBPRE starting
with one initial particle of type i.

Denote by Pξ the quenched law, i.e. the probability under which the pro-
cess is defined when the environment ξ is given. Let τ be the law of ξ.
The total probability P of (Zn), usually called annealed law, is defined by
P(dx, dξ) = Pξ(dx)τ(dξ). Denote by Eξ and E the corresponding expectation
with respect to Pξ and P. With our notation,

f rn(s) = Eξ
( d∏
j=1

s
Nr
l,n(j)

j

)
, s = (s1, . . . , sd) ∈ [0, 1]d

is the quenched probability generating function of N r
l,n. For n > 0, let Mn

be the d×d random matrix whose (i, j)-th entry Mn(i, j) is the conditioned
mean of the number of children of type j produced by a particle of type i
at time n:

Mn(i, j) := ∂f in
∂sj

(1) = Eξ
[
Zn+1(j)

∣∣Zn = ei
]
,
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where ∂f
∂sj

(1) denotes the left derivative at 1 of a d-dimensional probability
generating function f with respect to sj . Since the sequence of the environ-
ments (ξn) is i.i.d., the sequence of the mean matrices (Mn) is also i.i.d.. For
0 6 k 6 n, denote by

Mk,n := Mk · · ·Mn,

the product of the mean matricesMk, . . . ,Mn. It follows that, for n > 0 and
1 6 i, j 6 d,

EξZin+1(j) = M0,n(i, j). (2.2)

The main objective of this paper is to establish a Berry-Esseen bound
for log ‖Zin‖. To this end, the key tool will be the fundamental martin-
gale we mentioned in the introduction. Let ρn,n+k be the spectral radius
of Mn,n+k. We know by the Perron-Frobenius theorem (see e.g. [4]) that
ρn,n+k is a positive eigenvalue of Mn,n+k, and there exist positive right and
left eigenvectors Un,n+k and Vn,n+k associated to ρn,n+k with the normal-
izations ‖Un,n+k‖ = 1 and 〈Vn,n+k, Un,n+k〉 = 1. Denote by G0

+ the subset of
the matrices ofMd(R) with strictly positive entries. Throughout the paper,
we assume that M0 is allowable (every row and column contains a strictly
positive element), and that the following positivity property holds:

P
( ⋃
n>0

{
M0,n ∈ G0

+
})

> 0. (2.3)

By the results of Hennion [20, Lemma 3.3 and Theorem 1], under condition
(2.3) there exists the random vectors Un,∞ and the random scalars λn defined
by (1.3) and (1.4), which satisfy the relation (1.5) and that (Un,∞) and
(λn) are stationary ergodic; moreover, we proved in [13, Theorem 1] that
the sequence (W i

n) defined in (1.6) is a non-negative martingale under the
measure Pξ and P, w.r.t. the filtration

F0 = σ(ξ), Fn = σ
(
ξ,N r

l,k(j), 0 6 k 6 n− 1, 1 6 r, j 6 d, l > 1
)
for n > 1.

Let W i := limn→+∞W
i
n be the a.s. limit of the martingale (W i

n).
We will use the classification of MBPRE’s defined in [13]. It is well known

that, under the following moment condition

E log+ ‖M0‖ < +∞, (2.4)

the Lyapunov exponent γ of the sequence of matrices (Mn)n>0 exists, with

γ := lim
n→+∞

1
n
E log ‖M0,n−1‖ = inf

n>1

1
n
E log ‖M0,n−1‖.



I. Grama, Q. Liu, E. Pin/Supercritical multi-type branching process 8

Moreover, Furstenberg and Kesten established in [12] a strong law of large
numbers for log ‖M0,n−1‖:

lim
n→+∞

1
n

log ‖M0,n−1‖ = γ P-a.s.

According to the values of the Lyapunov exponent γ, we have the following
classification of MBPRE’s: a MBPRE is supercritical if γ > 0, critical if
γ = 0, and subcritical if γ < 0. In this article, the process (Zn) will always
be supercritical, i.e. γ > 0.

Under the supercritical condition γ > 0, we established in [13, Theorem
2.6 and Corollary 2.8] that the condition

E
(

Zi1(j)
M0(i, j) log+ Zi1(j)

M0(i, j)

)
< +∞ ∀1 6 i, j 6 d (2.5)

is sufficient for the non-degeneracy of each W i (in the sense that P(W i >
0) > 0), which is equivalent to the L1-convergence of W i

n to W i by Sheffé’s
theorem; moreover, when each W i is non-degenerate, we have a.s.,

EξW i = 1 and Pξ(W i > 0) = Pξ
(
‖Zin‖ →n→∞∞

)
= 1− qi(ξ) > 0, (2.6)

where qi(ξ) is the quenched probability of extinction of the process (Zin).
First we establish the existence of the harmonic moments of the limits

W i, 1 6 i 6 d. For n > 0, define the vector p0(ξn) and the matrix P1(ξn),
whose components are

p0(ξn)(i) = f in(0) and P1(ξn)(i, j) = ∂f in
∂sj

(0), 1 6 i, j 6 d.

Then, for 1 6 i, j 6 d,

p0(ξn)(i) = PTnξ(‖Zi1‖ = 0) and P1(ξn)(i, j) = PTnξ(Zi1 = ej).

Throughout the paper, we will assume the following condition:

H1. The vector p0(ξ0) = (f1
0 (0), . . . , fd0 (0)) satisfies

p0(ξ0) = 0 P-a.s. (2.7)

The condition H1 means that each individual of the population gives
birth to at least one child, so qi(ξ) = 0 a.s. When (2.6) holds, this implies
that ‖Zin‖ → +∞ a.s. as n→ +∞.

We introduce the following assumption :
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H2. There exist constants p ∈ (1, 2], A > A1 > 1 and A2 > 0 such that for
any 1 6 i, j 6 d, P-a.s.

A2 6M0(i, j), A1 6 ‖M0(i, ·)‖ and Eξ(Zi1(j)p) 6 Ap.

It is clear that H2 implies the conditions (2.3), (2.4), (2.5) and γ > 0.
From H2 we have also that for all 1 6 i, j 6 d,

M0(i, j) 6 A P-a.s.

Under condition H2, by the sub-multiplicative property of the norms ‖.‖
and ‖.‖∞ on Md(R) and the subadditive ergodic theorem, it follows that,
for all a > 0 the limit

κ1(a) := lim
n→+∞

(
E‖M0,n−1‖a

∥∥∥ n−1∏
k=0

P1(ξk)
∥∥∥
∞

)1/n
(2.8)

exists and is finite, with

κ1(a) = inf
n>1

(
E‖M0,n−1‖a

∥∥∥ n−1∏
k=0

P1(ξk)
∥∥∥
∞

)1/n
.

We will establish (see Lemma 3.9) that, under H1 and H2, the function κ1
is continuous and increasing on R+ and κ1(0) = ρ

(
EP1(ξ0)

)
, where ρ(M)

denotes the spectral radius of the matrix M . For a random variable X, set
‖X‖L∞ := ess sup(X) the essential supremum of X. Our first result gives
a sufficient and a necessary condition for the existence of the harmonic
moments E(W i)−a, a > 0.

Theorem 2.1. Assume conditions H1, H2 and ‖‖P1(ξ0)‖∞‖L∞ < 1. For
each fixed a > 0, the following implications hold :

(1) if κ1(a) < 1 then E(W i)−a < +∞ for all 1 6 i 6 d;
(2) if E(W i)−a < +∞ for all 1 6 i 6 d, then κ1(a) 6 1.

Notice that in Part (2), we can prove more: we will see in the proof that
the sequence E‖M0,n−1‖a ‖

∏n−1
k=0 P1(ξk)‖∞, n > 1, is bounded.

From Theorem 2.1 we get the following corollary.

Corollary 2.2. Under the conditions of Theorem 2.1, it holds:

(1) E(W i)−a < +∞ for all 1 6 i 6 d and a > 0 if and only if EP1(ξ0) is
nilpotent;
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(2) if EP1(ξ0) is not nilpotent, then there exists a unique constant a0 > 0
satisfying

κ1(a0) = 1, (2.9)

and

max
16i6d

E(W i)−a
{
< +∞ if a ∈ [0, a0),
= +∞ if a ∈ (a0,+∞).

Part (1) gives a necessary and sufficient condition to have the existence of
all orders of the harmonic moments of each W i, 1 6 i 6 d. Part (2) reveals
that the quantity a0 is the critical value for the existence of the harmonic
moments of all the W i, 1 6 i 6 d. We believe that at the critical value a0
the harmonic moments do not exist, i.e., E(W i)−a0 = +∞. This is the case
when d = 1, as shown by Chunmao and Liu [22].

Now we investigate the existence of harmonic moments for W i, when the
boundedness condition H2 is relaxed to a moment condition. For all n > 0
and p > 1 denote by

θn(p) := max
16i,j6d

Eξ
∣∣∣∣ N i

1,n(j)
Mn(i, j) − 1

∣∣∣∣p.
The next result gives a sufficient condition for the existence of the harmonic
moments E(W i)−a of a small order a > 0. The single -type case has been
considered in [18]. The multi-type case considered here is much more com-
plicated.

To formulate it, we need the following moment condition :

H3. There exist two constants p ∈ (1, 2] and η ∈ (0, 1) such that

E‖M0‖η < +∞, max
16i,j6d

EM0(i, j)−η < +∞ and Eθ0(p)η < +∞.

Like H2, condition H3 also implies (2.3) and (2.4) and (2.5). The first
two implications are evident; the third will be proved in Section 3.

Theorem 2.3. Assume conditions H1, H3 and γ > 0. Then there exists
a > 0 such that E(W i)−a < +∞ for all 1 6 i 6 d.

Now we formulate a central limit theorem and a Berry-Esseen type theo-
rem for log ‖Zin‖, for all 1 6 i 6 d. We introduce the following assumption:

H4. The random matrix M0 satisfies

E(log ‖M0‖)2 < +∞.
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Obviously, condition H4 implies (2.4). Using the central limit theorem
due to Hennion [20, Theorem 3] for the norm cocycle log ‖MT

0,n−1x‖, where
x ∈ S, we establish the following central limit theorem for log ‖Zin‖. Notice
that ‖Zin‖ = Zin(1)+ · · ·+Zin(d) represents the population size of generation
n.

Theorem 2.4. Assume conditions (2.3) and H4. Assume also H1, (2.5)
and γ > 0. Then there exists σ > 0 such that for all 1 6 i 6 d, as n→∞,

log ‖Zin‖ − nγ√
n

→ N (0, σ2) in law,

where N (0, σ2) denotes the normal law with mean 0 and variance σ2.

Notice that for the single type case d = 1, this theorem was established
in [22]. By [34, Proposition 3.14], under the condition H3, the asymptotic
variance σ2 defined in Theorem 2.4 satisfies

σ2 = lim
n→+∞

1
n
E[(log ‖M0,n−1x‖ − nγ)2],

uniformly in x ∈ S. Note that in Theorem 2.4 the limit variance σ2 can
be degenerated: σ2 = 0. For the rate of convergence we need the following
assumption :

H5. The asymptotic variance σ2 satisfies

σ2 > 0.

According to [7, Lemma 7.2], a sufficient condition under which H5 holds
is that µ is a non-arithmetic probability measure; the definition of arith-
meticity is introduced below.

For x ∈ S and M ∈ G0
+, define the projective action of M on S by

M · x := Mx
‖Mx‖ . Let µ be the law of M0 and Γµ = [suppµ], the semi-

group generated by the support of µ. By the Perron-Frobenius theorem,
since any M ∈ Γµ is strictly positive under H3, the spectral radius ρM
of M is the unique eigenvalue with the largest modulus, which is simple.
Let uM ∈ S be the associated unique right eigenvector with unit norm. Set
V (Γµ) = {±uM : M ∈ Γµ}, where A denotes the closure of the set A. The
measure µ is called arithmetic if there exist t > 0, θ ∈ [0, 2π) and a function
h : S → R such that for all M ∈ Γµ and x ∈ V (Γµ), we have

exp{it log ‖Mx‖ − iθ + ih(M · x)− ih(x)} = 1.

