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Abstract: . Consider a supercritical multi-type branching process in
an independent and identically distributed random environment. We
establish a Berry-Esseen type bound for the rate of convergence in the
central limit theorem on the population size at time n as n goes to
infinity. To this end we first find simple conditions for the existence of
harmonic moments of the limit variable of the fundamental martingale.
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1. Introduction

A branching process in a random environment is a natural and important
extension of the Galton-Watson process. In such a process, the offspring dis-
tributions of particles in n-th generation depend on an environment &, at
time n. This process was first introduced by Smith and Wilkinson [27] when
the environment sequence (&,) is independent and identically distributed,
and by Athreya and Karlin [2, 3] when the environment sequence is sta-
tionary and ergodic, where basic results have been established. This process
has attracted the attention of many authors in the last two decades, see
for example the recent book by Kersting and Vatutin [19] and many refer-
ences therein. The interest of study of such processes is growing in recent
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years, thanks to a large number of applications and interactions to other
scientific fields. See for example [1, 16, 17, 5, 33, 10, 11] for the single-type
case, and [29, 23, 32, 30, 21, 31] for the multi-type case. The current interest
of researchers mainly focuses on the multi-type case, as in this case many
important problems are open and challenging. All the papers cited above
on multi-type branching processes in random environments (MBPRE) con-
cern the critical or sub-critical cases (mainly on the survival probability),
except the paper [21] where asymptotic properties of P(Z,, = z) are studied
for a super-critical MBPRE (Z,,). Very recently, in [13, 14] we obtained a
theorem of Kesten-Stigum type and a criterion of LP- convergence (p > 1)
for a suitable norming of the population size, for a super-critical MBPRE
(Zy). In this paper, also for a supercritical MBPRE (Z,,), we will establish
a Berry-Esseen type bound for the rate of convergence in a central limit
theorem on (Z,,), and prove the existence of harmonic moments of the limit
of the normalized population size. These results will play very important
role in the study of moderate and large deviations of (Z,,), as we will see in
[15], to obtain results similar to those in [6, 22, 16] where the single type
case was considered.

Let us give a quick presentation of the model with some preliminary
results, and some explanations of the main results with key ideas in the
proof. For an integer d > 1, consider a d-type branching process Z, =
(Zp(1), -+ ,Zp(d)), n = 0, in an independent and identically distributed
(i.i.d.) random environment & = (§p, &1, -+ ). In the sequel, we will denote
by (Z!) the process (Z,) starting with one initial particle of type i, which
means that Zy = e;, where e; is the vector with 1 in the i-th place and 0
elsewhere. Denote by M4(R) the set of d x d matrices. We equip the space
R with the L'-norm || - ||. Let M,, € My4(R) be the random matrix of the
conditioned means of the offspring distribution of n-th generation given the
environment, that is

Mn(i’j):EE[Zn+l(j) ‘Zn:ei]’ 1<, <d,

where E¢ denotes the conditional expectation given the environment £. De-
fine the product matrix My, = My---M,, and the associated Lyapunov
exponent

) 1
v o= lim EEIOg”MO,n—lw

n—-+4o0o

where || Mo n—1|| is the Li-norm of the matrix Mg ,—;.
Recently, the asymptotic behaviour of the MBPRE (Z!) under the su-
percritical condition v > 0 has been studied in [13]. In particular, a strong
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law of large number for log || Z% || is proved: under appropriate conditions, it
holds that on the explosion event {||Z}| — +o0},

: 1 i
ngrfoo ﬁlog |Z]l =~ as. (1.1)
The main objective in this paper is to establish a Berry-Esseen type theorem
on the rate of convergence in the central limit theorem for log || Z! ||: we will
show (cf. Theorem 2.5) that

log || Z%|| — nvy ) C
sup |P| ————— <z ) — P(z)| < —, 1.2
where ®(x) = —\/127 - e~ t/2dt is the standard normal distribution func-

tion, 02 = limp—, 00 2E[(log ||M({n_1:c|| — ny)?] is the asymptotic variance
which is independent of x and C > 0 is a constant. This result is new for
d > 2; for a single type branching process (d = 1), Grama, Liu and Miqueu
proved (1.2) in [16, Theorem 1.1].

Let us briefly explain our approach for proving (1.2). It is heavily based
on the fundamental martingale (W) associated to the process (Z!) defined
in [13]. For each n,k > 0, denote by py, n1 the spectral radius of the ma-
trix M, 4 = M, - - - M, 1. By the Perron-Frobenius theorem, p, 41 is an
eigenvalue of M, 11, and there exists a non negative eigenvector Uy, 4
associated to pp 4k With ||Up k|| = 1. According to Hennion [20, Lemma
3.3 and Theorem 1], under conditions, the limit

Up oo = lim Up s (1.3)
k—o0
exists a.s., with Uy, o > 0 and ||Up || = 1; moreover the sequence (Up, o)
satisfies the relation
MnUnJrl,oo = )\nUn,ooa (14)

where A\, n > 0 are positive random scalars called the pseudo-spectral radii
of the random matrices (M,). Set A\g,, = Ag - - - \. By iteration of (1.4), we
obtain

Mn,n—l—kUn—i-k—f—l,oo = )\n,n—l—kUn,oo, n,k > 0. (15)

Then, we define the martingale (W) as follows (see [13]):

) . 7" Up oo
WOZZL Wz_ <n7U7>

=2 2= n>1. 1.6
" Xon—1U0,00(7) (16)



I Grama, Q. Liu, E. Pin/Supercritical multi-type branching process 4

From (1.6) the following relations between log || Z¢ || and log || Mo 1 (3, )|
hold:

log [|Z;,]| < log | Mon—1(i, ) | +log Wy, — min log Un,oo(7), (1.7)
log | 2, > log | Mo,-1(i: )| +log W, + min logUnoo(j).  (1:8)

From these relations, since the limit W = lim,,_, 4 .o W exists a.s. (as (W})
is a non-negative martingale), and (Up, « ) is a stationary sequence of random
variables, these two terms will be negligible in the limit properties that
we consider. Actually, using the relations (1.7) and (1.8) we can infer the
limiting behaviour of log || Z}| from that of log||Mo,—1(i,-)| by giving a
tight control of the quantities log W} and log Uy, o0 (j). For log || Mo n—1(3, )|
we use the Berry-Esseen bound proved in Xiao, Grama and Liu [34].

An important step in our approach is to establish sufficient conditions
for the existence of the harmonic moments E(W?%)~® of the limit W' =
lim,, 1o Wi This is the second objective of the paper. Actually the ex-
istence of the harmonic moments E(W?)~® will give us a suitable control
of the sequence (log W), which will be one of the key arguments to prove
(1.2).

Our study of the harmonic moments E(W?%)~¢ is composed of two steps.

In the first step, under a strong assumption on the offspring distributions
given the environment £ (see H2), we establish a necessary condition and a
sufficient condition for the existence of E(W*)~® for all 1 < i < d. Set

pi(a) == lim (B[ Mo ]|

n—-+o00

n—1 l/TL
[TrAE)| )" a>0. (19
k=0

where || -||o denotes the L>-norm on M 4(R), and P; (§) is the random ma-
trix whose (i, j)-th component is the probability to produce 1 particle which
is of type j by a particle of type 7 in generation k, given the environment &.
Then we will prove in Theorem 2.1 the following implications:

k1(a) <1= IIE?élE(Wi)_a < 400 = ky(a) < 1. (1.10)
In particular, the solution ag > 0 of the equation ki(ag) = 1 is the crit-
ical value for the existence of the harmonic moments, in the sense that
max;<icg E(W?) ™% < 400 for a < ap, and maxicicg E(W") ™ = +oo for
a > ag. For the single type case (d = 1), Huang and Liu proved in [22] that
k1(a) < 1 is a necessary and sufficient for the existence of the harmonic
moment E(W1)~%. Therefore, our result (1.10) generalizes that of the single
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type case, except that we don’t know if the harmonic moments exists for
the critical exponent ayg.

In the second step, we assume weaker conditions than in the first step
(see H3), and we prove the existence of a small exponent a > 0 such that
for all 1 <7 <d,

E(W") ™ < 400, (1.11)

(cf. Theorem 2.3). Unfortunately, in this case we have no information on
the maximal value of the exponent a > 0 for which (1.11) holds: we cannot
identify the critical exponent.

The outline of the paper is as follows. We introduce some necessary no-
tation and present the main results in Section 2. Section 3 is devoted to
the study of the harmonic moments of W' for any 1 < i < d. We prove in
Section 5 the Berry-Esseen type theorem for log || Z2||.

2. Notation and main results

For d > 1, let R? be the d-dimensional space of vectors. We equip R? with
the scalar product and the L'-norm respectively defined by

d d
(w,y) =D w(@)y(i) and |z| =3 [z@)], z,yeR™
i=1 =1
Set S = {z € RY: 2 > 0,||z|| = 1} for the intersection of the unit sphere
with the positive quadrant. For each 1 < i < d, e; will be the d-dimensional
vector with 1 in the i-th place and 0 elsewhere. Let 0 = (0,---,0) € R? be
the vector with all coordinates equal to 0. Denote by N = {0, 1, ...} the set
of non-negative integers. Set 14 for the indicator of an event A.
Denote by My(R) the set of d X d matrices with entries in R, and define
the operator norm with respect to L' vectorial norm by

|M|| :=sup |Mz|, M e MyR).
zeS

In addition we equip R? and My(R) with the L>-norms:
— ; d.
I#loe i= max o), @ € RY
[ M]|oo := e [Mi]loo, M e Mqa(R).
Z||oo=1
For a matrix or a vector X, we write X > 0 when all the entries of X are
strictly positive.
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Now we give a precise definition of the multi-type branching process in
random environment (MBPRE). The environment £ = (&,)n>0 is a sequence
of independent and identically distributed (i.i.d.) random variables taking
values in an abstract space X. To each realization of &, correspond d proba-
bility distributions on N¢ identified by the probability generating functions

o
fo(s) = Z p217,,,7kd(§n)s’f1 . s’;d, s=(s1,...,8q4) €0, 1]d,

k1, ,kq=0

where 1 < r < d. The d-type branching process Z,, = (Z,(1),---, Z,(d)),
n > 0, in the random environment ¢ is a process with values in N¢ such that
Zoy € N? is a fixed vector, and for all n > 0,

d Zn(r)
Znt1 = Z Z Nl ne (21)
r=1 [=1
where NJ,, = (N[, (1),--- , N/,,(d)) is a random vector whose j-th compo-

nent N/, ( ) represents the offsprlng of type j at time n+1 of the I-th particle
of type r in generation n, and Z,(j) is the total number of particles of type
j in generation n. Conditioned on the environment &, the random vectors
Nl’:n indexed by I > 1, n > 0 and 1 < r < d are independent, each le ,, has
the same probability generating function f;. In the sequel, the process Z,
will be noted Z! when Zy = e;, which corresponds to the MBPRE starting
with one initial particle of type 1.

