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CENTRAL LIMIT THEOREM AND PRECISE LARGE
DEVIATIONS FOR BRANCHING RANDOM WALKS WITH

PRODUCTS OF RANDOM MATRICES

THI THUY BUI, ION GRAMA, AND QUANSHENG LIU

Abstract. We consider a branching random walk where particles give
birth to children as a Galton-Watson process, which moves in Rd with
positions determined by the action of independent and identically dis-
tributed random matrices on the position of the parent. We are inter-
ested in asymptotic properties of the counting measure Zx

n which counts
the number of particles of generation n situated in a given region, when
the process starts with one initial particle located at x. We establish
a central limit theorem and a large deviation asymptotic expansion of
Bahadur-Rao type for Zx

n with suitable norming. An integral version of
the large deviation result is also established. One of the key points in the
proofs is the study of the fundamental martingale related to the spectral
gap theory for products of random matrices. As a by-product, we obtain
a sufficient and necessary condition for the non-degeneracy of the limit
of the fundamental martingale, which extends the Kesten-Stigum type
theorem of Biggins.

1. Introduction

Branching random walk is a system of particles, in which each particle
gives birth to new particles of the next generation, whose children move on
R or Rd according to some probability law. For early fundamental results on
this model, see for example [2, 3, 8, 10, 11]. In recent years, this topic has
attracted the attention of many authors, see for example, [1, 33, 23, 6, 19, 35,
42]. The model is closely related to various applied probability settings, such
as Mandelbrot’s cascades (cf. e.g. [36, 44, 5, 16, 49]), perpetuities (see e.g.
[51, 15, 34]) and branching Brownian motion (cf. e.g. [37, 18, 7, 48]). For
extensions to random environments in space and time, see e.g. [30, 21] and
[12, 39, 46, 26, 27]. For other related works and many references, see e.g. the
recent books [51, 15, 34]. In the classical branching random walk, a particle
whose parent is at position y, moves to position y+ l with independent and
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identically distributed (i.i.d.) increments l’s for different particles, so that the
moving is a simple random translation. The classical model does not cover
the interesting cases occurring in many applications where the movements
are determined by linear transformations such as rotations, dilations, shears,
reflections, projections etc. In this paper, we deal with the case where
the position of a particle is obtained by the action of a matrix A on the
position of its parent, where the matrices A’s corresponding to different
particles are i.i.d. In other words, the positions of particles are obtained
by the action of products of random matrices on the position of one initial
particle. This permits us to extend significantly the domains of applications
of the theory of branching random walks. However, the study of this model
becomes much more involved. One of the fundamental problems in the
theory of branching random walks is to give a precise description of the
configuration of the process at time n. We will consider this problem by
giving precise asymptotics of the counting measure Zxn which counts the
number of particles of generation n situated in a given region, when the
process begins with one initial particle situated at x. More precisely, for the
model that we introduce here, we will establish a central limit theorem and
a large deviation asymptotic expansion of Bahadur-Rao type for Zxn with
suitable norming.

To introduce the model we need some notation. Let N = {0, 1, 2, . . .} and
N∗ = {1, 2, . . .}. Set U := ∪∞n=0(N∗)n, where by convention (N∗)0 = {∅}.
A particle of generation n will be denoted by a sequence u = u1 · · ·un =
(u1, · · · , un) ∈ (N∗)n of length n; the initial particle will be denoted by
the null sequence ∅. Assume that on a probability space (Ω,F ,P) we are
given a set of independent identically distributed random variables (Nu)u∈U
of the same law p = {pk : k ∈ N}, and a set of independent identically
distributed d× d random matrices (Au)u∈U of the same law µ on the set of
d×d matricesM(d,R), where d > 1. The two families (Nu)u∈U and (Au)u∈U
are also assumed to be independent.

A branching random walk with products of random matrices is defined as
follows. At time 0, there is one initial particle ∅ of generation 0, with initial
position Y∅ := x ∈ Rd \ {0}. At time 1, the initial particle ∅ is replaced by
N = N∅ new particles i = ∅i of generation 1, located at Yi = AiY∅, 1 6 i 6
N . In general, at time n + 1, each particle u = u1 . . . un of generation n,
located at Yu ∈ Rd, is replaced by Nu new particles ui of generation n+ 1,
located at Yui = AuiYu, 1 6 i 6 Nu. Namely, the position of the particle
ui is obtained from the position Yu of u by the action of the matrix Aui,
so that the position Yu of a particle u in generation n > 1 is given by the
action of products of random matrices on the initial position x:

Yu = Gux, where Gu = Au1...un . . . Au1 . (1.1)
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Denote by T the genealogical tree associated to the elements {Nu : u ∈ U}.
It is defined by the following properties: 1) ∅ ∈ T; 2) when u ∈ T, then for
i ∈ N, ui ∈ T if and only if 1 6 i 6 Nu; 3) ui ∈ T implies u ∈ T. Let

Tn = {u ∈ T : |u| = n}

be the set of particles of generation n, where |u| denotes the length of the
sequence u and represents the number of generation to which u belongs; by
convention |∅| = 0.

The space Rd is equipped with the Euclidean norm | · |. The position Gux
of the particle u is completely described by two components: its norm |Gux|
and its projection on the unit sphere Sd−1 := {y ∈ Rd, |y| = 1} denoted by

Xx
u := Gux

|Gux|
.

Accordingly, we consider the following counting measure of particles of gen-
eration n which describes the configuration of the branching random walk
at time n: for measurable sets B ⊂ Sd−1 and C ⊂ R,

Zxn(B,C) =
∑
u∈Tn

1{Xx
u∈B,log|Gux|∈C}, (1.2)

where for a set D, 1D denotes its indicator function. In particular when
B = Sd−1 the measure (1.2) reduces to

Zxn(Sd−1, C) =
∑
u∈Tn

1{log |Gux|∈C}. (1.3)

The measure C 7→ Zxn(Sd−1, C) counts the number of particles of gener-
ation n with a given distance to the origin; the distributional function
Zxn(Sd−1, (−∞, y]) counts the number of particles of generation n situated
in the ball centered at 0 with radius ey. This information may be impor-
tant for example when we consider a model describing the infection by a
certain transmittable disease (an infected individual at time n leads to a
random number of infected individuals at time n+1 who move according to
random linear transformations in R2 or R3), where we would like to know
at time n how many infected individuals there are in a region with a given
distance from the origin. The measure (B,C) 7→ Zxn(B,C) gives more in-
formation. For example, when d = 2 and B = {eiθ : θ ∈ [θ1, θ2]} is an arc,
Zxn(B, (−∞, y]) counts the number of particles of generation n situated in
the region {reiθ : θ ∈ [θ1, θ2], r ∈ [0, ey]}.

When d = 1, x = 1 and Au 6= 0 for all u ∈ T, the measure defined
by (1.3) is exactly the counting measure considered in the classical model
of branching random walk on R starting from the origin 0 ∈ R, where
the position Su of a particle u = u1 · · ·un is given by Su = Lu1 + · · · +
Lu1...un , with Lu = log |Au|. So our model in the one dimensional case d = 1
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reduces essentially to the classical (additive) branching random walk. For
this reason, in the following we will focus on the case d > 2.

The present work aims to establish asymptotic properties of the counting
measure Zxn when it is suitably normalized, with |x| = 1 and d > 2. We
will consider two cases: when the matrices Au are nonnegative, and when
the matrices Au are invertible. Our first result is a central limit theorem
for the counting measure Zxn (see Theorem 2.1). It states that for any
fixed B ⊂ Sd−1 and some constants γ, σ defined explicitly, the counting
measure C 7→ Zxn(B,nγ + σ

√
nC) on R with a suitable norming converges

to the standard normal law. This result extends the corresponding one of
Asmussen and Kaplan [3, Theorem 1] on the one dimensional case, which was
first conjectured by Harris [31]. Our second result is a precise large deviation
result of Kesten-Stugum type (see Theorem 2.6), namely we give an exact
asymptotic for Zxn (B, [na,+∞)) for fixed B ⊂ Sd−1 and a in a natural range
of R. An extension to an integral version of the large deviation result with
target functions on the two components Xx

u and log |Gux| is also established
(see Theorem 2.4). These results extend the corresponding ones of Biggins
[10] on the one dimensional case to the multi-dimensional case.

The starting point in the proofs of our results is a decomposition formula
which permits to express the counting measure as the sum of conditionally
independent random variables, using the branching property like in the one
dimensional case for which we may refer to [3, 10]. However, there is much
to do to arrive to the conclusions in the multidimensional case, due to the
appearance of products of random matrices. In particular, for the proof of
Theorem 2.1 about the central limit theorem and Theorem 2.4 about the
precise large deviation with target functions, we use respectively the central
limit theorem and the recent progress on the spectral gap theory and precise
large deviations for products of random matrices. Another step forward in
the proof of Theorem 2.4 concerns the extension of Biggins’ martingale to
the case of branching products of random matrices, for which we prove a
criterion for the non-degeneracy of the limit of the fundamental martingale
(see Theorem 2.2) which completes a result of Mentemeier [49] obtained
in the context of the multivariate smoothing transform, and extends the
Kesten-Stigum type theorem of Biggins [8] on the classical branching random
walk.

The outline of the paper is as follows. The main results will be stated
in Section 2. Theorem 2.1 on the asymptotic normality of the counting
measure is proved in Section 3. The necessary and sufficient condition for
the non-degeneracy of the limit of the fundamental martingale is given in
Theorem 2.2 and Corollary 2.3, which are proved in Section 4. Theorem 2.4
on the precise asymptotic of large deviations, which implies Theorem 2.6, is
established in Section 5.
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2. Main results

In this section, we introduce necessary notation and assumptions, and
present the main results.

2.1. Notation and assumptions on products of random matrices.
Note that in our model, along each branch we encounter a product of ran-
dom matrices. In this section, we introduce some notation and the necessary
assumptions on products of random matrices in order to formulate our main
results. We shall consider two cases, the case when the matrices are non-
negative and the case when the matrices are invertible.

Let M(d,R) be equipped with the operator norm: for any a ∈ M(d,R)
we set ‖a‖ = supx∈Sd−1 |ax|, where | · | is a given vectorial norm on Rd, and
Sd−1 = {x ∈ Rd : |x| = 1} is the unit sphere in Rd. Denote by Γµ := [supp µ]
the smallest closed semigroup ofM(d,R) generated by the support of µ. Let
us recall some definitions in matrix theory. A matrix a ∈ M(d,R) is said
to be proximal if it has an algebraic simple dominant eigenvalue. Denote
byM+ the set of matrices with nonnegative entries. A nonnegative matrix
a ∈M+ is said to be allowable if every row and every column has a positive
entry.

We say that the measure µ is arithmetic if there is t > 0 together with
θ ∈ [0, 2π) and a function ϑ : Sd−1

+ → R such that

∀a ∈ Γ,∀x ∈ V (Γ) : exp[it log |ax| − iθ + i(ϑ(a ·x)− ϑ(x))] = 1,

where Sd−1
+ = {x > 0 : |x| = 1} is the intersection of the unit sphere with

the positive quadrant. Notice when d = 1, we have Sd−1
+ = {1}, and the

above arithmetic condition reduces to the following more usual form: log a
is almost surely concentrated on an arithmetic progression a0 +a1N for some
a0, a1 > 0.

We will need the following assumptions on the law µ.

C1.
(1) For invertible matrices:

(a) (Strong irreducibility)There is no finite union W =
⋃n
i=1Wi of

proper subspaces 0 6= Wi ( Rd which is Γµ-invariant (in the
sense that aW =W for each a ∈ Γµ)

(b) (Proximality) Γµ contains at least one proximal matrix.
(2) For nonnegative matrices:

(a) (Allowability) Every a ∈ Γµ is allowable.
(b) (Positivity) Γµ contains at least one matrix belonging to int(M+).
(c) (Non-arithmeticity) The measure µ is non-arithmetic.
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For both invertible matrices and nonnegative matrices, we will need a
moment condition. For a ∈M(d,R), set

ι(a) := inf
x∈S
|ax|, and a · x := ax

|ax| when ax 6= 0,

where a · x is called the projective action of the matrix a on the vector x ∈
Sd−1. Then ι(a) > 0 for both invertible matrices and allowable nonnegative
matrices. Set, for an invertible or nonnegative matrix a,

N(a) = max{‖a‖, ι(a)−1}.

For invertible matrices we have ι(a) = ‖a−1‖−1 andN(a) = max{‖a‖, ‖a−1‖}.

C2. (Moment condition) There exists η0 ∈ (0, 1) such that

E[N(A1)η0 ] <∞.

We will consider the action of invertible matrices on the projective space
Pd−1 which is obtained from Sd−1 by identifying x and −x, and the action
of nonnegative matrices on Sd−1

+ . For convenience, we identify x ∈ Pd−1

with one of its representants in Sd−1. To unify the exposition, we use the
symbol S to denote Pd−1 for invertible matrices, and Sd−1

+ for nonnegative
matrices. The space S will be equipped with the metric d, which is the
angular distance (see [13]) for invertible matrices, and the Hilbert cross-
ratio metric (see [32]) for nonnegative matrices. Moreover, S is a separable
metric space equipped with Borel σ-field.