In the following, denote by Φ : x 7→ 1√
2π
∫ x
−∞ e−t2/2 dt the standard normal

distribution function on R.
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Theorem 2.5. Assume conditions H1, H3, H5 and γ > 0. Then there
exists a constant C > 0 such that for all n > 1, x ∈ R and 1 6 i 6 d,∣∣∣∣P( log ‖Zin‖ − nγ

σ
√
n

6 x

)
− Φ(x)

∣∣∣∣ 6 C√
n
.

For the single type case d = 1, a version of this result exists under different
conditions in [16, Theorem 1.1]. Notice that, in this case, we have γ =
E logm0 and σ2 = E(logm0 − γ)2 with m0 = EξZ1, and the condition H3
can be simplified to the following: there exist two constants p ∈ (1, 2] and
η ∈ (0, 1) such that

Emη
0 < +∞ and Eθ0(p)η < +∞, where θ0(p) = Eξ

∣∣∣ Z1
m0
− 1

∣∣∣p.
3. Harmonic moments of W i

In this section we study the existence of the harmonic moments E(W i)−a of
all the random variables W i, where 1 6 i 6 d, a > 0.

3.1. Auxiliary results

We start with four lemmas that we will need. The first lemma permits to
compare the moment of φ(W i) with the corresponding one of φ(W i

n), with
φ a positive convex function on R+.

Lemma 3.1. Assume condition (2.5) and γ > 0. Then for all 1 6 i 6 d
and any convex function φ : R+ → R+,

lim
n→+∞

Eξφ(W i
n) = sup

n>0
Eξφ(W i

n) = Eξφ(W i), (3.1)

and

lim
n→+∞

Eφ(W i
n) = sup

n>0
Eφ(W i

n) = Eφ(W i). (3.2)

Proof. The result is a direct consequence of the fact that, by [13, Theorem
2.6], under the conditions (2.5) and γ > 0, (W i

n,Fn) is a martingale under
Pξ and P, which converges in L1. In fact, by Fatou’s lemma, Eφ(W i) 6
supn>0 Eφ(W i

n); by the L1- convergence of (W i
n) and Jensen’s inequality,

Eφ(W i) = E[E[φ(W i)|Fn]] > E[φ(E[W i|Fn])] = Eφ(W i
n).

Using the fact that (φ(W i
n)) is a sub-martingale, this concludes the proof of

(3.2). The same argument with E replaced by Eξ gives (3.1).
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The second lemma reveals the link between the harmonic moments and
the Laplace transform of a positive random variable.

Lemma 3.2. ([24, Lemma 4.4]) Let X be a positive random variable, and
a > 0. We have the following assertions:

(1) if EX−a < +∞ then E e−tX = Ot→+∞(t−a);
(2) if E e−tX = Ot→+∞(t−a) then EX−b < +∞ for all b ∈ (0, a);
(3) E e−tX = Ot→+∞(t−a) if and only if P(X 6 x) = Ox→0(xa).

For all 1 6 i 6 d, let

φiξ(t) = Eξ e−tW i and φi(t) = Eφiξ(t) = E e−tW i
, t > 0,

be the quenched and annealed Laplace transform of W i. Denote by

φξ(t) = (φ1
ξ(t), · · · , φdξ(t)) and φ(t) = (φ1(t), · · · , φd(t)), t > 0.

We will study the decay rate of the Laplace transforms φiξ(t) and φi(t) when
t→ +∞, and then use Lemma 3.2 to estimate the corresponding harmonic
moments. Let T be the shift operator of the environment sequence:

Tξ = (ξ1, ξ2, · · · ) if ξ = (ξ0, ξ1, · · · ),

and let Tn be its n-fold iteration. The third lemma, proved in [13, Theorem
2.4], gives the functional equations that the quenched Laplace transforms
φiξ satisfy.

Lemma 3.3. Assume condition (2.3). Then for all i = 1, · · · , d, the quenched
Laplace transform φiξ of W i satisfies

φiξ(t) = f i0

(
φ1
Tξ

(
t
U1,∞(1)
λ0U0,∞(i)

)
, · · · , φdTξ

(
t
U1,∞(d)
λ0U0,∞(i)

))
, t > 0.

The fourth Lemma will be used to control the Lp-moments of the mar-
tingale (W i

n). It is a direct consequence of the Marcinkiewicz-Zygmund in-
equality in [8, Theorem 1.5], as stated in [26, Lemma 1.4].

Lemma 3.4. Let (Xk)k∈N∗ be a sequence of i.i.d. random centered variables.
Then for all n ∈ N∗ and p > 1 :

E
∣∣∣∣ n∑
k=1

Xk

∣∣∣∣p 6
{

(Bp)pE|Xk|pn, if 1 < p 6 2,
(Bp)pE|Xk|pn

p
2 , if p > 2,

where Bp = 2 min{k1/2 : k ∈ N, k > p
2}.
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3.2. Existence of the quenched harmonic moments Eξ(W i)−a

In this section, under condition H2, we give an estimation of the decay
rate of the quenched Laplace transforms φiξ(t) as t → +∞, which implies
the uniform boundedness of the quenched harmonic moments Eξ(W i)−a, as
indicated in the following theorem.

Theorem 3.5. Assume conditions H1, H2 and ‖‖P1(ξ0)‖∞‖L∞ < 1. Then
there exist two constants C > 0 and a > 0 such that for all 1 6 i 6 d, all
t > 0 and all x > 0,

φiξ(t) 6
C

ta
P-a.s., (3.3)

Pξ(W i 6 x) 6 Cxa and Eξ(W i)−a 6 C. (3.4)

For the proof of Theorem 3.5, we will need the following preliminary
result about a control of φiξ(t), 1 6 i 6 d. For the case d = 1, this result was
established in [22].

Lemma 3.6. Assume condition H2. Then there exist two constants β ∈
(0, 1) and t0 > 0 such that for all 1 6 i 6 d and t > t0,

φiξ(t) 6 β P-a.s.

Proof. We will adapte the approach in [22] where the case d = 1 was con-
sidered. By (2.1) and (1.6), we have that for all n > 1 and 1 6 i 6 d,

W i
n+1 −W i

n =
d∑
j=1

Un+1,∞(j)
λ0,nU0,∞(i)

d∑
r=1

Zin(r)∑
l=1

N r
l,n(j)−W i

n

=
d∑
r=1

Un,∞(r)
λ0,n−1U0,∞(i)

Zin(r)∑
l=1

d∑
j=1

Un+1,∞(j)N r
l,n(j)

λnUn,∞(r) −W i
n

=
d∑
r=1

Un,∞(r)
λ0,n−1U0,∞(i)

Zin(r)∑
l=1

(W r
l,n − 1), (3.5)

where

W r
l,n :=

〈N r
l,n, Un+1,∞〉
λnUn,∞(r) .

It is clear that, given the environment ξ, the random variablesW r
l,n, l > 1,

are i.i.d., and independent of ξ0, . . . , ξn−1 and Zin. Let p ∈ (1, 2] be such that
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condition H2 holds. Notice that, by (1.5), we have
∑d
r=1

M0,n−1(i,r)Un,∞(r)
λ0,n−1U0,∞(i) =

1 a.s. for any n > 1 and 1 6 i 6 d. Therefore, applying (3.5), the convexity
of the function x 7→ xp on R+ and Lemma 3.4, for all n > 1 and 1 6 i 6 d,
P-a.s., we get

Eξ|W i
n+1 −W i

n|p 6 Eξ
( d∑
r=1

Un,∞(r)
λ0,n−1U0,∞(i)

∣∣∣∣ Z
i
n(r)∑
l=1

(
W r
l,n − 1

)∣∣∣∣)p

6
d∑
r=1

M0,n−1(i, r)Un,∞(r)
λ0,n−1U0,∞(i)

1
M0,n−1(i, r)pEξ

∣∣∣∣ Z
i
n(r)∑
l=1

(
W r
l,n − 1

)∣∣∣∣p

6 Bp
p

d∑
r=1

M0,n−1(i, r)Un,∞(r)
λ0,n−1U0,∞(i) · EξZin(r)

M0,n−1(i, r)pEξ|W
r
1,n − 1|p

6 Bp
p max

16r6d

{ EξZin(r)
M0,n−1(i, r)pEξ|W

r
1,n − 1|p

}
= Bp

p max
16r6d

Eξ|W r
1,n − 1|p max

16j6d
(M0,n−1(i, j))1−p. (3.6)

Again by the convexity of x 7→ xp, for all 1 6 r 6 d and n > 0, P-a.s., we
have

Eξ|W r
1,n − 1|p = Eξ

∣∣∣∣〈N r
1,n, Un+1,∞〉
λnUn,∞(r) − 1

∣∣∣∣p

= Eξ
∣∣∣∣ d∑
j=1

Mn(r, j)Un+1,∞(j)
λnUn,∞(r)

(
N r

1,n(j)
Mn(r, j) − 1

)∣∣∣∣p

6 max
16i,j6d

Eξ
∣∣∣∣ N i

1,n(j)
Mn(i, j) − 1

∣∣∣∣p = θn(p). (3.7)

Combining this with (3.6), we obtain that for all n > 1 and 1 6 i 6 d, P-a.s.,

Eξ|W i
n+1 −W i

n|p 6 Bp
pθn(p) max

16j6d
(M0,n−1(i, j))1−p. (3.8)

Using the triangular inequality in Lp under Pξ and condition H2, for n > 0
we have

θn(p) 6 max
16i,j6d

([Eξ(N i
1,n(j)

)p]1/p
Mn(i, j) + 1

)p
6
( A
A2

+ 1
)p

P-a.s. (3.9)

Now we deal with the last factor in (3.8). For M ∈Md(R), set

ι(M) := inf
‖x‖=1

‖Mx‖ = min
16j6d

d∑
i=1

M(i, j). (3.10)
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Using H2 we have ι(MT
0 ) > A1 a.s. It can be easily seen that the application

ι satisfies the inequality ι(AB) > ι(A)ι(B), for A,B ∈ G0
+. Therefore, we

deduce that for all n > 2,

M0,n−1(i, j) =
∑

16r6d
M0,n−2(i, r)Mn−1(r, j)

> A2ι(MT
0,n−2)

> A2

n−2∏
k=0

ι(MT
k )

> A2A
n−1
1 . (3.11)

It is evident that the above inequality remains true for n = 1. Combining
(3.8), (3.9) and (3.11), we obtain that for all n > 1 and 1 6 i 6 d,

Eξ|W i
n+1 −W i

n|p 6 Bp
p

( A
A2

+ 1
)p
A1−p

2 (A1−p
1 )n−1 P-a.s., (3.12)

with A1−p
1 ∈ (0, 1). By (3.7) and (3.9), it is clear that (3.12) holds for n = 0.

Recall that condition H2 implies (2.5) and γ > 0. Then, applying Lemma
3.1 with the convex function x 7→ xp on R+, we have

Eξ(W i)p = sup
n>0

Eξ(W i
n)p P-a.s.

This, together with (3.12) and the triangular inequality in Lp, implies that
there exists a constant C > 0 such that

Eξ(W i)p = sup
n>0

Eξ(W i
n)p 6

(
1 +

+∞∑
n=0

(
Eξ|W i

n+1 −W i
n|p
)1/p)p

6 C. (3.13)

Since x→ (e−x−1 + x)/xp is a positive bounded function on R∗+, it follows
that there exists a constant C1 > 0 such that for all x > 0,

e−x 6 1− x+ C1x
p.

Combining this with (3.13), we see that for any 1 6 i 6 d and t > 0, P-a.s.,

φiξ(t) = Eξ e−tW i
6 Eξ

(
1− tW i + C1t

p(W i)p
)

= 1− t+ C1t
pEξ(W i)p

6 1− t+ CC1t
p. (3.14)
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Let h(t) = 1− t+ CC1t
p, t > 0. We observe that the minimal value of h(t)

is β = h(t0), where t0 := (pCC1)1/(1−p), and we have

β = 1− (pCC1)1/(1−p) + 1
p

(pCC1)1/(1−p) = 1−
(
1− 1

p

)
t0. (3.15)

So β ∈ (0, 1). Since the quenched Laplace transform φiξ is decreasing on R+,
we conclude from (3.14) that for all t > t0,

φiξ(t) 6 φiξ(t0) 6 h(t0) = β P-a.s. (3.16)

This concludes the proof of Lemma 3.6.

