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Consider a supercritical multi-type branching process in an independent and identically distributed random environment. We establish a Berry-Esseen type bound for the rate of convergence in the central limit theorem on the population size at time n as n goes to infinity. To this end we first find simple conditions for the existence of harmonic moments of the limit variable of the fundamental martingale.

Introduction

A branching process in a random environment is a natural and important extension of the Galton-Watson process. In such a process, the offspring distributions of particles in n-th generation depend on an environment ξ n at time n. This process was first introduced by Smith and Wilkinson [START_REF] Smith | On branching processes in random environments[END_REF] when the environment sequence (ξ n ) is independent and identically distributed, and by Athreya and Karlin [START_REF] Athreya | On branching processes with random environments I:Extinction probabilities[END_REF][START_REF] Athreya | Branching Processes with random environments II:Limit theorems[END_REF] when the environment sequence is stationary and ergodic, where basic results have been established. This process has attracted the attention of many authors in the last two decades, see for example the recent book by Kersting and Vatutin [START_REF] Kersting | Discrete time branching processes in random environment[END_REF] and many references therein. The interest of study of such processes is growing in recent years, thanks to a large number of applications and interactions to other scientific fields. See for example [START_REF] Afanasyev | Conditional limit theorems for intermediately subcritical branching processes in random environment[END_REF][START_REF] Grama | Berry-Esseen's bound and Cramér's large deviation expansion for a supercritical branching process in a random environment[END_REF][START_REF] Grama | Harmonic moments and large deviations for a supercritical branching process in a random environment[END_REF][START_REF] Bansaye | On the survival probability for a class of subcritical branching processes in random environment[END_REF][START_REF] Wang | Limit theorems for a supercritical branching process with immigration in a random environment[END_REF][START_REF] Damek | Absolute continuity of the martingale limit in branching processes in random environment[END_REF][START_REF] Dyakonova | Branching processes in a random environment with immigration stopped at zero[END_REF] for the single-type case, and [START_REF] Vatutin | Multitype branching processes in a random environment: nonextinction probability in the critical case[END_REF][START_REF] Page | The survival probability of a critical multi-type branching process in i.i.d. random environment[END_REF][START_REF] Vatutin | Multi-type subcritical branching processes in a random environment[END_REF][START_REF] Vatutin | Decomposable branching processes with two types of particles[END_REF][START_REF] Hong | Limit theorems for supercritical MBPRE with linear fractional offspring distributions[END_REF][START_REF] Vatutin | The survival probability for a class of multitype subcritical branching processes in random environment, (Russian)[END_REF] for the multi-type case. The current interest of researchers mainly focuses on the multi-type case, as in this case many important problems are open and challenging. All the papers cited above on multi-type branching processes in random environments (MBPRE) concern the critical or sub-critical cases (mainly on the survival probability), except the paper [START_REF] Hong | Limit theorems for supercritical MBPRE with linear fractional offspring distributions[END_REF] where asymptotic properties of P(Z n = z) are studied for a super-critical MBPRE (Z n ). Very recently, in [START_REF] Grama | A Kesten-Stigum type theorem for a supercritical multi-type branching process in a random environment[END_REF][START_REF] Grama | Convergence in L p for a supercritical multitype branching process in a random environment[END_REF] we obtained a theorem of Kesten-Stigum type and a criterion of L p -convergence (p > 1) for a suitable norming of the population size, for a super-critical MBPRE (Z n ). In this paper, also for a supercritical MBPRE (Z n ), we will establish a Berry-Esseen type bound for the rate of convergence in a central limit theorem on (Z n ), and prove the existence of harmonic moments of the limit of the normalized population size. These results will play very important role in the study of moderate and large deviations of (Z n ), as we will see in [START_REF] Grama | Cramér type moderate deviation expansion for a supercritical multi-type branching process in a random environment[END_REF], to obtain results similar to those in [START_REF] Bansaye | Large deviations for branching processes in random environment[END_REF][START_REF] Huang | Moments, moderate and large deviations for a branching process in a random environment[END_REF][START_REF] Grama | Berry-Esseen's bound and Cramér's large deviation expansion for a supercritical branching process in a random environment[END_REF] where the single type case was considered.

Let us give a quick presentation of the model with some preliminary results, and some explanations of the main results with key ideas in the proof. For an integer d 1, consider a d-type branching process Z n = (Z n (1), • • • , Z n (d)), n 0, in an independent and identically distributed (i.i.d.) random environment ξ = (ξ 0 , ξ 1 , • • • ). In the sequel, we will denote by (Z i n ) the process (Z n ) starting with one initial particle of type i, which means that Z 0 = e i , where e i is the vector with 1 in the i-th place and 0 elsewhere. Denote by M d (R) the set of d × d matrices. We equip the space R d with the L 1 -norm • . Let M n ∈ M d (R) be the random matrix of the conditioned means of the offspring distribution of n-th generation given the environment, that is

M n (i, j) = E ξ [Z n+1 (j) | Z n = e i ], 1 i, j d,
where E ξ denotes the conditional expectation given the environment ξ. Define the product matrix M 0,n = M 0 • • • M n , and the associated Lyapunov exponent

γ := lim n→+∞ 1 n E log M 0,n-1 ,
where M 0,n-1 is the L 1 -norm of the matrix M 0,n-1 .

Recently, the asymptotic behaviour of the MBPRE (Z i n ) under the supercritical condition γ > 0 has been studied in [START_REF] Grama | A Kesten-Stigum type theorem for a supercritical multi-type branching process in a random environment[END_REF]. In particular, a strong law of large number for log Z i n is proved: under appropriate conditions, it holds that on the explosion event { Z i n → +∞}, lim n→+∞ 1 n log Z i n = γ a.s.

(1.1)

The main objective in this paper is to establish a Berry-Esseen type theorem on the rate of convergence in the central limit theorem for log Z i n : we will show (cf. Theorem 2.5) that

sup x∈R P log Z i n -nγ σ √ n x -Φ(x) C √ n , ( 1.2) 
where Φ(x) = 1 √ 2π

x -∞ e -t 2 /2 dt is the standard normal distribution function, σ 2 = lim n→+∞

1 n E[(log M T 0,n-1 x -nγ) 2 ]
is the asymptotic variance which is independent of x and C > 0 is a constant. This result is new for d 2; for a single type branching process (d = 1), Grama, Liu and Miqueu proved (1.2) in [START_REF] Grama | Berry-Esseen's bound and Cramér's large deviation expansion for a supercritical branching process in a random environment[END_REF]Theorem 1.1].

Let us briefly explain our approach for proving (1.2). It is heavily based on the fundamental martingale (W i n ) associated to the process (Z i n ) defined in [START_REF] Grama | A Kesten-Stigum type theorem for a supercritical multi-type branching process in a random environment[END_REF]. For each n, k 0, denote by ρ n,n+k the spectral radius of the matrix M n,n+k = M n • • • M n+k . By the Perron-Frobenius theorem, ρ n,n+k is an eigenvalue of M n,n+k , and there exists a non negative eigenvector U n,n+k associated to ρ n,n+k with U n,n+k = 1. According to Hennion [20, Lemma 3.3 and Theorem 1], under conditions, the limit U n,∞ := lim k→∞ U n,n+k (1.3) exists a.s., with U n,∞ > 0 and U n,∞ = 1; moreover the sequence (U n,∞ ) satisfies the relation

M n U n+1,∞ = λ n U n,∞ , (1.4) 
where λ n , n 0 are positive random scalars called the pseudo-spectral radii of the random matrices (M n ). Set λ 0,n = λ 0 • • • λ n . By iteration of (1.4), we obtain

M n,n+k U n+k+1,∞ = λ n,n+k U n,∞ , n, k 0. (1.5)
Then, we define the martingale (W i n ) as follows (see [START_REF] Grama | A Kesten-Stigum type theorem for a supercritical multi-type branching process in a random environment[END_REF]):

W i 0 = 1, W i n = Z i n , U n,∞ λ 0,n-1 U 0,∞ (i)
, n 1.

(1.6)

From (1.6) the following relations between log Z i n and log M 0,n-1 (i, •) hold:

log Z i n log M 0,n-1 (i, •) + log W i n -min 1 j d log U n,∞ (j), (1.7) 
log Z i n log M 0,n-1 (i, •) + log W i n + min

1 j d log U n,∞ (j). (1.8) 
From these relations, since the limit W i = lim n→+∞ W i n exists a.s. (as (W i n ) is a non-negative martingale), and (U n,∞ ) is a stationary sequence of random variables, these two terms will be negligible in the limit properties that we consider. Actually, using the relations (1.7) and (1.8) we can infer the limiting behaviour of log Z i n from that of log M 0,n-1 (i, •) by giving a tight control of the quantities log W i n and log U n,∞ (j). For log M 0,n-1 (i, •) we use the Berry-Esseen bound proved in Xiao, Grama and Liu [START_REF] Xiao | Berry-Esseen bound and precise moderate deviations for products of random matrices[END_REF].

An important step in our approach is to establish sufficient conditions for the existence of the harmonic moments E(W i ) -a of the limit W i = lim n→+∞ W i n . This is the second objective of the paper. Actually the existence of the harmonic moments E(W i ) -a will give us a suitable control of the sequence (log W i n ), which will be one of the key arguments to prove (1.2).

Our study of the harmonic moments E(W i ) -a is composed of two steps.

In the first step, under a strong assumption on the offspring distributions given the environment ξ (see H2), we establish a necessary condition and a sufficient condition for the existence of E(W i ) -a for all 1 i d. Set

κ 1 (a) := lim n→+∞ E M 0,n-1 a n-1 k=0 P 1 (ξ k ) ∞ 1/n , a > 0, (1.9)
where • ∞ denotes the L ∞ -norm on M d (R), and P 1 (ξ k ) is the random matrix whose (i, j)-th component is the probability to produce 1 particle which is of type j by a particle of type i in generation k, given the environment ξ. Then we will prove in Theorem 2.1 the following implications:

κ 1 (a) < 1 ⇒ max 1 i d E(W i ) -a < +∞ ⇒ κ 1 (a) 1. (1.10)
In particular, the solution a 0 > 0 of the equation κ 1 (a 0 ) = 1 is the critical value for the existence of the harmonic moments, in the sense that max 1 i d E(W i ) -a < +∞ for a < a 0 , and max 1 i d E(W i ) -a = +∞ for a a 0 . For the single type case (d = 1), Huang and Liu proved in [START_REF] Huang | Moments, moderate and large deviations for a branching process in a random environment[END_REF] that κ 1 (a) < 1 is a necessary and sufficient for the existence of the harmonic moment E(W 1 ) -a . Therefore, our result (1.10) generalizes that of the single type case, except that we don't know if the harmonic moments exists for the critical exponent a 0 .

In the second step, we assume weaker conditions than in the first step (see H3), and we prove the existence of a small exponent a > 0 such that for all 1 i d,

E(W i ) -a < +∞, (1.11) 
(cf. Theorem 2.3). Unfortunately, in this case we have no information on the maximal value of the exponent a > 0 for which (1.11) holds: we cannot identify the critical exponent. The outline of the paper is as follows. We introduce some necessary notation and present the main results in Section 2. Section 3 is devoted to the study of the harmonic moments of W i for any 1 i d. We prove in Section 5 the Berry-Esseen type theorem for log Z i n .

Notation and main results

For d 1, let R d be the d-dimensional space of vectors. We equip R d with the scalar product and the L 1 -norm respectively defined by

x, y := d i=1 x(i) y(i) and x := d i=1 |x(i)|, x, y ∈ R d .
Set S = {x ∈ R d : x 0, x = 1} for the intersection of the unit sphere with the positive quadrant. For each 1 i d, e i will be the d-dimensional vector with 1 in the i-th place and 0 elsewhere. Let 0 = (0, • • • , 0) ∈ R d be the vector with all coordinates equal to 0. Denote by N = {0, 1, . . .} the set of non-negative integers. Set 1 A for the indicator of an event A.