Let Gn = An . . . A2A1 be the product of i.i.d. d× d real random matrices
Ai, defined on the probability space (Ω,F ,P), with common law µ. Let
x ∈ S be a starting point. As mentioned in the introduction, the random
walk Gnx is completely determined by its log norm and its projection on S,
denoted respectively by

Sxn := log |Gnx|, Xx
n := Gn ·x = Gnx

|Gnx|
, n > 0,

with the convention that G0x = x. Since Sxn = log |AnXx
n−1| + Sxn−1 and

Xx
n = An ·Xx

n−1, the sequence (Sxn, Xx
n)n>0 is a Markov chain.

Denote by E the expectation corresponding to P. By the law of large
numbers of Furstenberg [25], under conditions C1 and C2, we have

lim
n→∞

1
n
Sxn = lim

n→∞
1
n
E[Sxn] = γ P-a.s.,

where γ = infn∈N 1
nE log ‖Gn‖ is the upper Lyapunov exponent associated

with the product sequence (Gn). Le Page [40] and Henion [32] showed that

σ2 = lim
n→∞

1
n
E (Sxn − nγ)2 (2.1)
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exists and is independent of x for invertible matrices and nonnegative ma-
trices, respectively. Moreover, there exists a unique µ-stationary probability
measure ν on S (see [29, 16]); the µ-stationarity of ν means that µ ∗ ν = ν,
that is, for any continuous function ϕ on S,

(µ ∗ ν)(ϕ) :=
∫
S

∫
Γµ
ϕ(a ·x)µ(da)ν(dx) = ν(ϕ).

where ν(ϕ) =
∫
S ϕ(x)ν(dx). This notation for the integral will be used for

any function and any measure. Set
Iµ = {s > 0 : E‖A1‖s <∞}.

Note that Iµ is an interval of R+. Let s∞ = sup Iµ. Define the transfer
operator on the set C(S) of continuous functions on S as follows: for any
s ∈ (−η0, s∞), and f ∈ C(S),

Psf(x) = E[|A1x|sf(A1 ·x)], for all x ∈ S. (2.2)
It is known that under conditions C1, and C2, there exists a small constant
0 < η1 < η0 such that for any s ∈ (−η1, s∞), there are a unique probability
measure νs and a unique Hölder continuous normalized function rs (under
the normalizing condition νs(rs) = 1) on S satisfying

νsPs = κ(s)νs and Psrs = κ(s)rs, (2.3)
where κ(s) is the unique dominant eigenvalue of Ps, νsPs is the measure
on S such that (νsPs)(f) = νs(Psf) for all f ∈ C(S). For s ∈ [0, s∞), the
property (2.3) is proved in [16, Proposition 3.1] and [17, Corollary 7.3] for
positive matrices, and in [29, Theorem 2.6 and Corollary 3.20] for invertible
matrices. For both positive matrices and invertible matrices, the existence of
η1 > 0 and the property (2.3) for complex-valued s with |s| < η1 are proved
in [55, Proposition 3.1], where the following properties are also established:
the functions s 7→ κ(s) and s 7→ rs(x) are strictly positive and analytic in
(−η1, s∞), for x ∈ S. Below we shall make use of normalized function rs,
i.e. rs(x) 6 1 for all x ∈ S, s ∈ (−η1, s∞). Moreover, it is proved (see [29,
Lemma 3.5], [16, Lemma 6.2], [55, Propositions 3.12 and 3.14]) that, under
conditions C1 and C2, the function

Λ(s) = log κ(s)
is finite and analytic on (−η1, s∞), and satisfies

Λ(0) = 0, Λ′(0) = γ, Λ′′(0) = σ2 > 0, and Λ′′(s) > 0 ∀s ∈ (−η1, s∞).

2.2. Main results. Note that the population size at time n is Zn = Zxn(S,R),
which does not depend on the starting point x and forms a Galton-Watson
process with Z0 = 1 and Z1 = N . Denote by m = EN the expected value
of the offspring distribution. Throughout the paper, we shall assume that
1 < m <∞, which ensures that the branching process (Zn) is supercritical,
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so that Zn →∞ as n→∞ with positive probability. It is well known that
EZn = mn. Let

Wn = Zn
mn

for n > 0, and W = lim
n→∞

Wn.

The sequence {Wn} is the fundamental martingale for the Galton-Watson
process (Zn); the limit above exists almost surely by the martingale con-
vergence theorem. The famous Kesten-Stigum theorem states that W is
non-degenerate if and only if EN log+N <∞ (see [4]), where and through
this paper log+ x = max{0, log x} denotes the positive part of log x. We will
need the following slightly stronger condition.

C3. There exists a constant η > 1 such that

EN logη+1
+ N <∞. (2.4)

We start with a central limit theorem for the normalized counting measure
(1.2). For t ∈ R, let

Zxn(B, t) = Zxn

(
B, (−∞, nγ + tσ

√
n]
)

=
∑
u∈Tn

1{Xx
u∈B,

log |Gux|−nγ
σ
√
n

6t}.

Theorem 2.1. Assume that the law µ of the radom matrices satisfies condi-
tions C1 and C2. Assume also that the offspring distribution satisfies con-
dition C3. Then, for any x ∈ S, any measurable set B ⊆ S with ν(∂B) = 0
and any t ∈ R, we have, as n→∞,

Zxn(B, t)
mn

→ ν(B)Φ(t)W P-a.s., (2.5)

where Φ(t) = 1√
2π
∫ t
−∞ e

−x2/2dx is the distribution function of the standard
normal law.

For the one dimensional case (where d = 1), the result is due to Asmussen
and Kaplan [3, Theorem 1], which was first conjectured by Harris [31, p.75]
but with convergence in probability instead of the a.s. convergence in (2.5).
Harris’ conjecture was first solved by Stam [52], then improved by Asmussen
and Kaplan [2, 3] to L2-convergence and a.s. convergence. More general
cases have been considered by Klebaner [38] and Biggins [11], who studied
respectively the varying environment case and the general branching random
walk where the displacements of particles with the same parent may have
different laws. The random environment case has been considered by Gao,
Liu and Wang [28]. The exact convergence rate in (2.5) has been considered
by Chen [18] and Gao and Liu [26]. Asymptotic expansions have been
obtained in [27]. Theorem 2.5 open ways for extending some results in
[2, 18, 28, 26, 27] to the multi-dimensional case where the moving of particles
is determined by products of random matrices.
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Our second main result is on the large deviation for the counting measure
Zxn. To study the large deviation of the measure Zxn, a natural way would
be to consider its Laplace transform defined by, for (s1, s2) ∈ R2,

Z̃xn(s1, s2) =
∫
R2
es1y1+s2y2Zxn(dy1, dy2) =

∑
u∈Tn

es1Xx
u+s2Sxu .

In the one dimensional case, when x = 1 and An > 0, we have Xx
u = 1,

so that Z̃xn(s1, s2)/EZ̃xn(s1, s2) reduces to Biggins’ fundamental martingale
of the branching random walk:∑

u∈Tn e
s2Sxu

E
[∑

u∈Tn e
s2Sxu

] , n > 0, (2.6)

which has been well studied (see [8], for example), and which plays an es-
sential role in many problems. However, in the multidimensional case, in
general the sequence (2.6) is no longer a martingale, nor the sequence

Z̃xn(s1, s2)
EZ̃xn(s1, s2)

=
∑
u∈Tn e

sSxu+s′Xx
u

E
[∑

u∈Tn e
sSxu+s′Xx

u
] , n > 0, (2.7)

for (s1, s2) ∈ R2. So an important difficulty arises when we mimic Cramér’s
change of measure for random walks by use of the Laplace transform of Zxn.

However, there is still a natural martingale in the present setting. By the
spectral gap property (2.3), it is easy to verify that (see Section 4 for more
details), for s ∈ (−η1, s∞) and x ∈ S, the sequence

W x
s,n :=

∑
u∈Tn e

sSxurs(Xx
u)

mnκ(s)nrs(x) , n > 0, (2.8)

constitutes a positive martingale with respect to the natural filtration
F0 = {∅,Ω} and Fn = σ(Nu, Aui : i > 1, |u| < n) for n > 1,

as observed by Mentemeier [49] in the study of the multivariate smoothing
transform. By the martingale convergence theorem, the limit

W x
s := lim

n→∞
W x
s,n exists in R P-a.s.

It turns out that the martingale (W x
s,n) in the multidimensional case plays

the same rule as Biggins’ fundamental martingale for one dimensional case,
for large deviations.

Just as in the case of Biggins’ martingale, it is crucial to know when the
limit variable Wx

s of the fundamental martingale W x
s,n is non-degenerate.

When the matrices Au are nonnegative and s > 0, Mentemeier [49, Propo-
sition 4.4] gave a sufficient condition for W x

s to be non-degenerate. In the
following we complete his result by considering the necessary and sufficient
conditions, and by treating meanwhile the case s < 0 and the case of invert-
ible matrices.
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We first establish the following theorem, whose proof is deferred to Section
4. To state the result, we need some notation. For s ∈ (−η1, s∞), set
Λ∗(qs) = sqs−Λ(s) with qs = Λ′(s). Since Λ′′(s) > 0 and ∂

∂sΛ
∗(qs) = sΛ′′(s),

Λ∗(qs) attaints its minimum at s = 0, so that Λ∗(qs) > Λ∗(q0) = −Λ(0) = 0
for all s ∈ (−η1, s∞).

Theorem 2.2. Assume conditions C1, C2. If

Λ∗(qs)− logm < 0 (2.9)

and

E[max
x∈S

W x
s,1 log+ max

x∈S
W x
s,1] <∞, (2.10)

then for all x ∈ S,
E[W x

s ] = 1. (2.11)
Conversely, if

E[W x
s ] > 0 (2.12)

for some x ∈ S, then (2.9) holds, and

E[min
x∈S

W x
s,1 log+ min

x∈S
W x
s,1] <∞. (2.13)

Corollary 2.3. Suppose the conditions C1, C2.
(1) Assume (2.9) together with

EN log+N <∞ and E‖A1‖s log+ ‖A1‖ <∞. (2.14)

Then (2.11) holds for all x ∈ S.
(2) Assume that the random matrice A1 = (A1(i, j)) satisfies the Furstenberg-

Kesten condition: there exists a constant C > 1 such that
max16i,j6d |A1(i, j)|
min16i,j6d |A1(i, j)| 6 C a.s. (2.15)

Then the three conditions (2.10), (2.13) and (2.14) are equivalent,
and (2.12) holds for all x ∈ S if and only if (2.9) and (2.14) hold.
Moreover, if (2.12) holds for some x ∈ S, then (2.11) holds for all
x ∈ S.

Notice that by Sheffé’s theorem, for each x ∈ S, if (2.12) holds, then
W x
s,n →W x

s in L1. So the martingale (W x
s,n) converges in L1 for some x ∈ S

if and only if (2.9) and (2.14) hold; moreover, when the martingale converges
in L1 for some x ∈ S, then it converges in L1 for all x ∈ S.

When the matrices Au are nonnegative and s > 0, Part (1) has been
established by Mentemeier [49, Proposition 4.4]. When d = 1, Part (2)
is essentially the well-known Kesten-Stigum type theorem for the classical
branching random walk on the real line, due to Biggins [8]; see also [36] for
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Mandelbrot’s cascades and [47, 43] for versions which are slightly different
to the initial result of Biggins [8].

Now we consider the precise large deviations for Zxn with target functions
f and g on the components Xx

u = Gu ·x and Sxu = log |Gux|. More precisely,
we shall study the asymptotic of the large deviations of the following integral:∫

S×R
f(y)g(z − nqs)Zxn(dy, dz) =

∑
u∈Tn

f(Xx
u)g(Sxu − nqs). (2.16)

Our result will be stated under the very general assumption that e−szg(z),
z ∈ R is directly Riemann integrable, see Feller [24], Chapter XI.

Theorem 2.4. Assume conditions C1 and C2, and let s ∈ (−η1, s∞) be
fixed such that Λ∗(qs)− logm < 0 and that

E
[
max
x∈S

W x
1 (s) logδ+1

+ max
x∈S

W x
1 (s)

]
<∞ for some δ > 3/2. (2.17)

Then for any continuous function f on S and any measurable function g on
R such that z 7→ e−szg(z) is directly Riemann integrable, we have

lim
n→∞

√
2πnσsenΛ∗(qs)

mn

∫
S×R

f(y)g(z − nqs)Zxn(dy, dz)

= W x
s rs(x)πs

( f
rs

) ∫
R
e−szg(z)dz, P-a.s., (2.18)

where πs
(
f
rs

)
= νs(f)

νs(rs) , and σ2
s = Λ′′(s).

When s = 0 this result reduces to the following local limit theorem for
the counting measure Zxn:

Corollary 2.5. Assume conditions C1 and C2. Assume also that (2.17)
holds with s = 0. Then

lim
n→∞

σ
√

2πn
mn

∫
S×R

f(y)g(z − nγ)Zxn(dy, dz) = Wν(f)
∫
R
g(z)dz.