Proof of Theorem 3.5. By Lemma 3.2, we have the implication (3.3)⇒ (3.4)
(but the values of a and C can be changed). Therefore, it remains to prove
(3.3). Set

ψiξ(t) = φiξ(tU0,∞(i)), 1 6 i 6 d, t > 0,

and ψξ(t) = (ψ1
ξ (t), · · · , ψdξ (t)). From Lemma 3.3 we obtain that ψξ satisfies

the following equation: for all 1 6 i 6 d and t > 0,

ψiξ(t) = f i0

(
φ1
Tξ

(
tU1,∞(1)

λ0

)
, · · · , φdTξ

(
tU1,∞(d)

λ0

))
= f i0

(
ψ1
Tξ

(
t

λ0

)
, · · · , ψdTξ

(
t

λ0

))
= f i0

(
ψTξ

(
t

λ0

))
. (3.17)

For n > 0, denote by Q1(ξn) the positive random matrix whose entries are,
for 1 6 i, j 6 d,

Q1(ξn)(i, j) = Pξ
(
‖Zn+1‖ > 2, Zn+1(j) > 1, Zn+1(r) = 0, r < j

∣∣Zn = ei
)
.

It is clear that for n > 0, Q1(ξn) depends only of ξn and that the events
{Zn+1(j) > 1, Zn+1(r) = 0 ∀r < j}, 1 6 j 6 d, constitute a partition of
{‖Zn+1‖ > 1}. Hence

‖Q1(ξn)(i, ·)‖ =
d∑
j=1

Q1(ξn)(i, j) = Pξ
(
‖Zn+1‖ > 2

∣∣Zn = ei
)
∀1 6 i 6 d.

By H1 and the fact that ‖P1(ξn)(i, ·)‖ = Pξ
(
‖Zn+1‖ = 1

∣∣Zn = ei
)
, we get

that for all n > 0 and 1 6 i 6 d,

‖P1(ξn)(i, ·) +Q1(ξn)(i, ·)‖ = 1, (3.18)
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which means that P1(ξn)+Q1(ξn) is a stochastic matrix. Then, by definition
of the matrix Q1(ξ0) and using again H1 and the partition {Zn+1(j) >
1, Zn+1(r) = 0 ∀r < j} (1 6 j 6 d) of {‖Zn+1‖ > 1}, we see that for all
s = (s1, · · · , sd) ∈ [0, 1]d and 1 6 i 6 d, we have

f i0(s) =
d∑
j=1

Pξ(Zi1 = ej)sj +
∑

k∈Nd,‖k‖>2
Pξ(Zi1 = k)sk(1)

1 · · · sk(d)
d

6
d∑
j=1

P1(ξ0)(i, j)sj + ‖s‖∞
d∑
j=1

Q1(ξ0)(i, j)sj

=
〈[
P1(ξ0) + ‖s‖∞Q1(ξ0)

]
s, ei

〉
.

This, together with (3.17), implies that for all t > 0,

ψξ(t) 6
(
P1(ξ0) +

∥∥∥ψTξ( t
λ0

)∥∥∥
∞
Q1(ξ0)

)
ψTξ

( t
λ0

)
P-a.s. (3.19)

In particular, by (3.18) we get that for all t > 0,

‖ψξ(t)‖∞ 6
∥∥∥ψTξ( t

λ0

)∥∥∥
∞

P-a.s.

By iteration, we see that for all n > 1 and t > 0,

‖ψξ(t)‖∞ 6
∥∥∥ψTnξ( t

λ0,n−1

)∥∥∥
∞

P-a.s. (3.20)

By iteration of (3.19) and using inequality (3.20), we obtain that for all
n > 1 and t > 0,

ψξ(t) 6
n−1∏
k=0

(
P1(ξk) +

∥∥∥ψTnξ( t

λ0,n−1

)∥∥∥
∞
Q1(ξk)

)
ψTnξ

( t

λ0,n−1

)
P-a.s.

(3.21)

Notice that by (1.5) and condition H2, for any 1 6 i 6 d we have

1 > U0,∞(i) = 〈M0(i, ·), U1,∞〉
‖M0U1,∞‖

>
min

16j6d
M0(i, j)

‖M0‖
>
A2
dA

P-a.s. (3.22)

Therefore, since φξ is a decreasing function on R+, we obtain that for all
1 6 i 6 d and t > 0, P-a.s.,

φiξ(t) 6 ψiξ(t) = φiξ(tU0,∞(i)) 6 φiξ

(
t
A2
dA

)
.
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Combining this with (3.21), it follows that for all n > 1 and t > 0, P-a.s.,

φξ(t) 6
n−1∏
k=0

(
P1(ξk) +

∥∥∥φTnξ( tA2
dAλ0,n−1

)∥∥∥
∞
Q1(ξk)

)
φTnξ

( tA2
dAλ0,n−1

)
.

(3.23)

Now, by Lemma 3.6, we know that there exist two constants β ∈ (0, 1) and
t0 > 0 such that ‖φξ(t)‖∞ 6 β a.s. for all t > t0. Using the inequality
λ0,n−1 6 ‖M0,n−1‖ 6 (dA)n, this implies that for n > 1, P-a.s.,∥∥∥φTnξ( tA2

dAλ0,n−1

)∥∥∥
∞

6 β, t > t1(dA)n,

where t1 = dA
A2
t0. Combining this with (3.23) and (3.18), we get that for all

n > 1 and t > t1(dA)n, P-a.s.,

‖φξ(t)‖∞ 6 β
n−1∏
k=0
‖P1(ξk) + βQ1(ξk)‖∞

= β
n−1∏
k=0

∥∥β[P1(ξk) +Q1(ξk)] + (1− β)P1(ξk)
∥∥
∞

6 β
n−1∏
k=0

(
β + (1− β)‖P1(ξk)‖∞

)
6 βαn, (3.24)

where α = β + (1 − β)‖‖P1(ξ0)‖∞‖L∞ . Clearly we have α ∈ (0, 1), since
β ∈ (0, 1) and ‖‖P1(ξ0)‖∞‖L∞ < 1 by hypothesis. Set

N(t) :=
⌊ log t− log t1

log(dA)
⌋

+ 1, t > t1.

We observe that, if t > t1, then N(t) > 1, t > t1(dA)N(t) and N(t) >
(log t−log t1)/ log(dA). Therefore, using the inequality (3.24) with n = N(t),
we deduce that for all t > t1, P-a.s.,

‖φξ(t)‖∞ 6 βαN(t) 6 βα
log t−log t1

log(dA) = βt
− logα

log(dA)
1 t

logα
log(dA) .

Taking a = − logα
log(dA) > 0 and C = βta1 > 0, we conclude that for all t > t1,

‖φξ(t)‖∞ 6
C

ta
P-a.s.,

which implies (3.3). This ends the proof of Theorem 3.5.
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3.3. Existence of the annealed harmonic moments E(W i)−a

The aim of this section is to prove the following theorem which gives the
optimal value of a to have E(W i)−a < +∞ for all 1 6 i 6 d, under condition
H2. (But the proof of the optimality will be done in the next section. )

Theorem 3.7. Assume conditions H1, H2 and ‖‖P1(ξ0)‖∞‖L∞ < 1. Let
a > 0 be such that κ1(a) < 1. Then there exists a constant C > 0 such that
for all 1 6 i 6 d and t > 0,

φi(t) 6 C

ta
, (3.25)

and that for all 1 6 i 6 d, 0 < b < a and x > 0,

P(W i 6 x) 6 Cxa and E(W i)−b 6 C. (3.26)

For the proof of Theorem 3.7, we shall need the following technical lemma
about the decay late of a function which satisfies a functional inequality.

Lemma 3.8. ([24, Lemma 4.1]) Let φ : R+ → R+ be a bounded function.
Assume there exists a random variable A > 0 and constants α ∈ (0, 1),
C > 0, a > 0 and t0 > 0 such that

φ(t) 6 αEφ(At) + C

ta
, t > t0. (3.27)

If αEA−a < 1, then φ(t) = Ot→+∞(t−a).

Proof of Theorem 3.7. First, by Lemma 3.2, we have the implication (3.25)⇒
(3.26). So, it remains to prove (3.25).

Let ε ∈ (0, 1) and a > 0 be such that κ1(a) < 1. By (3.3) in Theorem 3.5,
we get that there exists a constant tε > 0 such that for all t > tε,

‖φξ(t)‖∞ 6 ε P-a.s. (3.28)

Recall that, by H2, we have λ0,n−1 6 ‖M0,n−1‖ 6 (dA)n a.s., n > 1. Then,
combining (3.28) and (3.23), we obtain that for all n > 1 and t > (dA)n+1

A2
tε,

P-a.s.,

φξ(t) 6
n−1∏
k=0

(
P1(ξk) + εQ1(ξk)

)
φTnξ

( tA2
dA‖M0,n−1‖

)
. (3.29)
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Taking expectation in (3.29) and using the independence of the environments
ξn, it follows that for all n > 1 and t > (dA)n+1

A2
tε, P-a.s.,

φ(t) 6 E
( n−1∏
k=0

(
P1(ξk) + εQ1(ξk)

)
E
[
φTnξ

( tA2
dA‖M0,n−1‖

)∣∣∣ξk, 0 6 k < n
])

= E
[ n−1∏
k=0

(
P1(ξk) + εQ1(ξk)

)
φ
( tA2
dA‖M0,n−1‖

)]
.

This implies that for all n > 1 and t > (dA)n+1

A2
tε,

‖φ(t)‖∞ 6 E
[∥∥∥ n−1∏

k=0
(P1(ξk) + εQ1(ξk))

∥∥∥
∞

∥∥∥φ( tA2
dA‖M0,n−1‖

)∥∥∥
∞

]
= αn,εE‖φ(Ãn,εt)‖∞, (3.30)

where αn,ε = E
∥∥∏n−1

k=0
(
P1(ξk) + εQ1(ξk)

)∥∥
∞ > 0 and Ãn,ε is a positive

random variable whose distribution is determined by

Eh(Ãn,ε) = 1
αn,ε

E
[∥∥∥ n−1∏

k=0

(
P1(ξk) + εQ1(ξk)

)∥∥∥
∞
h
( A2
dA‖M0,n−1‖

)]
for all bounded function h on R+. Now we prove that there exist ε ∈ (0, 1)
and n ∈ N satisfying the two following conditions:

αn,ε < 1, (3.31)

and

αn,εEÃ−an,ε < 1. (3.32)

If (3.31) and (3.32) hold, then by Lemma 3.8,

‖φ(t)‖∞ = Ot→+∞(t−a), (3.33)

which is equivalent to (3.25). So it remains to prove (3.31) and (3.32).
First we show (3.31). Notice that for any positive random matrix M ∈

Md(R),

‖EM‖∞ = max
16i6d

E
( d∑
j=1

M(i, j)
)

6 E‖M‖∞ 6
d∑

i,j=1
EM(i, j) 6 d‖EM‖∞. (3.34)
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Using this and the fact that P1(ξk)+Q1(ξk) are stochastic matrices (so that
‖
∏n−1
k=0(P1(ξk) +Q1(ξk))‖∞ = 1), we get for all n > 1 and ε ∈ (0, 1),

αn,ε 6 E
∥∥∥ n−1∏
k=0

P1(ξk) + ε
( n−1∏
k=0

(
P1(ξk) +Q1(ξk)

)
−
n−1∏
k=0

P1(ξk)
)∥∥∥
∞

6 (1− ε)E
∥∥∥ n−1∏
k=0

P1(ξk)
∥∥∥
∞

+ εE
∥∥∥ n−1∏
k=0

(
P1(ξk) +Q1(ξk)

)∥∥∥
∞

6 d(1− ε)‖(EP1(ξ0))n‖∞ + ε.