Denote by M d (R) the set of d × d matrices with entries in R, and define the operator norm with respect to L 1 vectorial norm by

M := sup x∈S M x , M ∈ M d (R).
In addition we equip R d and M d (R) with the L ∞ -norms:

x ∞ := max 1 i d |x(i)|, x ∈ R d ; M ∞ := sup x ∞=1 M x ∞ , M ∈ M d (R).
For a matrix or a vector X, we write X > 0 when all the entries of X are strictly positive. Now we give a precise definition of the multi-type branching process in random environment (MBPRE). The environment ξ = (ξ n ) n 0 is a sequence of independent and identically distributed (i.i.d.) random variables taking values in an abstract space X. To each realization of ξ n correspond d probability distributions on N d identified by the probability generating functions

f r n (s) = ∞ k 1 ,••• ,k d =0 p r k 1 ,••• ,k d (ξ n )s k 1 1 • • • s k d d , s = (s 1 , . . . , s d ) ∈ [0, 1] d , where 1 r d. The d-type branching process Z n = (Z n (1), • • • , Z n (d))
, n 0, in the random environment ξ is a process with values in N d such that Z 0 ∈ N d is a fixed vector, and for all n 0,

Z n+1 = d r=1 Zn(r) l=1 N r l,n . (2.1)
where

N r l,n = (N r l,n (1), • • • , N r l,n (d)
) is a random vector whose j-th component N r l,n (j) represents the offspring of type j at time n+1 of the l-th particle of type r in generation n, and Z n (j) is the total number of particles of type j in generation n. Conditioned on the environment ξ, the random vectors N r l,n indexed by l 1, n 0 and 1 r d are independent, each N r l,n has the same probability generating function f r n . In the sequel, the process Z n will be noted Z i n when Z 0 = e i , which corresponds to the MBPRE starting with one initial particle of type i.

Denote by P ξ the quenched law, i.e. the probability under which the process is defined when the environment ξ is given. Let τ be the law of ξ. The total probability P of (Z n ), usually called annealed law, is defined by P(dx, dξ) = P ξ (dx)τ (dξ). Denote by E ξ and E the corresponding expectation with respect to P ξ and P. With our notation,

f r n (s) = E ξ d j=1 s N r l,n (j) j , s = (s 1 , . . . , s d ) ∈ [0, 1] d
is the quenched probability generating function of N r l,n . For n 0, let M n be the d × d random matrix whose (i, j)-th entry M n (i, j) is the conditioned mean of the number of children of type j produced by a particle of type i at time n:

M n (i, j) := ∂f i n ∂s j (1) = E ξ Z n+1 (j) Z n = e i ,
where ∂f ∂s j (1) denotes the left derivative at 1 of a d-dimensional probability generating function f with respect to s j . Since the sequence of the environments (ξ n ) is i.i.d., the sequence of the mean matrices (M n ) is also i.i.d.. For 0 k n, denote by

M k,n := M k • • • M n ,
the product of the mean matrices M k , . . . , M n . It follows that, for n 0 and 1 i, j d,

E ξ Z i n+1 (j) = M 0,n (i, j). (2.2)
The main objective of this paper is to establish a Berry-Esseen bound for log Z i n . To this end, the key tool will be the fundamental martingale we mentioned in the introduction. Let ρ n,n+k be the spectral radius of M n,n+k . We know by the Perron-Frobenius theorem (see e.g. [START_REF] Athreya | Branching Processes[END_REF]) that ρ n,n+k is a positive eigenvalue of M n,n+k , and there exist positive right and left eigenvectors U n,n+k and V n,n+k associated to ρ n,n+k with the normalizations U n,n+k = 1 and V n,n+k , U n,n+k = 1. Denote by G 0 + the subset of the matrices of M d (R) with strictly positive entries. Throughout the paper, we assume that M 0 is allowable (every row and column contains a strictly positive element), and that the following positivity property holds: 

P n 0 M 0,n ∈ G 0 + > 0. ( 2 
F 0 = σ(ξ), F n = σ ξ, N r l,k (j), 0 k n -1, 1 r, j d, l 1 for n 1.
Let W i := lim n→+∞ W i n be the a.s. limit of the martingale (W i n ). We will use the classification of MBPRE's defined in [START_REF] Grama | A Kesten-Stigum type theorem for a supercritical multi-type branching process in a random environment[END_REF]. It is well known that, under the following moment condition

E log + M 0 < +∞, (2.4) 
the Lyapunov exponent γ of the sequence of matrices (M n ) n 0 exists, with

γ := lim n→+∞ 1 n E log M 0,n-1 = inf n 1 1 n E log M 0,n-1 .
Moreover, Furstenberg and Kesten established in [START_REF] Furstenberg | Products of random matrices[END_REF] a strong law of large numbers for log M 0,n-1 :

lim n→+∞ 1 n log M 0,n-1 = γ P-a.s.
According to the values of the Lyapunov exponent γ, we have the following classification of MBPRE's: a MBPRE is supercritical if γ > 0, critical if γ = 0, and subcritical if γ < 0. In this article, the process (Z n ) will always be supercritical, i.e. γ > 0.

Under the supercritical condition γ > 0, we established in [13, Theorem 2.6 and Corollary 2.8] that the condition

E Z i 1 (j) M 0 (i, j) log + Z i 1 (j) M 0 (i, j) < +∞ ∀1 i, j d (2.5)
is sufficient for the non-degeneracy of each W i (in the sense that P(W i > 0) > 0), which is equivalent to the L 1 -convergence of W i n to W i by Sheffé's theorem; moreover, when each W i is non-degenerate, we have a.s., (2.6) where q i (ξ) is the quenched probability of extinction of the process (Z i n ). First we establish the existence of the harmonic moments of the limits W i , 1 i d. For n 0, define the vector p 0 (ξ n ) and the matrix P 1 (ξ n ), whose components are

E ξ W i = 1 and P ξ (W i > 0) = P ξ Z i n → n→∞ ∞ = 1 -q i (ξ) > 0,
p 0 (ξ n )(i) = f i n (0) and P 1 (ξ n )(i, j) = ∂f i n ∂s j (0), 1 i, j d.
Then, for 1 i, j d,

p 0 (ξ n )(i) = P T n ξ ( Z i 1 = 0) and P 1 (ξ n )(i, j) = P T n ξ (Z i 1 = e j ).
Throughout the paper, we will assume the following condition:

H1. The vector p 0 (ξ 0 ) = (f 1 0 (0), . . . , f d 0 (0)) satisfies p 0 (ξ 0 ) = 0 P-a.s. (2.7)
The condition H1 means that each individual of the population gives birth to at least one child, so q i (ξ) = 0 a.s. When (2.6) holds, this implies that Z i n → +∞ a.s. as n → +∞. We introduce the following assumption : H2. There exist constants p ∈ (1, 2], A > A 1 > 1 and A 2 > 0 such that for any 1 i, j d, P-a.s.

A 2 M 0 (i, j), A 1 M 0 (i, •) and E ξ (Z i 1 (j) p ) A p .
It is clear that H2 implies the conditions (2.3), (2.4), (2.5) and γ > 0. From H2 we have also that for all 1 i, j d, M 0 (i, j) A P-a.s.

Under condition H2, by the sub-multiplicative property of the norms . and . ∞ on M d (R) and the subadditive ergodic theorem, it follows that, for all a 0 the limit

κ 1 (a) := lim n→+∞ E M 0,n-1 a n-1 k=0 P 1 (ξ k ) ∞ 1/n (2.8)
exists and is finite, with

κ 1 (a) = inf n 1 E M 0,n-1 a n-1 k=0 P 1 (ξ k ) ∞ 1/n .
We will establish (see Lemma 3.9) that, under H1 and H2, the function κ 1 is continuous and increasing on R + and κ 1 (0) = ρ EP 1 (ξ 0 ) , where ρ(M ) denotes the spectral radius of the matrix M . For a random variable X, set X L ∞ := ess sup(X) the essential supremum of X. Our first result gives a sufficient and a necessary condition for the existence of the harmonic moments E(W i ) -a , a > 0.

Theorem 2.1. Assume conditions H1, H2 and P 1 (ξ 0 ) ∞ L ∞ < 1. For each fixed a > 0, the following implications hold :

(1) if κ 1 (a) < 1 then E(W i ) -a < +∞ for all 1 i d; (2) if E(W i ) -a < +∞ for all 1 i d, then κ 1 (a) 1.
Notice that in Part (2), we can prove more: we will see in the proof that the sequence E M 0,n-1

a n-1 k=0 P 1 (ξ k ) ∞
, n 1, is bounded. From Theorem 2.1 we get the following corollary.

Corollary 2.2. Under the conditions of Theorem 2.1, it holds:

(1) E(W i ) -a < +∞ for all 1 i d and a > 0 if and only if EP 1 (ξ 0 ) is nilpotent;

(2) if EP 1 (ξ 0 ) is not nilpotent, then there exists a unique constant a 0 > 0 satisfying

κ 1 (a 0 ) = 1, (2.9) 
and max

1 i d E(W i ) -a < +∞ if a ∈ [0, a 0 ), = +∞ if a ∈ (a 0 , +∞).
Part [START_REF] Afanasyev | Conditional limit theorems for intermediately subcritical branching processes in random environment[END_REF] gives a necessary and sufficient condition to have the existence of all orders of the harmonic moments of each W i , 1 i d. Part (2) reveals that the quantity a 0 is the critical value for the existence of the harmonic moments of all the W i , 1 i d. We believe that at the critical value a 0 the harmonic moments do not exist, i.e., E(W i ) -a 0 = +∞. This is the case when d = 1, as shown by Chunmao and Liu [START_REF] Huang | Moments, moderate and large deviations for a branching process in a random environment[END_REF]. Now we investigate the existence of harmonic moments for W i , when the boundedness condition H2 is relaxed to a moment condition. For all n 0 and p > 1 denote by

θ n (p) := max 1 i,j d E ξ N i 1,n (j) M n (i, j) -1 p .
The next result gives a sufficient condition for the existence of the harmonic moments E(W i ) -a of a small order a > 0. The single -type case has been considered in [START_REF] Grama | Asymptotic of the distribution and harmonic moments for a supercritical branching process in a random environment[END_REF]. The multi-type case considered here is much more complicated.

To formulate it, we need the following moment condition :

H3. There exist two constants p ∈ (1, 2] and η ∈ (0, 1) such that

E M 0 η < +∞, max 1 i,j d EM 0 (i, j) -η < +∞ and Eθ 0 (p) η < +∞.
Like H2, condition H3 also implies (2.3) and (2.4) and (2.5). The first two implications are evident; the third will be proved in Section 3.

Theorem 2.3. Assume conditions H1, H3 and γ > 0. Then there exists a > 0 such that E(W i ) -a < +∞ for all 1 i d. Now we formulate a central limit theorem and a Berry-Esseen type theorem for log Z i n , for all 1 i d. We introduce the following assumption: H4. The random matrix M 0 satisfies

E(log M 0 ) 2 < +∞.
Obviously, condition H4 implies (2.4). Using the central limit theorem due to Hennion [START_REF] Hennion | Limit Theorems for Products of positive Random Matrices[END_REF]Theorem 3] for the norm cocycle log M T 0,n-1 x , where x ∈ S, we establish the following central limit theorem for log

Z i n . Notice that Z i n = Z i n (1) + • • • + Z i n (d)
represents the population size of generation n.

Theorem 2.4. Assume conditions (2.3) and H4. Assume also H1, (2.5) and γ > 0. Then there exists σ 0 such that for all 1 i d, as n → ∞,

log Z i n -nγ √ n → N (0, σ 2 ) in law,
where N (0, σ 2 ) denotes the normal law with mean 0 and variance σ 2 .