When f = 1 and g = 1[a,b] with −∞ < a < b < ∞, it gives the precise
asymptotic of Zxn(S, nγ + [a, b]) as n→∞.

The following theorem describes the asymptotic size of the number of
particles in n-th generation situated in the regions (B, [enqs ,+∞)) for s > 0,
and (B, (0, enqs ])) for s < 0, where B ⊆ S.

Theorem 2.6. Assume the conditions of Theorem 2.4. Then, for any x ∈ S,
any measurable set B ⊆ S with ν(∂B) = 0, we have, P-a.s., for s > 0,

lim
n→∞

√
2πnσs enΛ∗(qs)Z

x
n (B, [nqs,+∞))

mn
= 1
s
W x
s rs(x)

∫
B

1
rs(y)πs (dy) ,
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and for s < 0,

lim
n→∞

√
2πnσs enΛ∗(qs)Z

x
n (B, (−∞, nqs])

mn
= 1
s
W x
s rs(x)

∫
B

1
rs(y)πs (dy) .

This theorem is obtained from Theorem 2.4 by taking g = 1[0,+∞) when
s > 0, and g = 1(−∞,0] when s < 0, and by using a smooth approximation
of indicator function (see [14, Lemma 4.1]).

In the one dimensional case (where d = 1), Theorems 2.4 and 2.6 reduce to
the Bahadur-Rao type results of Biggins [10]. The large deviation principle
was established earlier by Biggins in [9].

3. Proof of Theorem 2.1

This section is devoted to prove Theorem 2.1, the central limit theorem
on the counting measure Zxn.

3.1. Basic decomposition. For all u ∈ U, let T(u) be the shifted tree
of T at u associated to the elements {Nuv}. It is defined by the following
properties: 1) ∅ ∈ T(u), 2) vi ∈ T (u) implies v ∈ T(u) and 3) if v ∈ T (u),
then vi ∈ T(u) if and only if 1 6 i 6 Nuv. Define Tn(u) = {v ∈ T(u) : |v| =
n}. Then T = T(∅) and Tn = Tn(∅).

It follows from the additive property of the branching process that, for
k 6 n, any measurable set B ⊆ S and any Borel set C in R,

Zxn(B,C) =
∑
u∈Tk

∑
v∈Tn−k(u)

1{Xx
uv∈B,Sxuv∈C}

=
∑
u∈Tk

Z
Xx
u

n−k(B,C − S
x
u), (3.1)

where

Z
Xx
u

n−k(B,C − S
x
u) =

∑
v∈Tn−k(u)

1
{XXxu

v ∈B,SX
x
u

v ∈C−Sxu}

represents the number of descendants of u at time n in the region charac-
terized by (B,C − Sxu), and C − Sxu = {y − Sxu : y ∈ C}. In this section,
we consider C = (−∞, nγ + tσ

√
n], t ∈ R. For simplicity, we will use the
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following notation:

Zxn(B, t) =
∑
u∈Tn

1{Xx
u∈B,

log |Gux|−nγ
σ
√
n

6t},

Z
Xx
u

n−k(B, t) =
∑

v∈Tn−k(u)
1
{XXxu

v ∈B,S
Xxu
v −(n−k)γ
σ
√
n−k 6t}

,

Z
Xx
u

n−k(B,R) =
∑

v∈Tn−k(u)
1
{XXxu

v ∈B}
,

W
Xx
u

n−k(B, t) =
Z
Xx
u

n−k(B, t)
mn−k ,

W
Xx
u

n−k = W
Xx
u

n−k(S,R) =
Z
Xx
u

n−k(S,R)
mn−k .

Notice that ZX
x
u

n−k(S,R) is the population size of generation n − k of the
Galton-Watson process beginning from the particle u (whose genealogical
tree is the shifted tree of T at u). So ZX

x
u

n−k(S,R) and WXx
u

n−k do not depend
on the position of u.

For conditional probabilities and expectations, we write

Pn(·) = P(·|Fn), En(·) = E(·|Fn).

We obtain the following decomposition from (3.1), which will play a key role
in our approach:

1
mn

Zxn(B, t)− ν(B)Φ (t)W

= 1
mn

∑
u∈Tkn

Z
Xx
u

n−kn

(
B,

tσ
√
n− Sxu + kγ

σ
√
n− k

)
− ν(B)Φ (t)W

= An +Bn + Cn, (3.2)

where

An = 1
mkn

∑
u∈Tkn

{
W

Xx
u

n−kn

(
B,

tσ
√
n− Sxu + kγ

σ
√
n− k

)

− Ekn
[
W

Xx
u

n−kn

(
B,

tσ
√
n− Sxu + kγ

σ
√
n− k

)]}
,

Bn = 1
mkn

∑
u∈Tkn

{
Ekn

[
W

Xx
u

n−kn

(
B,

tσ
√
n− Sxu + kγ

σ
√
n− k

)]
− ν(B)Φ (t)

}
,

Cn = (Wkn −W ) ν(B)Φ (t) .

The idea is now to choose suitable kn with kn →∞ such that An, Bn, Cn → 0
a.s.
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3.2. Proof of Theorem 2.1. We choose β with 1
η < β < 1 and α > 2

β−1−1 .
For each n, let j = j(n) ∈ N be such that jα/β 6 n < (j + 1)α/β; set
kn = aj = bjαc, the integer part of jα. We will prove that with this choice
of (kn), we have An, Bn, Cn → 0 a.s. By the decomposition (3.2), this will
imply Theorem 2.1.

By the convergence of the martingale Wn to W , we have clearly Cn → 0,
P-a.s. It remains to show the following two lemmas.

Lemma 3.1. Under the hypothesis of Theorem 2.1, we have

An
n→∞−→ 0 P-a.s. . (3.3)

Lemma 3.2. Under the hypothesis of Theorem 2.1, then

Bn
n→∞−→ 0 P-a.s. . (3.4)

For the proof of Lemma 3.1, We shall use the following result on the
weighted moments of W ∗ := supn{Wn}, which is proved in Liang and Liu
[41, Theorem 1.2].

Lemma 3.3. Under the hypothesis of Theorem 2.1, then

E(W ∗ + 1) logη(W ∗ + 1) <∞. (3.5)

Proof of Lemma 3.1. By definition, An = 1
mkn

∑
u∈Tkn Yn,u, where

Yn,u = W
Xx
u

n−kn

(
B,

tσ
√
n− Sxu + kγ

σ
√
n− k

)
− Ekn

[
W

Xx
u

n−kn

(
B,

tσ
√
n− Sxu + kγ

σ
√
n− k

)]
.

We see that for any u ∈ Tkn ,

|Yn,u| 6WXx
u

n−kn(S,R) + EknW
Xx
u

n−kn(S,R)

= W
Xx
u

n−kn + 1, (3.6)

where the last equality holds because WXx
u

n−kn = W
Xx
u

n−kn(S,R) represents the
fundamental martingale of the Galton-Watson process beginning with the
particle u ∈ Tkn . Let

Y n,u = Yn,u1{|Yn,u|<mkn} and An = 1
mkn

∑
u∈Tkn

Y n,u.

We will use the decomposition

An = (An −An) + (An − Ekn
[
An
]
) + Ekn

[
An
]
,

and prove that each of the three terms on the right side of this identity tends
to zero as n→∞. We divide the proof into 3 steps.
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Step 1. We first prove that An −An
a.s−→

n→∞
0, as a consequence of

∞∑
n=1

P(An 6= An) <∞. (3.7)

In fact, by the Lemma of Borel-Cantelli, (3.7) implies that a.s. An−An = 0
when n is large enough. By the definition of Y n,u and the inequality (3.6),
we have:

Pkn(An 6= An) 6
∑
u∈Tkn

Pkn(Yn,u 6= Y n,u) =
∑
u∈Tkn

Pkn(|Yn,u| > mkn)

6
∑
u∈Tkn

Pkn(WXx
u

n−kn + 1 > mkn).

Since the law of WXx
u

n−kn conditioned upon Fkn is that of Wn−kn , it follows
that

Pkn(An 6= An) 6 ZknP(Wn−kn + 1 > mkn) 6Wknm
knP(W ∗ + 1 > mkn)

6WknE
[
(W ∗ + 1)1{W ∗+1>mkn}

]
6

Wkn

(logmkn)η
E [(W ∗ + 1) logη(W ∗ + 1)] .

Taking expectation and denoting C = E [(W ∗ + 1) logη(W ∗ + 1)] (which is
finite by Lemma 3.3), we get P(An 6= An) 6 C

(logm)ηkηn
. Since kηn ∼ jαη ∼ nβη

and βη > 1, (3.7) is proved.

Step 2. We next prove that An − Ekn [An] a.s−→
n→∞

0, as a consequence of

∞∑
n=1

P
(
|An − Ekn [An]| > ε

)
<∞ ∀ε > 0 (3.8)

(by the Lemma of Borel-Cantelli). By Chebyshev’s inequality we have

Pkn(|An − Ekn [An]| > ε) 6 1
ε2Ekn(An − Ekn [An])2. (3.9)

By the definition of An and Fkn , and the fact that
(
Y n,u

)
u∈Tkn

is a sequence
of independent random variables under Ekn , we have

Ekn(An − Ekn [An])2 = 1
m2kn Ekn

[ ∑
u∈Tkn

(Y n,u − Ekn [Y n,u])
]2

= 1
m2kn

∑
u∈Tkn

(
Ekn

[
Y

2
n,u

]
−
[
EknY n,u

]2)
. (3.10)
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By the definition of Y n,u and Fubini’s theorem,

Ekn
[
Y

2
n,u

]
=

∫ ∞
0

2xPkn(|Y n,u| > x)dx

= 2
∫ ∞

0
xPkn(|Yn,u|1{|Yn,u|<mkn} > x)dx

= 2Ekn
∫ ∞

0
x1{|Yn,u|1{|Yn,u|<mkn}>x}

dx

6 2Ekn
∫ mkn

0
x1{|Yn,u|>x}dx =

∫ mkn

0
xPkn(|Yn,u| > x)dx.

Using (3.6), we obtain

Pkn(|Yn,u| > x) 6 Pkn(WXx
u

n−kn + 1 > x) = P(Wn−kn + 1 > x)
6 P(W ∗ + 1 > x).

Therefore,

Ekn
[
Y

2
n,u

]
6 2

∫ mkn

0
xP(W ∗ + 1 > x)dx. (3.11)

Using (3.9), (3.10) and (3.11) and then taking expectation, we obtain

P(|An − Ekn [An]| > ε) 6 2
ε2mkn

∫ mkn

0
xP(W ∗ + 1 > x)dx. (3.12)

We split the above integral according to x ∈ [0, e] and x ∈ (e,mkn ]. Using
P(W ∗ + 1 > x) 6 1, we see that∫ e

0
xP(W ∗ + 1 > x)dx 6 e2

2 . (3.13)

For the integral over (e,mkn ], using x1{W ∗+1>x} 6 (W ∗ + 1)logη(W ∗ + 1)
lnη x ,

we have∫ mkn

e
xP(W ∗ + 1 > x)dx 6 E

[
(W ∗ + 1) logη(W ∗ + 1)

] ∫ mkn

e

1
(ln x)η dx.

(3.14)

Taking a constant b ∈]1,m[, we get∫ mkn

e

1
(ln x)η dx =

∫ bkn

e

1
(ln x)η dx+

∫ mkn

bkn

1
(ln x)η dx

6 bkn + (mkn − bkn)
(kn ln b)η .
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From (3.12), (3.13) and (3.14), we obtain

P(|An − Ekn [An]| > ε) 6 1
ε2mkn

(
e2 + 2C

(
bkn + mkn − bkn

(kn log b)η
))

,

where C = E
[
(W ∗ + 1) logη(W ∗ + 1)

]
<∞ by Lemma 3.3. Therefore,

∞∑
n=1

P(|An − Ekn [An]| > ε)

6
e2

ε2

∞∑
n=1

1
mkn

+ 2C
ε2

( ∞∑
n=1

bkn

mkn
+
∞∑
n=1

mkn − bkn
mkn(kn log b)η

)
. (3.15)

Since kn ∼ jα ∼ nβ, 1 < b < m and βη > 1, the three series
∑∞
n=1

1
mkn

,∑∞
n=1( bm)kn and

∑∞
n=1

1
(kn log b)η converge. Therefore from (3.15), we get

(3.8).

Step 3. We finally prove that Ekn [An] a.s−→
n→∞

0, as a consequence of
∞∑
n=1

P
(
|Ekn [An]| > ε

)
<∞, ∀ε > 0 (3.16)

(again by the Lemma of Borel-Cantelli). By Markov’s inequality, the fact
that 0 = Ekn [An] = Ekn [An] + 1

mkn
Ekn

[∑
u∈Tkn Yn,u1{|Yn,u|>mkn}

]
, and the

inequality (3.6), we obtain:

P(|Ekn [An]| > ε) 6 1
ε
E
[
|Ekn [An]|

]
= 1
εmkn

E
{∣∣∣Ekn[ ∑

u∈Tkn

(−Yn,u)1{|Yn,u|>mkn}
]∣∣∣}

6
1

εmkn
E
{
Ekn

[ ∑
u∈Tkn

(WXx
u

n−kn + 1)1
{WXxu

n−kn+1>mkn}

]}
= 1
ε
E
[
(Wn−kn + 1)1{Wn−kn+1>mkn}

]
.