The hypothesis ‖‖P1(ξ0)‖∞‖L∞ < 1 implies that ρ(EP1(ξ0)) < 1, so that
limn→+∞ ‖(EP1(ξ0))n‖∞ = 0. Therefore, we obtain that for all ε ∈ (0, 1),

lim sup
n→+∞

αn,ε 6 ε < 1. (3.35)

Therefore (3.31) holds for all ε ∈ (0, 1) and n ∈ N sufficiently large.
Now we prove (3.32). By definition of Ãn,ε, for all n > 1 and ε ∈ (0, 1) we

have

αn,εEÃ−an,ε =
(dA
A2

)a
E
[
‖M0,n−1‖a

∥∥∥ n−1∏
k=0

(
P1(ξk) + εQ1(ξk)

)∥∥∥
∞

]
. (3.36)

Notice that ‖M0,n−1‖a
∥∥∏n−1

k=0
(
P1(ξk) + εQ1(ξk)

)∥∥
∞ 6 ‖M0,n−1‖a a.s., with

E‖M0,n−1‖a < +∞. Therefore, by the Lebesgue dominated convergence
theorem, letting ε→ 0 in (3.36), we get that for all n > 1,

αn,εEÃ−an,ε →
ε→0

(dA
A2

)a
E
[
‖M0,n−1‖a

∥∥∥ n−1∏
k=0

P1(ξk)
∥∥∥
∞

]
.

This implies

lim
n→+∞

lim
ε→0

(
αn,εEÃ−an,ε

)1/n
= κ1(a) < 1,

so (3.32) holds for n ∈ N sufficiently large and ε > 0 small enough.
We have therefore proved (3.31) and (3.32), which implies (3.33). This

concludes the proof of Theorem 3.7.

3.4. Proofs of Theorem 2.1 and Corollary 2.2

In this section, using the sufficient condition for the existence of harmonic
moments established in Theorem 3.7 of the preceding section, we prove The-
orem 2.1 and Corollary 2.2 which give a necessary and a sufficient condition
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for the existence of the harmonic moments E(W i)−a. To this end, we need
the following lemma about the behaviour of the function κ1 on R+. Recall
that a matrix M is nilpotent if there is an integer n > 1 such that Mn = 0.

Lemma 3.9. Assume condition H2. Then the function κ1 satisfies the fol-
lowing properties:

(1) κ1(0) = ρ
(
EP1(ξ0)

)
;

(2) The following assertions are equivalent: (i) κ1(0) = 0; (ii) κ1(a) = 0
for all a > 0; (iii) EP1(ξ0) is nilpotent;

(3) if EP1(ξ0) is not nilpotent, then κ1 is a strictly increasing continuous
function on R+, with lima→+∞ κ1(a) = +∞.

Proof. (1) Part (1) follows because, using inequalities (3.34), we have

κ1(0) = lim
n→+∞

(
E
∥∥∥ n−1∏
k=0

P1(ξk)
∥∥∥
∞

)1/n

= lim
n→+∞

(∥∥∥E[ n−1∏
k=0

P1(ξk)
]∥∥∥
∞

)1/n

= lim
n→+∞

(
‖[EP1(ξ0)]n‖∞

)1/n
= ρ

(
EP1(ξ0)

)
. (3.37)

(2) We next prove part (2). Notice that the matrix EP1(ξ0) is nilpotent
if and only if ρ

(
EP1(ξ0)

)
= 0. So by part (1), we only need to prove the

equivalence between (i) and (ii). To this end we will prove that for all a, b > 0,
there exist constants c1, c2 > 0 such that κ1(a+ b) 6 c1κ(a) 6 c2κ1(a+ b).

By H2 we have ‖M0,n−1‖ 6 (dA)n a.s., so for all a, b > 0,

κ1(a+ b) = lim
n→+∞

(
E‖M0,n−1‖a+b

∥∥∥ n−1∏
k=0

P1(ξk)
∥∥∥
∞

)1/n

6 lim
n→+∞

(
(dA)nbE‖M0,n−1‖a

∥∥∥ n−1∏
k=0

P1(ξk)
∥∥∥
∞

)1/n

= (dA)bκ1(a). (3.38)

On the other hand, by (3.11) we get that for all n > 0,

‖M0,n−1‖ > min
16i6d

M0,n−1(i, j) > A2A
n−1
1 P-a.s.
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Therefore, we obtain that for all a, b > 0, with A1 > 1,

κ1(a+ b) > lim
n→+∞

(
(A2A

n−1
1 )bE‖M0,n−1‖a

∥∥∥ n−1∏
k=0

P1(ξk)
∥∥∥
∞

)1/n

= Ab1κ1(a). (3.39)

From (3.38) and (3.39) we see that κ1(a) = 0 for all a > 0 if and only if
κ1(0) = 0. This ends the proof of part (2).

(3) We finally prove part (3). Assume that EP1(ξ0) is not nilpotent. Then,
by parts (1) and (2), we have κ1(0) = ρ

(
EP1(ξ0)

)
> 0. It follows from (3.38)

and (3.39) that κ1 is a strictly increasing continuous function on R+ with
lima→+∞ κ1(a) = +∞. This concludes part (3).

The proof of Lemma 3.9 is complete.

Proof of Theorem 2.1. First we assume that κ1(a) < 1, where a > 0. By
Lemma 3.9, κ1 is a continuous function on R+, so there exists ε > 0 such
that κ1(a+ε) < 1. Using Theorem 3.7 (with a replaced by a+ε), this implies
that E(W i)−a < +∞ for all 1 6 i 6 d.

Now we suppose that a > 0 is such that E(W i)−a < +∞ for all 1 6 i 6 d.
We will prove that κ1(a) 6 1. Let Zrl,n,k = (Zrl,n,k(1), · · · , Zrl,n,k(d)), where
Zrl,n,k(j) denotes the offspring of type j at time n+ k of the l-th particle of
type r in the generation n. By iteration of (2.1), it is easy to see that the
MBPRE (Zin)n>0 satisfies the relation

Zin+k =
d∑
j=1

Zin(j)∑
l=1

Zjl,n,k, n, k > 0.

It follows that for all n, k > 0 and 1 6 i 6 d,

W i
n+k =

d∑
j=1

Zin(j)∑
l=1

〈Zrjl,n,k, Un+k,∞〉
λ0,n+k−1U0,∞(i)

=
d∑
j=1

Un,∞(j)
λ0,n−1U0,∞(i)

Zin(j)∑
l=1

W j
l,n,k, (3.40)

where

W j
l,n,k :=

〈Zjl,n,k, Un+k,∞〉
λn,n+k−1Un,∞(j) .

Clearly (W j
l,n,k)k>0 is the fundamental martingale associated to the MBPRE

(Zjl,n,k)k>0 in the shifted random environment Tnξ, starting with the l-th
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particle of type j in the generation n. Hence (W j
l,n,k)k>0 converges a.s. to

a random variable W j
l,n. Letting k → +∞ in (3.40), we get the following

distributional equation on the limit variables W i: for all 1 6 i 6 d and
n > 0,

W i =
d∑
r=1

Un,∞(r)
λ0,n−1U0,∞(i)

Zin(r)∑
l=1

W r
l,n, (3.41)

where for each n ∈ N, under Pξ, the random variablesW r
l,n, indexed by l > 0

and 1 6 r 6 d, are independent of each other and independent of Zin, each
with the distribution

Pξ(W r
l,n ∈ ·) = PTnξ(W r ∈ ·).

Therefore, we get from (3.41) that for all 1 6 i 6 d and n > 1, P-a.s.,

Eξ(W i)−a = Eξ
( d∑
r=1

Un,∞(r)
λ0,n−1U0,∞(i)

Zin(r)∑
l=1

W r
l,n

)−a

>
d∑
r=1

( Un,∞(r)
λ0,n−1U0,∞(i)

)−a
Eξ
[( Zin(r)∑

l=1
W r
l,n

)−a
1{Zin=er}

]

= (λ0,n−1U0,∞(i))a
d∑
r=1

Un,∞(r)−aETnξ(W r)−aPξ(Zin = er).

(3.42)

For n > 0, let Xn be the vector in Rd whose i-th entry is

Xn(i) = Un,∞(i)−aETnξ(W i)−a, 1 6 i 6 d. (3.43)

By H1 and the definition of the random matrices P1(ξn), we have that for
all n > 1 and 1 6 i, r 6 d, P-a.s.,

Pξ(Zin+1 = er) =
d∑
j=1

Pξ(Zin = ej)Pξ(Zin+1 = er|Zin = ej)

=
d∑
j=1

Pξ(Zin = ej)P1(ξn)(j, r).

By iterating this relation, we get that for all n > 1 and 1 6 i, r 6 d, P-a.s.,

Pξ(Zin = er) =
[ n−1∏
k=0

P1(ξk)
]
(i, r). (3.44)
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Using this and the notation Xn (cf. (3.43)), we can re-write (3.42) as follows:
for all n > 1, P-a.s.,

X0 > λa0,n−1

n−1∏
k=0

P1(ξk) Xn. (3.45)

By (1.5) and (3.22), we get that for all n > 1,

λ0,n−1 = ‖M0,n−1Un,∞‖ >
A2
dA
‖M0,n−11‖ > A2

dA
‖M0,n−1‖ P-a.s.

This, together with (3.45), implies that for all n > 1, P-a.s.,

‖X0‖∞ >
(A2
dA

)a
‖M0,n−1‖a

∥∥∥ n−1∏
k=0

P1(ξk) Xn

∥∥∥
∞

>
(A2
dA

)a
‖M0,n−1‖a

∥∥∥ n−1∏
k=0

P1(ξk)
∥∥∥
∞

min
16i6d

Xn(i). (3.46)

Notice that (Xn)n>0 is a stationary ergodic sequence of strictly positive
random vectors, and Xn is independent of ξ0, · · · , ξn−1. Therefore, taking
expectation in (3.46), we get that for all n > 1,

E‖X0‖∞ >
(A2
dA

)a
E
[
‖M0,n−1‖a

∥∥∥ n−1∏
k=0

P1(ξk)
∥∥∥
∞

]
E
(

min
16i6d

X0(i)
)
. (3.47)

Using again (3.22), for any 1 6 i 6 d we have

0 < EX0(i) = E[U0,∞(i)−aEξ(W i)−a] 6
(A2
dA

)−a
E(W i)−a < +∞.

Therefore, by (3.47) we obtain for all n > 1,

E‖M0,n−1‖a
∥∥∥ n−1∏
k=0

P1(ξk)
∥∥∥
∞

6
(dA
A2

)a E‖X0‖∞
E
(

min16i6dX0(i)
) .

This implies that

κ1(a) = lim
n→+∞

(
E‖M0,n−1‖a

∥∥∥ n−1∏
k=0

P1(ξk)
∥∥∥
∞

)1/n
6 1,

which is the desired result. This concludes the proof of Theorem 2.1 and the
remark following it.
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Proof of Corollary 2.2. First we suppose that EP1(ξ0) is nilpotent. By Lemma
3.9, we know that κ1(a) = 0 < 1 for all a > 0. Therefore, using Theorem
2.1, we get that E(W i)−a < +∞ for all 1 6 i 6 d and a > 0.

Now, we assume that EP1(ξ0) is not nilpotent. By Lemma 3.9 and the
condition ‖‖P1(ξ0)‖∞‖L∞ < 1, the function κ1 is continuous and strictly
increasing on R+ with κ1(0) = ρ

(
EP1(ξ0)

)
< 1 and lima→+∞ κ1(a) = +∞.

Therefore, there exists a unique constant a0 > 0 such that κ1(a0) = 1, and
we have κ1(a) < 1 if a < a0, and κ1(a) > 1 if a > a0. Using again Theorem
2.1, this implies that

max
16i6d

E(W i)−a
{
< +∞ if a ∈ [0, a0),
= +∞ if a ∈ (a0,+∞).

The proof of Corollary 2.2 is complete.