Denote by P¢ the quenched law, i.e. the probability under which the pro-
cess is defined when the environment £ is given. Let 7 be the law of &.
The total probability P of (Z,,), usually called annealed law, is defined by
P(dx,d§) = P¢(dx)7(d§). Denote by E¢ and E the corresponding expectation
with respect to IP¢ and P. With our notation,

d
NI (5
=5 (I[5™"). =G s e
j=1

is the quenched probability generating function of N; e Form =0, let M,
be the d x d random matrix whose (i, j)-th entry M, (z j) is the conditioned
mean of the number of children of type j produced by a particle of type ¢
at time n:

of
0s;

Mn(%]) = ( ) Eﬁ[ n+1 )|Zn:6@},
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where 8%(1) denotes the left derivative at 1 of a d-dimensional probability

generating function f with respect to s;. Since the sequence of the environ-
ments (&) is i.i.d., the sequence of the mean matrices (M,) is also i.i.d.. For
0 < k < n, denote by

My == My, - - - My,

the product of the mean matrices My, ..., M,. It follows that, for n > 0 and
1<4,7 <d,

EeZy,41(j) = Mon(i, ). (2.2)

The main objective of this paper is to establish a Berry-Esseen bound
for log||Zt||. To this end, the key tool will be the fundamental martin-
gale we mentioned in the introduction. Let p, 4, be the spectral radius
of My y4k. We know by the Perron-Frobenius theorem (see e.g. [4]) that
Pn.n+k is a positive eigenvalue of M, 1, and there exist positive right and
left eigenvectors Uy, p4r and Vj, p44 associated to py, ,4r with the normal-
izations ||Uynikl = 1 and (Vi ik, Unnik) = 1. Denote by GO the subset of
the matrices of My(R) with strictly positive entries. Throughout the paper,
we assume that My is allowable (every row and column contains a strictly
positive element), and that the following positivity property holds:

IP( U {Mon € 93}> > 0. (2.3)

n=0

By the results of Hennion [20, Lemma 3.3 and Theorem 1], under condition
(2.3) there exists the random vectors Uy, o, and the random scalars \,, defined
by (1.3) and (1.4), which satisfy the relation (1.5) and that (U, ) and
(\n) are stationary ergodic; moreover, we proved in [13, Theorem 1] that
the sequence (W?) defined in (1.6) is a non-negative martingale under the
measure P and P, w.r.t. the filtration

Fo=0(8), Fu=0(N3(),0<k<n—-1,1<rj<dl>1)forn>1

Let W := lim,,_, 1 oo W} be the a.s. limit of the martingale (W}).
We will use the classification of MBPRE’s defined in [13]. It is well known
that, under the following moment condition

Elog™ || Mol < 400, (2.4)

the Lyapunov exponent v of the sequence of matrices (M, ),>0 exists, with

o1 .1
v:= lim —Elog||[My,—1|| = inf —Elog ||Mon-1]-
n=ln

n—+oon
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Moreover, Furstenberg and Kesten established in [12] a strong law of large
numbers for log || Mo n—1]|:

HETOO% log [|[Mopn-1|| =~ P-as.
According to the values of the Lyapunov exponent 7, we have the following
classification of MBPRE’s: a MBPRE is supercritical if v > 0, critical if
~v = 0, and subcritical if 4y < 0. In this article, the process (Z,,) will always
be supercritical, i.e. v > 0.
Under the supercritical condition v > 0, we established in [13, Theorem
2.6 and Corollary 2.8] that the condition

Zi(j) Zi(j) -
E L _Jogt M) <400 V14,5 <d 2.5
(MO(%]) 8 MO(Z7]) J ( )

is sufficient for the non-degeneracy of each W' (in the sense that P(W* >
0) > 0), which is equivalent to the L'-convergence of W to W* by Sheffé’s
theorem; moreover, when each W is non-degenerate, we have a.s.,

EW'=1 and Pe(W'>0)=P(|Z] — o0) =1-¢'(¢)>0, (2.6)

where ¢'(€) is the quenched probability of extinction of the process (Z7).

First we establish the existence of the harmonic moments of the limits
Wi, 1 < i <d. For n >0, define the vector po(&,) and the matrix Py (&),
whose components are

ofy,

po(&n)(@) = f1(0) and  Py(&,)(i,5) = Bs, 0), 1<i,j<d

Then, for 1 <1i,5 < d,
po(§n)(i) = Prag(| Zi]| = 0) and  Py(§)(i,§) = Prog(Z1 = ¢;).
Throughout the paper, we will assume the following condition:
H1. The vector po(&) = (f3(0), ..., f&(0)) satisfies
po(&o) =0 P-a.s. (2.7)

The condition H1 means that each individual of the population gives
birth to at least one child, so ¢'(¢) = 0 a.s. When (2.6) holds, this implies
that || Z|| — 400 a.s. as n — +o0.

We introduce the following assumption :
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H2. There exist constants p € (1,2], A > Ay > 1 and Ag > 0 such that for
any 1 <i,5 < d, P-a.s.

Ay < Mo(i,5), A1 <|[Mo(i,-)|| and Ee(Zi(5)P) < AP.

It is clear that H2 implies the conditions (2.3), (2.4), (2.5) and v > 0.
From H2 we have also that for all 1 <¢,5 <d,

My(i,j) < A P-as.

Under condition H2, by the sub-multiplicative property of the norms ||.||
and ||.|[cc on Mg4(R) and the subadditive ergodic theorem, it follows that,
for all a > 0 the limit

ki(a) :=

(Mo 11| ﬁmfmuw)” ' (2:8)
k=0

lim
n——+o0

exists and is finite, with

r1(a) = inf (B[ Mon1]®

T~ )™
k=0

We will establish (see Lemma 3.9) that, under H1 and H2, the function x;
is continuous and increasing on Ry and k1(0) = p(EP;(&)), where p(M)
denotes the spectral radius of the matrix M. For a random variable X, set
| X ||zoe := esssup(X) the essential supremum of X. Our first result gives
a sufficient and a necessary condition for the existence of the harmonic
moments E(W*) =%, a > 0.

Theorem 2.1. Assume conditions H1, H2 and ||||P1(&)]||ccllzee < 1. For
each fized a > 0, the following implications hold :

(1) if k1(a) < 1 then E(W?) =% < 400 for all 1 <i < d;

(2) if E(W%)~% < 400 for all 1 <i < d, then k1(a) < 1.

Notice that in Part (2), we can prove more: we will see in the proof that

the sequence E|[Mo,,—1 % || TI}Zg P1(€k)|ls, 7 = 1, is bounded.
From Theorem 2.1 we get the following corollary.

Corollary 2.2. Under the conditions of Theorem 2.1, it holds:

(1) EWH ™% < 400 for all 1 <i < d and a > 0 if and only if EPy (&) is
nilpotent;
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(2) if EP1(&) is not nilpotent, then there exists a unique constant ag > 0
satisfying

rk1(ag) =1, (2.9)

and

max E(W')~*

1<i<d

<400 ifa € [0,ap),
=400 ifa € (ag,+00).

Part (1) gives a necessary and sufficient condition to have the existence of
all orders of the harmonic moments of each Wi, 1 <i < d. Part (2) reveals
that the quantity ag is the critical value for the existence of the harmonic
moments of all the W, 1 < i < d. We believe that at the critical value ag
the harmonic moments do not exist, i.e., E(W*)~7% = 4o00. This is the case
when d = 1, as shown by Chunmao and Liu [22].

Now we investigate the existence of harmonic moments for W*, when the
boundedness condition H2 is relaxed to a moment condition. For all n > 0
and p > 1 denote by

NG P
0 (p) = Ee| 0 1
n(P) = e el 3,6 ))

The next result gives a sufficient condition for the existence of the harmonic
moments E(W?)~® of a small order a > 0. The single -type case has been
considered in [18]. The multi-type case considered here is much more com-
plicated.

To formulate it, we need the following moment condition :

H3. There exist two constants p € (1,2] and n € (0,1) such that

E|| Mo||" < 400,  max EMy(i,7)7" < 400 and Eby(p)" < +oo.

LIS

Like H2, condition H3 also implies (2.3) and (2.4) and (2.5). The first
two implications are evident; the third will be proved in Section 3.

Theorem 2.3. Assume conditions H1, H3 and v > 0. Then there exists
a > 0 such that E(W?)™® < +oo for all 1 <i < d.

Now we formulate a central limit theorem and a Berry-Esseen type theo-
rem for log || Z%||, for all 1 < i < d. We introduce the following assumption:

H4. The random matrix My satisfies

E(log || Mo)? < +oc.



I Grama, Q. Liu, E. Pin/Supercritical multi-type branching process 11

Obviously, condition H4 implies (2.4). Using the central limit theorem
due to Hennion [20, Theorem 3] for the norm cocycle log HMg:n_le, where
r € S, we establish the following central limit theorem for log || Z¢||. Notice
that || Z || = Zi (1) +- - -+ Zi (d) represents the population size of generation
n.

Theorem 2.4. Assume conditions (2.3) and H4. Assume also H1, (2.5)
and v > 0. Then there exists o > 0 such that for all 1 <i < d, as n — oo,

log || Z, || — ny
NLD
2

where N'(0,02) denotes the normal law with mean 0 and variance o2.

— N(0,0%) in law,

Notice that for the single type case d = 1, this theorem was established
n [22]. By [34, Proposition 3.14], under the condition H3, the asymptotic
variance o2 defined in Theorem 2.4 satisfies

. 1
o = lim —E[(log || Mon 12| — n7)?),

n—-+oo N

uniformly in # € S. Note that in Theorem 2.4 the limit variance o? can

be degenerated: o2 = 0. For the rate of convergence we need the following
assumption :

H5. The asymptotic variance o satisfies
o2 > 0.

According to [7, Lemma 7.2], a sufficient condition under which H5 holds
is that p is a non-arithmetic probability measure; the definition of arith-
meticity is introduced below.

For z € § and M € QS)F, define the projective action of M on S by
M-z = ”%—i” Let p be the law of My and I', = [suppp], the semi-
group generated by the support of p. By the Perron-Frobenius theorem,
since any M € I';, is strictly positive under H3, the spectral radius pps
of M is the unique eigenvalue with the largest modulus, which is simple.
Let ups € S be the associated unique right eigenvector with unit norm. Set
V(T,) = {£un : M €T}, where A denotes the closure of the set A. The
measure g is called arithmetic if there exist t > 0, 6 € [0,27) and a function
h:S — R such that for all M € '), and = € V(I';,), we have

exp{itlog ||Mx| —i0 + ih(M - x) —ih(z)} = 1.