It follows that

P
(
|Ekn [An]| > ε

)
6

1
ε (logmkn)η

E [(W ∗ + 1) logη(W ∗ + 1)] .

Therefore, with C = E [(W ∗ + 1) logη(W ∗ + 1)] <∞ (by Lemma 3.3),
∞∑
n=1

P
(
|Ekn [An]| > ε

)
6

C

ε logηm

∞∑
n=1

1
kηn

<∞

since kηn ∼ jαη ∼ nβη and βη > 1. So (3.16) is proved.
So the proof of Lemma 3.1 is finished. �



18 THI THUY BUI, ION GRAMA, AND QUANSHENG LIU

The proof of Lemma 3.2 will be based on the following central limit the-
orem on the couple (Xx

n , S
x
n) (see Theorem 2.1, part (2) in [14]).

Lemma 3.4. Under the hypothesis of Theorem 2.1, for any measurable set
B ⊆ S with ν(∂B) = 0, we have

lim
n→∞

sup
(x,t)∈S×R

∣∣∣P(Xx
n ∈ B,

Sxn − nγ
σ
√
n
6 t
)
− ν(B)Φ (t)

∣∣∣ = 0.

Proof of Lemma 3.2. We first calculate the conditional expectation in the

definition of Bn. Denoting tn := tσ
√
n− Sxu + knγ

σ
√
n− kn

and using the branching
property, we have

Ekn
[
W

Xx
u

n−kn(B, tn)
]

= 1
mkn

Ekn
[ ∑
v∈Tn−kn (u)

1{
X
Xxu
v ∈B,S

Xxu
v −(n−kn)γ
σ
√
n−kn

6tn

}]

= Pkn
(
X
Xx
u

n−kn ∈ B,
S
Xx
u

n−kn − (n− kn)γ
σ
√
n− kn

6 tn
)
.

Therefore, by the definition of Bn,

Bn = 1
mkn

∑
u∈Tkn

{
Pkn

(
X
Xx
u

n−kn ∈ B,
S
Xx
u

n−kn − (n− kn)γ
σ
√
n− kn

6 tn
)
− ν(B)Φ(t)

}

= 1
mkn

∑
u∈Tkn

{
Pkn

(
X
Xx
u

n−kn ∈ B,
S
Xx
u

n−kn − (n− kn)γ
σ
√
n− kn

6 tn
)
− ν(B)Φ(tn)

}

+ ν(B)
mkn

∑
u∈Tkn

[Φ (tn)− Φ(t)] .

Hence

|Bn| 6WknDn + ν(B)
mkn

∑
u∈Tkn

|Φ (tn)− Φ(t)| (3.17)

where

Dn = sup
(x,t)∈S×R

∣∣∣P(Xx
n−kn ∈ B,

Sxn−kn − (n− kn)γ
σ
√
n− kn

6 t
)
− ν(B)Φ (t)

∣∣∣.
The first term in the right hand side of (3.17) tends to 0 a.s. because, by
Lemma 3.4, we have

Dn
n→∞−→ 0 P-a.s.
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We now prove that the second term in the right hand side of (3.17) also
tends to 0 a.s. Remarking that

|Φ(tn)− Φ(t)| 6
∣∣∣Φ( tσ

√
n

σ
√
n− kn

)
− Φ(t)

∣∣∣+ ∣∣∣Φ( tσ
√
n

σ
√
n− kn

)
− Φ(tn)

∣∣∣
6

∣∣∣Φ( tσ
√
n

σ
√
n− kn

)
− Φ(t)

∣∣∣+ ∣∣∣ tσ
√
n

σ
√
n− kn

− tn
∣∣∣

(since |Φ(x+ h)− Φ(x)| 6 |h| for any x, h ∈ R), we obtain
1
mkn

∑
u∈Tkn

|Φ (tn)− Φ(t)|

6 Wkn

∣∣∣Φ( tσ
√
n

σ
√
n− kn

)
− Φ(t)

∣∣∣+ 1
mkn

∑
u∈Tkn

|Sxu − knγ|
σ
√
n− kn

. (3.18)

It is clear that the first term in the above display tends to 0 a.s. as n→∞.
So we need only to prove that the second term also tends to 0 a.s. Recall
that aj = kn and notice that n − kn ∼ n ∼ k

1/β
n = jα/β. So it suffices to

show that

Mj := 1
maj

∑
u∈Taj

j
− α

2β |Sxu − ajγ| → 0 P-a.s. as j → +∞. (3.19)

Notice that
∞∑
j=1

E[Mj ] =
∞∑
j=1

j
− α

2βE[|Sxaj − ajγ|]

6
∞∑
j=1

j
− α

2β
√
E[(Sxaj − ajγ)2]

=
∞∑
j=1

j
− α

2β a
1/2
j

√√√√E[(Sxaj − ajγ)2]
aj

<∞,

where the last series converges by the expression of σ2 (cf. (2.1)) and the
fact that j−

α
2β a

1
2
j ∼ j

−α2
(

1
β
−1
)
with α

2 ( 1
β − 1) > 1. Thus

∑∞
j=1Mj <∞ a.s.,

which implies (3.19). So, by (3.18), the second term in the right hand side
of (3.17) tends to 0 a.s. This ends the proof of Lemma 3.2. �

4. Proof of Theorem 2.2 and Corollary 2.3

In this section we establish Theorem 2.2 and Corollary 2.3 about the non-
degeneracy of the limit variable W x

s of the fundamental martingale (W x
s,n).
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Let s ∈ (−η1, s∞) and x ∈ S be fixed. Consider the positive function

H(n, y) =
es log |y|rs( y

|y|)
[mκ(s)]nrs(x) , n > 0, y ∈ R∗.

Since rs is the eigenfunction of the operator Ps with respect to the eigenvalue
κ(s) (see (2.3)), we see that H is a mean-harmonic function (see [12]) in the
sense that for each n > 0 and u ∈ Tn,

E
[ Nu∑
i=1

H(n+ 1, AuiGux)|Fn

]
= H(n,Gux).

Indeed, we have:

E
[ Nu∑
i=1

H(n+ 1, AuiGux)|Fn

]
= E

[ Nu∑
i=1

es log |AuiGux|rs(Aui ·Xx
u)

[mκ(s)]n+1rs(x) |Fn

]

= es log |Gux|

[mκ(s)]n+1rs(x)E
[ Nu∑
i=1

es log(|AuiXx
u |)rs(Aui ·Xx

u)|Fn

]
= es log |Gux|mPsrs(Xx

u)
[mκ(s)]n+1rs(x)

= es log |Gux|rs(Xx
u)

[mκ(s)]nrs(x) .

Therefore

W x
s,n =

∑
u∈Tn

H(n,Gux) =
∑
u∈Tn

es log |Gux|rs(Xx
u)

[mκ(s)]nrs(x) , n > 0

is a positive martingale, so that the limit

W x
s = lim

n→∞
W x
s,n

exists a.s. with values in R+. For u ∈ U, denote

W
Xx
u

s,1 =
Nu∑
i=1

es log |AuiXx
u |rs(Aui ·Xx

u)
mκ(s)rs(Xx

u) ,

which represents the first term of the fundamental martingale corresponding
to the branching process starting from the particle u; in particular for u = ∅,
W

Xx
∅

s,1 (∅) = W x
s,1 with the usual convention that Xx

∅ = x.
For fixed s ∈ (−η1, s∞) and x ∈ S, the spectral gap property (2.3) allows

to define a probability measure Qx
s on (Ω,F) such that for any n ∈ N and
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any bounded and measurable function h on (S × R)n+1,

E
[esSxnrs(Xx

n)
κn(s)rs(x) h(Xx

0 , S
x
0 , . . . , X

x
n , S

x
n)
]

= EQxs [h(Xx
0 , S

x
0 , . . . , X

x
n , S

x
n)] , (4.1)

where EQxs denotes the expectation with respect to Qx
s . See [16, 17, 29] for

s > 0, and [55] for s < 0.

With the mean-harmonic function H specified above and the probability
measure Qx

s introduced here, from [12, Theorem 2.1] we obtain the following
result for the non-degeneracy of the limit W x

s . We use the usual notation
that x∧y = min{x, y}, and we denote by 1n = (1, · · · , 1) ∈ N∗n the sequence
of length n whose components are all equal to 1.

Lemma 4.1. For s ∈ (−η1, s∞) and x ∈ S, we have:
(i) E[W x

s ] = 1 if
∞∑
n=1

E
[
W

Xx
1n

s,1

(
H(n,G1nx)WXx

1n
s,1 ∧ 1

)
|Fn

]
<∞ Qx

s -a.s. (4.2)

(ii) E[W x
s ] = 0 if either

lim sup
n→∞

H(n,G1nx) =∞ Qx
s -a.s. (4.3)

or for all y > 0,
∞∑
n=1

E
[
W

Xx
1n

s,1 1
{H(n,G1nx)W

Xx1n
s,1 >y}

|Fn

]
=∞ Qx

s -a.s. (4.4)

4.1. Proof of Theorem 2.2.

Sufficient condition. We assume conditions (2.9) and (2.10), together with
C1 and C2, and we will prove (4.2) which, by Lemma 4.1, will imply that
E[W x

s ] = 1. By the definition of Qx
s (cf. (4.1)), we have

E
[
W

Xx
1n

s,1

(
(H(n,G1nx)WXx

1n
s,1 ) ∧ 1

)
|Fn

]
= E

[N1n∑
i=1

es log |A1niX
x
1n |rs(A1ni ·Xx

1n)
mκ(s)rs(Xx

1n)
(
(H(n,G1nx)WXx

1n
s,1 ) ∧ 1

)
|Fn

]
= EQxs

[
(H(n,G1nx)WXx

1n
s,1 ) ∧ 1|Fn

]
.
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By the extended Borel-Cantelli Lemma, we have

{ ∞∑
n=1

EQxs

[
(H(n,G1nx)WXx

1n
s,1 ) ∧ 1|Fn

]
<∞

}
Qxs -a.s.=

{ ∞∑
n=1

(
H(n,G1nx)WXx

1n
s,1 ∧ 1

)
<∞

}
. (4.5)

We shall prove that Qx
s -a.s, the term H(n,G1nx) → 0 exponentially and

W
Xx

1n
s,1 → ∞ subexponentially. This will imply that the two series in (4.5)

converge Qx
s -a.s., and thus conclude the proof of (4.2).

We first prove that H(n,G1nx) → 0 Qx
s -a.s. with an exponential rate.

We start by rewriting H(n,G1nx) in form

H(n,G1nx) =
rs(Xx

1n)
rs(x) exp

{
n
[
s
(Sx1n
n
− qs

)
+
(
sqs − log[mκ(s)]

)]}
. (4.6)

Recall that the function rs(.) is strictly positive and Hölder continuous on
the compact set S. It is therefore bounded from above and from below by
two positive constants. By the strong law of large numbers for Sx1n under
Qx
s (see [55, Proposition 3.12], [16, Theorem 6.1], [29, Theorem 3.10]),

lim
n→∞

Sx1n
n

= qs Qx
s -a.s. (4.7)

Therefore

lim sup
n→∞

1
n

logH(n,G1nx) = sqs − log[mκ(s)] Qx
s -a.s. (4.8)

By hypothesis sqs − log[mκ(s)] < 0, so H(n,G1nx) → 0 exponentially Qx
s -

a.s.

We next prove that WXx
1n

s,1 grows to infinity subexponentially Qx
s -a.s., in

the sense that

lim sup
n→∞

1
n

log+W
Xx

1n
s,1 = 0 Qx

s -a.s.

By the lemma of Borel-Caltelli, it is enough to prove that

∞∑
n=0

Qx
s

(
log+W

Xx
1n

s,1 > εn
)
<∞ ∀ε > 0. (4.9)
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By the definition of Qx
s and Fubini’s Theorem, we have

∞∑
n=0

Qx
s

(
log+W

Xx
1n

s,1 > εn
)

=
∞∑
n=0

E
[
W

Xx
1n

s,1 1
{log+ W

Xx1n
s,1 >εn}

]
6 E

[ ∞∑
n=0

max
x∈S

W x
s,11{log+ maxx∈SWx

s,1>εn}
]

6
1
ε
E
[

max
x∈S

W x
s,1 log+ max

x∈S
W x
s,1 + 1

]
,

which is finite by hypothesis (2.10). Therefore, the property (4.9) is proved.

Necessary condition. It suffices to prove that if either Λ∗(qs)− logm > 0 or
E
[
minx∈SW x

s,1 log+ minx∈SW x
s,1

]
=∞, then EW x

s = 0 for all x ∈ S. In the
following we consider three cases.

Case 1. Suppose that Λ∗(qs)− logm > 0. Then by (4.6) and (4.7) we see
that

lim
n→∞

H(n,G1nx) =∞, Qx
s -a.s. (4.10)

This implies E[W x
s ] = 0 by Lemma 4.1.