Notice that for the single type case d = 1, this theorem was established in [START_REF] Huang | Moments, moderate and large deviations for a branching process in a random environment[END_REF]. By [START_REF] Xiao | Berry-Esseen bound and precise moderate deviations for products of random matrices[END_REF]Proposition 3.14], under the condition H3, the asymptotic variance σ 2 defined in Theorem 2.4 satisfies

σ 2 = lim n→+∞ 1 n E[(log M 0,n-1 x -nγ) 2 ],
uniformly in x ∈ S. Note that in Theorem 2.4 the limit variance σ 2 can be degenerated: σ 2 = 0. For the rate of convergence we need the following assumption :

H5. The asymptotic variance σ 2 satisfies σ 2 > 0.

According to [7, Lemma 7.2], a sufficient condition under which H5 holds is that µ is a non-arithmetic probability measure; the definition of arithmeticity is introduced below.

For x ∈ S and M ∈ G 0 + , define the projective action of M on S by M • x := M x M x . Let µ be the law of M 0 and Γ µ = [supp µ], the semigroup generated by the support of µ. By the Perron-Frobenius theorem, since any M ∈ Γ µ is strictly positive under H3, the spectral radius ρ M of M is the unique eigenvalue with the largest modulus, which is simple. Let u M ∈ S be the associated unique right eigenvector with unit norm. Set

V (Γ µ ) = {±u M : M ∈ Γ µ }, where A denotes the closure of the set A. The measure µ is called arithmetic if there exist t > 0, θ ∈ [0, 2π) and a function h : S → R such that for all M ∈ Γ µ and x ∈ V (Γ µ ), we have exp{it log M x -iθ + ih(M • x) -ih(x)} = 1.
In the following, denote by Φ :

x → 1 √ 2π
x -∞ e -t 2 /2 dt the standard normal distribution function on R. Theorem 2.5. Assume conditions H1, H3, H5 and γ > 0. Then there exists a constant C > 0 such that for all n 1, x ∈ R and 1 i d,

P log Z i n -nγ σ √ n x -Φ(x) C √ n .
For the single type case d = 1, a version of this result exists under different conditions in [START_REF] Grama | Berry-Esseen's bound and Cramér's large deviation expansion for a supercritical branching process in a random environment[END_REF]Theorem 1.1]. Notice that, in this case, we have γ = E log m 0 and σ 2 = E(log m 0 -γ) 2 with m 0 = E ξ Z 1 , and the condition H3 can be simplified to the following: there exist two constants p ∈ (1, 2] and η ∈ (0, 1) such that

Em η 0 < +∞ and Eθ 0 (p) η < +∞, where θ 0 (p) = E ξ Z 1 m 0 -1 p .

Harmonic moments of W i

In this section we study the existence of the harmonic moments E(W i ) -a of all the random variables W i , where 1 i d, a > 0.

Auxiliary results

We start with four lemmas that we will need. The first lemma permits to compare the moment of φ(W i ) with the corresponding one of φ(W i n ), with φ a positive convex function on R + . Lemma 3.1. Assume condition (2.5) and γ > 0. Then for all 1 i d and any convex function φ : R + → R + ,

lim n→+∞ E ξ φ(W i n ) = sup n 0 E ξ φ(W i n ) = E ξ φ(W i ), (3.1) 
and

lim n→+∞ Eφ(W i n ) = sup n 0 Eφ(W i n ) = Eφ(W i ). (3.2)
Proof. The result is a direct consequence of the fact that, by [13, Theorem 2.6], under the conditions (2.5) and γ > 0, (W i n , F n ) is a martingale under P ξ and P, which converges in L 1 . In fact, by Fatou's lemma, Eφ(W i ) sup n 0 Eφ(W i n ); by the L 1 -convergence of (W i n ) and Jensen's inequality,

Eφ(W i ) = E[E[φ(W i )|F n ]] E[φ(E[W i |F n ])] = Eφ(W i n ).
Using the fact that (φ(W i n )) is a sub-martingale, this concludes the proof of (3.2). The same argument with E replaced by E ξ gives (3.1).

The second lemma reveals the link between the harmonic moments and the Laplace transform of a positive random variable. Lemma 3.2. [START_REF] Liu | Asymptotic properties of supercritical age-dependent branching processes and homogeneous branching random walks[END_REF]Lemma 4.4]) Let X be a positive random variable, and a > 0. We have the following assertions:

(1) if EX -a < +∞ then E e -tX = O t→+∞ (t -a ); (2) if E e -tX = O t→+∞ (t -a ) then EX -b < +∞ for all b ∈ (0, a); (3) E e -tX = O t→+∞ (t -a ) if and only if P(X x) = O x→0 (x a ).
For all 1 i d, let

φ i ξ (t) = E ξ e -tW i and φ i (t) = Eφ i ξ (t) = E e -tW i , t 0,
be the quenched and annealed Laplace transform of W i . Denote by

φ ξ (t) = (φ 1 ξ (t), • • • , φ d ξ (t)) and φ(t) = (φ 1 (t), • • • , φ d (t)), t 0.
We will study the decay rate of the Laplace transforms φ i ξ (t) and φ i (t) when t → +∞, and then use Lemma 3.2 to estimate the corresponding harmonic moments. Let T be the shift operator of the environment sequence:

T ξ = (ξ 1 , ξ 2 , • • • ) if ξ = (ξ 0 , ξ 1 , • • • ),
and let T n be its n-fold iteration. The third lemma, proved in [13, Theorem 2.4], gives the functional equations that the quenched Laplace transforms φ i ξ satisfy. Lemma 3.

Assume condition (2.3). Then for all

i = 1, • • • , d, the quenched Laplace transform φ i ξ of W i satisfies φ i ξ (t) = f i 0 φ 1 T ξ t U 1,∞ (1) λ 0 U 0,∞ (i) , • • • , φ d T ξ t U 1,∞ (d) λ 0 U 0,∞ (i) , t 0.
The fourth Lemma will be used to control the L p -moments of the martingale (W i n ). It is a direct consequence of the Marcinkiewicz-Zygmund inequality in [8, 

E n k=1 X k p (B p ) p E|X k | p n, if 1 < p 2, (B p ) p E|X k | p n p 2 , if p > 2,
where

B p = 2 min{k 1/2 : k ∈ N, k p 2 }.

Existence of the quenched harmonic moments E ξ (W i ) -a

In this section, under condition H2, we give an estimation of the decay rate of the quenched Laplace transforms φ i ξ (t) as t → +∞, which implies the uniform boundedness of the quenched harmonic moments E ξ (W i ) -a , as indicated in the following theorem. Theorem 3.5. Assume conditions H1, H2 and P 1 (ξ 0 ) ∞ L ∞ < 1. Then there exist two constants C > 0 and a > 0 such that for all 1 i d, all t > 0 and all x > 0,

φ i ξ (t) C t a P-a.s., (3.3) 
P ξ (W i x) Cx a and E ξ (W i ) -a C. (3.4)
For the proof of Theorem 3.5, we will need the following preliminary result about a control of φ i ξ (t), 1 i d. For the case d = 1, this result was established in [START_REF] Huang | Moments, moderate and large deviations for a branching process in a random environment[END_REF]. Lemma 3.6. Assume condition H2. Then there exist two constants β ∈ (0, 1) and t 0 > 0 such that for all 1 i d and t t 0 ,

φ i ξ (t) β P-a.s.
Proof. We will adapte the approach in [START_REF] Huang | Moments, moderate and large deviations for a branching process in a random environment[END_REF] where the case d = 1 was considered. By (2.1) and (1.6), we have that for all n 1 and 1 i d,

W i n+1 -W i n = d j=1 U n+1,∞ (j) λ 0,n U 0,∞ (i) d r=1 Z i n (r) l=1 N r l,n (j) -W i n = d r=1 U n,∞ (r) λ 0,n-1 U 0,∞ (i) Z i n (r) l=1 d j=1 U n+1,∞ (j)N r l,n (j) λ n U n,∞ (r) -W i n = d r=1 U n,∞ (r) λ 0,n-1 U 0,∞ (i) Z i n (r) l=1 (W r l,n -1), (3.5) 
where

W r l,n := N r l,n , U n+1,∞ λ n U n,∞ (r) .
It is clear that, given the environment ξ, the random variables W r l,n , l 1, are i.i.d., and independent of ξ 0 , . . . , ξ n-1 and Z i n . Let p ∈ (1, 2] be such that condition H2 holds. Notice that, by (1.5), we have

d r=1 M 0,n-1 (i,r)Un,∞(r) λ 0,n-1 U 0,∞ (i)
= 1 a.s. for any n 1 and 1 i d. Therefore, applying (3.5), the convexity of the function x → x p on R + and Lemma 3.4, for all n 1 and 1 i d, P-a.s., we get

E ξ |W i n+1 -W i n | p E ξ d r=1 U n,∞ (r) λ 0,n-1 U 0,∞ (i) Z i n (r) l=1 W r l,n -1 p d r=1 M 0,n-1 (i, r)U n,∞ (r) λ 0,n-1 U 0,∞ (i) 1 M 0,n-1 (i, r) p E ξ Z i n (r) l=1 W r l,n -1 p B p p d r=1 M 0,n-1 (i, r)U n,∞ (r) λ 0,n-1 U 0,∞ (i) • E ξ Z i n (r) M 0,n-1 (i, r) p E ξ |W r 1,n -1| p B p p max 1 r d E ξ Z i n (r) M 0,n-1 (i, r) p E ξ |W r 1,n -1| p = B p p max 1 r d E ξ |W r 1,n -1| p max 1 j d (M 0,n-1 (i, j)) 1-p . (3.6)
Again by the convexity of x → x p , for all 1 r d and n 0, P-a.s., we have

E ξ |W r 1,n -1| p = E ξ N r 1,n , U n+1,∞ λ n U n,∞ (r) -1 p = E ξ d j=1 M n (r, j)U n+1,∞ (j) λ n U n,∞ (r) N r 1,n (j) M n (r, j) -1 p max 1 i,j d E ξ N i 1,n (j) M n (i, j) -1 p = θ n (p). (3.7)
Combining this with (3.6), we obtain that for all n 1 and 1 i d, P-a.s.,

E ξ |W i n+1 -W i n | p B p p θ n (p) max 1 j d (M 0,n-1 (i, j)) 1-p . (3.8)
Using the triangular inequality in L p under P ξ and condition H2, for n 0 we have

θ n (p) max 1 i,j d E ξ N i 1,n (j) p 1/p M n (i, j) + 1 p A A 2 + 1 p P-a.s. (3.9)
Now we deal with the last factor in (3.8).

For M ∈ M d (R), set ι(M ) := inf x =1 M x = min 1 j d d i=1 M (i, j). (3.10)
Using H2 we have ι(M T 0 ) A 1 a.s. It can be easily seen that the application ι satisfies the inequality ι(AB) ι(A)ι(B), for A, B ∈ G 0 + . Therefore, we deduce that for all n 2,

M 0,n-1 (i, j) = 1 r d M 0,n-2 (i, r)M n-1 (r, j) A 2 ι(M T 0,n-2 ) A 2 n-2 k=0 ι(M T k ) A 2 A n-1 1 . (3.11)
It is evident that the above inequality remains true for n = 1. Combining (3.8), (3.9) and (3.11), we obtain that for all n 1 and 1 i d,

E ξ |W i n+1 -W i n | p B p p A A 2 + 1 p A 1-p 2 (A 1-p 1 ) n-1 P-a.s., (3.12) 
with A 1-p 1 ∈ (0, 1). By (3.7) and (3.9), it is clear that (3.12) holds for n = 0. Recall that condition H2 implies (2.5) and γ > 0. Then, applying Lemma 3.1 with the convex function x → x p on R + , we have

E ξ (W i ) p = sup n 0 E ξ (W i n ) p P-a.s.
This, together with (3.12) and the triangular inequality in L p , implies that there exists a constant C > 0 such that

E ξ (W i ) p = sup n 0 E ξ (W i n ) p 1 + +∞ n=0 E ξ |W i n+1 -W i n | p 1/p p C. (3.13)
Since x → (e -x -1 + x)/x p is a positive bounded function on R * + , it follows that there exists a constant C 1 > 0 such that for all x > 0,

e -x 1 -x + C 1 x p .
Combining this with (3.13), we see that for any 1 i d and t 0, P-a.s.,

φ i ξ (t) = E ξ e -tW i E ξ 1 -tW i + C 1 t p (W i ) p = 1 -t + C 1 t p E ξ (W i ) p 1 -t + CC 1 t p . (3.14)
Let h(t) = 1 -t + CC 1 t p , t 0. We observe that the minimal value of h(t) is β = h(t 0 ), where t 0 := (pCC 1 ) 1/(1-p) , and we have

β = 1 -(pCC 1 ) 1/(1-p) + 1 p (pCC 1 ) 1/(1-p) = 1 -1 - 1 p t 0 . (3.15)
So β ∈ (0, 1). Since the quenched Laplace transform φ i ξ is decreasing on R + , we conclude from (3.14) that for all t t 0 ,

φ i ξ (t) φ i ξ (t 0 ) h(t 0 ) = β P-a.s. (3.16)
This concludes the proof of Lemma 3.6.