3.5. Proof of Theorem 2.3

In this section, we prove Theorem 2.3 which gives the existence of the har-
monic moments E(W i)−a for a small a > 0, under the moment condition
H3, instead of the boundedness condition H2 considered in the preceding
section. We will prove the following theorem.

Theorem 3.10. Assume conditions H1, H3 and γ > 0. Then there exist
two constants a > 0 and C > 0 such that for all 1 6 i 6 d, all t > 0, and
all x > 0,

φi(t) 6 C

ta
, (3.48)

P(W i 6 x) 6 Cxa and E(W i)−a 6 C. (3.49)

Clearly Theorem 2.3 follows from Theorem 3.10. We need some previous
results to prove Theorem 3.10. The first one gives the non-degeneracy of the
limits W i under the conditions of Theorem 3.10.

Lemma 3.11. The following implication holds: H3 ⇒ (2.5). Moreover,
under the conditions H3 and γ > 0, the limit W i is non-degenerate for each
1 6 i 6 d, and (2.6) hold.

Proof. We first prove the implication H3 ⇒ (2.5). Assume condition H3.
Then, by Hölder’s inequality Eξ|XY | 6 (Eξ|X|α)1/α(Eξ|Y |β)1/β with α =
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1/(1− η) and β = 1/η, we see that for all 1 6 i, j 6 d we have, P-a.s.,

Eξ
(

Zi1(j)
M0(i, j) log+ Zi1(j)

M0(i, j)

)
= Eξ

[(
Zi1(j)
M0(i, j)

)1−η( Zi1(j)
M0(i, j)

)η
log+ Zi1(j)

M0(i, j)

]

6
[
Eξ
(

Zi1(j)
M0(i, j)

)]1−η{
Eξ
[
Zi1(j)
M0(i, j)

(
log+ Zi1(j)

M0(i, j)

)1/η]}η
=

{
Eξ
[
Zi1(j)
M0(i, j)

(
log+ Zi1(j)

M0(i, j)

)1/η]}η
. (3.50)

We know that there exists a constant C > 0 such that log+ x 6 Cxη(p−1) for
all x > 0. Taking expectation in (3.50), we obtain that for all 1 6 i, j 6 d,

E
(

Zi1(j)
M0(i, j) log+ Zi1(j)

M0(i, j)

)
6 CE

[
Eξ
(

Zi1(j)
M0(i, j)

)p]η
< +∞, (3.51)

since Eθ0(p)η < +∞ by condition H3. Hence the condition (2.5) holds.
Recall that by [13, Theorem 2.6 and Corollary 2.8], condition (2.5) to-

gether with γ > 0 implies that the limit W i is non-degenerate for each
1 6 i 6 d, and (2.6) hold. Combining this with the implication H3⇒ (2.5),
we conclude the proof of Lemma 3.11.

By the sub-additive ergodic theorem and the fact that ‖M0,n(i, ·)‖ > 1
a.s. for any 1 6 i 6 d (which follows from H1), for all s < 0 the limit

κ(s) := lim
n→+∞

(
E‖M0,n−1‖s

)1/n (3.52)

exists, with κ(s) = supn>1
(
E‖M0,n−1‖s

)1/n
6 1. The proof of Theorem 3.10

is based on the following result about the properties of the function κ.

Lemma 3.12. Assume conditions H1, H3 and γ > 0. Then for all s < 0,

κ(s) < 1.

Moreover, if η > 0 satisfies H3, then for all 0 6 a < s 6 η/2,(
E
[
‖M0,n−1‖a max

16i,j6d
M0,n−1(i, j)−s

])1/n
→

n→+∞
κ(a− s) < 1. (3.53)

Proof. First we prove that κ(s) < 1 for all s < 0. Recall that ι(M) =
inf‖x‖=1 ‖Mx‖, for M ∈ Md(R), and ι

(
MT

0,n
)
> 1 a.s. by (3.10) and H1.
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Since ι is super-multiplicative, the sequence E ι
(
MT

0,n−1
)s is sub-multiplicative.

So using the sub-additive ergodic theorem we get

lim
n→+∞

(
E ι
(
MT

0,n−1
)s)1/n = inf

n>1

(
E ι
(
MT

0,n−1
)s)1/n

6 1, ∀s < 0.

By the inequalities ι
(
MT

)
6 ‖MT ‖ 6 d‖M‖,M ∈Md(R), this implies that

for all s < 0,

κ(s) 6 lim
n→+∞

(
E ι
(
MT

0,n−1
)s)1/n = inf

n>1

(
E ι
(
MT

0,n−1
)s)1/n

.

Therefore, for all s < 0 and n > 1, we have

κ(s)n 6 E ι
(
MT

0,n−1
)s

6 1. (3.54)

Clearly by (3.54), if κ(s) = 1, then E ι
(
MT

0,n−1
)s = 1 for all n > 1, which is

equivalent to ι
(
MT

0,n−1
)

= 1 a.s. for all n > 1. Consequently, if we show that

lim
n→+∞

P
(
ι
(
MT

0,n−1
)

= 1
)

= 0, (3.55)

then we will have κ(s) < 1 for all s < 0. So, it remains to prove (3.55). Using
H1 and the identity ι(M) = min

16j6d
‖M(·, j)‖, M ∈ Md(R), for all n > 1 we

have

P
(
ι
(
MT

0,n−1
)

= 1
)
6

d∑
i=1

P(‖M0,n−1(i, ·)‖ = 1) 6
d∑
i=1

P(‖Zin‖ = 1). (3.56)

By Lemma 3.11, the conditions H3 and γ > 0 imply that the limitsW i, 1 6
i 6 d, are non-degenerate, and (2.6) holds. Combining this with condition
H1, we obtain that limn→+∞ ‖Zin‖ = +∞ a.s. Therefore, we obtain that for
all 1 6 i 6 d,

lim
n→+∞

P(‖Zin‖ = 1) = 0, (3.57)

and (3.55) follows from (3.56). So κ(s) < 1 for all s < 0, which is the desired
result.

Now we prove (3.53). Let η > 0 be such that condition H3 holds, and set
0 < a < s 6 η/2. First, for all n > 1 we have

E
[
‖M0,n−1‖a max

16i,j6d
M0,n−1(i, j)−s

]
> E‖M0,n−1‖a−s. (3.58)
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Next, for all n > 2,

E
[
‖M0,n−1‖a max

16i,j6d
M0,n−1(i, j)−s

]
= E

[
‖M0,n−1‖a max

16i,j6d

( d∑
r=1

M0(i, r)M1,n−1(r, j)
)−s]

6 E
[
‖M0‖a max

16i,r6d
M0(i, r)−s

]
E
[
‖M1,n−1‖a max

16j6d
‖M1,n−1(·, j)‖−s

]
= E

[
‖M0‖a max

16i,r6d
M0(i, r)−s

]
E
[
‖M0,n−2‖a max

16j6d
‖M0,n−2(·, j)‖−s

]

It follows that for all n > 3,

E
[
‖M0,n−1‖a max

16i,j6d
M0,n−1(i, j)−s

]
6 E

[
‖M0‖a max

16i,j6d
M0(i, j)−s

]
×

E
[
‖M0,n−2‖a max

16j6d

( d∑
r=1
‖M0,n−3(·, r)‖Mn−2(r, j)

)−s]
6 E

[
‖M0‖a max

16i,j6d
M0(i, j)−s

]
×

E
[
‖Mn−2‖a max

16i,j6d
Mn−2(i, j)−s

]
E
[
‖M0,n−3‖a(d‖M0,n−3‖)−s

]
= d−s

(
E
[
‖M0‖a max

16i,j6d
M0(i, j)−s

])2
E‖M0,n−3‖a−s. (3.59)

Then, by Hölder’s inequality and condition H3, since 2a < 2s 6 η, we have

E
[
‖M0‖a max

16i,j6d
M0(i, j)−s

]
6
(
E‖M0‖2a

)1/2(E[ max
16i,j6d

M0(i, j)−2s
])1/2

< +∞.

Combining this with the inequalities (3.58) and (3.59), we obtain that for
all n > 3,

E‖M0,n−1‖a−s 6 E
[
‖M0,n−1‖a max

16i,j6d
M0,n−1(i, j)−s

]
6 C E‖M0,n−3‖a−s,

where C = d−s
(
E
[
‖M0‖a max16i,j6dM0(i, j)−s

])2
< +∞. This, together

with (3.52), implies (3.53), which concludes the proof of Lemma 3.12.
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Proof of Theorem 3.10. The implication (3.48) ⇒ (3.49) holds by Lemma
3.2. Therefore, it remains to show (3.48) under the given conditions.

Assume condition H1, H3 and γ > 0. Set ψξ(t) = (ψ1
ξ (t), · · · , ψdξ (t)),

where for all t > 0, and 1 6 i 6 d,

ψiξ(t) = φiξ(tU0,∞(i)).

Let ψ be the function on R+ defined by

ψ(t) = E‖ψξ(t)‖∞, t > 0.

Since φiξ is a decreasing function on R+ and 0 < U0,∞(i) < 1 a.s., for all
t > 0 we have

‖φ(t)‖∞ = ‖Eφξ(t)‖∞ 6 E‖φξ(t)‖∞ 6 E‖ψξ(t)‖∞ = ψ(t).

Therefore, if we prove that there exists a constant a > 0 such that

ψ(t) = Ot→+∞(t−a), (3.60)

then (3.48) holds.
Now we prove (3.60). As in the proof of Theorem 2.1, the argument will

still be based on (3.21). The idea is to take expectation at both sides of
this inequality, and to get an inequality on ψ in order to use Lemma 3.8 to
conclude. The difficult point is to have a bound in terms of ψ while taking
expectation on the right hand side of (3.21). This will be done by truncation
and iteration.

Recall that λ0,n−1 = ‖M0,n−1Un,∞‖ 6 ‖M0,n−1‖ for all n > 1, and ψiξ is
decreasing on R+. Therefore, we get that for all n > 1 and t > 0,

ψTnξ
( t

λ0,n−1

)
6 ψTnξ

( t

‖M0,n−1‖

)
P-a.s. (3.61)

Moreover, by similar arguments as in (3.14)-(3.16), we have that for all
K > 0, there exist two constants tK > 0 and βK ∈ (0, 1) such that for all
t > tK , ‖φξ(t)‖∞ 6 βK P-a.s. on the event {max16i6d Eξ(W i)p 6 Kp}.
Therefore when t > tKλ0,n−1

min
16i6d

Un,∞(i) and max
16i6d

ETnξ(W i)p 6 Kp, we have a.s.

∥∥∥ψTnξ( t

λ0,n−1

)∥∥∥
∞

6 βK .
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Combining this with (3.21) and (3.61), we obtain that for all K > 0, n > 1
and t > 0, P-a.s.,

E
[
‖ψξ(t)‖∞1{t> tKλ0,n−1

min
16i6d

Un,∞(i) , max
16i6d

ETnξ(W i)p6Kp}

]

6 E
[∥∥∥ n−1∏

k=0

(
P1(ξk) + βKQ1(ξk)

)
ψTnξ

( t

‖M0,n−1‖

)∥∥∥
∞

]

6 E
{∥∥∥ n−1∏

k=0

(
P1(ξk) + βKQ1(ξk)

)∥∥∥
∞
E
[∥∥∥ψTnξ( t

‖M0,n−1‖

)∥∥∥
∞

∣∣∣ξ0, · · · , ξn−1
]}

= E
[∥∥∥ n−1∏

k=0

(
P1(ξk) + βKQ1(ξk)

)∥∥∥
∞
ψ
( t

‖M0,n−1‖

)]
.