—t2/2

In the following, denote by ® : z — \/%7 [Zoe dt the standard normal

distribution function on R.



I Grama, Q. Liu, E. Pin/Supercritical multi-type branching process 12

Theorem 2.5. Assume conditions H1, H3, H5 and v > 0. Then there
exists a constant C > 0 such that for alln > 1,z € R and 1 <1 < d,

’IE,)(IOQ;HZ%H —ny C

o S Un

For the single type case d = 1, a version of this result exists under different
conditions in [16, Theorem 1.1]. Notice that, in this case, we have v =
Elogmg and o0? = E(logmg — v)? with mg = E¢Z;, and the condition H3
can be simplified to the following: there exist two constants p € (1,2] and
n € (0,1) such that

< ZE) — O(x)

Z p
Em{ < 400 and Efy(p)" < +oo, where 0y(p) = Eg‘m—l — 1‘ .
0

3. Harmonic moments of W*

In this section we study the existence of the harmonic moments E(W?)~% of
all the random variables W*, where 1 <17 < d, a > 0.

3.1. Auziliary results

We start with four lemmas that we will need. The first lemma permits to
compare the moment of ¢(W?*) with the corresponding one of ¢(W}), with
¢ a positive convex function on R .

Lemma 3.1. Assume condition (2.5) and v > 0. Then for all1 < i < d
and any convez function ¢ : Ry — Ry,

Jm Eeg(Wy) = sup Eep(W) = Eeg(W"), (3.1)
and
lim E¢(W,,) = sup E(W;,) = E(W"). (3:2)
n—-+0oo n>0

Proof. The result is a direct consequence of the fact that, by [13, Theorem
2.6], under the conditions (2.5) and v > 0, (W, F,,) is a martingale under
P¢ and P, which converges in L. In fact, by Fatou’s lemma, E¢(W?) <
sup,~o E¢(W}); by the L'- convergence of (W;) and Jensen’s inequality,

E¢(W') = E[E[p(W")|Fa]] = E[p(EW'|Fa])] = E6(Wy,).

Using the fact that (¢(W})) is a sub-martingale, this concludes the proof of
(3.2). The same argument with E replaced by E¢ gives (3.1). O
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The second lemma reveals the link between the harmonic moments and
the Laplace transform of a positive random variable.

Lemma 3.2. (/24, Lemma 4.4]) Let X be a positive random variable, and
a > 0. We have the following assertions:

(1) if EX~% < 400 then Ee ™ = Oy, oo (t79);
(2) ifEe X = 04100 (t™%) then EX~° < +o0 for all b € (0,a);
(3) Ee ™ = Oy 100(t79) if and only if P(X < z) = Op0(z%).

For all 1 <7< d, let
Pe(t) =Eee™™" and ¢'(t) =E¢i(t) =Ee ™", t>0,
be the quenched and annealed Laplace transform of W*. Denote by

Ge(t) = (dg(t),--, ¢¢(1) and o(t) = (¢'(1),---,¢%(t), ¢>0.

We will study the decay rate of the Laplace transforms ¢} (t) and ¢*(¢) when
t — 400, and then use Lemma 3.2 to estimate the corresponding harmonic
moments. Let T be the shift operator of the environment sequence:

T = (61,862,-) if &=(,81,-),

and let T™ be its n-fold iteration. The third lemma, proved in [13, Theorem
2.4], gives the functional equations that the quenched Laplace transforms
¢2 satisfy.

Lemma 3.3. Assume condition (2.3). Then for alli=1,--- ,d, the quenched
Laplace transform q% of W' satisfies

0 =i (o () ()} 120

The fourth Lemma will be used to control the LP-moments of the mar-
tingale (W}). It is a direct consequence of the Marcinkiewicz-Zygmund in-
equality in [8, Theorem 1.5], as stated in [26, Lemma 1.4].

Lemma 3.4. Let (Xi)ren+ be a sequence of i.i.d. random centered variables.
Then for alln e N* andp > 1 :

n

S X

k=1

E

P < (Bp)pE‘XHpna Zfl <p < 27
= (Bp)PEIXklPnE,  ifp> 2,

where B, = 2min{k'/? : k € N,k > L}.
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3.2. Ezistence of the quenched harmonic moments E¢(W*)~@

In this section, under condition H2, we give an estimation of the decay
rate of the quenched Laplace transforms d)é(t) as t — oo, which implies
the uniform boundedness of the quenched harmonic moments E¢(W*)™%, as
indicated in the following theorem.

Theorem 3.5. Assume conditions H1, H2 and ||| P1(&o)||ccllzee < 1. Then
there exist two constants C > 0 and a > 0 such that for all 1 < i < d, all
t>0 and all x > 0,

PE(t) < tga P-a.s., (3.3)

Pe(W' < z) < Cz% and Eg(W') *<C. (3.4)

For the proof of Theorem 3.5, we will need the following preliminary
result about a control of (ﬁé(t), 1 < i < d. For the case d = 1, this result was
established in [22].

Lemma 3.6. Assume condition H2. Then there exist two constants f €
(0,1) and ty > 0 such that for all 1 <i < d andt > to,

gb%(t) <pB P-as.

Proof. We will adapte the approach in [22] where the case d = 1 was con-
sidered. By (2.1) and (1.6), we have that for alln > 1 and 1 < i < d,

i i Ungroo(d) _ ;
1 — W= e Y Y N () — W,

. zd: Un+1,OO(J)NlT:n(])
— Ao0,n—1U0 oo('L) ; )\nUn,oo(r)

_W;'L

=> v > Wi =1, (3.5)

where

N Unt1,00
er,-n — < ln +1, >
' AnUn,oo(T)

It is clear that, given the environment £, the random variables Wlfn, [ >1,
are i.i.d., and independent of &, ...,&,—1 and Z!. Let p € (1,2] be such that
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condition H2 holds. Notice that by (1.5), we have 3-¢_, Moj\’g‘nlfi’glU;*(ﬁ(r) =

1 a.s. for any n > 1 and 1 < ¢ < d. Therefore, applying (3.5), the convexity
of the function  — zP on R+ and Lemma 3.4, forallm >1and 1 <i<d,
P-a.s., we get

) ) d U Z;L'L(T p
Ee Wy — WP <KE < 7~ W n )
€l W | ¢ Z:>\0n 1U000 e
d MO,n—l(iyr)Un,oo(r) 1

<y

r=1 A0 n—1 UO oo(l) MO,n—l(Z‘a T)p
Moy-1(6,")Unoo(r)  EeZ(r)

Ee

Z;,(r)
Z (VVltn - 1)
=1

< B? . - E | W{, —1|P
Z A0,n— 1U0<>o() Mo n—1(7,7)P elWin =1l
EcZ),(r)
< BP max {0\ g qpp
p1<r<d{Mgn 1(i, )P Wi — 1 }
= BY max E£|W1 n— 1P max (Mo n—1(i, 7))~ (3.6)
1< 1<j<d

Again by the convexity of z — zP, for all 1 < r < d and n > 0, P-a.s., we
have

<N{n7Un+1 00> P
E W —1P =E¢|——-—""—1
5‘ 1,n | 5‘ AnUn,oo(T)
) i Mn(T,j)Un—l—loo( )<N1n( ) _ 1) P
¢ j=1 AnUn,oo(T) M (r, j)
Ni.() P

< —_— — = . .
<25k By Y = o

Combining this with (3.6), we obtain that for alln > 1 and 1 < i < d, P-a.s.,
E¢|W, 1 — WalP < BYfn(p) max (Moy-1(i,5))" 7. (3.8)

1<j<d

Using the triangular inequality in L” under P¢ and condition H2, for n > 0
we have

i \\P11/p P
[Eﬁ(]]:f;:éz?;))] +1> < (;1424—1) Poas.  (3.9)

Now we deal with the last factor in (3.8). For M € My4(R), set

0, (p) < max (

1<i,5<d

(M) := A ” ) f ||Mz| = mln ZM i,7). (3.10)
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Using H2 we have +(M{') > A; a.s. It can be easily seen that the application
. satisfies the inequality («(AB) > «(A)u(B), for A,B € G}. Therefore, we
deduce that for all n > 2,

Mopn-1(i,5) = Y Mon-o(i,7)Mp_1(r,j)

1<r<d
2 AQL(Mg:n—Q)
n—2

> Ay H (M)
k=0

> A AL (3.11)

It is evident that the above inequality remains true for n = 1. Combining
(3.8), (3.9) and (3.11), we obtain that for all n > 1 and 1 < i < d,

. . A _ _
Ee|Wi,, — Wil < Bg;(/TZ +1) AP (A) Pas, (3.12)

with A;7? € (0,1). By (3.7) and (3.9), it is clear that (3.12) holds for n = 0.
Recall that condition H2 implies (2.5) and v > 0. Then, applying Lemma
3.1 with the convex function x — 2 on Ry, we have

Ee(W'P = supEe(W)P  P-as.

n=0

This, together with (3.12) and the triangular inequality in LP, implies that
there exists a constant C' > 0 such that

. . oo . . P
Ee(W')? = sup Ee(Wi)P < (14 Y (Be| Wi, —Wi")'") < C. (3.13)

n>0

Since x — (e™* —1 + z) /2P is a positive bounded function on R, it follows
that there exists a constant C; > 0 such that for all z > 0,

T <1 —x+ CiaP.
Combining this with (3.13), we see that for any 1 <i < d and ¢t > 0, P-a.s.,

GL(t) = Eee ™' < Ee(1—tW' + CyP(WHP)
=1—-t+ CltpEg(Wi)p
<1—t+COyP. (3.14)
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Let h(t) =1—t+ CCitP, t > 0. We observe that the minimal value of h(t)
is B = h(to), where to := (pCC;)"(1=P) and we have

B=1—(pCCy)"/0-») 4 ;(pCCl)l/(l_p) —1- (1 _ ;)to. (3.15)

So 8 € (0,1). Since the quenched Laplace transform qﬁé is decreasing on R,
we conclude from (3.14) that for all ¢ > ¢,

PE(t) < de(to) < h(tg) =B P-ass. (3.16)
This concludes the proof of Lemma 3.6. O

Proof of Theorem 3.5. By Lemma 3.2, we have the implication (3.3) = (3.4)
(but the values of @ and C can be changed). Therefore, it remains to prove
(3.3). Set