Proof of Theorem 3.5. By Lemma 3.2, we have the implication (3.3) ⇒ (3.4) (but the values of a and C can be changed). Therefore, it remains to prove (3.3). Set

ψ i ξ (t) = φ i ξ (tU 0,∞ (i)), 1 i d, t 0,
and

ψ ξ (t) = (ψ 1 ξ (t), • • • , ψ d ξ (t))
. From Lemma 3.3 we obtain that ψ ξ satisfies the following equation: for all 1 i d and t 0,

ψ i ξ (t) = f i 0 φ 1 T ξ tU 1,∞ (1) λ 0 , • • • , φ d T ξ tU 1,∞ (d) λ 0 = f i 0 ψ 1 T ξ t λ 0 , • • • , ψ d T ξ t λ 0 = f i 0 ψ T ξ t λ 0 . (3.17)
For n 0, denote by Q 1 (ξ n ) the positive random matrix whose entries are, for 1 i, j d,

Q 1 (ξ n )(i, j) = P ξ Z n+1 2, Z n+1 (j) 1, Z n+1 (r) = 0, r < j Z n = e i .
It is clear that for n 0, Q 1 (ξ n ) depends only of ξ n and that the events

{Z n+1 (j) 1, Z n+1 (r) = 0 ∀r < j}, 1 j d, constitute a partition of { Z n+1 1}. Hence Q 1 (ξ n )(i, •) = d j=1 Q 1 (ξ n )(i, j) = P ξ Z n+1 2 Z n = e i ∀1 i d.
By H1 and the fact that

P 1 (ξ n )(i, •) = P ξ Z n+1 = 1 Z n = e i ,
we get that for all n 0 and 1 i d,

P 1 (ξ n )(i, •) + Q 1 (ξ n )(i, •) = 1, (3.18) 
which means that P 1 (ξ n )+Q 1 (ξ n ) is a stochastic matrix. Then, by definition of the matrix Q 1 (ξ 0 ) and using again H1 and the partition

{Z n+1 (j) 1, Z n+1 (r) = 0 ∀r < j} (1 j d) of { Z n+1 1}, we see that for all s = (s 1 , • • • , s d ) ∈ [0, 1] d and 1 i d, we have f i 0 (s) = d j=1 P ξ (Z i 1 = e j )s j + k∈N d , k 2 P ξ (Z i 1 = k)s k(1) 1 • • • s k(d) d d j=1 P 1 (ξ 0 )(i, j)s j + s ∞ d j=1 Q 1 (ξ 0 )(i, j)s j = P 1 (ξ 0 ) + s ∞ Q 1 (ξ 0 ) s, e i .
This, together with (3.17), implies that for all t 0,

ψ ξ (t) P 1 (ξ 0 ) + ψ T ξ t λ 0 ∞ Q 1 (ξ 0 ) ψ T ξ t λ 0 P-a.s. (3.19) 
In particular, by (3.18) we get that for all t 0,

ψ ξ (t) ∞ ψ T ξ t λ 0 ∞ P-a.s.
By iteration, we see that for all n 1 and t 0,

ψ ξ (t) ∞ ψ T n ξ t λ 0,n-1 ∞ P-a.s. (3.20)
By iteration of (3.19) and using inequality (3.20), we obtain that for all n 1 and t 0,

ψ ξ (t) n-1 k=0 P 1 (ξ k ) + ψ T n ξ t λ 0,n-1 ∞ Q 1 (ξ k ) ψ T n ξ t λ 0,n-1 P-a.s. (3.21) 
Notice that by (1.5) and condition H2, for any 1 i d we have

1 U 0,∞ (i) = M 0 (i, •), U 1,∞ M 0 U 1,∞ min 1 j d M 0 (i, j) M 0 A 2 dA P-a.s. (3.22)
Therefore, since φ ξ is a decreasing function on R + , we obtain that for all 1 i d and t 0, P-a.s.,

φ i ξ (t) ψ i ξ (t) = φ i ξ (tU 0,∞ (i)) φ i ξ t A 2 dA .
Combining this with (3.21), it follows that for all n 1 and t 0, P-a.s.,

φ ξ (t) n-1 k=0 P 1 (ξ k ) + φ T n ξ tA 2 dAλ 0,n-1 ∞ Q 1 (ξ k ) φ T n ξ tA 2 dAλ 0,n-1 . (3.23)
Now, by Lemma 3.6, we know that there exist two constants β ∈ (0, 1) and t 0 > 0 such that φ ξ (t) ∞ β a.s. for all t t 0 . Using the inequality λ 0,n-1 M 0,n-1 (dA) n , this implies that for n 1, P-a.s.,

φ T n ξ tA 2 dAλ 0,n-1 ∞ β, t t 1 (dA) n ,
where t 1 = dA A 2 t 0 . Combining this with (3.23) and (3.18), we get that for all n 1 and t t 1 (dA) n , P-a.s.,

φ ξ (t) ∞ β n-1 k=0 P 1 (ξ k ) + βQ 1 (ξ k ) ∞ = β n-1 k=0 β[P 1 (ξ k ) + Q 1 (ξ k )] + (1 -β)P 1 (ξ k ) ∞ β n-1 k=0 β + (1 -β) P 1 (ξ k ) ∞ βα n , ( 3.24) 
where α = β + (1 -β) P 1 (ξ 0 ) ∞ L ∞ . Clearly we have α ∈ (0, 1), since β ∈ (0, 1) and P 1 (ξ 0 ) ∞ L ∞ < 1 by hypothesis. Set

N (t) := log t -log t 1 log(dA) + 1, t t 1 .
We observe that, if t t 1 , then N (t) 1, t t 1 (dA) N (t) and N (t) (log t-log t 1 )/ log(dA). Therefore, using the inequality (3.24) with n = N (t), we deduce that for all t t 1 , P-a.s.,

φ ξ (t) ∞ βα N (t) βα log t-log t 1 log(dA) = βt -log α log(dA) 1 t log α log(dA) .
Taking a = -log α log(dA) > 0 and C = βt a 1 > 0, we conclude that for all t t 1 ,

φ ξ (t) ∞ C t a P-a.s.,
which implies (3.3). This ends the proof of Theorem 3.5.

Existence of the annealed harmonic moments E(W i ) -a

The aim of this section is to prove the following theorem which gives the optimal value of a to have E(W i ) -a < +∞ for all 1 i d, under condition H2. (But the proof of the optimality will be done in the next section. )

Theorem 3.7. Assume conditions H1, H2 and

P 1 (ξ 0 ) ∞ L ∞ < 1. Let a > 0 be such that κ 1 (a) < 1.
Then there exists a constant C > 0 such that for all 1 i d and t > 0,

φ i (t) C t a , ( 3.25) 
and that for all 1 i d, 0 < b < a and x > 0,

P(W i x) Cx a and E(W i ) -b C. (3.26)
For the proof of Theorem 3.7, we shall need the following technical lemma about the decay late of a function which satisfies a functional inequality. Assume there exists a random variable A > 0 and constants α ∈ (0, 1), C 0, a > 0 and t 0 0 such that

φ(t) αEφ(At) + C t a , t > t 0 . (3.27) If αEA -a < 1, then φ(t) = O t→+∞ (t -a ).
Proof of Theorem 3. Let ε ∈ (0, 1) and a > 0 be such that κ 1 (a) < 1. By (3.3) in Theorem 3.5, we get that there exists a constant t ε > 0 such that for all t t ε , φ ξ (t) ∞ ε P-a.s.

(3.28)

Recall that, by H2, we have λ 0,n-1 M 0,n-1 (dA) n a.s., n 1. Then, combining (3.28) and (3.23), we obtain that for all n 1 and t (dA) n+1

A 2 t ε , P-a.s., φ ξ (t) n-1 k=0 P 1 (ξ k ) + εQ 1 (ξ k ) φ T n ξ tA 2 dA M 0,n-1 . (3.29)
Taking expectation in (3.29) and using the independence of the environments ξ n , it follows that for all n 1 and t (dA) n+1 A 2 t ε , P-a.s.,

φ(t) E n-1 k=0 P 1 (ξ k ) + εQ 1 (ξ k ) E φ T n ξ tA 2 dA M 0,n-1 ξ k , 0 k < n = E n-1 k=0 P 1 (ξ k ) + εQ 1 (ξ k ) φ tA 2 dA M 0,n-1 .
This implies that for all n 1 and t (dA) n+1

A 2 t ε , φ(t) ∞ E n-1 k=0 (P 1 (ξ k ) + εQ 1 (ξ k )) ∞ φ tA 2 dA M 0,n-1 ∞ = α n,ε E φ( Ãn,ε t) ∞ , ( 3.30) 
where

α n,ε = E n-1 k=0 P 1 (ξ k ) + εQ 1 (ξ k ) ∞ > 0 and
Ãn,ε is a positive random variable whose distribution is determined by

Eh( Ãn,ε ) = 1 α n,ε E n-1 k=0 P 1 (ξ k ) + εQ 1 (ξ k ) ∞ h A 2 dA M 0,n-1
for all bounded function h on R + . Now we prove that there exist ε ∈ (0, 1) and n ∈ N satisfying the two following conditions:

α n,ε < 1, (3.31) 
and 

α n,ε E Ã-a n,ε < 1. ( 3 
EM ∞ = max 1 i d E d j=1 M (i, j) E M ∞ d i,j=1 EM (i, j) d EM ∞ . (3.34)
Using this and the fact that P 1 (ξ k ) + Q 1 (ξ k ) are stochastic matrices (so that

n-1 k=0 (P 1 (ξ k ) + Q 1 (ξ k )) ∞ = 1)
, we get for all n 1 and ε ∈ (0, 1),

α n,ε E n-1 k=0 P 1 (ξ k ) + ε n-1 k=0 P 1 (ξ k ) + Q 1 (ξ k ) - n-1 k=0 P 1 (ξ k ) ∞ (1 -ε)E n-1 k=0 P 1 (ξ k ) ∞ + εE n-1 k=0 P 1 (ξ k ) + Q 1 (ξ k ) ∞ d(1 -ε) (EP 1 (ξ 0 )) n ∞ + ε. The hypothesis P 1 (ξ 0 ) ∞ L ∞ < 1 implies that ρ(EP 1 (ξ 0 )) < 1, so that lim n→+∞ (EP 1 (ξ 0 )) n ∞ = 0.
Therefore, we obtain that for all ε ∈ (0, 1),

lim sup n→+∞ α n,ε ε < 1. (3.35)
Therefore (3.31) holds for all ε ∈ (0, 1) and n ∈ N sufficiently large. Now we prove (3.32). By definition of Ãn,ε , for all n 1 and ε ∈ (0, 1) we have

α n,ε E Ã-a n,ε = dA A 2 a E M 0,n-1 a n-1 k=0 P 1 (ξ k ) + εQ 1 (ξ k ) ∞ . (3.36) Notice that M 0,n-1 a n-1 k=0 P 1 (ξ k ) + εQ 1 (ξ k ) ∞ M 0,n-1 a a.s.
, with E M 0,n-1 a < +∞. Therefore, by the Lebesgue dominated convergence theorem, letting ε → 0 in (3.36), we get that for all n 1,

α n,ε E Ã-a n,ε → ε→0 dA A 2 a E M 0,n-1 a n-1 k=0 P 1 (ξ k ) ∞ . This implies lim n→+∞ lim ε→0 α n,ε E Ã-a n,ε 1/n = κ 1 (a) < 1, so (3 
.32) holds for n ∈ N sufficiently large and ε > 0 small enough.