Case 2. Suppose that Λ∗(qs)− logm = 0. Then by (4.6),

H(n,G1nx) =
rs(Xx

1n)
rs(x) es(S

x
1n−nqs).

Since rs is bounded from below and from above by two positive constants,
using Lemma 4.2 below, we see that (4.10) still holds, which implies E[W x

s ] =
0 by Lemma 4.1, just as in the first case.

Here we have used the following law of iterated logarithm for products of
random matrices. For s = 0, it was established in [40, Theorem 5].

Lemma 4.2. Let s ∈ (−η1, s∞) and x ∈ S. Under conditions C1 and C2,

lim sup
n→∞

Sxn − nqs
σs
√

2n log logn
= 1 Qx

s -a.s.

This lemma can be proved in the same way as in the proof of Theorem
5 of [40], using Berry-Esseen’s bound for Sxn under the changed measure Qx

s

established in [55, Theorem 2.1] for s ∈ (−η1, 0] and in [17, Theorem 8.1]
for s ∈ (0, s∞). Since the proof is very similar, we omit the details.

Case 3. Assume that E
[
minx∈SW x

s,1 log+ minx∈SW x
s,1

]
=∞ and Λ∗(qs)−

logm < 0. We shall prove that (4.4) holds for all y > 0. By the definition
of Qx

s , we have

E
[
W

Xx
1n

s,1 1
{H(n,G1nx)W

Xx1n
s,1 >y}

|Fn

]
= EQxs

[
1
{H(n,G1nx)W

Xx1n
s,1 >y}

|Fn

]
.
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By the extended Borel- Cantelli lemma, we get, for y > 0,{ ∞∑
n=0

EQxs

[
1
{H(n,G1nx)W

Xx1n
s,1 >y}

|Fn

]
=∞

}
Qxs -a.s.= lim sup

n→∞

{
H(n,G1nx)WXx

1n
s,1 > y

}
.

Therefore, for y > 0, (4.4) holds if

Qx
s

(
lim sup
n→∞

{
H(n,G1nx)WXx

1n
s,1 > y

})
= 1. (4.11)

By (4.8), we see that (4.11) achieves if

lim sup
n→+∞

1
n

log+W
Xx
vn

s,1 = +∞, Qx
s -a.s.,

which is equivalent to

Qx
s

(
lim sup
n→∞

{
log+W

Xx
1n

s,1 > Mn

}
︸ ︷︷ ︸

=:Bn+1

)
= 1 ∀M > 0. (4.12)

We see that (4.12) follows from

Qx
s

( ∞∑
n=0

1Bn+1 =∞
)

= 1. (4.13)

To prove (4.13), notice that by the extended Borel-Cantelli lemma we have{ ∞∑
n=0

1Bn+1 <∞
} Qxs -a.s=

{ ∞∑
n=0

EQxs [1Bn+1 |Fn] <∞
}
. (4.14)

By the definition of Qx
s and Fubini’s theorem, we have, Qx

s -a.s.,
∞∑
n=0

EQxs [1Bn+1 |Fn] =
∞∑
n=0

E
[
W

Xx
1n

s,1 1
{log+ W

Xx1n
s,1 >Mn}

|Fn

]
>
∞∑
n=0

E
[

min
x∈S

W x
s,11{log+ minx∈SWx

s,1>Mn}|Fn

]
= E

[ ∞∑
n=0

min
x∈S

W x
s,11{log+ minx∈SWx

s,1>Mn}
]

>
1
M

E[min
x∈S

W x
s,1 log+ min

x∈S
W x
s,1 − 1

]
= +∞,

where the second equality holds since minx∈SW x
s,1 is independent of Fn,

and the last equality holds by hypothesis. Hence (4.13) follows from (4.14).
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4.2. Proof of Corollary 2.3. We will need the following result which was
established in [45] in a slightly weaker form. We use the convention that the
empty sum is taken to be 0.

Lemma 4.3. Let N,X1, X2, · · · be independent random variables with N ∈
N, Xi ∈ R+, P(N = 0) < 1 and P(X = 0) < 1. Assume that all the Xi have
the same law. Then

E
[( N∑

i=1
Xi

)
log+

( N∑
i=1

Xi

)]
<∞

if and only if

E(X1 log+X1) <∞ and E(N log+N) <∞.

Proof. The "if" part has been proved in [45]. The "only if" part is slightly
stronger than that in [45]. Let us give a short proof which is different to
that used in [45]. Since the function f(x) = x log+ x (with f(0) = 0) is
increasing, we have

E
[
f
( N∑
i=1

Xi

)]
> E

(
X1 log+X11{N>1}

)
= E(X1 log+X1)P(N > 1).

Therefore E(X1 log+X1) < ∞. Together with P(X1 = 0) < 1, this implies
that c := EX1 ∈ (0,∞). Since f is convexe on R+, by Jensen’s inequality,
we have

E
[
f
( N∑
i=1

Xi

)∣∣∣N] > f(E[ N∑
i=1

Xi

∣∣∣N]) = f (cN) = (cN) log+ (cN) .

Taking expectation, we get E
[∑N

i=1Xi log+

(∑N
i=1Xi

)]
> E[(cN) log+(cN)].

Hence E[(cN) log+(cN)] <∞, which is equivalent to EN log+N <∞. �

Then the three conditions (2.10), (2.13) and (2.14) are equivalent, and
(2.11) holds for all x ∈ S if and only if (2.9) and (2.14) hold. Moreover, if
(2.11) holds for some x ∈ S, then it holds for all x ∈ S.

Proof of Corollary 2.3. (1) Note that for s ∈ (−η1, s∞), the function rs(.)
is strictly positive and continuous on the compact set S. It is therefore
bounded from above and from below by two positive constants. From the
definition of W x

s,1 and ‖.‖, we observe that

E
[

max
x∈S

W x
s,1 log+ max

x∈S
W x
s,1

]
6 E

[ N∑
i=1

c‖Ai‖s log+

( N∑
i=1

c‖Ai‖s
)]
.

Therefore by Lemma 4.3, (2.14) implies (2.10). This ends the proof of the
fist part of Corollary 2.3.
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(2) By Theorem 2.2, to prove the second part of Corollary 2.3, it is enough
to show that (2.10), (2.13) and (2.14) are all equivalent.

Now we prove the equivalence according to the scheme: (2.10)⇒ (2.13)⇒
(2.14)⇒ (2.10). The implication (2.10)⇒ (2.13) is obvious; the implication
(2.14) ⇒ (2.10) is just proved above in part (1). So we only need to show
that (2.13) ⇒ (2.14). Set for k > 1,

Ak = max
16i,j6d

|Ak(i, j)| and Ak = min
16i,j6d

|Ak(i, j)|.

Since all norms on Rd are equivalent, we can take the norm |x| = |x1| +
|x2|+ . . .+ |xd|. Then for k > 1 and x ∈ S,

dAk 6 |Akx| =
∑

16i,j6d
|Ak(i, j)xj | 6 dAk.

Since the function rs on S is bounded from above and from below by two
positive constants, this implies that for some constant c1 > 0,

E
[

min
x∈S

W x
s,1 log+ min

x∈S
W x
s,1

]
> E

[ N∑
k=1

c1A
s
k log+

(
N∑
k=1

c1A
s
k

)]
.

Remark that under the Furstenberg-Kesten condition (2.15), E
[
As1 log+A

s
1
]
<

∞ if and only if E
[
‖A1‖s log+ ‖A1‖s

]
< ∞. Therefore, by Lemma 4.3 and

the above inequality, (2.13) implies (2.14). �

5. Proof of Theorem 2.4

In this section we will prove Theorem 2.4 , the precise large deviation
asymptotic of Bahadur-Rao type on the counting measure Zxn, using a uni-
form local limit theorem for products of random matrices that we recently
established in [14].

5.1. Auxiliary results. In the proof of Theorem 2.4 we make use of the
following three assertions. The first one is a local limit theorem for products
of random matrices under the changed measure Qx

s (see Proposition 5.1).
The second is an exponential bound of the large deviation probability of the
products of random matrices under Qx

s (see Proposition 5.2). The third gives
a relationship between moment conditions onW x

s,1 and onW x
s,∗ := supnW x

s,n

(see Proposition 5.3).
We start with a uniform local limit theorem for products of random matri-

ces under the changed measure Qx
s . Under the initial measure (when s = 0),

it has been established in [14].

Proposition 5.1. Under the conditions of Theorem 2.4, we have, for any
continuous function f on S and any directly Riemann integrable function h
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on R,

lim
n→∞

sup
(x,y)∈S×R

∣∣∣σs√nEQxs
[
f(Xx

n)h(y + Sxn − nΛ′(s))
]

− πs(f)
∫
R
h(z)φ

( z − y
σs
√
n

)
dz
∣∣∣ = 0, (5.1)

where φ(x) = 1√
2πe
−x2/2 is the density function of the standard normal law.

Proof. For λ > 0 sufficiently small, we introduce the Banach space Bλ =
{f ∈ C(S) : ‖f‖λ < +∞}, where

‖f‖λ := ‖f‖∞ + |f |λ,

with

‖f‖∞ := sup
x∈S
|f(x)|, |f |λ := sup

x,y∈S,x 6=y

|f(x)− f(y)|
dλ(x, y) .

For s ∈ (−η1, s∞) and t ∈ R, define the perturbed operator Rs,it on Bλ as
follows: for any ϕ ∈ Bλ,

Rs,itϕ(x) = EQxs

[
eit[S

x
1−Λ′(s)]ϕ(Xx

1 )
]
, x ∈ S.

By induction, it follows that for any n > 1,

Rns,itϕ(x) = EQxs

[
eit[S

x
n−nΛ′(s)]ϕ(Xx

n)
]
, x ∈ S.

For properties of this operator, we refer the reader to [54] for s ∈ (0, s∞)
and [55] for s ∈ (−η1, 0]. Since the proof of Theorem 2.4 is quite similar
to that of Theorem 2.2(1) in [14], we will not give the details here. The
only difference is that, instead of the properties of the operator R0,it used
in the proof in [14], here we use the properties of the operator Rs,it proved
in [54, 55].

�

We next present an exponential bound of the large deviation probability
of the products of random matrices under Qx

s . For s = 0, it has been
established in [54].

Proposition 5.2. Assume the conditions of Theorem 2.4. Let ε > 0. There
are C > 0 and 0 < c < 1 such that for all n > 1,

sup
x∈S

Qx
s

( |Sxn − nΛ′(s)|
n

> ε
)
6 Ccn. (5.2)

Proof. By the monotonicity in ε of the large deviation probability, it is clear
that it suffices to prove the inequality for ε > 0 small enough. By the formula
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of the changed measure (4.1), for any nonnegative and Borel function ϕ and
any point t ∈ (−η1, s∞), we have

EQxsϕ(Sxn) = κ(t)nrt(x)
κ(s)nrs(x)EQxt

[
e−(t−s)Sxn(r−1

t rs)(Xx
n)ϕ(Sxn)

]
.

Take ϕ(x) = 1(nΛ′(s)+nε,+∞)(x). Because Λ′′(s) > 0 for all s ∈ (−η1, s∞)
and Λ′(s) is continuous in s, for ε > 0 small enough, there is t ∈ (−η1, s∞)
with t > s such that Λ′(t) = Λ′(s) + ε. Hence

Qx
s

(
Sxn − nΛ′(s) > nε

)
= κ(t)nrt(x)
κ(s)nrs(x)EQxt

[e−(t−s)Sxnrs(Xx
n)

rt(Xx
n) 1{Sxn−nΛ′(s)>nε}

]
= en

[
−(t−s)Λ′(t)+Λ(t)−Λ(s)

]
rt(x)
rs(x)EQxt

[
f(Xx

n)h
(
Sxn − nΛ′(t)

)]
, (5.3)

where f(x) = rs(x)
rt(x) and h(x) = e−(t−s)x1{x>0}. Notice that h(x) 6 1 and

that f(x) is bounded from below and above by two positive constants be-
cause rt and rs are continuous and strictly positive on the compact set S.
Therefore from (5.3), we see that there exists a constant C1 > 0 such that
for all n > 1,

Qx
s

(
Sxn − nΛ′(s) > nε

)
6 C1e

n
[
−(t−s)Λ′(t)+Λ(t)−Λ(s)

]
. (5.4)

We now prove that

−(t− s)Λ′(t) + Λ(t)− Λ(s) < 0. (5.5)

To do this, we consider the function

ψ(y) = −yΛ′(s+ y) + Λ(s+ y)− Λ(s), y ∈ [0, s∞ − s),

which is continuous on the interval [0, s∞ − s). For y ∈ (0, s∞ − s), ψ′(y) =
−yΛ′′(s + y) < 0, so that ψ(y) < ψ(0) = 0. With y = t − s, this implies
(5.5). From (5.4) and (5.5), we see that for all n > 1,

sup
x∈S

Qx
s

(
Sxn − nΛ′(s) > nε

)
6 C1c

n
1 , (5.6)

where c1 = exp
{
− (t− s)Λ′(t) + Λ(t)− Λ(s)

}
< 1. In the same way, if we

take ϕ(x) = 1(−∞,nΛ′(s)−nε)(x) and t ∈ (−η1, s) such that Λ′(t) = Λ′(s)− ε,
then there are constants C2 > 0 and 0 < c2 < 1 such that

sup
x∈S

Qx
s

(
Sxn − nΛ′(s) < −nε

)
6 C2c

n
2 . (5.7)

The conclusion of the proposition follows from (5.6) and (5.7).
�
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We finally establish a relationship between moment conditions on W x
s,1

and on W x
s,∗.