VE(t) = ¢(tloeo(i)), 1<i<d, t=0,

and ¢ (t) = (1&%L (t),--- ,wg(t)). From Lemma 3.3 we obtain that 1) satisfies
the following equation: for all 1 <i < d and t > 0,

Pe(t) = f <¢1T5<WI;;(1)> ’¢%5<WL/\O;(CZ)>>
) 52
i)

For n > 0, denote by Q1(&,) the positive random matrix whose entries are,
for 1 <4,j <d,

Ql(fn)(%]) = PE(HZn-&-l” Z 27 Zn-i-l(j) > 17 Zn+1(T) = O,T < ]|Zn = ei)-

It is clear that for n > 0, Q1(&,) depends only of &, and that the events
{Zn+1(j) =2 1, Zp41(r) = 0 Vr < j}, 1 < j < d, constitute a partition of
{|Zn+1]| = 1}. Hence

d
1Q1(&n) (0, )l =D Q1(&n) (0, 5) = Pe(| Znrll 2 2|Zn =€) VI<i<d.
Jj=1

By H1 and the fact that || P1(£,)(i,)|| = Pe(||Zns1] = 1| Zn = €;), we get
that for alln > 0and 1 <i <d,

[1PL(En) () + Q1(&n) (2, )| = 1, (3.18)
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which means that P;(&,)+Q1(&,) is a stochastic matrix. Then, by definition
of the matrix @Q1(§p) and using again H1 and the partition {Z,41(j) >
1, Zpt1(r) = 0Vr < j} (1 < j <d) of {||Znt1]] = 1}, we see that for all
s=(s1,"--,8q4) €[0,1]? and 1 < i < d, we have

d
) i k k(d
=S Pe(Zi=ej)si+ Y. Pe(Zi=k)si . h@

Jj=1 keNd, HkH>2

d

Z (§0)(4,7)s; + |5 IImZQléo (4,7)s;
Jj=1 Jj=1

= ([P1(&0) + [Islloc@1(60)] 5, €3)-
This, together with (3.17), implies that for all ¢ > 0,

ve(t) < (Pi(&) + “ng()i))HOOQl(fo))ng<)i)) P-a.s. (3.19)
In particular, by (3.18) we get that for all ¢ > 0,

Vel < Jire(3)] . Pras.

By iteration, we see that for all m» > 1 and ¢t > 0,

e (1) |loo < Han5<>\0t )HOO P-a.s. (3.20)

n—1

By iteration of (3.19) and using inequality (3.20), we obtain that for all
n>zlandt>0

n—1

t
wé(t) kHO (Pl &) + H¢wg( 1)HOOQ1(§I<))¢T71§()\OM_1) P-a.s.
(3.21)
Notice that by (1.5) and condition H2, for any 1 < i < d we have
. min My(i, 7)
, (Mo(i,), Ureo) _ 1<j<d A,

12 Uoeo(t) = T > P-as. 3.22
N 7 e 7 (522

Therefore, since ¢¢ is a decreasing function on R, we obtain that for all
1<i<dandt >0, P-a.s.,

(1) < YE(t) = ¢ (tUn,o0 (1)) < & (t%)
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Combining this with (3.21), it follows that for all n > 1 and ¢t > 0, P-a.s.,

<T1 (P60 -+ Jore ()| r60)ore ()

(3.23)

Now, by Lemma 3.6, we know that there exist two constants 5 € (0,1) and
to > 0 such that |¢¢(t)]|cc < B a.s. for all ¢ > tg. Using the inequality
Aon—1 < ||Mon—1|| < (dA)™, this implies that for n > 1, P-a.s.,

quTng(MiOil)Hoo <B, t>h(dA),

where ¢ = %to. Combining this with (3.23) and (3.18), we get that for all
n>1andt > t;(dA)", P-a.s.,

16e(®)lloo < 3 H 1PL(&k) + BR1(EK)

k=0

n—1
= 8 [T I18[P1(&) + Qu(&)] + (1 — B)PL(&) .
k=0

n—1

<BIT B+ = B)Pi(&w) o)

k=0
< fa”, (3.24)

where a = 8+ (1 — B)[|[|P1(&0)]|oo|| - Clearly we have a € (0,1), since
f € (0,1) and [[[[P1 (o) loll o= < 1 by hypothesis. Set

logt — logt;
N(t) := {7

1, t>1.
log(dA) J+ ’ !

We observe that, if ¢ > ¢, then N(¢t) > 1, t > t;(dA)N® and N(t) >
(logt—logty1)/log(dA). Therefore, using the inequality (3.24) with n = N(¢),
we deduce that for all ¢t > ¢, P-a.s.,

logt—logtq _loga log

e (®)lloe < BN O < o T - = g, P gt

Taking a = lolgégdil) > 0 and C = Bt¢ > 0, we conclude that for all ¢ > t;,

c
9Dl < 3= Pas.,

which implies (3.3). This ends the proof of Theorem 3.5. O
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3.3. Ezistence of the annealed harmonic moments E(W?)~¢

The aim of this section is to prove the following theorem which gives the
optimal value of a to have E(W%)~® < +oo for all 1 < i < d, under condition
H2. (But the proof of the optimality will be done in the next section. )

Theorem 3.7. Assume conditions H1, H2 and ||||P1(&0)llcollzee < 1. Let
a > 0 be such that k1(a) < 1. Then there exists a constant C > 0 such that
foralll1 <i<dandt >0,

¢'(t) < tga (3.25)

and that for all1 <i<d,0<b<a andz >0,
P(W! < z) <Cz® and EWH b <C. (3.26)
For the proof of Theorem 3.7, we shall need the following technical lemma

about the decay late of a function which satisfies a functional inequality.

Lemma 3.8. (/24, Lemma 4.1]) Let ¢ : Ry — Ry be a bounded function.
Assume there exists a random variable A > 0 and constants a € (0,1),
C>0,a>0 andty >0 such that

6(t) < aBG(At) + tg £ to. (3.27)

If dEA™® < 1, then ¢(t) = Opqoo(t™%).

Proof of Theorem 3.7. First, by Lemma 3.2, we have the implication (3.25) =
(3.26). So, it remains to prove (3.25).

Let € € (0,1) and a > 0 be such that x1(a) < 1. By (3.3) in Theorem 3.5,
we get that there exists a constant . > 0 such that for all ¢ > ¢.,

[6e(t)loo <& P-as. (3.28)

Recall that, by H2, we have A ,—1 < [[Mpn—1| < (dA)" a.s., n > 1. Then,

combining (3.28) and (3.23), we obtain that for alln > 1 and ¢ > %ta

P-a.s.,

3
—

6e(t) < TT (Pu(&) + Qi (&) e

=0

t4, ). (3.29)

dA||Mon—1||

o
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Taking expectation in (3.29) and using the independence of the environments
&, it follows that for allm > 1 and t > (d )nHtE, P-a.s.,

n—1 tA

o(t) < E<kr_[0 (P1(6) + QB e ( gy ) |60:0 < o < ]

— E[nl_[l (Pr(&k) + EQl(fk)W(CMH;\?(ill”)]

k=0

This implies that for allm > 1 and t > %ta,

tA
lé(0)lleo < E [HH (P1(&0) + Q)] WWM)H ]
:an,sEHQb( n,e )HOO» (3'30)

where oy, = E| [} (P1 (&k) + eQ1(&) )H > 0 and flms is a positive
random variable Whose distribution is determlned by

3 1 n—l1 Ay
Eh(Ane) = an,eE{H kl;[O (Pr(&k) + €Q1(€k))"ooh(m”
for all bounded function h on R;. Now we prove that there exist € € (0,1)
and n € N satisfying the two following conditions:
e < 1, (3.31)
and
an EAS < 1. (3.32)
If (3.31) and (3.32) hold, then by Lemma 3.8,
[0 = Orsoo(t™), (3.33)

which is equivalent to (3.25). So it remains to prove (3.31) and (3.32).
First we show (3.31). Notice that for any positive random matrix M €

Ma(R),

d
IEM |00 = maXE(ZM(i,j))

<i<
1 d =

d
SE[Moo < D EM(i,§) < d|EM||o. (3.34)
i,j=1
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Using this and the fact that P (&) + Q1(&x) are stochastic matrices (so that
I TIRZo (Pr(€k) + Q1(&k))[loo = 1), we get for all n > 1 and € € (0,1),

n—

oo <5 T A6 +o(TT (P60 + @rce0) - TT &)
k=0

k=0
<(1-— E)]EH nl:f Pl(ik)Hoo + €EH nl:[ (P1(&k) + Q1(&k)) HOO
k=0 k=0

< d(1 =) [[(EPL(£0))" [loo + &

The hypothesis ||||P1(£0)]|collzee < 1 implies that p(EP;(&)) < 1, so that
limy, 400 ||(EP1(€0))"||oc = 0. Therefore, we obtain that for all € € (0, 1),

limsupa, . <e < 1. (3.35)
n—+oo
Therefore (3.31) holds for all € € (0,1) and n € N sufficiently large.
Now we prove (3.32). By definition of A, ., for alln > 1 and ¢ € (0,1) we
have

B dA a n—1
an B4 = (5-) E] NI (Prie) +e@utee))| |- (3:36)
2 k=0 o
Notice that || Mo,—1]|%| TT{=g (P1(&) + eQ1(&k) N < 1Mo pn1]|* as., with

E|| Mo p-1]|* < +oc. Therefore by the Lebesgue dominated convergence
theorem, letting ¢ — 0 in (3.36), we get that for all n > 1,

ool 2, () st T e ]
This implies

1/n
lim lim (an EA ) =ri(a) < 1,

n—-+oo e—0

so (3.32) holds for n € N sufficiently large and € > 0 small enough.
We have therefore proved (3.31) and (3.32), which implies (3.33). This
concludes the proof of Theorem 3.7. O

3.4. Proofs of Theorem 2.1 and Corollary 2.2

In this section, using the sufficient condition for the existence of harmonic
moments established in Theorem 3.7 of the preceding section, we prove The-
orem 2.1 and Corollary 2.2 which give a necessary and a sufficient condition
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for the existence of the harmonic moments E(W?%)~%. To this end, we need
the following lemma about the behaviour of the function x; on RT. Recall
that a matrix M is nilpotent if there is an integer n > 1 such that M" = 0.

Lemma 3.9. Assume condition H2. Then the function k1 satisfies the fol-
lowing properties:
(1) £1(0) = p(EP1(%0));
(2) The following assertions are equivalent: (i) k1(0) = 0; (ii) k1(a) =0
for all a > 0; (iii) EPy (&) is nilpotent;
(3) if EP1(&o) is not nilpotent, then k1 is a strictly increasing continuous
function on Ry, with lim,—, 4o k1(a) = +00.