We have therefore proved (3.31) and (3.32), which implies (3.33). This concludes the proof of Theorem 3.7.

Proofs of Theorem 2.1 and Corollary 2.2

In this section, using the sufficient condition for the existence of harmonic moments established in Theorem 3.7 of the preceding section, we prove Theorem 2.1 and Corollary 2.2 which give a necessary and a sufficient condition for the existence of the harmonic moments E(W i ) -a . To this end, we need the following lemma about the behaviour of the function κ 1 on R + . Recall that a matrix M is nilpotent if there is an integer n 1 such that M n = 0. Lemma 3.9. Assume condition H2. Then the function κ 1 satisfies the following properties:

(1) κ 1 (0) = ρ EP 1 (ξ 0 ) ; [START_REF] Athreya | On branching processes with random environments I:Extinction probabilities[END_REF] The following assertions are equivalent:

(i) κ 1 (0) = 0; (ii) κ 1 (a) = 0 for all a 0; (iii) EP 1 (ξ 0 ) is nilpotent; (3) if EP 1 (ξ 0 ) is not nilpotent, then κ 1 is a strictly increasing continuous function on R + , with lim a→+∞ κ 1 (a) = +∞.
Proof.

(1) Part (1) follows because, using inequalities (3.34), we have

κ 1 (0) = lim n→+∞ E n-1 k=0 P 1 (ξ k ) ∞ 1/n = lim n→+∞ E n-1 k=0 P 1 (ξ k ) ∞ 1/n = lim n→+∞ [EP 1 (ξ 0 )] n ∞ 1/n = ρ EP 1 (ξ 0 ) . ( 3.37) 
(2) We next prove part [START_REF] Athreya | On branching processes with random environments I:Extinction probabilities[END_REF]. Notice that the matrix EP 1 (ξ 0 ) is nilpotent if and only if ρ EP 1 (ξ 0 ) = 0. So by part (1), we only need to prove the equivalence between (i) and (ii). To this end we will prove that for all a, b 0, there exist constants c 1 , c 2 > 0 such that κ 1 (a + b) c 1 κ(a) c 2 κ 1 (a + b).

By H2 we have M 0,n-1 (dA) n a.s., so for all a, b 0,

κ 1 (a + b) = lim n→+∞ E M 0,n-1 a+b n-1 k=0 P 1 (ξ k ) ∞ 1/n lim n→+∞ (dA) nb E M 0,n-1 a n-1 k=0 P 1 (ξ k ) ∞ 1/n = (dA) b κ 1 (a). (3.38)
On the other hand, by (3.11) we get that for all n 0, M 0,n-1 min

1 i d M 0,n-1 (i, j) A 2 A n-1 1 P-a.s.
Therefore, we obtain that for all a, b 0, with A 1 > 1,

κ 1 (a + b) lim n→+∞ (A 2 A n-1 1 ) b E M 0,n-1 a n-1 k=0 P 1 (ξ k ) ∞ 1/n = A b 1 κ 1 (a). (3.39)
From (3.38) and (3.39) we see that κ 1 (a) = 0 for all a 0 if and only if κ 1 (0) = 0. This ends the proof of part (2).

(3) We finally prove part [START_REF] Athreya | Branching Processes with random environments II:Limit theorems[END_REF]. Assume that EP 1 (ξ 0 ) is not nilpotent. Then, by parts ( 1) and ( 2), we have κ 1 (0) = ρ EP 1 (ξ 0 ) > 0. It follows from (3.38) and (3.39) that κ 1 is a strictly increasing continuous function on R + with lim a→+∞ κ 1 (a) = +∞. This concludes part [START_REF] Athreya | Branching Processes with random environments II:Limit theorems[END_REF].

The proof of Lemma 3.9 is complete.

Proof of Theorem 2.1. First we assume that κ 1 (a) < 1, where a > 0. By Lemma 3.9, κ 1 is a continuous function on R + , so there exists ε > 0 such that κ 1 (a+ε) < 1. Using Theorem 3.7 (with a replaced by a+ε), this implies that E(W i ) -a < +∞ for all 1 i d. Now we suppose that a > 0 is such that E(W i ) -a < +∞ for all 1 i d. We will prove that κ 1 (a)

1. Let Z r l,n,k = (Z r l,n,k (1), • • • , Z r l,n,k (d))
, where Z r l,n,k (j) denotes the offspring of type j at time n + k of the l-th particle of type r in the generation n. By iteration of (2.1), it is easy to see that the MBPRE (Z i n ) n 0 satisfies the relation

Z i n+k = d j=1 Z i n (j) l=1 Z j l,n,k , n, k 0.
It follows that for all n, k 0 and 1 i d,

W i n+k = d j=1 Z i n (j) l=1 Z rj l,n,k , U n+k,∞ λ 0,n+k-1 U 0,∞ (i) = d j=1 U n,∞ (j) λ 0,n-1 U 0,∞ (i) Z i n (j) l=1 W j l,n,k , (3.40) 
where

W j l,n,k := Z j l,n,k , U n+k,∞ λ n,n+k-1 U n,∞ (j)
.

Clearly (W j l,n,k ) k 0 is the fundamental martingale associated to the MBPRE (Z j l,n,k ) k 0 in the shifted random environment T n ξ, starting with the l-th particle of type j in the generation n. Hence (W j l,n,k ) k 0 converges a.s. to a random variable W j l,n . Letting k → +∞ in (3.40), we get the following distributional equation on the limit variables W i : for all 1 i d and n 0,

W i = d r=1 U n,∞ (r) λ 0,n-1 U 0,∞ (i) Z i n (r) l=1 W r l,n , (3.41) 
where for each n ∈ N, under P ξ , the random variables W r l,n , indexed by l 0 and 1 r d, are independent of each other and independent of Z i n , each with the distribution

P ξ (W r l,n ∈ •) = P T n ξ (W r ∈ •).
Therefore, we get from (3.41) that for all 1 i d and n 1, P-a.s.,

E ξ (W i ) -a = E ξ d r=1 U n,∞ (r) λ 0,n-1 U 0,∞ (i) Z i n (r) l=1 W r l,n -a d r=1 U n,∞ (r) λ 0,n-1 U 0,∞ (i) -a E ξ Z i n (r) l=1 W r l,n -a 1 {Z i n =er} = (λ 0,n-1 U 0,∞ (i)) a d r=1 U n,∞ (r) -a E T n ξ (W r ) -a P ξ (Z i n = e r ).
(3.42)

For n 0, let X n be the vector in R d whose i-th entry is

X n (i) = U n,∞ (i) -a E T n ξ (W i ) -a , 1 i d. (3.43)
By H1 and the definition of the random matrices P 1 (ξ n ), we have that for all n 1 and 1 i, r d, P-a.s.,

P ξ (Z i n+1 = e r ) = d j=1 P ξ (Z i n = e j )P ξ (Z i n+1 = e r |Z i n = e j ) = d j=1 P ξ (Z i n = e j )P 1 (ξ n )(j, r).
By iterating this relation, we get that for all n 1 and 1 i, r d, P-a.s.,

P ξ (Z i n = e r ) = n-1 k=0 P 1 (ξ k ) (i, r). (3.44)
Using this and the notation X n (cf. (3.43)), we can re-write (3.42) as follows: for all n 1, P-a.s., 

X 0 λ a 0,n-1 n-1 k=0 P 1 (ξ k ) X n . ( 3 
λ 0,n-1 = M 0,n-1 U n,∞ A 2 dA M 0,n-1 1 A 2 dA M 0,n-1 P-a.s.
This, together with (3.45), implies that for all n 1, P-a.s.,

X 0 ∞ A 2 dA a M 0,n-1 a n-1 k=0 P 1 (ξ k ) X n ∞ A 2 dA a M 0,n-1 a n-1 k=0 P 1 (ξ k ) ∞ min 1 i d X n (i). (3.46)
Notice that (X n ) n 0 is a stationary ergodic sequence of strictly positive random vectors, and X n is independent of ξ 0 , • • • , ξ n-1 . Therefore, taking expectation in (3.46), we get that for all n 1,

E X 0 ∞ A 2 dA a E M 0,n-1 a n-1 k=0 P 1 (ξ k ) ∞ E min 1 i d X 0 (i) . (3.47)
Using again (3.22), for any 1 i d we have

0 < EX 0 (i) = E[U 0,∞ (i) -a E ξ (W i ) -a ] A 2 dA -a E(W i ) -a < +∞.
Therefore, by (3.47) we obtain for all n 1,

E M 0,n-1 a n-1 k=0 P 1 (ξ k ) ∞ dA A 2 a E X 0 ∞ E min 1 i d X 0 (i) . This implies that κ 1 (a) = lim n→+∞ E M 0,n-1 a n-1 k=0 P 1 (ξ k ) ∞ 1/n 1,
which is the desired result. This concludes the proof of Theorem 2.1 and the remark following it.

Proof of Corollary 2.2. First we suppose that EP 1 (ξ 0 ) is nilpotent. By Lemma 3.9, we know that κ 1 (a) = 0 < 1 for all a 0. Therefore, using Theorem 2.1, we get that E(W i ) -a < +∞ for all 1 i d and a > 0. Now, we assume that EP 1 (ξ 0 ) is not nilpotent. By Lemma 3.9 and the condition P 1 (ξ 0 ) ∞ L ∞ < 1, the function κ 1 is continuous and strictly increasing on R + with κ 1 (0) = ρ EP 1 (ξ 0 ) < 1 and lim a→+∞ κ 1 (a) = +∞. Therefore, there exists a unique constant a 0 > 0 such that κ 1 (a 0 ) = 1, and we have κ 1 (a) < 1 if a < a 0 , and κ 1 (a) > 1 if a > a 0 . Using again Theorem 2.1, this implies that max

1 i d E(W i ) -a < +∞ if a ∈ [0, a 0 ), = +∞ if a ∈ (a 0 , +∞).
The proof of Corollary 2.2 is complete.

Proof of Theorem 2.3

In this section, we prove Theorem 2.3 which gives the existence of the harmonic moments E(W i ) -a for a small a > 0, under the moment condition H3, instead of the boundedness condition H2 considered in the preceding section. We will prove the following theorem.

Theorem 3.10. Assume conditions H1, H3 and γ > 0. Then there exist two constants a > 0 and C > 0 such that for all 1 i d, all t > 0, and all x > 0,

φ i (t) C t a , (3.48) P(W i x) Cx a and E(W i ) -a C. (3.49)
Clearly Theorem 2.3 follows from Theorem 3.10. We need some previous results to prove Theorem 3.10. The first one gives the non-degeneracy of the limits W i under the conditions of Theorem 3.10. Lemma 3.11. The following implication holds: H3 ⇒ (2.5). Moreover, under the conditions H3 and γ > 0, the limit W i is non-degenerate for each 1 i d, and (2.6) hold.