This, together with (3.20), implies that for all K > 0, n > 1 and t > 0,
P-a.s.,

ψ(t)

6 E
[
‖ψξ(t)‖∞1{t> tKλ0,n−1

min16i6d Un,∞(i) , max
16i6d

ETnξ(W i)p6Kp}

]
+E
[
‖ψξ(t)‖∞1{ max

16i6d
ETnξ(W i)p>Kp}

]
+ E

[
‖ψξ(t)‖∞1{t< tKλ0,n−1

min16i6d Un,∞(i)}

]
6 E

[∥∥∥ n−1∏
k=0

(
P1(ξk) + βKQ1(ξk)

)∥∥∥
∞
ψ
( t

‖M0,n−1‖

)]
+E
[∥∥∥ψTnξ( t

λ0,n−1

)∥∥∥
∞
1{ max

16i6d
ETnξ(W i)p>Kp}

]
+P
( ‖M0,n−1‖

min16i6d Un,∞(i) >
t

tK

)
. (3.62)

Now we control the second and last terms in (3.62).
We first find a bound for the second term in terms of ψ. Using the trian-

gular inequality in Lp and (3.8), we get that for all 1 6 i 6 d, P-a.s.,

(
Eξ(W i)p

)1/p
6 1 +

+∞∑
n=0

(
Eξ|W i

n+1 −W i
n|p
)1/p

6 1 +Bp

+∞∑
n=0

θn(p)
1
p max

16j6d
M0,n−1(i, j)

1−p
p .

By the sub-additivity of the function x 7→ x
η
2 on R+ (since 0 < η < 1), this
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implies that for all K > 0, n > 1 and t > 0, P-a.s.,

E
[∥∥∥ψTnξ( t

λ0,n−1

)∥∥∥
∞
1{ max

16i6d
ETnξ(W i)p>Kp}

]
6

1
K

η
2
E
[∥∥∥ψTnξ( t

λ0,n−1

)∥∥∥
∞

max
16i6d

(
ETnξ(W i)p

) η
2p
]

6
1
K

η
2
E
[∥∥∥ψTnξ( t

λ0,n−1

)∥∥∥
∞

]
+
(Bp
K

) η
2 ×

+∞∑
k=0

E
[∥∥∥ψTnξ( t

λ0,n−1

)∥∥∥
∞
θn+k(p)

η
2p max

16i,j6d
Mn,n+k−1(i, j)

η(1−p)
2p

]
.

(3.63)

By (3.20) and (3.61), we get that for n, k > 0 and t > 0, P-a.s.,∥∥∥ψTnξ( t

λ0,n−1

)∥∥∥
∞

6
∥∥∥ψTn+k+1ξ

( t

λ0,n+k

)∥∥∥
∞

6
∥∥∥ψTn+k+1ξ

( t

‖M0,n+k‖

)∥∥∥
∞
.

Combining this with (3.63), we obtain that for all K > 0, n > 1 and t > 0,
P-a.s.,

E
[∥∥∥ψTnξ( t

λ0,n−1

)∥∥∥
∞
1{ max

16i6d
ETnξ(W i)p>Kp}

]
6

1
K

η
2
E
[∥∥∥ψTnξ( t

‖M0,n−1‖

)∥∥∥
∞

]
+
(Bp
K

) η
2 ×

+∞∑
k=0

E
[∥∥∥ψTn+k+1ξ

( t

‖M0,n+k‖

)∥∥∥
∞
θn+k(p)

η
2p max

16i,j6d
Mn,n+k−1(i, j)

η(1−p)
2p

]
6

1
K

η
2
E
[
ψ
( t

‖M0,n−1‖

)]
+
(Bp
K

) η
2 ×

+∞∑
k=0

E
[
ψ
( t

‖M0,n+k‖

)
θn+k(p)

η
2p max

16i,j6d
Mn,n+k−1(i, j)

η(1−p)
2p

]
, (3.64)

where, for the last inequality, we have used the fact thatM0,n+k and θn+k(p)
are independent of Tn+k+1ξ. We have therefore obtained a bound of the
second term in (3.62) in terms of ψ.

For the last term in (3.62), by Markov’s inequality we get that for all
K > 0, n > 1 and t > 0,

P
( ‖M0,n−1‖

min16i6d Un,∞(i) >
t

tK

)
6
(
tK
t

) η
2
E
( ‖M0,n−1‖

η
2

min16i6d Un,∞(i)
η
2

)
6
C(n,K)
tη/2 , (3.65)
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where C(n,K) := t
η
2
K

(
E‖M0‖

η
2
)nE(max16i6d U0,∞(i)−

η
2
)
. We claim that

C(n,K) < ∞ because, by (1.4), Cauchy-Schwarz’s inequality and condi-
tion H3, we have for all 1 6 i 6 d

E
(
U0,∞(i)−

η
2
)

= E
(〈M0(i, ·), U1,∞〉−

η
2

‖M0U1,∞‖−
η
2

)

6 E
(max16j6dM0(i, j)−

η
2

‖M0‖−
η
2

)
6
(
E
[

max
16j6d

M0(i, j)−η
])1/2(

E‖M0‖η
)1/2

< +∞. (3.66)

Putting together the inequalities (3.62), (3.63), (3.64) and (3.65), we obtain
the following inequality on ψ: for all K > 0, n > 1 and t > 0,

ψ(t)

6 E
[∥∥∥ n−1∏

k=0

(
P1(ξk) + βKQ1(ξk)

)∥∥∥
∞
ψ
( t

‖M0,n−1‖

)]

+
(Bp
K

) η
2

+∞∑
k=0

E
[
ψ
( t

‖M0,n+k‖

)
θn+k(p)

η
2p max

16i,j6d
Mn,n+k−1(i, j)

η(1−p)
2p

]
+ 1
K

η
2
E
[
ψ
( t

‖M0,n−1‖

)]
+ C(n,K)

t
η
2

. (3.67)

We will write this inequality in the form (3.27) in order to use Lemma
3.8. For K > 0 and n > 1, set

αn,K := E
[∥∥∥ n−1∏

k=0

(
P1(ξk) + βKQ1(ξk)

)∥∥∥
∞

]

+
(Bp
K

) η
2 E
[
θ0(p)

η
2p
] +∞∑
k=0

E
[

max
16i,j6d

M0,k−1(i, j)
η(1−p)

2p
]

+ 1
K

η
2
.

By condition H3 and equality (3.18), and using (3.53) in Lemma 3.12 with
a = 0 and s = η(p−1)

2p ∈
(
0, η2

)
, we get for all K > 0 and n > 1,

αn,K < +∞.

For any K > 0 and n > 1, let Ãn,K be a positive random variable whose
distribution is determined by the following expectation: for all bounded and
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mesurable function h on R+,

Eh(Ãn,K)

= 1
αn,K

E
[∥∥∥ n−1∏

k=0

(
P1(ξk) + βKQ1(ξk)

)∥∥∥
∞
h
( 1
‖M0,n−1‖

)]

+ B
η
2
p

K
η
2αn,K

+∞∑
k=0

E
[
h
( 1
‖M0,n+k‖

)
θn+k(p)

η
2p max

16i,j6d
Mn,n+k−1(i, j)

η(1−p)
2p

]
+ 1
K

η
2αn,K

E
[
h
( 1
‖M0,n−1‖

)]
.

So we can rewrite (3.67) as in the form (3.27): for all K > 0, n > 1 and
t > 0,

ψ(t) 6 αn,KE
[
ψ(Ãn,Kt)

]
+ C(n,K)

tη/2 . (3.68)

We will prove that there exist K > 0, n > 1 and 0 < a < η/2 such that

αn,K < 1, (3.69)

and

αn,KEÃ−an,K < 1. (3.70)

By Lemma 3.8, inequality (3.68), together with (3.69) and (3.70), implies
(3.60), which is the desired result. So it remains to prove (3.69) and (3.70).

First, we prove (3.69). By (3.44), for all 1 6 i, j 6 d we have

P(Zin = ej) = E
[ n−1∏
k=0

P1(ξk)
]
(i, j) =

(
EP1(ξ0)

)n(i, j).

This, together with (3.57), implies that

ρ
(
EP1(ξ0)

)
< 1. (3.71)

Notice that the relation (3.35) can be proved by using (3.71) instead of the
condition ‖‖P1(ξ0)‖∞‖L∞ < 1. Therefore, (3.71) implies that for all K > 0,

lim sup
n→+∞

E
[∥∥∥ n−1∏

k=0

(
P1(ξk) + βKQ1(ξk)

)∥∥∥
∞

]
≤ βK . (3.72)
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By the sub-additivity we have

lim
n→+∞

(
E
[∥∥∥ n−1∏

k=0

(
P1(ξk) + βKQ1(ξk)

)∥∥∥
∞

])1/n

= inf
n>1

(
E
[∥∥∥ n−1∏

k=0

(
P1(ξk) + βKQ1(ξk)

)∥∥∥
∞

])1/n
.

Together with (3.72), this implies that for all K > 0,

E
[∥∥∥ n−1∏

k=0

(
P1(ξk) + βKQ1(ξk)

)∥∥∥
∞

]
→

n→+∞
0.

It follows that for all K > 0,

αn,K →
n→+∞

(Bp
K

) η
2 E
[
θ0(p)

η
2p
] +∞∑
k=0

E
[

max
16i,j6d

M0,k−1(i, j)
η(1−p)

2p
]

+ 1
K

η
2
.

(3.73)

Letting K → +∞ in (3.73), we deduce

lim
K→+∞

lim
n→+∞

αn,K = 0,

so that (3.69) holds for K and n sufficiently large.
Now, we prove (3.70). For all K > 0, n > 1 and a > 0, we have

αn,KEÃ−an,K

= E
[∥∥∥ n−1∏

k=0

(
P1(ξk) + βKQ1(ξk)

)∥∥∥
∞
‖M0,n−1‖a

]
+ 1
K

η
2
E‖M0,n−1‖a

+
(Bp
K

) η
2

+∞∑
k=0

E
[
‖M0,n+k‖aθn+k(p)

η
2p max

16i,j6d
Mn,n+k−1(i, j)

η(1−p)
2p

]
.

By the independence of the environments ξn, n > 0, we have

E
[
‖M0,n+k‖aθn+k(p)

η
2p max

16i,j6d
Mn,n+k−1(i, j)

η(1−p)
2p

]
= E

[
‖Mn+k‖aθn+k(p)

η
2p
]
E
[
‖M0,n−1‖a

]
×

E
[
‖Mn,n+k−1‖a max

16i,j6d
Mn,n+k−1(i, j)

η(1−p)
2p

]
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Therefore, by the stationarity, we get that for all K > 0, n > 1 and a > 0,

αn,KEÃ−an,K

= E
[∥∥∥ n−1∏

k=0

(
P1(ξk) + βKQ1(ξk)

)∥∥∥
∞
‖M0,n−1‖a

]
+ 1
K

η
2
E‖M0,n−1‖a

+
(Bp
K

) η
2 E
[
‖M0‖aθ0(p)

η
2p
]
×

E‖M0,n−1‖a
+∞∑
k=0

E
[
‖M0,k−1‖a max

16i,j6d
M0,k−1(i, j)

η(1−p)
2p

]
. (3.74)

For any fixed n > 1, we have ‖M0,n−1‖a → 1 P-a.s. as a→ 0, and ‖M0,n−1‖a

is dominated by ‖M0,n−1‖η(p−1)/4p when a ∈
(
0, η(p−1)

4p
)
. We will apply the

dominated convergence theorem in (3.74) as a→ 0. Notice that, by condition
H3 and (3.18) , for all K > 0 and n > 1,

E
[∥∥∥ n−1∏

k=0

(
P1(ξk) + βKQ1(ξk)

)∥∥∥
∞
‖M0,n−1‖

η(p−1)
4p

]
6 E‖M0,n−1‖

η(p−1)
4p

6
(
E‖M0‖

η(p−1)
4p

)n
< +∞.

Using (3.53) in Lemma 3.12, we obtain

+∞∑
k=0

E
[
‖M0,k−1‖

η(p−1)
4p max

16i,j6d
M0,k−1(i, j)

η(1−p)
2p

]
< +∞.

By Hölder’s inequality and condition H3 we have

E
[
‖M0‖

η(p−1)
4p θ0(p)

η
2p
]
6
(
E‖M0‖

η
4
) p
p−1
(
Eθ0(p)

η
2
) 1
p < +∞.