Proof. (1) Part (1) follows because, using inequalities (3.34), we have

) = i (8] T 7] )"
k=0
n—1 n
= i ([T ], )"

— 1im (|[EP1(&)]" o) "

n—-+00

= p(EP1(&)). (3.37)

(2) We next prove part (2). Notice that the matrix EP; (&) is nilpotent
if and only if p(EP1(§)) = 0. So by part (1), we only need to prove the
equivalence between (i) and (ii). To this end we will prove that for all a,b > 0,
there exist constants ci,ca > 0 such that x1(a +b) < c1k(a) < cak1(a +b).

By H2 we have | My -1 < (dA)" a.s., so for all a,b > 0,

sata )= Jim_ (BN 127 TT Ao )"
k=0

n—-+oo

< lim ((dA)"E||Mo,n1]|”

n—-+oo

n—1 1/n
H Py (fk)” )
k=0 o
= (dA)’k1(a). (3.38)
On the other hand, by (3.11) we get that for all n > 0,

| Mop—1]| > g}éld Mo p-1(i,j) = A2AT™' P-as.
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Therefore, we obtain that for all a,b > 0, with A; > 1,

ri(a+b)> lim ((AQA?‘l)

n—-+

&))"

= Abk1(a). (3.39)

From (3.38) and (3.39) we see that x1(a) = 0 for all @ > 0 if and only if
%1(0) = 0. This ends the proof of part (2).

(3) We finally prove part (3). Assume that EP; (&) is not nilpotent. Then,
by parts (1) and (2), we have £1(0) = p(EP;(&)) > 0. It follows from (3.38)
and (3.39) that k; is a strictly increasing continuous function on Ry with
limg_ 400 £1(a) = 400. This concludes part (3).

The proof of Lemma 3.9 is complete. O

Proof of Theorem 2.1. First we assume that x1(a) < 1, where a > 0. By
Lemma 3.9, k1 is a continuous function on R, so there exists € > 0 such
that k1(a+¢) < 1. Using Theorem 3.7 (with a replaced by a+¢), this implies
that E(W?)~® < 40 for all 1 <4 < d.

Now we suppose that a > 0 is such that E(W?)~® < +oo for all 1 < i < d.
We will prove that s1(a) < 1. Let Z],, . = (Z],, (1), -+, Z],, 1(d)), where
er,n,k:(j) denotes the offspring of type j at time n + k of the [-th particle of
type r in the generation n. By iteration of (2.1), it is easy to see that the
MBPRE (Z%),>0 satisfies the relation

d Zi()

n+k_z Z lenk’ n,k > 0.

7j=1 I=1

It follows that for all n,k > 0 and 1 < i < d,
J)

ek = ZZ

d ) Z;Ll(j) )
Z On 1UO oo( ) Z I/Vlj’n’k’ (340)

=1

lnk’ n+k oo>

where

<Z27;n7k7 Un+k,oo>
)\n,n+k71 Un,oo (]) '

Clearly (VVZJ n ) k>0 is the fundamental martingale associated to the MBPRE
(le k) k>0 in the shifted random environment 77¢, starting with the I-th

J .
VVl,n,k T
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particle of type j in the generation n. Hence (VVljn p)k=0 converges a.s. to

a random variable VVljn Letting £k — 400 in (3.40), we get the following

distributional equation on the limit variables W for all 1 < i < d and
n = 0,
d U Zi(r)
Wi = _— W/, 3.41
Z )\0 n— IUO oo Z b ( )

where for each n € N, under P¢, the random variables I/Vl”n, indexed by [ > 0
and 1 < r < d, are independent of each other and independent of Z!, each
with the distribution

P, €)= FrveV" ).

Therefore, we get from (3.41) that for all 1 <i < dand n > 1, P-ass.,
) d U Zi(r) —a
Ee(W*)™* =E ( —_— )
E( ) ¢ Z )\O n— 1U0 oo Zl
d Z;,(r) —a

) < ) ]
——neetl) )R, 7 IS T

()\On lUOOO(Z)) 3 12; In {Z}=er}
d .

= (A0,1=1U0,00(1))* Y Unoo (1) Egme (W) " *Pe(Z}, = €;).
r=1
(3.42)

For n > 0, let X,, be the vector in R? whose i-th entry is
X (1) = Unyoo (1) “Epae(WH) ™%, 1<i<d. (3.43)

By H1 and the definition of the random matrices P;(&,), we have that for
alln >1and 1 <i,r <d, P-a.s.,

d
Pe(Zpi1 =€) = Y _Pe(Zy, = ¢j)Pe(Zy 11 = €] Z;, = ¢))
j=1
d .
=2 Pe(Z;, = ) Pr(6a) (G 7).
j=1
By iterating this relation, we get that for all n > 1 and 1 < 4,r < d, P-a.s.,

n—1
Pe(Zi =) = | T] Pi(&n)]Gr). (3.44)
k=0
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Using this and the notation X, (cf. (3.43)), we can re-write (3.42) as follows:
for all n > 1, P-a.s.,

0n—1 H Pi(&) X (3.45)

By (1.5) and (3.22), we get that for all n > 1

A A
Mont = | Mon-1Unoll > [ Monaall] > 2l Monaa] P-as.

This, together with (3.45), implies that for all n > 1, P-a.s.,

Xl > (ii)ailMo,n—ll|a!!ﬁPl<5k) X,
k=0

> (7)"

Notice that (X,)n>0 is a stationary ergodic sequence of strictly positive
random vectors, and X, is independent of &y, - ,&,_1. Therefore, taking
expectation in (3.46), we get that for all n > 1

Bl Xolle > (22)E|

H min X, (7). (3.46)

oo 1<i<d

)HOO] E( min Xo(i)). (3.47)

1<i<d

Using again (3.22), for any 1 < i < d we have
Ag) a

0 < EXo(i) = E[Up,e0(i) “Ee(W') ™ < <dA

E(W") ™ < 4o0.

Therefore, by (3.47) we obtain for all n > 1

(% o ElXolle

n—1
BMo .l TT A < () Sraminscoca Yot

This implies that

wifa) = i ( @)H )" <,

n—-+o0o

which is the desired result. This concludes the proof of Theorem 2.1 and the
remark following it. O
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Proof of Corollary 2.2. First we suppose that EP; (&) is nilpotent. By Lemma
3.9, we know that x1(a) = 0 < 1 for all a > 0. Therefore, using Theorem
2.1, we get that E(W?)~® < 400 for all 1 <i < d and a > 0.

Now, we assume that EP;(§p) is not nilpotent. By Lemma 3.9 and the
condition [|[|[P1(&0)|lecllze < 1, the function k; is continuous and strictly
increasing on Ry with £1(0) = p(EP1(&)) < 1 and limg, 4o k1(a) = +00.
Therefore, there exists a unique constant ag > 0 such that x1(ag) = 1, and
we have r1(a) < 1if a < ag, and k1(a) > 1 if a > ap. Using again Theorem
2.1, this implies that

max E(W*)~¢

1<i<d

< 400 if a €10,ap),
=+o0 if a € (ap, +0).

The proof of Corollary 2.2 is complete. O

3.5. Proof of Theorem 2.3

In this section, we prove Theorem 2.3 which gives the existence of the har-
monic moments E(W?)~® for a small a > 0, under the moment condition
H3, instead of the boundedness condition H2 considered in the preceding
section. We will prove the following theorem.

Theorem 3.10. Assume conditions H1, H3 and v > 0. Then there exist
two constants a > 0 and C > 0 such that for all 1 <1 < d, allt > 0, and
all x >0,

¢'(t) < t% (3.48)
P(W'<xz) < Cx® and E(WY)*<C. (3.49)

Clearly Theorem 2.3 follows from Theorem 3.10. We need some previous
results to prove Theorem 3.10. The first one gives the non-degeneracy of the
limits W* under the conditions of Theorem 3.10.

Lemma 3.11. The following implication holds: H3 = (2.5). Moreover,

under the conditions H3 and ~y > 0, the limit W' is non-degenerate for each
1<i<d, and (2.6) hold.

Proof. We first prove the implication H3 = (2.5). Assume condition H3.
Then, by Holder’s inequality E¢|XY| < (E¢|X|*)V*(Ee[YV]%)VP with o =
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1/(1 —n) and B = 1/n, we see that for all 1 < i,j < d we have, P-a.s.,

Z6) | . Z0)
Ef(Mo@',j)lg Mo@',j))

= B KMZj((Z)ﬁ)1_77(]\420%(2{2’))77105 zféé"lﬂ

e ()] (e (et )
{Ee Lvif((]i) (1os* sz(%y/n} }n' (3.50)

We know that there exists a constant C' > 0 such that log* 2 < Cz"®~1 for
all z > 0. Taking expectation in (3.50), we obtain that for all 1 <i,j < d,

E(AZ?% log’* MZ()1<(])3>) S CE [Ef(mw < oo (35D)

since Efy(p)" < 400 by condition H3. Hence the condition (2.5) holds.
Recall that by [13, Theorem 2.6 and Corollary 2.8], condition (2.5) to-
gether with v > 0 implies that the limit W’ is non-degenerate for each
1 <i < d, and (2.6) hold. Combining this with the implication H3 = (2.5),
we conclude the proof of Lemma 3.11. O

N

By the sub-additive ergodic theorem and the fact that || M, (¢,-)| > 1
a.s. for any 1 < ¢ < d (which follows from H1), for all s < 0 the limit

A(s) = lim (El|Mon-a]")"" (3.52)

exists, with £(s) = sup,,» (EHMom_le)l/n < 1. The proof of Theorem 3.10
is based on the following result about the properties of the function k.

Lemma 3.12. Assume conditions H1, H3 and ~v > 0. Then for all s <0,
k(s) < 1.