Proof. We first prove the implication H3 ⇒ (2.5). Assume condition H3. Then, by Hölder's inequality

E ξ |XY | (E ξ |X| α ) 1/α (E ξ |Y | β ) 1/β with α =
1/(1 -η) and β = 1/η, we see that for all 1 i, j d we have, P-a.s.,

E ξ Z i 1 (j) M 0 (i, j) log + Z i 1 (j) M 0 (i, j) = E ξ Z i 1 (j) M 0 (i, j) 1-η Z i 1 (j) M 0 (i, j) η log + Z i 1 (j) M 0 (i, j) E ξ Z i 1 (j) M 0 (i, j) 1-η E ξ Z i 1 (j) M 0 (i, j) log + Z i 1 (j) M 0 (i, j) 1/η η = E ξ Z i 1 (j) M 0 (i, j) log + Z i 1 (j) M 0 (i, j) 1/η η . (3.50)
We know that there exists a constant C > 0 such that log + x Cx η(p-1) for all x > 0. Taking expectation in (3.50), we obtain that for all 1 i, j d, Recall that by [13, Theorem 2.6 and Corollary 2.8], condition (2.5) together with γ > 0 implies that the limit W i is non-degenerate for each 1 i d, and (2.6) hold. Combining this with the implication H3 ⇒ (2.5), we conclude the proof of Lemma 3.11.

E Z i 1 (j) M 0 (i, j) log + Z i 1 (j) M 0 (i, j) CE E ξ Z i 1 (j) M 0 (i, j) p η < +∞, ( 3 
By the sub-additive ergodic theorem and the fact that M 0,n (i, •) 1 a.s. for any 1 i d (which follows from H1), for all s < 0 the limit

κ(s) := lim n→+∞ E M 0,n-1 s 1/n (3.52) exists, with κ(s) = sup n 1 E M 0,n-1 s 1/n
1. The proof of Theorem 3.10 is based on the following result about the properties of the function κ. Lemma 3.12. Assume conditions H1, H3 and γ > 0. Then for all s < 0,

κ(s) < 1.
Moreover, if η > 0 satisfies H3, then for all 0 a < s η/2,

E M 0,n-1 a max 1 i,j d M 0,n-1 (i, j) -s 1/n → n→+∞ κ(a -s) < 1. (3.53)
Proof. First we prove that κ(s) < 1 for all s < 0. Recall that ι(M ) = inf x =1 M x , for M ∈ M d (R), and ι M T 0,n 1 a.s. by (3.10) and H1.

Since ι is super-multiplicative, the sequence E ι M T 0,n-1 s is sub-multiplicative.

So using the sub-additive ergodic theorem we get

lim n→+∞ E ι M T 0,n-1 s 1/n = inf n 1 E ι M T 0,n-1 s 1/n 1, ∀s < 0. By the inequalities ι M T M T d M , M ∈ M d (R), this implies that for all s < 0, κ(s) lim n→+∞ E ι M T 0,n-1 s 1/n = inf n 1 E ι M T 0,n-1 s 1/n .
Therefore, for all s < 0 and n 1, we have

κ(s) n E ι M T 0,n-1 s 1. (3.54) Clearly by (3.54), if κ(s) = 1, then E ι M T 0,n-1 s = 1 for all n 1, which is equivalent to ι M T 0,n-1 = 1 a.s. for all n 1. Consequently, if we show that lim n→+∞ P ι M T 0,n-1 = 1 = 0, (3.55) 
then we will have κ(s) < 1 for all s < 0. So, it remains to prove (3.55). Using H1 and the identity ι(M ) = min

1 j d M (•, j) , M ∈ M d (R), for all n 1 we have P ι M T 0,n-1 = 1 d i=1 P( M 0,n-1 (i, •) = 1) d i=1 P( Z i n = 1). (3.56)
By Lemma 3.11, the conditions H3 and γ > 0 imply that the limits W i , 1 i d, are non-degenerate, and (2.6) holds. Combining this with condition H1, we obtain that lim n→+∞ Z i n = +∞ a.s. Therefore, we obtain that for all 1 i d,

lim n→+∞ P( Z i n = 1) = 0, (3.57) 
and (3.55) follows from (3.56). So κ(s) < 1 for all s < 0, which is the desired result. Now we prove (3.53). Let η > 0 be such that condition H3 holds, and set 0 < a < s η/2. First, for all n 1 we have

E M 0,n-1 a max 1 i,j d M 0,n-1 (i, j) -s E M 0,n-1 a-s . (3.58) Next, for all n 2, E M 0,n-1 a max 1 i,j d M 0,n-1 (i, j) -s = E M 0,n-1 a max 1 i,j d d r=1 M 0 (i, r)M 1,n-1 (r, j) -s E M 0 a max 1 i,r d M 0 (i, r) -s E M 1,n-1 a max 1 j d M 1,n-1 (•, j) -s = E M 0 a max 1 i,r d M 0 (i, r) -s E M 0,n-2 a max 1 j d M 0,n-2 (•, j) -s
It follows that for all n 3,

E M 0,n-1 a max 1 i,j d M 0,n-1 (i, j) -s E M 0 a max 1 i,j d M 0 (i, j) -s × E M 0,n-2 a max 1 j d d r=1 M 0,n-3 (•, r) M n-2 (r, j) -s E M 0 a max 1 i,j d M 0 (i, j) -s × E M n-2 a max 1 i,j d M n-2 (i, j) -s E M 0,n-3 a (d M 0,n-3 ) -s = d -s E M 0 a max 1 i,j d M 0 (i, j) -s 2 E M 0,n-3 a-s . (3.59)
Then, by Hölder's inequality and condition H3, since 2a < 2s η, we have

E M 0 a max 1 i,j d M 0 (i, j) -s E M 0 2a 1/2 E max 1 i,j d M 0 (i, j) -2s 1/2 < +∞.
Combining this with the inequalities (3.58) and (3.59), we obtain that for all n 3,

E M 0,n-1 a-s E M 0,n-1 a max 1 i,j d M 0,n-1 (i, j) -s C E M 0,n-3 a-s , where C = d -s E M 0 a max 1 i,j d M 0 (i, j) -s 2 < +∞.
This, together with (3.52), implies (3.53), which concludes the proof of Lemma 3.12.

Proof of Theorem 3.10. The implication (3.48) ⇒ (3.49) holds by Lemma 3.2. Therefore, it remains to show (3.48) under the given conditions.

Assume condition H1, H3 and γ > 0. Set

ψ ξ (t) = (ψ 1 ξ (t), • • • , ψ d ξ (t))
, where for all t 0, and 1 i d,

ψ i ξ (t) = φ i ξ (tU 0,∞ (i)).
Let ψ be the function on R + defined by

ψ(t) = E ψ ξ (t) ∞ , t 0.
Since φ i ξ is a decreasing function on R + and 0 < U 0,∞ (i) < 1 a.s., for all t 0 we have

φ(t) ∞ = Eφ ξ (t) ∞ E φ ξ (t) ∞ E ψ ξ (t) ∞ = ψ(t).
Therefore, if we prove that there exists a constant a > 0 such that

ψ(t) = O t→+∞ (t -a ), (3.60) then (3 
.48) holds. Now we prove (3.60). As in the proof of Theorem 2.1, the argument will still be based on (3.21). The idea is to take expectation at both sides of this inequality, and to get an inequality on ψ in order to use Lemma 3.8 to conclude. The difficult point is to have a bound in terms of ψ while taking expectation on the right hand side of (3.21). This will be done by truncation and iteration.

Recall that λ 0,n-1 = M 0,n-1 U n,∞ M 0,n-1 for all n 1, and ψ i ξ is decreasing on R + . Therefore, we get that for all n 1 and t 0,

ψ T n ξ t λ 0,n-1 ψ T n ξ t M 0,n-1 P-a.s. (3.61) 
Moreover, by similar arguments as in (3.14)-(3.16), we have that for all K > 0, there exist two constants t K > 0 and β K ∈ (0, 1) such that for all

t t K , φ ξ (t) ∞ β K P-a.s. on the event {max 1 i d E ξ (W i ) p K p }. Therefore when t t K λ 0,n-1 min 1 i d
Un,∞(i) and max

1 i d E T n ξ (W i ) p K p , we have a.s. ψ T n ξ t λ 0,n-1 ∞ β K .
Combining this with (3.21) and (3.61), we obtain that for all K > 0, n 1 and t 0, P-a.s.,

E ψ ξ (t) ∞ 1 {t t K λ 0,n-1 min 1 i d Un,∞(i) , max 1 i d E T n ξ (W i ) p K p } E n-1 k=0 P 1 (ξ k ) + β K Q 1 (ξ k ) ψ T n ξ t M 0,n-1 ∞ E n-1 k=0 P 1 (ξ k ) + β K Q 1 (ξ k ) ∞ E ψ T n ξ t M 0,n-1 ∞ ξ 0 , • • • , ξ n-1 = E n-1 k=0 P 1 (ξ k ) + β K Q 1 (ξ k ) ∞ ψ t M 0,n-1 .
This, together with (3.20), implies that for all K > 0, n 1 and t 0, P-a.s.,

ψ(t) E ψ ξ (t) ∞ 1 {t t K λ 0,n-1 min 1 i d Un,∞(i) , max 1 i d E T n ξ (W i ) p K p } +E ψ ξ (t) ∞ 1 { max 1 i d E T n ξ (W i ) p >K p } + E ψ ξ (t) ∞ 1 {t< t K λ 0,n-1 min 1 i d Un,∞(i) } E n-1 k=0 P 1 (ξ k ) + β K Q 1 (ξ k ) ∞ ψ t M 0,n-1 +E ψ T n ξ t λ 0,n-1 ∞ 1 { max 1 i d E T n ξ (W i ) p >K p } +P M 0,n-1 min 1 i d U n,∞ (i) > t t K . ( 3.62) 
Now we control the second and last terms in (3.62).

We first find a bound for the second term in terms of ψ. Using the triangular inequality in L p and (3.8), we get that for all 1 i d, P-a.s.,

E ξ (W i ) p 1/p 1 + +∞ n=0 E ξ |W i n+1 -W i n | p 1/p 1 + B p +∞ n=0 θ n (p) 1 p max 1 j d M 0,n-1 (i, j) 1-p p .
By the sub-additivity of the function x → x η 2 on R + (since 0 < η < 1), this implies that for all K > 0, n 1 and t 0, P-a.s.,

E ψ T n ξ t λ 0,n-1 ∞ 1 { max 1 i d E T n ξ (W i ) p >K p } 1 K η 2 E ψ T n ξ t λ 0,n-1 ∞ max 1 i d E T n ξ (W i ) p η 2p 1 K η 2 E ψ T n ξ t λ 0,n-1 ∞ + B p K η 2 × +∞ k=0 E ψ T n ξ t λ 0,n-1 ∞ θ n+k (p) η 2p max 1 i,j d M n,n+k-1 (i, j) η(1-p) 2p
.

(3.63) By (3.20) and (3.61), we get that for n, k 0 and t 0, P-a.s.,

ψ T n ξ t λ 0,n-1 ∞ ψ T n+k+1 ξ t λ 0,n+k ∞ ψ T n+k+1 ξ t M 0,n+k ∞ .
Combining this with (3.63), we obtain that for all K > 0, n 1 and t 0, P-a.s.,

E ψ T n ξ t λ 0,n-1 ∞ 1 { max 1 i d E T n ξ (W i ) p >K p } 1 K η 2 E ψ T n ξ t M 0,n-1 ∞ + B p K η 2 × +∞ k=0 E ψ T n+k+1 ξ t M 0,n+k ∞ θ n+k (p) η 2p max 1 i,j d M n,n+k-1 (i, j) η(1-p) 2p 1 K η 2 E ψ t M 0,n-1 + B p K η 2 × +∞ k=0 E ψ t M 0,n+k θ n+k (p) η 2p max 1 i,j d M n,n+k-1 (i, j) η(1-p) 2p , ( 3.64) 
where, for the last inequality, we have used the fact that M 0,n+k and θ n+k (p) are independent of T n+k+1 ξ. We have therefore obtained a bound of the second term in (3.62) in terms of ψ.