Proposition 5.3. Assume the conditions of Theorem 2.4. Then

sup
x∈S

E
[
(W x

s,∗ + 1) logδ(W x
s,∗ + 1)

]
<∞.

For the proof, we will adapt the approach of Biggins [10] on the classical
branching random walk. The following recursive relations on W x

s,n and W x
s

will be used. First, it can be easily seen that for 1 6 k 6 n,

W x
s,n =

∑
u∈Tk

H(k,Gux)WXx
u

s,n−k, where H(k,Gux) = esS
x
urs(Xx

u)
[mκ(s)]krs(x) . (5.8)

From this recursive relation on W x
s,n, taking n→∞ we obtain the following

recursive relation on W x
s : for k > 1,

W x
s =

∑
u∈Tk

H(k,Gux)WXx
u

s , (5.9)

by our notation. The proof of Proposition 5.3 will be done with the help of
three lemmas.

Lemma 5.4. Assume the conditions of Theorem 2.4. Then

sup
x∈S

E
[
(W x

s + 1) logδ(W x
s + 1)

]
<∞. (5.10)

Proof of Lemma 5.4. Let

h(u) :=
{
c0u for 0 < u 6 x0,

c1 + c2 logδ u for u > x0 > 1,

where x0, c0, c1 and c2 are constants with x0 > 1, c0, c2 > 0, which make h
concave (and hence subadditive) and increasing. Then

h(uv) 6 C(1 + logδ+ u+ logδ+ v), ∀u, v > 0, (5.11)

when C > 0 is a large enough constant. Notice that to prove (5.10) we only
need show that

sup
x∈S

E[W x
s h(W x

s )] <∞. (5.12)
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Using (5.8) and the subadditivity of h, we have

E[W x
s,n+1h(W x

s,n+1)
∣∣∣Fn]

= E
[( ∑

u∈Tn
H(n,Gux)WXx

u
s,1

)
h
( ∑
u∈Tn

H(n,Gux)WXx
u

s,1

)∣∣∣Fn

]
6 E

[ ∑
u∈Tn

H(n,Gux)WXx
u

s,1 h
( ∑
t∈Tn,t 6=u

H(n,Gtx)WXx
t

s,1

)∣∣∣Fn

]
+ E

[ ∑
u∈Tn

H(n,Gux)WXx
u

s,1 h
(
H(n,Gux)WXx

u
s,1

)∣∣∣Fn

]
. (5.13)

For the first term, we see that H(n,Gtx) is Fn-measurable, WXx
u

s,1 and∑
t∈Tn,t 6=uH(n,Gtx)WXx

t
s,1 are conditionally independent given Fn. Hence

E
[ ∑
u∈Tn

H(n,Gux)WXx
u

s,1 h
( ∑
t∈Tn,t6=u

H(n,Gtx)WXx
t

s,1

)∣∣∣Fn

]
=
∑
u∈Tn

H(n,Gux) E
[
W

Xx
u

s,1

∣∣∣Fn

]
E
[
h
( ∑
t∈Tn,t 6=u

H(n,Gtx)WXx
t

s,1

)∣∣∣Fn

]
6
∑
u∈Tn

H(n,Gux) h
( ∑
t∈Tn,t 6=u

H(n,Gtx)E
[
W

Xx
t

s,1

∣∣∣Fn

])
6W x

s,n h(W x
s,n),

where the last two inequalities hold by Jensen’s inequality and the fact that
E
[
W

Xx
u

s,1

∣∣∣Fn

]
= 1 and h is a concave and increasing function. Therefore,

from (5.13),

E[W x
s,n+1 h

(
W x
s,n+1

)
] 6 E[W x

s,n h
(
W x
s,n

)
]

+ E
[ ∑
u∈Tn

H(n,Gux)WXx
u

s,1 h
(
H(n,Gux)WXx

u
s,1

) ]
.

So by recurrence on n and Fatou’s lemma, we obtain

E[W x
s h(W x

s )] 6 lim inf
n→∞

E[W x
n (s) h(W x

n (s))]

6 E[W x
s,1 h(W x

s,1)] +
∞∑
n=0

E
[ ∑
u∈Tn

H(n,Gux)WXx
u

s,1 h
(
H(n,Gux)WXx

u
s,1

)]
.

Hence to prove (5.12), it is enough to prove that

sup
x∈S

∞∑
n=1

E
[ ∑
u∈Tn

H(n,Gux)WXx
u

s,1 h
(
H(n,Gux)WXx

u
s,1

)]
<∞. (5.14)
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Note that the hypothesis Λ∗(qs)− logm < 0 implies that there exists b > 0
such that

Λ∗(qs)− logm < −b < 0. (5.15)

We write

E
[ ∑
u∈Tn

H(n,Gux)WXx
u

s,1 h
(
H(n,Gux)WXx

u
s,1

) ]
= In,1(x) + In,2(x),

where

In,1(x) = E
[ ∑
u∈Tn

H(n,Gux)WXx
u

s,1 h
(
H(n,Gux)WXx

u
s,1

)
1{H(n,Gux)6 e−bn

rs(x) }

]
,

In,2(x) = E
[ ∑
u∈Tn

H(n,Gux)WXx
u

s,1 h
(
H(n,Gux)WXx

u
s,1

)
1{H(n,Gux)> e−bn

rs(x) }

]
.

Control of In,1(x). Because h is an increase function, 1
rs

is bounded from
above by a positive constant c and E

[∑
u∈Tn H(n,Gux)

]
= E[W x

s,n] = 1, we
have

In,1(x) 6 E
[ ∑
u∈Tn

H(n,Gux)WXx
u

s,1 h
( e−bn
rs(x)W

Xx
u

s,1

)]

6 E
[ ∑
u∈Tn

H(n,Gux) E
[
W

Xx
u

s,1 h
( e−bn
rs(x)W

Xx
u

s,1

)∣∣∣Fn

]]
6 E

[
W̌s,1 h

(
ce−bnW̌s,1

)]
,

where W̌s,1 = maxx∈SW x
s,1. Set U =

{
ce−bnW̌s,1 > x0

}
and its complement

U c =
{
ce−bnW̌s,1 < x0

}
. From the definition and the property (5.11) of h,

we have

In,1(x) 6 C E
[
W̌s,1

(
1 + logδ+

(
ce−bn

)
+ logδ+ W̌s,1

)
1U

]
+ c0E

[
W̌s,1

(
ce−bnW̌s,1

)
1Uc

]
6 C E

[
W̌s,1

(
1 + logδ+ W̌s,1

)
1U

]
+ cc0e

−bnE
[(
W̌s,1

)2
1Uc

]
= In,1,1(x) + In,1,2(x). (5.16)
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We observe that ce−bnW̌s,1 > x0 leads to n 6 1
b log cW̌s,1

x0
. Let J =

⌊
1
b log+

cW̌s,1
x0

⌋
.

By Fubini’s theorem and hypothesis (2.17), we have

sup
x∈S

∞∑
n=1

In,1,1(x) 6 CE
[ ∞∑
n=1

W̌s,1
(
1 + logδ+ W̌s,1

)
1{n6J}

]
6 C1E

[
W̌s,1

(
1 + logδ+ W̌s,1

)
log+ W̌s,1

]
<∞,

and

sup
x∈S

∞∑
n=1

In,1,2(x) 6 cc0E
[(
W̌s,1

)2 ∞∑
n=1

e−bn1{n>J+1}
]

6 C2E
[(
W̌s,1

)2
e−b(J+1)

]
6 C3E

[
W̌s,1

]
<∞.

Hence we conclude that

sup
x∈S

∞∑
n=1

In,1(x) <∞. (5.17)

Control of In,2(x). Using the property (5.11) of the function h, we obtain

In,2(x) 6 CE
[ ∑
u∈Tn

H(n,Gux)WXx
u

s,1

(
1 + logδ+W

Xx
u

s,1

)
1{H(n,Gux)> e−bn

rs(x) }

]
+CE

[ ∑
u∈Tn

H(n,Gux)WXx
u

s,1 logδ+
(
H(n,Gux)

)
1{H(n,Gux)> e−bn

rs(x) }

]
.

From hypothesis (2.17), we get for each u ∈ U,

E
[
W

Xx
u

s,1

(
1 + logδ+W

Xx
u

s,1

) ]
<∞.

Taking C1 > 0 sufficiently large, we have

In,2(x) 6 C1E
[ ∑
u∈Tn

H(n,Gux)
{

1 + logδ+
(
H(n,Gux)

)}
1{H(n,Gux)> e−bn

rs(x) }

]
6 C1E

[ ∑
u∈Tn

H(n,Gux)
{

1 + logδ+
(
H(n,Gux)

)}
1{sSxu>n(log[mκ(s)]−b)}

]
.

By the definition of Qx
s , we have

In,2(x) 6 C1EQxs

[{
1 + logδ+

(
H(n,G1nx)

)}
1{sSxu>n(log[mκ(s)]−b)}

]
, (5.18)

where 1n = (1, · · · , 1) ∈ N∗n denotes the sequence of length n whose com-
ponents are all equal to 1, and H(n,G1nx) = esS

x
nrs(Xn)

[mκ(s)]nrs(x) by our notation.
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It is easy to see that if s = 0 then In,2(x) = 0 by the choice of b. Hence we
only consider the case where s 6= 0. We will prove that

sup
x∈S

∞∑
n=1

EQxs

[(
1 + logδ+H(n,G1nx)

)
1{sSxu>n(log[mκ(s)]−b)}

]
<∞.

We observe that

EQxs

[(
1 + logδ+H(n,G1nx)

)
1{sSxu>n(log[mκ(s)]−b)}

]
=
∞∑
k=n

EQxs

[(
1 + logδ+H(k,G1kx)

)
1{k(log[mκ(s)]−b)<sSk6(k+1)(log[mκ(s)]−b)}

]
6
(
1 + log+

(mκ(s)
rs(x)

)) ∞∑
k=n

Qx
s

(
sSk > k(log[mκ(s)]− b)

)
.

Set w = log[mκ(s)]−b
s , which is equal to logm+Λ(s)−b

s . By (5.15), we see that
w > Λ′(s). From Proposition 5.2, we have for some constants 0 < c < 1,
C > 0, and all k > 1,

sup
x∈S

Qx
s

(
sSk > ksw

)
6 sup

x∈S
Qx
s

( |Sk − kΛ′(s)|
k

> w− Λ′(s)
)
6 Cck.

This implies that for all x ∈ S,
∞∑
n=1

EQxs

[(
1 + logδ+H(n,G1nx)

)
1{sSxu>n(log[mκ(s)]−b)}

]
6 C3

∞∑
n=1

∞∑
k=n

ck <∞.

Therefore, by (5.18),

sup
x∈S

∞∑
n=1

In,2(x) <∞.

Hence Lemma 5.4 is proved. �

Lemma 5.5. Assume the conditions of Theorem 2.4. For any ε > 0, there
exists a constant B > 0 such that for any x ∈ S and any n > 0,

P
( W x

s

W x
s,n

− 1 > −ε
∣∣∣Fn

)
> B.

Proof of Lemma 5.5. Let ε > 0, x ∈ S and n > 0. Let T > 0. For u ∈ Tn,
set Yu = W

Xx
u

s − 1 and

Y T
u :=

{
Yu if Yu < T
T if Yu > T.
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Then Y T
u 6 Yu, and

P
( W x

s

W x
s,n

− 1 > −ε
∣∣∣Fn

)
= P

( 1
W x
s,n

∑
u∈Tn

H(n,Gux)Yu > −ε
∣∣∣Fn

)
> P

( 1
W x
s,n

∑
u∈Tn

H(n,Gux)Y T
u > −ε

∣∣∣Fn

)
. (5.19)

Using the facts that Y T
u 6 T and 1

Wx
s,n

∑
u∈Tn H(n,Gux) = 1, we have

E
[ 1
W x
s,n

∑
u∈Tn

H(n,Gux)Y T
u

∣∣∣Fn

]
= E

[( 1
W x
s,n

∑
u∈Tn

H(n,Gux)Y T
u

)
1{ 1

Wx
s,n

∑
u∈Tn

H(n,Gux)Y Tu 6−ε}

∣∣∣Fn

]
+ E

[( 1
W x
s,n

∑
u∈Tn

H(n,Gux)Y T
u

)
1{ 1

Wx
s,n

∑
u∈Tn

H(n,Gux)Y Tu >−ε}

∣∣∣Fn

]
6 (−ε) + T P

( 1
W x
s,n

∑
u∈Tn

H(n,Gux)Y T
u > −ε

∣∣∣Fn

)
. (5.20)

We now prove that the expectation in the above display is uniformly bounded
from below by −ε/2 when T is large enough. By Theorem 2.2, for each
u ∈ Tn, Yu satisfies

E(Yu|Fn) = E
[
WXx

u
s |Fn

]
− 1 = 0.