Moreover, if n > 0 satisfies H3, then for all0 < a < s <n/2,

1/n
(E[|Mo1]® max Moy 1(i,5)*]) " = #la—s)<1.  (3.53)

1<i,5<d n—-+00

Proof. First we prove that k(s) < 1 for all s < 0. Recall that (M) =
infz =1 [Mz|, for M € Mg(R), and +(Mg,) > 1 a.s. by (3.10) and H1.
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Since ¢ is super-multiplicative, the sequence E L(ng n_1>s is sub-multiplicative.
So using the sub-additive ergodic theorem we get

lim (Eo(M,,_1)°)"" = inf Be(MT,)")" <1, Vs <o,

n—-+00

By the inequalities «(M7T) < ||MT| < d||M||, M € My(R), this implies that
for all s <0,

A(s) < lim (Eo(M, 1)")"" = inf (Eo(MF, 1))""
Therefore, for all s < 0 and n > 1, we have
K(s)" <Eu(Mg, )" <1 (3.54)

Clearly by (3.54), if £(s) = 1, then E¢(Mg,, )7 =1 for all n > 1, which is
equivalent to L(Mg: n_1) = L as. for all n > 1. Consequently, if we show that

lim P((Mg,_,) =1) =0, (3.55)

n—-+4o0o

then we will have x(s) < 1 for all s < 0. So, it remains to prove (3.55). Using
H1 and the identity (M) = 1r£1j£1d]|M(-,j)||, M € My(R), for all n > 1 we
\J\

have
d d
P(u(Mg, 1) =1) < P(|Mon—1(i, <D OP(|Zi =1). (3.56)
=1 =1

By Lemma 3.11, the conditions H3 and ~ > 0 imply that the limits W? 1 <
i < d, are non-degenerate, and (2.6) holds. Combining this with condition
H1, we obtain that lim,, , | || Z%| = +oc a.s. Therefore, we obtain that for
all 1 <i<d,

1| —

Jim P([[Z,]|=1) =0, (3.57)
and (3.55) follows from (3.56). So k(s) < 1 for all s < 0, which is the desired
result.

Now we prove (3.53). Let 7 > 0 be such that condition H3 holds, and set
0 < a < s <n/2. First, for all n > 1 we have

E[| Monall* max Mon-1(i.5) ] > Bl Mo (3.58)

\27.7\
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Next, for all n > 2

E[[Mop-1]* max Mo, 1(i,7)~"]

1<i,j<d

d _
= E||Mon-1]* 1£3§d<;Mo i, 1) My p—1(r, J)) s]

1<i,r<d 1<j<d

|
< E[|Mo]* max Mo(i,r) ™ |E[|My ]| mas [ My-1( )] 7]
|

= E[|Mo]* max Moi,r)™*[E[| Mona|* max | Mon( )]~

\7\

It follows that for all n > 3,

B[ Mo * max Mo (i)~

< [ S
< E[[|Mol|* max Mo, j)” B
a S
E[|| Mo glagd(ZuMOn 3(51) [ Ma—2(r,5)) |
a S
< E[[IMo]* max Mo(i, )] x

E ||| Mo-2l|” max Mis(i, §) ||| Mo-sl|(dl| Mo.u-s) "]

LIS

2
_ —s a . \N—38§ a—s
= d~(E[|IMo| max Mo(i, |) ElIMo s (3.59)

Then, by Hoélder’s inequality and condition H3, since 2a < 2s < 77, we have

[HMOH max Mo(i,5)~ s} < (E”MOH%)UZ(E[ max Mo(7, )" 28D1/2

1<i,j<d 1<i,j<d

< +00.

Combining this with the inequalities (3.58) and (3.59), we obtain that for
all n > 3,

E||Mopn-1]]*"% < E[HMO,n—IHa 121}2}><<dM0,n—1(i7j)75} < CE||Mon—3]]"%,

where C' = d™*(E[|| Mo ||* maxi<; j<d Mo(i,j)_s])2 < +oo. This, together
with (3.52), implies (3.53), which concludes the proof of Lemma 3.12. [
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Proof of Theorem 3.10. The implication (3.48) = (3.49) holds by Lemma
3.2. Therefore, it remains to show (3.48) under the given conditions.

Assume condition H1, H3 and v > 0. Set v¢(t) = (1/1%(t),~~- ,wg(t)),
where for all t > 0, and 1 <7 < d,

Ye(t) = ¢ (tUo,00(7)).
Let ¢ be the function on Ry defined by

Y(t) = Eljtpe(t)|loo, t=0.

Since qﬁé is a decreasing function on Ry and 0 < Up (i) < 1 a.s., for all
t > 0 we have

[6(t)llco = B () lloo < Ellde(t)lloo < Ellthe(t)lloc = ¥(#).

Therefore, if we prove that there exists a constant a > 0 such that

P(t) = Orsqoo(t™), (3.60)

then (3.48) holds.

Now we prove (3.60). As in the proof of Theorem 2.1, the argument will
still be based on (3.21). The idea is to take expectation at both sides of
this inequality, and to get an inequality on v in order to use Lemma 3.8 to
conclude. The difficult point is to have a bound in terms of ¢ while taking
expectation on the right hand side of (3.21). This will be done by truncation
and iteration.

Recall that Aon-1 = [Mon-1Un.coll < [[Mopn-1]| for all n > 1, and ¢} is
decreasing on R.. Therefore, we get that for all n > 1 and ¢ > 0,

¢T”£()\07:1) < 1/’T"€(%) P-a.s. (3.61)

Moreover, by similar arguments as in (3.14)-(3.16), we have that for all
K > 0, there exist two constants tx > 0 and S € (0,1) such that for all
t > ti, |¢e(t)]loo < Bk P-a.s. on the event {max;<;cqEe(WH)P < KP}

A0 ;
Therefore when ¢ > —2222=1 - and maxEpne(W*)P < KP, we have a.s.
i Un,oe(?) i<icd ¢ ’
1<i< X

)\0;1)"00 < Bk-

Jore
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Combining this with (3.21) and (3.61), we obtain that for all K >0, n > 1
and t > 0, P-a.s.,

E{||¢€(t)||oojl{t>m712?§dETn5(Wi)pSKP}}
n—1 "
< B[ IT (160 + srut@ime(z —)l.
n—1
< IE{ \kﬂo (Pi(&) +5KQ1<@>)HOOE{H¢M(W)Hm‘gm... ,gn_l]}
n—1 ;
= EH kl;[() (P1(&k) +ﬂKQ1(§k))HOO¢(m)}.

This, together with (3.20), implies that for all K > 0, n > 1 and ¢ > 0,
P-a.s.,

P(t)

< [l ir0ns mﬁm(wi)pw}}

= minlgigd Un, oo (2) ’1<

B I (8)loe L s e 1105 107} + B[ (8) T,

A
t< Lt o,n—1 }

n—1
< E [H kl;lo (P1(&k) + BrQ1(&k)) Hoow(!l]\fotm)}

+E[”¢Tﬂ£ (,\0;_1 ) “Oo]l{l??é‘dETng(W")p>Kp}]

+( [Mon-al t). (3.62)

minlgigd Un,oo(z) g

Now we control the second and last terms in (3.62).
We first find a bound for the second term in terms of ¥. Using the trian-
gular inequality in LP and (3.8), we get that for all 1 < i < d, P-a.s.,

+00
ip) 1 i iy 1
EcWH)'? <1437 (BelWiyy — W)

n=0
400 1 1-p
<1+ B, Z 0, (p)» 121?}( Mo pn—1(i,5) 7
n:() <J=

By the sub-additivity of the function x — 2% on Ry (since 0 < n < 1), this
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implies that for all K > 0,n > 1 and t > 0, P-a.s.,

E[HwT%(}\ : )H {maxET”s(W’)bK”}}

0,n—1 1<i<d
< opBllere (o)l s e i) )
< ;ZEHW&(AO;_I)UJF(%)Z )
S e (1) a7 s M5

1<i,5<d
(3.63)
By (3.20) and (3.61), we get that for n,k > 0 and t > 0, P-a.s.,

Hw(mi1>Hm<\inn+k+15<Aoi+k>\\m<\\W%w)”w

Combining this with (3.63), we obtain that for all K >0, n > 1 and t >
P-a.s.,

E {HdJTng()\o ! = ) HOO:H-{lrgaé(dETng(W’)P>KP}]

el (L) + ()

N

E t 0 2n Y (12*17)
["¢Tn+k+lé(7‘|M0’n+k||)Hoo nk (D)% 1I<T213}<<d nntk—1(4,7) % }

I}EMWH ()

L . n(-p)
ZE[ <’M0n+k\|) Onir(p)? max Mnnir-1(i,7) 2 |, ©ey

N

where, for the last inequality, we have used the fact that M ,, 41 and 0,,4,(p)
are independent of T"1t#+t1¢. We have therefore obtained a bound of the
second term in (3.62) in terms of .

For the last term in (3.62), by Markov’s inequality we get that for all
K>0,n>1landt >0,

n n
]P’( ‘ [ Mo,n—1]] ' >75) < (tK>2E( | Mo,n—1]2 n)
minicicq Unoo(i) = tx t minj<j<q Un,oo(i)2
C(n, K)
< 22, (3.65)
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n
where C(n, K) := t%(E||Mo||2)"E(maxi<icq Upoo(i)~2). We claim that
C(n,K) < oo because, by (1.4), Cauchy-Schwarz’s inequality and condi-
tion H3, we have for all 1 <7 < d

) = E(<M0(iw)7U1,oo>g)
| MoULe0l| =2
gE(rrla><1<j<d1\4137(71'73')_ )
| Mol 2

1/2 1/2
< (B[ max, Mo (i, 5)7]) T (EIMoI") Y < oo (3.66)

E(Uo,00(%)

n
2

Putting together the inequalities (3.62), (3.63), (3.64) and (3.65), we obtain
the following inequality on v: for all K >0, n > 1 and ¢t > 0,

»(t)

n—1
< E{H kl;[ (Py(€x) +/8KQ1(§k))HOOw<H]\401_1H>}

7 f® n n(1—p)
() el (W) o) 3 Moo (0.0)5

1
+EE[¢(

C(n, K
)]+

3.67
1Mo 2 (3.67)

We will write this inequality in the form (3.27) in order to use Lemma
3.8. For K >0 and n > 1, set

K = E[H ﬁ (P1(&k) + BrQ1(&r)) HOO]
k=0

 (52) Bl ] B Mo +

By condition H3 and equality (3.18), and using (3.53) in Lemma 3.12 with

a=0and s= n(gpl) € (0,%), we get for all K >0and n >1

Op, Kk < +00.