For the last term in (3.62), by Markov's inequality we get that for all K > 0, n 1 and t > 0,

P M 0,n-1 min 1 i d U n,∞ (i) > t t K t K t η 2 E M 0,n-1 η 2 min 1 i d U n,∞ (i) η 2 C(n, K) t η/2 , ( 3.65) 
where C(n, K)

:= t η 2 K E M 0 η 2 n E max 1 i d U 0,∞ (i) -η 2 .
We claim that C(n, K) < ∞ because, by (1.4), Cauchy-Schwarz's inequality and condition H3, we have for all 1 i d

E U 0,∞ (i) -η 2 = E M 0 (i, •), U 1,∞ -η 2 M 0 U 1,∞ -η 2 E max 1 j d M 0 (i, j) -η 2 M 0 -η 2 E max 1 j d M 0 (i, j) -η 1/2 E M 0 η 1/2 < +∞. (3.66)
Putting together the inequalities (3.62), (3.63), (3.64) and (3.65), we obtain the following inequality on ψ: for all K > 0, n 1 and t > 0,

ψ(t) E n-1 k=0 P 1 (ξ k ) + β K Q 1 (ξ k ) ∞ ψ t M 0,n-1 + B p K η 2 +∞ k=0 E ψ t M 0,n+k θ n+k (p) η 2p max 1 i,j d M n,n+k-1 (i, j) η(1-p) 2p + 1 K η 2 E ψ t M 0,n-1 + C(n, K) t η 2 . ( 3.67) 
We will write this inequality in the form (3.27) in order to use Lemma 3.8. For K > 0 and n 1, set

α n,K := E n-1 k=0 P 1 (ξ k ) + β K Q 1 (ξ k ) ∞ + B p K η 2 E θ 0 (p) η 2p +∞ k=0 E max 1 i,j d M 0,k-1 (i, j) η(1-p) 2p + 1 K η 2
.

By condition H3 and equality (3.18), and using (3.53) in Lemma 3.12 with a = 0 and s = η(p-1) 2p ∈ 0, η 2 , we get for all K > 0 and n 1,

α n,K < +∞.
For any K > 0 and n 1, let Ãn,K be a positive random variable whose distribution is determined by the following expectation: for all bounded and mesurable function h on R + ,

Eh( Ãn,K ) = 1 α n,K E n-1 k=0 P 1 (ξ k ) + β K Q 1 (ξ k ) ∞ h 1 M 0,n-1 + B η 2 p K η 2 α n,K +∞ k=0 E h 1 M 0,n+k θ n+k (p) η 2p max 1 i,j d M n,n+k-1 (i, j) η(1-p) 2p + 1 K η 2 α n,K E h 1 M 0,n-1 .
So we can rewrite (3.67) as in the form (3.27): for all K > 0, n 1 and t > 0,

ψ(t) α n,K E ψ( Ãn,K t) + C(n, K) t η/2 . (3.68)
We will prove that there exist K > 0, n 1 and 0 < a < η/2 such that

α n,K < 1, (3.69) 
and First, we prove (3.69). By (3.44), for all 1 i, j d we have

α n,K E Ã-a n,K < 1. ( 3 
P(Z i n = e j ) = E n-1 k=0 P 1 (ξ k ) (i, j) = EP 1 (ξ 0 ) n (i, j).
This, together with (3.57), implies that

ρ EP 1 (ξ 0 ) < 1. (3.71)
Notice that the relation (3.35) can be proved by using (3.71) instead of the condition P 1 (ξ 0 ) ∞ L ∞ < 1. Therefore, (3.71) implies that for all K > 0,

lim sup n→+∞ E n-1 k=0 P 1 (ξ k ) + β K Q 1 (ξ k ) ∞ ≤ β K . (3.72)
By the sub-additivity we have

lim n→+∞ E n-1 k=0 P 1 (ξ k ) + β K Q 1 (ξ k ) ∞ 1/n = inf n 1 E n-1 k=0 P 1 (ξ k ) + β K Q 1 (ξ k ) ∞ 1/n .
Together with (3.72), this implies that for all K > 0,

E n-1 k=0 P 1 (ξ k ) + β K Q 1 (ξ k ) ∞ → n→+∞ 0.
It follows that for all K > 0, 

α n,K → n→+∞ B p K η 2 E θ 0 (p) η 2p +∞ k=0 E max 1 i,j d M 0,k-1 (i, j) η(1-p) 2p + 1 K η 2 . ( 3 
α n,K E Ã-a n,K = E n-1 k=0 P 1 (ξ k ) + β K Q 1 (ξ k ) ∞ M 0,n-1 a + 1 K η 2 E M 0,n-1 a + B p K η 2 +∞ k=0 E M 0,n+k a θ n+k (p) η 2p max 1 i,j d M n,n+k-1 (i, j) η(1-p) 2p
.

By the independence of the environments ξ n , n 0, we have

E M 0,n+k a θ n+k (p) η 2p max 1 i,j d M n,n+k-1 (i, j) η(1-p) 2p = E M n+k a θ n+k (p) η 2p E M 0,n-1 a × E M n,n+k-1 a max 1 i,j d M n,n+k-1 (i, j) η(1-p) 2p
Therefore, by the stationarity, we get that for all K > 0, n 1 and a > 0,

α n,K E Ã-a n,K = E n-1 k=0 P 1 (ξ k ) + β K Q 1 (ξ k ) ∞ M 0,n-1 a + 1 K η 2 E M 0,n-1 a + B p K η 2 E M 0 a θ 0 (p) η 2p × E M 0,n-1 a +∞ k=0 E M 0,k-1 a max 1 i,j d M 0,k-1 (i, j) η(1-p) 2p
.

(3.74)

For any fixed n 1, we have M 0,n-1 a → 1 P-a.s. as a → 0, and M 0,n-1 a is dominated by M 0,n-1 η(p-1)/4p when a ∈ 0, η(p-1)

4p

. We will apply the dominated convergence theorem in (3.74) as a → 0. Notice that, by condition H3 and (3.18) , for all K > 0 and n 1,

E n-1 k=0 P 1 (ξ k ) + β K Q 1 (ξ k ) ∞ M 0,n-1 η(p-1) 4p E M 0,n-1 η(p-1) 4p E M 0 η(p-1) 4p n < +∞.
Using (3.53) in Lemma 3.12, we obtain

+∞ k=0 E M 0,k-1 η(p-1) 4p max 1 i,j d M 0,k-1 (i, j) η(1-p) 2p < +∞.
By Hölder's inequality and condition H3 we have

E M 0 η(p-1) 4p θ 0 (p) η 2p E M 0 η 4 p p-1 Eθ 0 (p) η 2 1 p < +∞.
Therefore, applying the Lebesgue dominated convergence theorem, by letting a → 0 in (3.74), we obtain that for all K > 0 and n 1,

lim a→0 α n,K E Ã-a n,K = E n-1 k=0 P 1 (ξ k ) + β K Q 1 (ξ k ) ∞ + 1 K η 2 + B p K η 2 E θ 0 (p) η 2p +∞ k=0 E max 1 i,j d M 0,k-1 (i, j) η(1-p) 2p
.

(3.75)

Letting n → +∞ in (3.75), by (3.73) it holds that for all K > 0,

lim n→+∞ lim a→0 α n,K E Ã-a n,K = 1 K η 2 + B p K η 2 E θ 0 (p) η 2p +∞ k=0 E max 1 i,j d M 0,k-1 (i, j) η(1-p) 2p
.

Then, letting K → +∞, we conclude that lim

K→+∞ lim n→+∞ lim a→0 α n,K E Ã-a n,K = 0.
This implies (3.70) for K > 0 and n 1 sufficiently large, and a > 0 small enough. Therefore (3.60) holds, and this concludes the proof of Theorem 3.10.

Central limit theorem for log Z i n

In this section, we prove Theorem 2.4, that is, a central limit theorem for the logarithm of the population size log Z i n for each 1 i d. To this end, we will use the following central limit theorem for the norm cocycle log M T 0,n-1 x established by Hennion [START_REF] Hennion | Limit Theorems for Products of positive Random Matrices[END_REF]Theorem 3]. Lemma 4.1. Assume conditions (2.3) and H4. Then there exists σ 0 such that for all x ∈ S, as n → ∞,

log M T 0,n-1 x -nγ √ n → N (0, σ 2 ) in law.
Proof of Theorem 2.4. By definition of the martingale (W i n ), for any n 1 and 1 i d we have, P-a.s.,

Z i n M 0,n-1 (i, •) min 1 j d U n,∞ (j) W i n Z i n M 0,n-1 (i, •) 1 min 1 j d U n,∞ (j)
.

From this, we obtain the two following inequalities: for all n 1 and 1 i d, P-a.s.,

log Z i n log M 0,n-1 (i, •) + log W i n -min 1 j d log U n,∞ (j), (4.1) log Z i n log M 0,n-1 (i, •) + log W i n + min 1 j d log U n,∞ (j). ( 4.2) 
We know that (U n,∞ ) is a stationary and ergodic sequence of positive random variables, so for all 1 j d it holds log U n,∞ (j)

√ n P -→ 0, (4.3) 
Together with (5.2), (5.3) and (5.6), this implies that for all n 0 and 1 i d,

E| log W i n+1 -log W i n | CE|R i n | ηp 4 + C(E|R i n | ηp 4 ) 1 2 CE (E ξ |R i n | p ) η 4 + C E (E ξ |R i n | p ) η 4 1 
2 , (5.7) since η 4 < 1. Notice that inequality (5.7) holds for any p ∈ (1, 2] satisfying condition H3. In the following, we take p ∈ (1, 2] sufficiently close to 1 such that p verifies H3 and p < 1 + a. Now we show that there exists a constant δ ∈ (0, 1) such that for all n 0 and 1 i d,

E (E ξ |R i n | p ) η 4
Cδ 2n .

(5.8) By (3.5), for all n 0 and 1 i d,

R i n = 1 W i n d r=1 U n,∞ (r) λ 0,n-1 U 0,∞ (i) Z i n (r) l=1 (W r l,n -1) = d r=1 U n,∞ (r) Z i n , U n,∞ Z i n (r) l=1 (W r l,n -1). (5.9) 
Recall that, given the environment ξ, for each 1 r d the random variables W r l,n indexed by l 1 are i.i.d., and independent of ξ 0 , . . . , ξ n-1 and Z i n . Using (5.9), the convexity of the function x → x p on R + (together with the fact that d r=1 U n,∞ (r) = 1), and Lemma 3.4, for all n 0 and 1 i d, P-a.s., we obtain

E ξ |R i n | p E ξ d r=1 U n,∞ (r) Z i n , U n,∞ Z i n (r) l=1 (W r l,n -1) p d r=1 U n,∞ (r)E ξ 1 Z i n , U n,∞ p Z i n (r) l=1 W r l,n -1 p B p p d r=1 E ξ U n,∞ (r)Z i n (r) Z i n , U n,∞ p E ξ |W r 1,n -1| p B p p E ξ Z i n , U n,∞ 1-p max 1 r d E ξ |W r 1,n -1| p .
Combining this with (3.7) and the convexity of x → x 1-p , we get that for all n 0 and 1 i d, P-a.s.,

E ξ |R i n | p B p p E ξ (W i n ) 1-p • M 0,n-1 (i, •), U n,∞ 1-p • θ n (p) B p p E ξ (W i n ) 1-p θ n (p) max 1 r,j d M 0,n-1 (r, j) 1-p .
(5.10) Therefore, by Cauchy-Schwarz's inequality and the independence between θ n (p) and M 0,n-1 , we deduce from (5.10) that for all n 0 and 1 i d,

E (E ξ |R i n | p ) η 4 B ηp 4 p E E ξ (W i n ) 1-p η 2 1 2 E θ n (p) η 2 max 1 r,j d M 0,n-1 (r, j) η(1-p) 2 1 2 B ηp 4 p E(W i n ) 1-p η 4 E θ 0 (p) η 2 E max 1 r,j d M 0,n-1 (r, j) η(1-p) 2 1 2 , (5.11) since η 2 < 1. Clearly condition H3 implies that E θ 0 (p) η 2
< +∞. Since 0 < p -1 < a, by Hölder's inequality and (5.4), for any 1 i d we have

sup n 0 E(W i n ) 1-p sup n 0 E(W i n ) -a p-1 a = E(W i ) -a p-1 a < +∞.
(5.12) Moreover, by (3.53) (with a = 0) it holds that for all n 0,

E max 1 r,j d M 0,n-1 (r, j) η(1-p) 2 Cδ 4n , ( 5.13) 
where δ > 0 is a constant such that κ( η(1-p)

2

) < δ 4 < 1. Combining inequalities (5.11)-(5.13), we get (5.8). Now, from (5.7) and (5.8) it follows that for all n 0 and 1 i d,

E| log W i n+1 -log W i n | Cδ n .
This implies that for all n 0, k 1 and 1 i d, (5.14), we obtain that for all n 0 and 1 i d,

E| log W i n+k -log W i n | n+k-1 r=n E| log W i r+1 -log W i r | C n+k-1 r=n δ r Cδ n . (5.14) So (log W i n ) n 0 is a Cauchy sequence in L 1 , hence it converges in L 1 to log W i , for all 1 i d. By letting k → +∞ in
E| log W i -log W i n | Cδ n .
This concludes the proof of Lemma 5.1.