Therefore, applying the Lebesgue dominated convergence theorem, by let-
ting a→ 0 in (3.74), we obtain that for all K > 0 and n > 1,

lim
a→0

(
αn,KEÃ−an,K

)
= E

[∥∥∥ n−1∏
k=0

(
P1(ξk) + βKQ1(ξk)

)∥∥∥
∞

]
+ 1
K

η
2

+
(Bp
K

) η
2 E
[
θ0(p)

η
2p
] +∞∑
k=0

E
[

max
16i,j6d

M0,k−1(i, j)
η(1−p)

2p
]
.

(3.75)
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Letting n→ +∞ in (3.75), by (3.73) it holds that for all K > 0,

lim
n→+∞

lim
a→0

(
αn,KEÃ−an,K

)
= 1
K

η
2

+
(Bp
K

) η
2 E
[
θ0(p)

η
2p
] +∞∑
k=0

E
[

max
16i,j6d

M0,k−1(i, j)
η(1−p)

2p
]
.

Then, letting K → +∞, we conclude that

lim
K→+∞

lim
n→+∞

lim
a→0

(
αn,KEÃ−an,K

)
= 0.

This implies (3.70) for K > 0 and n > 1 sufficiently large, and a > 0 small
enough. Therefore (3.60) holds, and this concludes the proof of Theorem
3.10.

4. Central limit theorem for log ‖Zin‖

In this section, we prove Theorem 2.4, that is, a central limit theorem for
the logarithm of the population size log ‖Zin‖ for each 1 6 i 6 d. To this
end, we will use the following central limit theorem for the norm cocycle
log ‖MT

0,n−1x‖ established by Hennion [20, Theorem 3].

Lemma 4.1. Assume conditions (2.3) and H4. Then there exists σ > 0
such that for all x ∈ S, as n→∞,

log ‖MT
0,n−1x‖ − nγ√

n
→ N (0, σ2) in law.

Proof of Theorem 2.4. By definition of the martingale (W i
n), for any n > 1

and 1 6 i 6 d we have, P-a.s.,

‖Zin‖
‖M0,n−1(i, ·)‖ min

16j6d
Un,∞(j) 6W i

n 6
‖Zin‖

‖M0,n−1(i, ·)‖
1

min16j6d Un,∞(j) .

From this, we obtain the two following inequalities: for all n > 1 and 1 6
i 6 d, P-a.s.,

log ‖Zin‖ 6 log ‖M0,n−1(i, ·)‖+ logW i
n − min

16j6d
logUn,∞(j), (4.1)

log ‖Zin‖ > log ‖M0,n−1(i, ·)‖+ logW i
n + min

16j6d
logUn,∞(j). (4.2)

We know that (Un,∞) is a stationary and ergodic sequence of positive random
variables, so for all 1 6 j 6 d it holds

logUn,∞(j)√
n

P−→ 0, (4.3)
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where P−→ denotes the convergence in probability with respect to P. On the
other hand, by [13, Theorem 2.6 and Corollary 2.8] we know that under
conditions (2.5) and γ > 0 the limit W i of the martingale (W i

n) is non-
degenerate, and (2.6) holds. This, combining with condition H1, implies
that W i > 0 P-a.s. for each 1 6 i 6 d. Therefore, we obtain that for all
1 6 i 6 d,

logW i
n√

n
→

n→+∞
0 P-a.s. (4.4)

Putting together the relations (4.1)-(4.4), we get that for all 1 6 i 6 d,∣∣∣∣ log ‖Zin‖ − nγ√
n

− log ‖M0,n−1(i, ·)‖ − nγ√
n

∣∣∣∣ P−→ 0. (4.5)

Using Lemma 4.1 for x = ei, we see that

log ‖M0,n−1(i, ·)‖ − nγ√
n

→ N (0, σ2) in law.

Combining this with (4.5), we conclude the proof of Theorem 2.4.

5. Berry-Esseen bound for log ‖Zin‖

In this section, we prove Theorem 2.5 which gives a Berry-Esseen bound for
the logarithm of the population size log ‖Zin‖, for any 1 6 i 6 d.

First, we formulate the following lemma giving the convergence in L1 of
logW i

n to logW i with an exponential rate, for all 1 6 i 6 d.

Lemma 5.1. Assume conditions H1, H3 and γ > 0. Then there exist two
constants C > 0 and δ ∈ (0, 1) such that for all n > 0 and 1 6 i 6 d,

E| logW i
n − logW i| 6 Cδn.

Proof. For any n > 0 and 1 6 i 6 d, set

Rin :=
W i
n+1
W i
n

− 1.

Then, for all n > 0 and 1 6 i 6 d we have

logW i
n+1 − logW i

n = log(1 +Rin). (5.1)
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Let K ∈ (0, 1) be a constant. From (5.1) we get that for all n > 0 and
1 6 i 6 d,

E
∣∣ logW i

n+1 − logW i
n

∣∣ = E
∣∣ log(1 +Rin)1{Rin>−K}

∣∣+ E
∣∣ log(1 +Rin)1{Rin<−K}

∣∣
=: I1(n) + I2(n). (5.2)

In the following, C > 0 will be a constant which may depend on K, p and η,
and which may differ from line to line. Now we control the two terms I1(n)
and I2(n).

Control of I1(n). Since ηp
4 6 1, the function x 7→ |x|−

ηp
4 log(1 + x) is

bounded on [−K,+∞), so for all n > 0 and 1 6 i 6 d,

I1(n) = E| log(1 +Rin)1{Rin>−K}| 6 CE|Rin|
ηp
4 . (5.3)

Control of I2(n). Applying Theorem 2.3, we get that there exists a con-
stant a > 0 such that E(W i)−a < +∞ for any 1 6 i 6 d. Recall that by
Lemma 3.11 we have the implication H3 ⇒ (2.5). So (2.5) holds, and us-
ing Lemma 3.1 with the convex function x 7→ x−a, this implies that for all
1 6 i 6 d,

sup
n>0

E(W i
n)−a = E(W i)−a < +∞. (5.4)

Combining (5.1), (5.4) and the inequality | log(x)|2 6 C(x+ x−a) for x > 0,
we obtain that for all 1 6 i 6 d,

sup
n>0

(
E| log(1 +Rin)|2

) 1
2 6 2 sup

n>0

(
E| logW i

n|2
) 1

2

6 C sup
n>0

(
EW i

n + E(W i
n)−a

) 1
2

6 C
(
1 + E(W i)−a

) 1
2 < +∞. (5.5)

Applying Cauchy-Schwarz’s inequality, (5.5) and Markov’s inequality, we get
that for all n > 0 and 1 6 i 6 d,

I2(n) = E| log(1 +Rin)1{Rin<−K}|

6
(
E| log(1 +Rin)|2

) 1
2
(
E1{Rin<−K}

) 1
2

6
[

sup
k>0

(
E| log(1 +Rik)|2

) 1
2
]
P(|Rin| > K)

1
2

6 C(E|Rin|
ηp
4 )

1
2 . (5.6)
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Together with (5.2), (5.3) and (5.6), this implies that for all n > 0 and
1 6 i 6 d,

E| logW i
n+1 − logW i

n| 6 CE|Rin|
ηp
4 + C(E|Rin|

ηp
4 )

1
2

6 CE
[
(Eξ|Rin|p)

η
4
]

+ C
{
E
[
(Eξ|Rin|p)

η
4
]} 1

2 , (5.7)

since η
4 < 1. Notice that inequality (5.7) holds for any p ∈ (1, 2] satisfying

condition H3. In the following, we take p ∈ (1, 2] sufficiently close to 1 such
that p verifies H3 and p < 1 + a.

Now we show that there exists a constant δ ∈ (0, 1) such that for all n > 0
and 1 6 i 6 d,

E
[
(Eξ|Rin|p)

η
4
]
6 Cδ2n. (5.8)

By (3.5), for all n > 0 and 1 6 i 6 d,

Rin = 1
W i
n

d∑
r=1

Un,∞(r)
λ0,n−1U0,∞(i)

Zin(r)∑
l=1

(W r
l,n − 1)

=
d∑
r=1

Un,∞(r)
〈Zin, Un,∞〉

Zin(r)∑
l=1

(W r
l,n − 1). (5.9)

Recall that, given the environment ξ, for each 1 6 r 6 d the random vari-
ables W r

l,n indexed by l > 1 are i.i.d., and independent of ξ0, . . . , ξn−1 and
Zin. Using (5.9), the convexity of the function x 7→ xp on R+ (together
with the fact that

∑d
r=1 Un,∞(r) = 1), and Lemma 3.4, for all n > 0 and

1 6 i 6 d, P-a.s., we obtain

Eξ|Rin|p 6 Eξ
( d∑
r=1

Un,∞(r)
〈Zin, Un,∞〉

∣∣∣∣ Z
i
n(r)∑
l=1

(W r
l,n − 1)

∣∣∣∣)p

6
d∑
r=1

Un,∞(r)Eξ
( 1
〈Zin, Un,∞〉p

∣∣∣∣ Z
i
n(r)∑
l=1

(
W r
l,n − 1

)∣∣∣∣p)

6 Bp
p

d∑
r=1

Eξ
[
Un,∞(r)Zin(r)
〈Zin, Un,∞〉p

]
Eξ|W r

1,n − 1|p

6 Bp
pEξ〈Zin, Un,∞〉1−p max

16r6d
Eξ|W r

1,n − 1|p.

Combining this with (3.7) and the convexity of x 7→ x1−p, we get that for
all n > 0 and 1 6 i 6 d, P-a.s.,

Eξ|Rin|p 6 Bp
pEξ(W i

n)1−p · 〈M0,n−1(i, ·), Un,∞〉1−p · θn(p)
6 Bp

pEξ(W i
n)1−p θn(p) max

16r,j6d
M0,n−1(r, j)1−p. (5.10)
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Therefore, by Cauchy-Schwarz’s inequality and the independence between
θn(p) and M0,n−1, we deduce from (5.10) that for all n > 0 and 1 6 i 6 d,

E
[
(Eξ|Rin|p)

η
4
]

6 B
ηp
4
p

(
E
[
Eξ(W i

n)1−p] η2 ) 1
2
(
E
[
θn(p)

η
2 max

16r,j6d
M0,n−1(r, j)

η(1−p)
2
]) 1

2

6 B
ηp
4
p
(
E(W i

n)1−p) η4 (E[θ0(p)
η
2
]
E
[

max
16r,j6d

M0,n−1(r, j)
η(1−p)

2
]) 1

2
, (5.11)

since η
2 < 1. Clearly condition H3 implies that E

[
θ0(p)

η
2
]
< +∞. Since

0 < p− 1 < a, by Hölder’s inequality and (5.4), for any 1 6 i 6 d we have

sup
n>0

E(W i
n)1−p 6 sup

n>0

(
E(W i

n)−a
) p−1

a =
(
E(W i)−a

) p−1
a < +∞. (5.12)

Moreover, by (3.53) (with a = 0) it holds that for all n > 0,

E
[

max
16r,j6d

M0,n−1(r, j)
η(1−p)

2
]
6 Cδ4n, (5.13)

where δ > 0 is a constant such that κ(η(1−p)
2 ) < δ4 < 1. Combining inequal-

ities (5.11)-(5.13), we get (5.8).
Now, from (5.7) and (5.8) it follows that for all n > 0 and 1 6 i 6 d,

E| logW i
n+1 − logW i

n| 6 Cδn.

This implies that for all n > 0, k > 1 and 1 6 i 6 d,

E| logW i
n+k − logW i

n| 6
n+k−1∑
r=n

E| logW i
r+1 − logW i

r |

6 C
n+k−1∑
r=n

δr

6 Cδn. (5.14)

So (logW i
n)n>0 is a Cauchy sequence in L1, hence it converges in L1 to

logW i, for all 1 6 i 6 d. By letting k → +∞ in (5.14), we obtain that for
all n > 0 and 1 6 i 6 d,

E| logW i − logW i
n| 6 Cδn.