Using this and the definition of Y T
u , we have

E
[
Y T
u

∣∣∣Fn

]
= E

[
Yu1{Yu<T}

∣∣∣Fn

]
+ E

[
T1{Yu>T}

∣∣∣Fn

]
= E

[
Yu(1− 1{Yu>T})

∣∣∣Fn

]
+ E

[
(T1{Yu>T}

∣∣∣Fn

]
= −E

[
(Yu − T )+

∣∣∣Fn

]
,

where (Yu − T )+ = max(Yu − T, 0). Therefore

E
[ 1
W x
s,n

∑
u∈Tn

H(n,Gux)Y T
u

∣∣∣Fn

]
= − 1

W x
s,n

∑
u∈Tn

H(n,Gux)E
[
(Yu − T )+

∣∣∣Fn

]
.

Now

E
[
(Yu − T )+

∣∣∣Fn

]
6 sup

y∈S
E
[
(W y

s − 1− T )+
∣∣∣Fn

]
= sup

y∈S
E
[
(W y

s − 1− T )+
]

6 sup
y∈S

E
[
W y
s 1{W y

s >T}

]
T→+∞−→ 0,
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where the last step holds because by Lemma 5.10, the family of random
variables W y

s , y ∈ S is uniformly integrable. Let T > 0 be sufficiently large
such that

sup
y∈S

E
[
W y
s 1{W y

s >T}

]
< ε/2.

Then for all x ∈ S and n > 0,

E
[ 1
W x
s,n

∑
u∈Tn

H(n,Gux)Y T
u

∣∣∣Fn

]
> −1

2ε. (5.21)

Therefore, from (5.20), we obtain

P
( 1
W x
s,n

∑
u∈Tn

H(n,Gux)Y T
u > −ε

∣∣∣Fn

)
>

ε

2T .

Hence, it follows from (5.19) that the inequality in the lemma holds with
B = ε

2T . �

Lemma 5.6. Assume the conditions of Theorem 2.4. For any 0 < a < 1,
there exists a constant B > 0 such that for any x ∈ S and any t > 0,

P(W x
s > at) > BP(W x

s,∗ > t) > BP(W x
s > t).

Proof of Lemma 5.6. The second inequality is evident. We now prove the
first one. For t > 0, let

En = {W x
s,n > t,W

x
s,k < t for 0 6 k < n}, n > 1.

As En are pairwise disjoint sets, for each a ∈ (0, 1) and each t > 0,

P(W x
s > at) >

∞∑
n=1

P(W x
s > at | En)P(En). (5.22)

By (5.9), we have for each a ∈ (0, 1) and each t > 0,

P(W x
s > at | En) = P

( W x
s

W x
s,n

− 1 > at

W x
s,n

− 1
∣∣∣ En)

> P
( W x

s

W x
s,n

− 1 > a− 1
∣∣∣ En),

where the last step holds because W x
s,n > t on En. By using the fact that

En ∈ Fn and applying Lemma 5.5, we have

P
( W x

s

W x
s,n

− 1 > a− 1
∣∣∣ En) = E

[
P
( W x

s

W x
s,n

− 1 > a− 1
∣∣∣ Fn

) ∣∣∣ En] > B > 0,

where B is a constant independent of n. It follows from (5.22) that

P(W x
s > at) > B

∞∑
n=1

P(En) = BP(W x
s,∗ > t),

which proves the first inequality of the lemma.
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�

5.2. Proof of Theorem 2.4. By the definition of Λ∗(qs) and Zxn(dy, dz),
we have

I := enΛ∗(qs)

mnrs(x)

∫
S×R

f(y)g(z − nqs)Zxn(dy, dz)

= esnqs

[mκ(s)]nrs(x)
∑
u∈Tn

f(Xx
u)g(Sxu − nqs).

Set h(z) = e−szg(z), z ∈ R. For n > 1 and 0 6 k 6 n, we have the
decomposition

I = 1
[mκ(s)]nrs(x)

∑
u∈Tn

f(Xx
u)h(Sxu − nqs)esS

x
u

= 1
[mκ(s)]nrs(x)

∑
u∈Tkn

esS
x
u

∑
v∈Tn−kn (u)

esS
Xxu
v f(XXx

u
v )h(SXx

u
v + Sxu − nqs)

= 1
[mκ(s)]krs(x)

∑
u∈Tk

esS
x
urs(Xx

u)
∫
S×R

f(y)h(z + Sxu − nqs)
rs(y) W

Xx
u

s,n−kn(dy, dz),

where WXx
u

s,n−kn(dy, dz) is the probability measure defined as follows: for
measurable sets B ⊂ S and C ⊂ R,

W
Xx
u

s,n−k(B,C) =
∑

v∈Tn−k(u)

esS
Xxu
v rs(XXx

u
v )

[mκ(s)]n−krs(Xx
u)1{XXxu

v ∈B,SX
x
u

v ∈C}
.

Recall that for u ∈ Tkn , 0 6 kn 6 n,H(kn, Gux) = esS
x
urs(Xx

u)
[mκ(s)]knrs(x) . From the

preceding decomposition of I, we obtain

σs
√

2πnI −W x
s πs

( f
rs

) ∫
R
e−szg(z)dz = An +Bn + Cn, (5.23)
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where

An = σs
√

2πn
∑
u∈Tkn

H(kn, Gux)
∫
S×R

f(y)
rs(y)h(z + Sxu − nqs)(

W
Xx
u

s,n−kn(dy, dz)− Ekn
[
W

Xx
u

s,n−kn(dy, dz)
])
,

Bn =
∑
u∈Tkn

H(kn, Gux)
{
σs
√

2πn
∫
S×R

f(y)
rs(y)h(z + Sxu − nqs)

Ekn
[
W

Xx
u

s,n−kn(dy, dz)
]
− πs

( f
rs

) ∫
R
e−szg(z)dz

}
,

Cn =
(
W x
s,kn −W

x
s

)
πs
( f
rs

) ∫
R
e−szg(z)dz.

We choose kn as follows. Let β be such that 3
2δ < β < 1 and α > 2

β−1−1 .
For each n, let j = j(n) ∈ N be such that jα/β 6 n < (j + 1)α/β; set
kn = aj = bjαc. Then kn ∼ nβ.

We will prove that with the above choice of (kn), An, Bn, Cn → 0 a.s. By
the decomposition (5.23), this will imply Theorem 2.4. By the convergence
of the martingale W x

s,n to W x
s , we have clearly Cn → 0, P-a.s. It remains to

show that An → 0 and Bn → 0 P-a.s.

A) We first prove that An → 0 P-a.s. For u ∈ Tkn , write

Yu =
∫
S×R

f(y)
rs(y)h(z + Sxu − nqs)

(
W

Xx
u

s,n−kn(dy, dz)− Ekn
[
W

Xx
u

s,n−kn(dy, dz)
])
,

Ỹu = Yu1{|Yu|< 1
H(kn,Gux)}

Then

An = σs
√

2πn
∑
u∈Tkn

H(kn, Gux)Yu

= σs
√

2πn
∑
u∈Tkn

H(kn, Gux)Ekn [Ỹu] + σs
√

2πn
∑
u∈Tkn

H(kn, Gux)
(
Yu − Ỹu

)
+ σs
√

2πn
∑
u∈Tkn

H(kn, Gux)
(
Ỹu − Ekn [Ỹu]

)
= An,1 +An,2 +An,3,

with An,i denoting the corresponding sum. We will show that each of these
three terms tends to zero a.s. as n→∞. We divide the proof into 3 steps.
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Step 1. We prove that An,1
n→∞−→ 0 a.s. From the fact that 0 = Ekn [Yu] =

Ekn [Ỹu] + Ekn
[
Yu1{|Yu|> 1

H(kn,Gux)}
]
, we have

|An,1| 6 σs
√

2πn
∑
u∈Tkn

H(kn, Gux)Ekn
[
|Yu|1{|Yu|> 1

H(kn,Gux)}
]
. (5.24)

Notice that for C > 0 large enough, sup(y,z)∈S×R |
f(y)h(z)
rs(y) | 6 C. Using this

and the fact that Ekn
[
W

Xx
u

s,n−kn(S,R)
]

= Ekn
[
W

Xx
u

s,n−kn
]

= 1, we obtain

|Yu| 6 C
(
W

Xx
u

s,n−kn + 1
)
. (5.25)

This implies that

Ekn
[
|Yu|1{|Yu|> 1

H(kn,Gux)}
]
6 CEkn

[(
W

Xx
u

s,n−kn + 1
)
1
{WXxu

s,n−kn+1> 1
CH(kn,Gux)}

]
=: E(WXx

u
s,n−kn).

Let

U = {H(kn, Gux) > e−bkn

rs(x) }, (5.26)

where b is chosen as in the proof of Lemma 5.4. Denote its complement by
U c = {H(kn, Gux) 6 e−bkn

rs(x) }. We have

|An,1| 6 In,1 + In,2, (5.27)

where

In,1 = σs
√

2πn
∑
u∈Tkn

H(kn, Gux)E(WXx
u

s,n−kn)1U ,

In,2 = σs
√

2πn
∑
u∈Tkn

H(kn, Gux)E(WXx
u

s,n−kn)1Uc .

For the first term In,1, by using the facts that E(WXx
u

s,n−kn) 6 2C and U ⊆
{sSxu > kn(log[mκ(s)]− b)}, and the definition of Qx

s , we have

EIn,1 6 σs2C
√

2πnE
[ ∑
u∈Tkn

H(kn, Gux)1{sSxu>kn(log[mκ(s)]−b)}
]

= σs2C
√

2πnQx
s

(
sSx1kn > kn(log[mκ(s)]− b)

)
(5.28)

(recall that 1kn = (1, · · · , 1) is the sequence of length kn whose components
are all equal to 1). If s = 0, then E[In,1] = 0 by the choice of b. Hence we
only need to consider the case where s 6= 0, which we assume below. As in
the proof of Lemma 5.4, setting w = log[mκ(s)]−b

s , we have w > Λ′(s) by the
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choice of b. From Proposition 5.2, there are constants 0 < c < 1 and C1 > 0
such that

Qx
s

(
sSx1kn > kn(log[mκ(s)]− b)

)
6 Qx

s

( |Sx1kn − knΛ′(s)|
kn

> w− Λ′(s)
)

6 C1c
kn .

Hence, by (5.28), we get

∞∑
n=1

E[In,1] 6 C2

∞∑
n=1

cn
β
n

1
2 <∞. (5.29)

For the second term In,2, we see that

E(WXx
u

s,n−kn) 1Uc 6 C1UcEkn
[
(WXx

u
s,n−kn + 1)1

{WXxu
s,n−kn+1> rs(x)

Ce−bkn
}

]
6

C1Uc

logδ+
(

rs(x)
Ce−bkn

)Ekn[(WXx
u

s,n−kn + 1) logδ(WXx
u

s,n−kn + 1)
]

6
CC31Uc

1 + logδ+
(
rs(x)
C

)
+ (bkn)δ

,

where C3 = supx∈S E
[
(W x

s,∗ + 1) logδ(W x
s,∗ + 1)

]
< ∞ by Proposition 5.3.

Therefore, since kδn ∼ jαδ ∼ nβδ and βδ > 3/2, we have

∞∑
n=1

E[In,2] 6
∞∑
n=1

CC3σs
√

2πn
1 + logδ+

(
rs(x)
C

)
+ (bkn)δ

E[W x
s,kn ]

6 C4

∞∑
n=1

√
n

1 + nβδ
<∞. (5.30)

Putting together (5.27), (5.29) and (5.30), we get

∞∑
n=1

E[|An,1|] <∞.

Thus
∑∞
n=0 |An,1| <∞ a.s., which implies that An,1

n→∞−→ 0 a.s.
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Step 2. We prove that An,2
n→∞−→ 0 a.s. By the definition of Ỹu and

inequality (5.25), for any ε > 0,

Pkn
(
|An,2| > ε

)
6 Pkn

( ∑
u∈Tkn

H(kn, Gux)(Yu − Ỹu) 6= 0
)

6
∑
u∈Tkn

Pkn
(
Yu 6= Ỹu

)
=

∑
u∈Tkn

Pkn
(
|Yu| >

1
H(kn, Gux)

)
6

∑
u∈Tkn

Ekn
[
1
{W

Xx
kn

s,n−kn+1> 1
CH(kn,Gux)}

]
6

∑
u∈Tkn

Ekn
[
CH(kn, Gux)(W

Xx
kn

s,n−kn + 1)1
{W

Xx
kn

s,n−kn+1> 1
CH(kn,Gux)}

]
= C

σs
√

2πn
(In,1 + In,2),

where In,1 and In,2 are defined in Step 1. Therefore, from (5.29) and (5.30),
we get

∞∑
n=1

P(|An,2| > ε) 6
∞∑
n=1

C

σs
√

2πn
E (In,1 + In,2) <∞.

So by the lemma of Borel-Cantelli, we conclude that An,2 → 0 P-a.s.