Now we formulate the Berry-Esseen bound for log M T 0,n-1 y , for any y ∈ S. This result was established in [START_REF] Xiao | Berry-Esseen bound and precise moderate deviations for products of random matrices[END_REF]Theorem 2.1]; it plays a crucial role in proving the Berry-Esseen theorem for log Z i n . Lemma 5.2. Assume conditions H3 and H5. Then there exists a constant C > 0 such that for all n 1, y ∈ S and x ∈ R,

P log M T 0,n-1 y -nγ σ √ n x -Φ(x) C √ n .
The next lemma gives inequalities about the concentration of the joint law log Z i n , log M 0,n-1 (i, •) for any 1 i d. It reveals that log Z i n and log M 0,n-1 (i, •) behaves similarly with large probability.

Lemma 5.3. Assume conditions H1, H3, H5 and γ > 0. Then there exists a constant C > 0 such that for all n 1, x ∈ R and 1 i d,

P log Z i n -nγ σ √ n x, log M 0,n-1 (i, •) -nγ σ √ n > x C √ n , ( 5.15) 
and

P log Z i n -nγ σ √ n > x, log M 0,n-1 (i, •) -nγ σ √ n x C √ n . ( 5.16) 
Proof. We will only give a proof of (5.15), since the other inequality (5.16) can be proved by similar arguments. For n 1, 0 m n, y ∈ S and 1 i d, set

S y m,n := log M T m,n-1 y -(n -m)γ σ √ n and L i m,n := log W i m σ √ n ,
where by convention M m,n-1 denotes the identity matrix when m = n. By (4.2) we have that for all n 1, x ∈ R and 1 i d,

P log Z i n -nγ σ √ n x, log M 0,n-1 (i, •) -nγ σ √ n > x
P S e i 0,n + L i n,n + min

1 j d log U n,∞ (j) σ √ n
x, S e i 0,n > x . (5.17)

In the following we take m := m(n) = √ n , where x is the integer part of x; C > 0 will be a constant which may depend on p and η, and which may differ from line to line. By Markov's inequality and Lemma 5.1, we get that there exists a constant δ ∈ (0, 1) such that for all n 1 and 1 i d,

P |L i n,n -L i m,n | > 1 √ n √ n E L i n,n -L i m,n = 1 σ E| log W i n -log W i m | 1 σ E| log W i n -log W i | + 1 σ E| log W i m -log W i | C(δ n + δ m ).
Since δ n + δ m = o( 1 √ n ) as n → +∞, this implies that for all n 1 and 1 i d,

P |L i n,n -L i m,n | > 1 √ n C √ n .
Combining this with (5.17), we obtain that for all n 1, x ∈ R and 1 i d,

P log Z i n -nγ σ √ n x, log M 0,n-1 (i, •) -nγ σ √ n > x
P S e i 0,n + L i m,n + min (5.18)

Recall that for y ∈ S and M ∈ G + , we denote by M •y := M y M y the projective action of M on G + . Then, for y ∈ S the process X y 0 = y, and X y n = M T 0,n-1 • y, n 1, is a Markov chain on S. Notice that for all n 1 and 1 i d, we have the decomposition + min

S e i 0,n = log M T m+1,
1 j d log U n,∞ (j) σ √ n .
Denote by ν i m,n the joint law of X e i m+1 , m+1 n S e i 0,m+1 , B i m,n on S × R × R. For y ∈ S and x ∈ R, set G y m,n (x) = P(S y m,n

x).

Since S y m+1,n is independent of X e i m+1 , S e i 0,m+1 and B i m,n for any y ∈ S, we obtain from (5.21) The random matrices M n , n 0, are i.i.d., so for n 1, y ∈ S and x ∈ R we have This, together with (5.25), implies that for all n 1, x ∈ R and 1 i d, (5.27) By Lemma 5.1 we have sup n 0 E| log W i n | < +∞ for any 1 i d. Moreover, from condition H3 and the inequality | log x| C(x η + x -η ) for x > 0, it holds that E| log M 0 | < +∞ and E| log M 0 (r, j)| < +∞, 1 r, j d. Therefore, taking expectation in (5.27), this implies that for all n 1 and 1 i d, 

P log Z i n -nγ σ √ n x, log M 0,n-1 (i, •) -nγ σ √ n > x 1 {t 1 √ n } 1 √ n -t ν i m,
E|B i m,n | C √ n . ( 5 
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 38 [START_REF] Liu | Asymptotic properties of supercritical age-dependent branching processes and homogeneous branching random walks[END_REF] Lemma 4.1]) Let φ : R + → R + be a bounded function.

7 .

 7 First, by Lemma 3.2, we have the implication (3.25) ⇒ (3.26). So, it remains to prove (3.25).

  .45) By (1.5) and (3.22), we get that for all n 1,

  .51) since Eθ 0 (p) η < +∞ by condition H3. Hence the condition (2.5) holds.

  .70) By Lemma 3.8, inequality (3.68), together with (3.69) and (3.70), implies (3.60), which is the desired result. So it remains to prove (3.69) and (3.70).

  .73) Letting K → +∞ in (3.73), we deduce lim K→+∞ lim n→+∞ α n,K = 0, so that (3.69) holds for K and n sufficiently large. Now, we prove (3.70). For all K > 0, n 1 and a > 0, we have

1 √n 25 )

 125 -m-1 y -(n -m -1)γ σ √ n x = G y 0,n-m-1 (a n x), with a n = n n-m-1 . Notice that a n = (1-m+1 n ) -1/2 = 1+O( m n ) = 1+O( 1 √ n )as n → +∞. Therefore, applying the Berry-Esseen bound of Lemma 5.2, we get that for all n 1, y ∈ S and x ∈ R,G y m+1,n (x) -Φ(a n x) = G y 0,n-m-1 (a n x) -Φ(a n x) the mean value theorem on the function t → Φ(tx) with t 1, we obtain that for all n 1 and x ∈ R,|Φ(a n x) -Φ(x)| |a n -1| sup t 1 |xΦ (tx)| C √ n sup z∈R |zΦ (z)|. (5.24) It is clear that z → |zΦ (z)| is a bounded function on R. Combining this with the inequalities (5.22)-(5.24), we deduce that for all n 1, x ∈ R and 1 } Φ x -s -t + 1 √ n -Φ(x -s) ν i m,n (dy, ds, dt) By the mean value theorem and the fact that sup x∈R |Φ (x)| 1, for all x, z ∈ R we have |Φ(x + z) -Φ(x)| |z|.

26 )|

 26 n (dy, ds, dt) By definition of B i m,n , combining with (4.1), (4.2) and (5.20), we get that for all n 1 and 1 i d, P-a.s., logM m (r, j)| + | log M m | + min 1 j d | log U n,∞ (j)| | log W i m | + | log M m | + max 1 r,j d | log U m,∞ (j)| + | log M m (r, j)| + | log U n,∞ (j)| | log W i m | + 2| log M m | + | log M n | + max 1 r,j d 2| log M m (r, j)| + | log M n (r, j)|| .

  Theorem 1.5], as stated in [26, Lemma 1.4]. Let (X k ) k∈N * be a sequence of i.i.d. random centered variables. Then for all n ∈ N

	Lemma 3.4.

* and p > 1 :

  that for all n 1, x ∈ R and 1 i d,

	P	log Z i n -nγ σ √ n	x,	log M 0,n-1 (i, •) -nγ σ √ n	> x
		P S y m+1,n + s + t x +	1 √ n	, S y m+1,n + s > x ν i m,n (dy, ds, dt) +	C √ n
	=	1 {t 1 √ n } G y m+1,n x -s -t +	1 √ n	-G y m+1,n (x -s) ν i m,n (dy, ds, dt)
	+	C √ n	.			(5.22)

  .28)Hence,(5.15) follows from (5.26) and(5.28). This concludes the proof of Lemma 5.3. By Lemma 5.3, we get that there exists a constant C > 0 such that for all n 1, x ∈ R and 1 i d, Combining (5.29) with Lemma 5.2, we obtain the Berry-Esseen bound for log ||Z i n , for any 1 i d. This concludes the proof of Theorem 2.5.

	P	log Z i n -nγ σ √ n	x -P	log M 0,n-1 (i, •) -nγ σ √ n	x	C √ n	. (5.29)
		P	log Z i n -nγ σ √ n		x
		= P	log Z i n -nγ σ √ n		x,	log M 0,n-1 (i, •) -nγ σ √ n	x
		+ P	log Z i n -nγ σ √ n		x,	log M 0,n-1 (i, •) -nγ σ √ n	> x
		= P	log M 0,n-1 (i, •) -nγ σ √ n	x
		-P	log Z i n -nγ σ √ n	> x,	log M 0,n-1 (i, •) -nγ σ √ n	x
		+ P	log Z i n -nγ σ √ n		x,	log M 0,n-1 (i, •) -nγ σ √ n	> x .

Proof of Theorem 2.5. For n 1, x ∈ R and 1 i d, we write

where P -→ denotes the convergence in probability with respect to P. On the other hand, by [START_REF] Grama | A Kesten-Stigum type theorem for a supercritical multi-type branching process in a random environment[END_REF]Theorem 2.6 and Corollary 2.8] we know that under conditions (2.5) and γ > 0 the limit W i of the martingale (W i n ) is nondegenerate, and (2.6) holds. This, combining with condition H1, implies that W i > 0 P-a.s. for each 1 i d. Therefore, we obtain that for all 1 i d,

Putting together the relations (4.1)-(4.4), we get that for all 1 i d,

Using Lemma 4.1 for x = e i , we see that

Combining this with (4.5), we conclude the proof of Theorem 2.4.

Berry-Esseen bound for log Z i n

In this section, we prove Theorem 2.5 which gives a Berry-Esseen bound for the logarithm of the population size log Z i n , for any 1 i d. First, we formulate the following lemma giving the convergence in L 1 of log W i n to log W i with an exponential rate, for all 1 i d. Lemma 5.1. Assume conditions H1, H3 and γ > 0. Then there exist two constants C > 0 and δ ∈ (0, 1) such that for all n 0 and 1 i d,

Proof. For any n 0 and 1 i d, set

Then, for all n 0 and 1 i d we have

Let K ∈ (0, 1) be a constant. From (5.1) we get that for all n 0 and 1 i d,

In the following, C > 0 will be a constant which may depend on K, p and η, and which may differ from line to line. Now we control the two terms I 1 (n) and

, so for all n 0 and 1 i d,

Control of I 2 (n). Applying Theorem 2.3, we get that there exists a constant a > 0 such that E(W i ) -a < +∞ for any 1 i d. Recall that by Lemma 3.11 we have the implication H3 ⇒ (2.5). So (2.5) holds, and using Lemma 3.1 with the convex function x → x -a , this implies that for all 1 i d,

Combining (5.1), (5.4) and the inequality | log(x)| 2 C(x + x -a ) for x > 0, we obtain that for all 1 i d,

Applying Cauchy-Schwarz's inequality, (5.5) and Markov's inequality, we get that for all n 0 and 1 i d,

(5.6)