For any K > 0 and n > 1, let flm x be a positive random variable whose
distribution is determined by the following expectation: for all bounded and
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mesurable function h on R4,

Eh(A, k)
1 n—1 1
- E Hkl;[()(Pl(fk)+5KQ1(§I¢))HOOh(”%n_1Hﬂ
Bg “+o0o 1 N  aew
+W:’n,K i OE[h(W&M)enJrk(p) 2”? 12@132(1 Mn,n+k71(zv.7)n(12pp)]

1 1
+K3an,KE{h( HMo,n_lH)]'

So we can rewrite (3.67) as in the form (3.27): for all K > 0, n > 1 and
t>0,

C(n,K)

P(t) < an kE[y(An k)] + i (3.68)

We will prove that there exist K > 0, n > 1 and 0 < a < 1/2 such that
an Kk <1, (3.69)
and
an kEA G < 1. (3.70)

By Lemma 3.8, inequality (3.68), together with (3.69) and (3.70), implies
(3.60), which is the desired result. So it remains to prove (3.69) and (3.70).
First, we prove (3.69). By (3.44), for all 1 <4, j < d we have

n—1
P(Z} = ¢;) =E[ [] Pi(€0)](i. ) = (BPi(&))" (i, ).
k=0
This, together with (3.57), implies that
p(EPL(&)) < 1. (3.71)

Notice that the relation (3.35) can be proved by using (3.71) instead of the
condition ||| P1(&o)l|eol| e < 1. Therefore, (3.71) implies that for all K > 0,

lim sup E| kr;[; (Pu(ge) + BeQu(w))|_] < Bic (3.72)

n—-+00
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By the sub-additivity we have

n—-+o0o

lim (E]| ;ij; (&) + Brue)]_]) "

= mf( [H 1:[ (P1(&) +ﬁKQ1(€k:))H Dl/n-

Together with (3.72), this implies that for all K > 0,

n—-+o0o

5] T1 (6o + prante] ] = o
k=0

It follows that for all K > 0,

E[@o }%E[ max M ,—1(1, j)nu?i;p)] + ];Z

1<i,5<d

B,

a — (—)
K n—+oo \

[MIS]

(3.73)
Letting K — +o0 in (3.73), we deduce

lim lim a, x =0,
KS4oo nstoo 7

so that (3.69) holds for K and n sufficiently large.
Now, we prove (3.70). For all K >0, n > 1 and a > 0, we have

A—a
an,K]EAmK

E[H nlzf (P1(&k) + 5KQ1(§k))HOOIIMO,n,1||a} +
k=

B n+oo )
HE) ZE[||M0n+kI| OuikP)® max My pia(ig) "5 ).

1<i,j<d

By the independence of the environments &,, n > 0, we have

n(lfp)}

B 100t (0) i M 59)

= B[l Myt | “Onsr (9) 2] E[|| Mo i1 |14] x
L nd-= p)]

Bl Mossia )7
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Therefore, by the stationarity, we get that for all K >0, n > 1 and a > 0,

1—a
O‘n,KEAn,K

EWThH@H%m%@MLthwﬂ+

=

+(B2) *El10ol100 () ]

K
I o L n(—=p)

E|| Mo n_1]® ZE[HMM 1" max Mojoa(i,9) } (3.74)
k=0 Isijsd

For any fixed n > 1, we have || Mg —1]|* — 1 P-a.s. as a — 0, and || Mg n—1]|*

is dominated by || Mo ,—1"®~1/* when a € (0, ”(Zpl)). We will apply the
dominated convergence theorem in (3.74) as @ — 0. Notice that, by condition
H3 and (3.18) , for all K >0 and n > 1,

E[Hnﬁl(ﬂ(fk)+5KQ1(€1€))HOO } < E||Mon_1]| )
k=0

np—=1)\n
< (BlIMo[| "% ) < +oo.

Using (3.53) in Lemma 3.12, we obtain

= n(p— n(1—p)
ZE[ ‘Mgk 1l 4P max Moy 1(2,7) 2» } < +o00.
=0 1<i,5<d

By Holder’s inequality and condition H3 we have

n(p _p_ 1
E[IM] "5 00(p) %] < (BIMs[14)7° (Ebo(p)F)7 < +oo

Therefore, applying the Lebesgue dominated convergence theorem, by let-
ting @ — 0 in (3.74), we obtain that for all K > 0 and n > 1,

hm (o, KEAnK H‘ H (P1(&) +ﬁKQ1(§k))H } + Klg
+ (%)Z Jrz_: [128;}\( Mo k-1 (1, J)Ml?”p)]

(3.75)
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Letting n — 400 in (3.75), by (3.73) it holds that for all K > 0,

i Jimy (B )
1 B g I n(1-p)
=57 + () BW ] L Ef max Moy (19)" 5]

Then, letting K — 400, we conclude that

it Jim (on B, ) = 0.

This implies (3.70) for K > 0 and n > 1 sufficiently large, and a > 0 small
enough. Therefore (3.60) holds, and this concludes the proof of Theorem
3.10. O

4. Central limit theorem for log || Z¢ ||

In this section, we prove Theorem 2.4, that is, a central limit theorem for
the logarithm of the population size log || Z%|| for each 1 < i < d. To this
end, We will use the following central limit theorem for the norm cocycle
log || Mg ,, || established by Hennion [20, Theorem 3.

Lemma 4.1. Assume conditions (2.3) and Hj. Then there exists o > 0
such that for all x € S, as n — oo,

log ||Mg ,,—y2l —n
Vn

Proof of Theorem 2.4. By definition of the martingale (W}), for any n > 1
and 1 < i < d we have, P-a.s.,

120 i v ) < <
Mo (i )] 19550 o<t S Hn S

LN N(0,6%) in law.

12l 1
10,14, )| miny <j<a Un,oo ()

From this, we obtain the two following inequalities: for all n > 1 and 1 <
i < d, P-a.s.,

log||Z, | < log||Mon-1(i, )| +log Wy, — min logUnco(5),  (4.1)
log |2, 2 log || Mo.u-1(i, )| +log Wy, + min log Unec(f).  (4.2)

We know that (U, ) is a stationary and ergodic sequence of positive random
variables, so for all 1 < j < d it holds

10g Un oo(]) P
NI 0, (4.3)
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where —— denotes the convergence in probability with respect to P. On the
other hand, by [13, Theorem 2.6 and Corollary 2.8] we know that under
conditions (2.5) and v > 0 the limit W* of the martingale (W) is non-
degenerate, and (2.6) holds. This, combining with condition H1, implies
that W% > 0 P-a.s. for each 1 < i < d. Therefore, we obtain that for all
1<i<d,

log Wi .
\/ﬁ n—-+oo

Putting together the relations (4.1)-(4.4), we get that for all 1 < i < d,

0 P-as. (4.4)

log | Zy || —ny _ log || Mon-1(i, )| —ny| e

Jn T — 0. (4.5)

Using Lemma 4.1 for x = e;, we see that

log || Mo n—1(i,-)|| — ny
NG

Combining this with (4.5), we conclude the proof of Theorem 2.4. O

— N(0,6%) in law.

5. Berry-Esseen bound for log || Z¢ ||

In this section, we prove Theorem 2.5 which gives a Berry-Esseen bound for
the logarithm of the population size log || Z% ||, for any 1 < i < d.

First, we formulate the following lemma giving the convergence in L' of
log W} to log W* with an exponential rate, for all 1 < i < d.

Lemma 5.1. Assume conditions H1, H3 and v > 0. Then there exist two
constants C > 0 and 0 € (0,1) such that for alln >0 and 1 <i < d,

E|log Wi —log Wi| < C6™.
Proof. For any n > 0 and 1 <i < d, set

7
Ri . n+l

Then, for all n > 0 and 1 <4 < d we have

log W, | —log W} = log(1 + R.). (5.1)
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Let K € (0,1) be a constant. From (5.1) we get that for all n > 0 and
1<i<d,

E|log Wy 1 —log Wy | = E|log(1 + Ry)1ipi»—ky| + Bl log(1 + R})1igi <y
=: I1(n) + I2(n). (5.2)

In the following, C' > 0 will be a constant which may depend on K, p and 7,
and which may differ from line to line. Now we control the two terms I;(n)
and I2(n).

Control of I1(n). Since % < 1, the function z 2|~ % log(1 + ) is
bounded on [— K, +00), so for all n > 0 and 1 < i < d,

I(n) = E[log(1 + RL)Lgp> sy < CEIRL|%. (5.3)

Control of I3(n). Applying Theorem 2.3, we get that there exists a con-
stant @ > 0 such that E(W%)~% < +oo for any 1 < i < d. Recall that by
Lemma 3.11 we have the implication H3 = (2.5). So (2.5) holds, and us-
ing Lemma 3.1 with the convex function x — x~%, this implies that for all
1<i<d,

sup E(W?)™% = E(W') ™% < +o0. (5.4)

n=>0

Combining (5.1), (5.4) and the inequality | log(z)|?> < C(z +279) for z > 0,
we obtain that for all 1 <1 < d,

1
2

. . 1
sup (E|log(1+ R)|?)? < 2sup (E|log Wi|?)?

n=0 n=0

< Csup (EW! + E(W}l)*a)%

n=0

<O+ EWH)? < 4oo. (5.5)

Applying Cauchy-Schwarz’s inequality, (5.5) and Markov’s inequality, we get
that for allm > 0 and 1 <i < d,

I(n) = Ellog(1 + Ry)Ligi <y
. 1 1
< (Ellog(1 + Ry)[*)2 (Elypi < k)

. 1 .
< [sup (Eflog(1 + R}))?| P(R;| > K):
k=0

< C(E|RL|%)?. (5.6)
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Together with (5.2), (5.3) and (5.6), this implies that for all n > 0 and
1<i<d,

E|logW?,, —logW!| < CE|R}|T + C(E|R,|T)?
< CE[(Ee|Ri]P)4] + C{E[(Be|RL)H]}E,  (5.7)

since ] < 1. Notice that inequality (5.7) holds for any p € (1,2] satisfying
condition H3. In the following, we take p € (1, 2] sufficiently close to 1 such
that p verifies H3 and p < 1 + a.
Now we show that there exists a constant § € (0,1) such that for alln > 0
and 1 <i<d,
E[(Ee|Ri")4] < Co™. (5.8)
By (3.5), foralln >0 and 1 < i <d,
d Zy(r)
- 1 Un.oo(T) "
R = i L wro—1
g )\O,nflUU,oo(Z) Z ( b )

=1

d
e DI (5.9)

Recall that, given the environment &, for each 1 < r < d the random vari-
ables I/an indexed by [ > 1 are i.i.d., and independent of &, ...,&,—1 and
Zi. Using (5.9), the convexity of the function x ~ 2P on R, (together
with the fact that Y%, Uy, oo(r) = 1), and Lemma 3.4, for all n > 0 and
1 <i < d, P-a.s., we obtain

E§|R2|p <EE<§:W
r=1 <Z’IZI7U77«,OO>

1
< ByEe(Zp, Unoo)' ™" max Ee[W7, —1J7.
\T\

w
0

Combining this with (3.7) and the convexity of x + 277, we get that for
alln > 0and 1 <i<d, P-as.,

E&‘RZ |p < B (Wl)l_p : <M0 n—l(i ) Un, 00>1_p : Hn(p)
<B 5(WZ)1 P0,(p) max My, 1(r,j) . (5.10)
1<r,j<d
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Therefore, by Cauchy-Schwarz’s inequality and the independence between
0, (p) and Mo p—1, we deduce from (5.10) that for all n > 0 and 1 < i < d,