This concludes the proof of Lemma 5.1.
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Now we formulate the Berry-Esseen bound for log ‖MT
0,n−1y‖, for any

y ∈ S. This result was established in [34, Theorem 2.1]; it plays a crucial
role in proving the Berry-Esseen theorem for log ‖Zin‖.

Lemma 5.2. Assume conditions H3 and H5. Then there exists a constant
C > 0 such that for all n > 1, y ∈ S and x ∈ R,∣∣∣∣P( log ‖MT

0,n−1y‖ − nγ
σ
√
n

6 x

)
− Φ(x)

∣∣∣∣ 6 C√
n
.

The next lemma gives inequalities about the concentration of the joint
law

(
log ‖Zin‖, log ‖M0,n−1(i, ·)‖

)
for any 1 6 i 6 d. It reveals that log ‖Zin‖

and log ‖M0,n−1(i, ·)‖ behaves similarly with large probability.

Lemma 5.3. Assume conditions H1, H3, H5 and γ > 0. Then there exists
a constant C > 0 such that for all n > 1, x ∈ R and 1 6 i 6 d,

P
( log ‖Zin‖ − nγ

σ
√
n

6 x,
log ‖M0,n−1(i, ·)‖ − nγ

σ
√
n

> x

)
6

C√
n
, (5.15)

and

P
( log ‖Zin‖ − nγ

σ
√
n

> x,
log ‖M0,n−1(i, ·)‖ − nγ

σ
√
n

6 x

)
6

C√
n
. (5.16)

Proof. We will only give a proof of (5.15), since the other inequality (5.16)
can be proved by similar arguments. For n > 1, 0 6 m 6 n, y ∈ S and
1 6 i 6 d, set

Sym,n :=
log ‖MT

m,n−1y‖ − (n−m)γ
σ
√
n

and Lim,n := logW i
m

σ
√
n
,

where by convention Mm,n−1 denotes the identity matrix when m = n. By
(4.2) we have that for all n > 1, x ∈ R and 1 6 i 6 d,

P
( log ‖Zin‖ − nγ

σ
√
n

6 x,
log ‖M0,n−1(i, ·)‖ − nγ

σ
√
n

> x

)
6 P

(
Sei0,n + Lin,n + min

16j6d

logUn,∞(j)
σ
√
n

6 x, Sei0,n > x

)
. (5.17)

In the following we take m := m(n) = b
√
nc, where bxc is the integer part

of x; C > 0 will be a constant which may depend on p and η, and which



I. Grama, Q. Liu, E. Pin/Supercritical multi-type branching process 44

may differ from line to line. By Markov’s inequality and Lemma 5.1, we get
that there exists a constant δ ∈ (0, 1) such that for all n > 1 and 1 6 i 6 d,

P
(
|Lin,n − Lim,n| >

1√
n

)
6
√
nE
∣∣Lin,n − Lim,n∣∣

= 1
σ
E| logW i

n − logW i
m|

6
1
σ
E| logW i

n − logW i|+ 1
σ
E| logW i

m − logW i|

6 C(δn + δm).

Since δn + δm = o( 1√
n

) as n → +∞, this implies that for all n > 1 and
1 6 i 6 d,

P
(
|Lin,n − Lim,n| >

1√
n

)
6

C√
n
.

Combining this with (5.17), we obtain that for all n > 1, x ∈ R and 1 6 i 6
d,

P
( log ‖Zin‖ − nγ

σ
√
n

6 x,
log ‖M0,n−1(i, ·)‖ − nγ

σ
√
n

> x

)
6 P

(
Sei0,n + Lim,n + min

16j6d

logUn,∞(j)
σ
√
n

6 x+ 1√
n
, Sei0,n > x

)
+P

(
|Lin,n − Lim,n| >

1√
n

)
6 P

(
Sei0,n + Lim,n + min

16j6d

logUn,∞(j)
σ
√
n

6 x+ 1√
n
, Sei0,n > x

)
+ C√

n
.

(5.18)

Recall that for y ∈ S andM ∈ G+, we denote byM ·y := My
‖My‖ the projective

action of M on G+. Then, for y ∈ S the process

Xy
0 = y, and Xy

n = MT
0,n−1 · y, n > 1,

is a Markov chain on S. Notice that for all n > 1 and 1 6 i 6 d, we have
the decomposition

Sei0,n =
log ‖MT

m+1,n−1(MT
0,mei)‖ − nγ

σ
√
n

=
log ‖MT

0,mei‖+ log ‖MT
m+1,n−1(MT

0,m · ei)‖ − nγ
σ
√
n

=
√
m+ 1
n

Sei0,m+1 + S
X
ei
m+1

m+1,n. (5.19)
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Moreover, by (1.4) we have that for all n > 0,

1 > min
16r6d

Un,∞(r) = min
16r6d

〈Mn(r, ·), Un+1,∞〉
‖MnUn+1,∞‖

> min
16r,j6d

Mn(r, j)
‖Mn‖

. (5.20)

Therefore, putting together the relations (4.1) and (5.18)-(5.20), we obtain
that for all n > 1, x ∈ R and 1 6 i 6 d,

P
( log ‖Zin‖ − nγ

σ
√
n

6 x,
log ‖M0,n−1(i, ·)‖ − nγ

σ
√
n

> x

)
6 P

(√
m+ 1
n

Sei0,m+1 + S
X
ei
m+1

m+1,n +Bi
m,n 6 x+ 1√

n
,√

m+ 1
n

Sei0,m+1 + S
X
ei
m+1

m+1,n > x

)
+ C√

n
, (5.21)

with

Bi
m,n : = 1

σ
√
n

log ‖Zim‖
‖M0,m−1(i, ·)‖ + 1

σ
√
n

min
16r,j6d

log Mm(r, j)
‖Mm‖

+ min
16j6d

logUn,∞(j)
σ
√
n

.

Denote by νim,n the joint law of
(
Xei
m+1,

√
m+1
n Sei0,m+1, B

i
m,n

)
on S ×R×R.

For y ∈ S and x ∈ R, set

Gym,n(x) = P(Sym,n 6 x).

Since Sym+1,n is independent of Xei
m+1, S

ei
0,m+1 and Bi

m,n for any y ∈ S, we
obtain from (5.21) that for all n > 1, x ∈ R and 1 6 i 6 d,

P
( log ‖Zin‖ − nγ

σ
√
n

6 x,
log ‖M0,n−1(i, ·)‖ − nγ

σ
√
n

> x

)
6

∫
P
(
Sym+1,n + s+ t 6 x+ 1√

n
, Sym+1,n + s > x

)
νim,n(dy, ds, dt) + C√

n

=
∫
1{t6 1√

n
}

[
Gym+1,n

(
x− s− t+ 1√

n

)
−Gym+1,n(x− s)

]
νim,n(dy, ds, dt)

+ C√
n
. (5.22)

The random matrices Mn, n > 0, are i.i.d., so for n > 1, y ∈ S and x ∈ R
we have

Gym+1,n(x) = P
( log ‖MT

0,n−m−1y‖ − (n−m− 1)γ
σ
√
n

6 x

)
= Gy0,n−m−1(anx),
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with an =
√

n
n−m−1 . Notice that an = (1−m+1

n )−1/2 = 1+O(mn ) = 1+O( 1√
n

)
as n→ +∞. Therefore, applying the Berry-Esseen bound of Lemma 5.2, we
get that for all n > 1, y ∈ S and x ∈ R,∣∣Gym+1,n(x)− Φ(anx)

∣∣ =
∣∣Gy0,n−m−1(anx)− Φ(anx)

∣∣
6

C√
n−m− 1

= Can√
n

6
C√
n
. (5.23)

Moreover, using the mean value theorem on the function t 7→ Φ(tx) with
t > 1, we obtain that for all n > 1 and x ∈ R,

|Φ(anx)− Φ(x)| 6 |an − 1| sup
t>1
|xΦ′(tx)| 6 C√

n
sup
z∈R
|zΦ′(z)|. (5.24)

It is clear that z 7→ |zΦ′(z)| is a bounded function on R. Combining this
with the inequalities (5.22)-(5.24), we deduce that for all n > 1, x ∈ R and
1 6 i 6 d,

P
( log ‖Zin‖ − nγ

σ
√
n

6 x,
log ‖M0,n−1(i, ·)‖ − nγ

σ
√
n

> x

)
6

∫
1{t6 1√

n
}

∣∣∣Φ(x− s− t+ 1√
n

)
− Φ(x− s)

∣∣∣νim,n(dy, ds, dt) + C√
n
.

(5.25)

By the mean value theorem and the fact that supx∈R |Φ′(x)| 6 1, for all
x, z ∈ R we have

|Φ(x+ z)− Φ(x)| 6 |z|.

This, together with (5.25), implies that for all n > 1, x ∈ R and 1 6 i 6 d,

P
( log ‖Zin‖ − nγ

σ
√
n

6 x,
log ‖M0,n−1(i, ·)‖ − nγ

σ
√
n

> x

)
6

∫
1{t6 1√

n
}

∣∣∣ 1√
n
− t
∣∣∣νim,n(dy, ds, dt) + C√

n

6
∫
|t|νim,n(dy, ds, dt) + C√

n

= E|Bi
m,n|+

C√
n
. (5.26)
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By definition of Bi
m,n, combining with (4.1), (4.2) and (5.20), we get that

for all n > 1 and 1 6 i 6 d, P-a.s.,

σ
√
n|Bi

m,n| 6
∣∣∣∣ log ‖Zim‖

‖M0,m−1(i, ·)‖

∣∣∣∣+ min
16r,j6d

| logMm(r, j)|+ | log ‖Mm‖|

+ min
16j6d

| logUn,∞(j)|

6 | logW i
m|+ | log ‖Mm‖|

+ max
16r,j6d

(
| logUm,∞(j)|+ | logMm(r, j)|+ | logUn,∞(j)|

)
6 | logW i

m|+ 2| log ‖Mm‖|+ | log ‖Mn‖|

+ max
16r,j6d

(
2| logMm(r, j)|+ | logMn(r, j)||

)
. (5.27)

By Lemma 5.1 we have supn>0 E| logW i
n| < +∞ for any 1 6 i 6 d. More-

over, from condition H3 and the inequality | log x| 6 C(xη +x−η) for x > 0,
it holds that E| log ‖M0‖| < +∞ and E| logM0(r, j)| < +∞, 1 6 r, j 6 d.
Therefore, taking expectation in (5.27), this implies that for all n > 1 and
1 6 i 6 d,

E|Bi
m,n| 6

C√
n
. (5.28)

Hence, (5.15) follows from (5.26) and (5.28). This concludes the proof of
Lemma 5.3.

Proof of Theorem 2.5. For n > 1, x ∈ R and 1 6 i 6 d, we write

P
( log ‖Zin‖ − nγ

σ
√
n

6 x

)
= P

( log ‖Zin‖ − nγ
σ
√
n

6 x,
log ‖M0,n−1(i, ·)‖ − nγ

σ
√
n

6 x

)
+P

( log ‖Zin‖ − nγ
σ
√
n

6 x,
log ‖M0,n−1(i, ·)‖ − nγ

σ
√
n

> x

)
= P

( log ‖M0,n−1(i, ·)‖ − nγ
σ
√
n

6 x

)
−P

( log ‖Zin‖ − nγ
σ
√
n

> x,
log ‖M0,n−1(i, ·)‖ − nγ

σ
√
n

6 x

)
+P

( log ‖Zin‖ − nγ
σ
√
n

6 x,
log ‖M0,n−1(i, ·)‖ − nγ

σ
√
n

> x

)
.
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By Lemma 5.3, we get that there exists a constant C > 0 such that for all
n > 1, x ∈ R and 1 6 i 6 d,∣∣∣∣P( log ‖Zin‖ − nγ

σ
√
n

6 x

)
− P

( log ‖M0,n−1(i, ·)‖ − nγ
σ
√
n

6 x

)∣∣∣∣ 6 C√
n
. (5.29)

Combining (5.29) with Lemma 5.2, we obtain the Berry-Esseen bound for
log ||Zin‖, for any 1 6 i 6 d. This concludes the proof of Theorem 2.5.
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