Step 3. We prove that An,3
n→∞−→ 0 a.s. By Markov’s inequality and von

Bahr-Esseen’s inequality [53, Theorem 2] or Marcinkiewicz-Zygmund’s in-
equality [20, Theorem 1.5],

we have for any ε > 0 and 1 < θ < 2

Pkn(|An,3| > ε) 6 (σs
√

2πn)θ

εθ
Ekn

[∣∣∣ ∑
u∈Tkn

H(kn, Gux)(Ỹu − Ekn Ỹu)
∣∣∣θ]

6
2(σs
√

2πn)θ

εθ

∑
u∈Tkn

Hθ(kn, Gux)Ekn
[
|Ỹu − Ekn Ỹu|θ

]
6

4(σs
√

2πn)θ

εθ

∑
u∈Tkn

Hθ(kn, Gux)Ekn
[
|Ỹu|θ

]
6 Kn,1 +Kn,2, (5.31)

where

Kn,1 = 4(σs
√

2πn)θ

εθ

∑
u∈Tkn

Hθ(kn, Gux)1U Ekn
[
|Ỹu|θ

]
,

Kn,2 = 4(σs
√

2πn)θ

εθ

∑
u∈Tkn

Hθ(kn, Gux)1Uc Ekn
[
|Ỹu|θ

]
.



BRANCHING PRODUCTS OF RANDOM MATRICES 41

For the first term Kn,1, by the definition of Ỹu, it is easy to see that

Kn,1 = 4(σs
√

2πn)θ

εθ

∑
u∈Tkn

Hθ(kn, Gux)1UEkn
[
|Yu|θ1{|Yu|< 1

H(kn,Gux)}

]

6
4(σs
√

2πn)θ

εθ

∑
u∈Tkn

H(kn, Gux)1UEkn
[
|Yu|1{|Yu|< 1

H(kn,Gux)}

]
,

where the last inequality holds because on {|Yu| < 1
H(kn,Gux)}, we have

[H(kn, Gux)|Yu|]θ−1 < 1. Using the facts that Ekn [|Yu|] 6 2 and U ⊂ {sSxu >
kn(log[mκ(s)]− b)}, we get that

E[Kn,1] 6 8(σs
√

2πn)θ

εθ
Qx
s

(
sSx1kn > kn(log[mκ(s)]− b)

)
.

Similar to (5.29), with the same reason we get, for some constants 0 < c < 1
and C > 0,

∞∑
n=1

E[Kn,1] < C
∞∑
n=1

cn
β
n
θ
2 <∞. (5.32)

For the second term Kn,2, using the definition of Ỹu, Fubini’s theorem and
inequality (5.25), we have

Ekn [|Ỹu|θ] =
∫ ∞

0
θyθ−1Pkn(|Ỹu| > y)dy

= θ

∫ ∞
0

yθ−1Pkn(|Yu|1{|Yu|< 1
H(kn,Gux)}

> y)dy

= θEkn
[ ∫ 1

H(kn,Gux)

0
yθ−11{

|Yu|1{|Yu|< 1
H(kn,Gux) }

>y
}dy]

6 θ
∫ 1

H(kn,Gux)

0
yθ−1Pkn(WXx

u
s,n−kn + 1 > y

C
)dy.

By the change of variables z =
( y
C

)θ−1, we obtain

Ekn [|Ỹu|θ] 6 θCθ
∫ [CH(kn,Gux)]1−θ

0
z

1
θ−1Pkn

(
(WXx

u
s,n−kn + 1)θ−1 > z

)
dz

6 θCθ
∫ [CH(kn,Gux)]1−θ

0
Ekn

[
(WXx

u
s,n−kn + 1)1{(

W
Xxu
s,n−kn+1

)θ−1
>z

}]dz.
(5.33)

We split the above integral according to z ∈ [0, e] and z ∈ (e, [CH(kn, Gux)]1−θ].
For the integral over z ∈ [0, e], we use

Ekn
[
(WXx

u
s,n−kn + 1)1{(

W
Xxu
s,n−kn+1

)θ−1
>z
}] 6 Ekn(WXx

u
s,n−kn + 1) = 2.
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For the integral over z ∈ (e, [CH(kn, Gux)]1−θ], we use

Ekn
[
(WXx

u
s,n−kn + 1)1{(

W
Xxu
s,n−kn+1

)θ−1
>z
}]

6
θ − 1
logδ z

Ekn
[
(W

Xx
kn

s,n−kn + 1) logδ(W
Xx
kn

s,n−kn + 1)
]
6
C3(θ − 1)

logδ z
,

where C3 = supx∈S E
[
(W x

s,∗ + 1) logδ(W x
s,∗ + 1)

]
< ∞ by Proposition 5.3.

Hence, by (5.33),

Ekn [|Ỹu|θ] 6 2θC2θe

+ θ(θ − 1)CθC31{[CH(kn,Gux)]1−θ>e}

∫ [CH(kn,Gux)]1−θ

e

1
logδ z

dz.

(5.34)

By the definition of Kn,2 and inequality (5.34), we get

Kn,2 6 C4n
θ
2
∑
u∈Tkn

Hθ(kn, Gux)1Uc

·
(
1 + 1{[CH(kn,Gux)]1−θ>e}

∫ [CH(kn,Gux)]1−θ

e

1
logδ z

dz
)
. (5.35)

Now consider the integral in the last expression. Take a constant 1 < d2 <
eb, we see that on U c, we have 1

CH(kn,Gux) >
1
C rs(x)ebkn > C5d

kn
2 . Let

n0 ∈ N∗ be large enough such that [C5d
kn0
2 ]θ−1 > e. Using log z > 1 for

z ∈ [e, [C5d
kn
2 ]θ−1], and log z > (θ − 1) log

(
C5d

kn
2

)
for z > [C5d

kn
2 ]θ−1, we

see that when [CH(kn, Gux)]1−θ > e and n > n0, we have∫ [CH(kn,Gux)]1−θ

e

1
logδ z

dz

=
∫ [C5d

kn
2 ]θ−1

e

1
logδ z

dz +
∫ [CH(kn,Gux)]1−θ

[C5d
kn
2 ]θ−1

1
logδ z

dz

6 [C5d
kn
2 ]θ−1 + [CH(kn, Gux)]1−θ(

(θ − 1) log(C5d
kn
2 )
)δ

6 C6
(
d

(θ−1)kn
2 + [CH(kn, Gux)]1−θ

kδn

)
. (5.36)

When [CH(kn, Gux)]1−θ > e and n 6 n0, the above inequality (5.36) re-
mains valid by choosing C6 large enough such that C6 > kδn0/C

θ−1, since



BRANCHING PRODUCTS OF RANDOM MATRICES 43

for all 1 6 n 6 n0,

∫ [CH(kn,Gux)]1−θ

e

1
logδ z

dz 6 [CH(kn, Gux)]1−θ 6 C6[H(kn, Gux)]1−θ

kδn
.

From (5.35) and (5.36) we obtain

∞∑
n=1

E[Kn,2] 6 C6

∞∑
n=1

n
θ
2E
[ ∑
u∈Tkn

Hθ(kn, Gux)1Uc

·
(
1 + d

(θ−1)kn
2 + [H(kn, Gux)]1−θ

kδn

)]
6

C6
rs(x)θ−1

∞∑
n=1

E[W x
s,kn ]n

θ
2 (1 + d

(θ−1)kn
2 )

eb(θ−1)kn
+ C6

∞∑
n=1

E[W x
s,kn ]n

θ
2

kδn
,

(5.37)

where the last inequality holds because on U c (see Eq. (5.26)),H(kn, Gux) 6
1

rs(x)ebkn , so that Hθ(kn, Gux) = H(kn, Gux)Hθ−1(kn, Gux) 6 H(kn,Gux)
[rs(x)ebkn ]θ−1

(for the second term we just use the identity Hθ(kn, Gux)[H(kn, Gux)]1−θ =
H(kn, Gux)). We choose θ sufficiently close to 1. Since E[W x

s,kn
] = 1, kn ∼

jα ∼ nβ, 1 < d2 < eb and βδ > 3
2 , the two series

∑∞
n=1

n
θ
2 (1+d(θ−1)kn )
eb(θ−1)kn and∑∞

n=1
n
θ
2

1+kδn
converge. Therefore from (5.37), we get

∞∑
n=1

EKn,2 <∞. (5.38)

Combining (5.31), (5.32) and (5.38), we conclude that for any ε > 0

∞∑
n=1

P(|An,3| > ε) <∞.

By the Lemma of Borel-Cantelli, it follows that An,3
n→∞−→ 0 a.s.
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B) We then prove thatBn → 0 P-a.s. By the definition ofWXx
u

s,n−kn(dy, dz),
the branching property, and the definition of Qx

s (cf.(4.1)), we obtain suc-
cessively,

∫
S×R

f(y)
rs(y)h(z + Sxu − nqs)Ekn

[
W

Xx
u

s,n−kn(dy, dz)
]

=
Ekn

[∑
v∈Tn−kn (u) e

sS
Xxu
v rs(XXx

u
v ) f(XXxu

v )
rs(X

Xxu
v )

h(SX
x
u

v + Sxu − nqs)
]

[mκ(s)]n−knrs(Xx
u)

=
Ekn

[
esS

Xxu
n−kn rs(XXx

u
n−kn) f(XXxu

n−kn )

rs(X
Xxu
n−kn )

h(SX
x
u

n−kn + Sxu − nqs)
]

[κ(s)]n−knrs(Xx
u)

= EQxs

[ f(XXx
u

n−kn)
rs(XXx

u
n−kn)

h
(
S
Xx
u

n−kn − (n− kn)qs + Sxu − knqs
)
|Fkn

]
(5.39)

=: RHS(5.39).

Hence, by the definition of Bn,

Bn =
∑
u∈Tkn

H(kn, Gux)
[
σs
√

2πnRHS(5.39) − πs
( f
rs

) ∫
R
h(z)dz

]

=
∑
u∈Tkn

H(kn, Gux)
√

2πn
n− kn

[
σs

√
(n− kn)RHS(5.39)

−

√
n− kn

2πn πs
( f
rs

) ∫
R
h(z)dz

]
.

By Proposition 5.1,

∣∣∣σs√n− knRHS(5.39) − πs(
f

rs
)
∫
R
h(z)φ

(z − Sxu + knqs

σs
√
n− kn

)
dz
∣∣∣

6 sup
(x,y)∈S×R

∣∣∣σs√n− knEQxs

[ f(Xx
n−kn)

rs(Xx
n−kn)h(y + Sxn−kn − (n− kn)qs)

]
− πs(

f

rs
)
∫
R
h(z)φ

( z − y
σs
√
n− kn

)
dz
∣∣∣

n→∞−→ 0.
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Since
∑
u∈Tkn H(kn, Gux)

√
2πn
n−kn ∼ W x

s,kn

√
2π → W x

s

√
2π a.s., it follows

that Bn
n→∞−→ 0 a.s. if and only if∣∣∣ ∫

R
h(z)

∑
u∈Tkn

H(kn, Gux)
[√ 2πn

n− kn
φ
(z − Sxu + knqs

σs
√
n− kn

)
− 1

]
dz
∣∣∣ n→∞−→ 0 a.s.

We shall prove this convergence by the the dominated convergence theorem.
Notice that the function in the above integral is bounded by Ch(z)W x

s,kn
6

CW x
s,∗h(z) which is integrable on R. So it suffices to prove that for z ∈ R,

Dn(z) :=
∣∣∣√ 2πn

n− kn

∑
u∈Tkn

H(kn, Gux)φ
(z − Sxu + knqs

σs
√
n− kn

)
−W x

s,kn

∣∣∣ n→∞−→ 0 a.s.

(5.40)

Using the fact that |φ(x)− φ(y)| 6 C|x− y|, we see that for all z ∈ R

Dn(z) 6
√

2πn
n− kn

∑
u∈Tkn

H(kn, Gux)
∣∣∣φ(z − Sxu + knqs

σs
√
n− kn

)
− φ

( z

σs
√
n− kn

)∣∣∣
+W x

s,kn

∣∣∣√ 2πn
n− kn

φ
( z

σs
√
n− kn

)
− 1

∣∣∣
6 C

∑
u∈Tkn

H(kn, Gux) |S
x
u − knqs|

σs
√
n− kn

+W x
s,kn

∣∣∣√ 2πn
n− kn

φ
( z

σs
√
n− kn

)
− 1

∣∣∣.
It is clear that the second term converges to 0 a.s. as n→∞. For the first
term, we use the same argument as the proof of (3.19), noting that

E
[ ∑
u∈Tkn

H(kn, Gux) |S
x
u − knqs|

σs
√
n− kn

]
=

EQxs
[
|Sxkn − knqs|

]
σs
√
n− kn

,

and (see [17, Lemma 7.1] for s > 0 and [55, Proposition 3.14] for s 6 0)

lim
n→∞

1
n
EQxs

(
Sxn − nqs

)2 = σ2
s .

Therefore, (5.40) holds. This shows that Bn
n→∞−→ 0 a.s. The proof of

Theorem 2.4 is therefore completed.
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