E[(Ee| R P)1]

np L N3 n n=p) 7\ &
< By (E[E(W,)! ”}2)2(1@[9n(p)3éggngo,n—l(m) =])?
2 i :

< By (W) (E[00(p)}[E] max My, ()" 77])*, (5.10)

1<rj<d
since 3 < 1. Clearly condition H3 implies that E[Go(p)g] < +o00. Since
0 < p—1 < a, by Holder’s inequality and (5.4), for any 1 < ¢ < d we have
—1 p—1

sup E(W)1™P < sup (IE(W,Q)‘“)FT = (E(W)™) @ < +oo.  (5.12)

n=0 n=0

Moreover, by (3.53) (with a = 0) it holds that for all n > 0,

A\ n(1=p)
E{lgaféd Mo ()" 7" | < Co™, (5.13)
where § > 0 is a constant such that /{(@) < ¢* < 1. Combining inequal-

ities (5.11)-(5.13), we get (5.8).
Now, from (5.7) and (5.8) it follows that for all n > 0 and 1 < i < d,

E|log Wy, —log W}| < C6™.
This implies that forallm > 0, k> 1 and 1 <7 < d,

n+k—1
E[logWy . —logWy| < D E[logW; . —log W}

n+k—1
<C Y
< C6". (5.14)

So (logWi),>o is a Cauchy sequence in L', hence it converges in L' to
log W, for all 1 < i < d. By letting k — +oco in (5.14), we obtain that for
alln>0and 1 <4< d,

E|logW* —log W} | < Co™.

This concludes the proof of Lemma 5.1. O
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Now we formulate the Berry-Esseen bound for log || Mg, yl|, for any
y € S. This result was established in [34, Theorem 2.1]; it plays a crucial
role in proving the Berry-Esseen theorem for log || Z: .

Lemma 5.2. Assume conditions H3 and H5. Then there exists a constant
C > 0 such that for alln > 1,y €S and x € R,

log || Mg, -
‘P( 0g [ Mo -1yl — v <

ov/n Vn
The next lemma gives inequalities about the concentration of the joint

law (log || Z%|l,log || Mo n—1(i,-)||) for any 1 < i < d. It reveals that log || Z¢ ||
and log || Mo n—1(i, -)|| behaves similarly with large probability.

< x) — ®O(x)

Lemma 5.3. Assume conditions H1, H3, H5 and ~v > 0. Then there exists
a constant C' > 0 such that for alln > 1, x € R and 1 <1 < d,

LT AT e DA A
o\v/n = ov/n =’ ’

and

(LML bl = )
o\/n oyv/n n
Proof. We will only give a proof of (5.15), since the other inequality (5.16)

can be proved by similar arguments. For n > 1, 0 < m < n, y € § and
1<i<d, set

(5.16)

log ||MT —(n—m ) log W?
S%/nn — g H m,n 1yH < )’Y and Lfn = og m7
’ o\/n ’ ovn
where by convention M,, ,—1 denotes the identity matrix when m = n. By
(4.2) we have that foralln > 1, z € Rand 1 <i < d,

p(oell = _, Bsltil =)
ov/n = o\vn

. - log U, '

< P(Stfy+ Lo+ uin, E02l)

1<5<d g\/Nn

<z, S5, > x) (5.17)

In the following we take m := m(n) = |\/n], where |z] is the integer part
of z; C > 0 will be a constant which may depend on p and n, and which
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may differ from line to line. By Markov’s inequality and Lemma 5.1, we get
that there exists a constant § € (0,1) such that for alln > 1 and 1 < < d,

P(|Ly = Lyl > VnE|L,, — L, ,
(1L, | f) | al
:—E]logW£—long,L]
(o
1 . . 1 ) )
< —E|log W, —logW*| + — E|log W}, — log W'|
(o g

<O +6™m).

Since 0" 4+ ™ = o
1<i<d,

) as n — 400, this implies that for all n > 1 and

S

- , 1 C
A & i _—
P(1Lon = Linal > ) < N
Combining this with (5.17), we obtain that for alln > 1, x € Rand 1 <i <
d,

LT PSTRTESA
ovn = ov/n

€; I IOg Un,oo(])
< IP’(SOm—FL + I<11J1£1d o <z+ \F SOn>:1:>
. . 1
P(|LY, — L —
+ (| n,n m,n| > ﬁ)
o log Up o0 (7) ) C
< PlSy Ll 2 < —.
(SO’" L+ min, o\/n v \f S0 > @)+ NG
(5.18)

Recall that for y € S and M € G, we denote by M -y := II%yH the projective
action of M on G,. Then, for y € S the process
Xy =y, and XY= MOn 1y, n>1,

is a Markov chain on S. Notice that for all » > 1 and 1 < ¢ < d, we have
the decomposition

§e — log HMTEJrl,nfl(Mg:mei)H —ny

0,n U\/ﬁ
IOgHMOmeZH +log || My, 1 1 (Mg, - €i)|| = 1y
ov/n

\/ So A1 T Smiﬁ (5.19)
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Moreover, by (1.4) we have that for all n > 0,

<Mn(ra ')7 Un+1 OO> . Mn(T, .7)
1> U = 200 > —) (520
200 Un,oo(r) = min, My Un1.00] 1rg<d || M| (5-20)

Therefore, putting together the relations (4.1) and (5.18)-(5.20), we obtain
that forallm > 1, x € Rand 1 <i < d,

p(RElZilom  loglMos)l = )

O'\/> \ 7 O'\/ﬁ
/m—+1 v ; 1
< P( SOm—&-l—l_Sm—i—iLln—I_B?Zn,ngx—i_%’
m+ 1 i c
SO ;m+1 + Ser-lHn .CC) + %7 (5‘21)
with
; 1 1Z} 1 M (7, 5)
B .= lo + min log ———~ 2
T o IMoma ()] ov/mdnid C (M|
+ min 710gUn700( )

I<j<d  oy/n

Denote by v/, ,, the joint law of (Xﬁ;_ﬂ, \/ L S imi1s B n) on S xR x R.
For y € § and = € R, set

Gin(2) = P(SH,, < 2).

Since SY m+1,n 18 independent of X515 ‘m+1 and Bt . forany y € S, we
obtain from (5.21) that for alln > 1, z € Rand 1 < < d,

P<10g 1Zll =nvy _  log | Mona(i,-)ll = ny - x)

o ST NG
< /P(Sy +s+t<:n—|—i5y +s>x)ui (dydsdt)+£
m+1,n \/ﬁ’ m+1,n m,n )y oy \/ﬁ
1 i
J e [ (e =5 =14 70) = Gl = )] Vi ldy. ds. )
C
+%~ (5.22)

The random matrices M, n > 0, are i.i.d.,,soforn > 1,y € Sand z € R
we have

log ”Mg:n—m—lyH - (n -—m— 1)’7 < )
<z

Glpr) =( o

= G%,n—m—l (anm),
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with a, = ,/—2—. Notice that a, = (1-")"1/2 = 14+0(2) = 1—1—0(%)
as n — +oo. Therefore, applying the Berry-Esseen bound of Lemma 5.2, we
get that foralln > 1, y € S and z € R,

|Grng1n(2) = ®an)| = |GG,y (an2) — P(anz)]
¢
n—m—1
Ca, C
=— < —. 5.23
v (5.23)
Moreover, using the mean value theorem on the function t — ®(tx) with
t > 1, we obtain that for all n > 1 and x € R,

<

C
|®(a,z) — ®(2)] < |ay, — 1] sup |2®'(tz)] < —= sup |29’ (2)]. (5.24)
t>1 T 2eR

It is clear that z — [2®/(2)] is a bounded function on R. Combining this
with the inequalities (5.22)-(5.24), we deduce that for alln > 1, z € R and
1<e<d,

p(oell = _, Bsllil =)
o\v/n = o\v/n

< /Il{tg\/lﬁ}‘d)(m—s—t—i—\/15)—4)(33—3)

V,inyn(dy, ds,dt) + —.

S50

25)

By the mean value theorem and the fact that sup,cp [®/(z)| < 1, for all
x,z € R we have

[@(z + 2) — ()] < [2].
This, together with (5.25), implies that for alln > 1, x € R and 1 <14 < d,

p(RElZilom  loglMos)l = )

o\/n = o\/n
< 1 ! L o(dy,ds,d ¢
S / {tgﬁ}%—“’mm( y, ds, t)+%
< [ ity ds.do) +
= E|B},, ¢ (5.26)

—1—%.
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By definition of BY, ,,, combining with (4.1), (4.2) and (5.20), we get that
forallm > 1and 1 <i<d, P-a.s.,

o\/n| By, | < |log "+ min [log My (r, )| + | log || Mo

Z || '
||M0m 1 ” 1<r,j<d
log U,
+ min [log n,oo( )

< | log W,  + | log || Mol
+ max (]10g Unoo(5)] + [ log Mo (r, )| + | 10g Un oo (5)]

1<r,j<

< [ log Wi, | + 2| log [| M| + | log || Ma|l|

+ max (2]log Min(r, )| + |1ogMn<m>||). (5.27)
By Lemma 5.1 we have sup,,5q E|log W!| < 400 for any 1 < i < d. More-

over, from condition H3 and the inequality |logz| < C'(z" + 2~ ") for x > 0,
it holds that E|log |[My]|| < 4+o00 and E|log My(r,j)| < +o0, 1 < 7,j < d.
Therefore, taking expectation in (5.27), this implies that for all n > 1 and
1<i<d,

C

E|B;, | < 7 (5.28)
Hence, (5.15) follows from (5.26) and (5.28). This concludes the proof of
Lemma 5.3. O

Proof of Theorem 2.5. Forn > 1, x € R and 1 < i < d, we write

p(LBllm )

ov/n
- p(EElEL o bl )
o\v/n ov/n
+P<10gllZz all =ny o log [Monai: )l =ny x)
ov/n o\/n
_ P<log||Mo,n_1( i )|l = ny @c)
ovn
]P,<10gHZn|| -y 710gHM0n 1)l =ny m)
oyv/n o\/n

p(oell = bslloacr(o)l =)
oyv/n o\/n
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By Lemma 5.3, we get that there exists a constant C' > 0 such that for all
n>l,reRand1<17<d,

‘P<log\|ZﬁH o x) _P<10gHMO,n—l<iv')” - x)’ < Q (5.29)
ov/n = ov/n = RV

Combining (5.29) with Lemma 5.2, we obtain the Berry-Esseen bound for
log || Zk||, for any 1 < i < d. This concludes the proof of Theorem 2.5. [
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