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ABSTRACT 

 

The biophysical properties of dendritic spines play a critical role in neuronal integration but 

are still poorly understood, due to experimental difficulties in accessing them. Spine 

biophysics has been traditionally explored using theoretical models based on cable theory. 

However, cable theory generally assumes that concentration changes associated with ionic 

currents are negligible and, therefore, ignores electrodiffusion, i.e. the interaction between 

electric fields and ionic diffusion. This assumption, while true for large neuronal 

compartments, could be incorrect when applied to femto-liter size structures such as dendritic 

spines. To extend cable theory and explore electrodiffusion effects, we use here the Poisson 

(P) and Nernst-Planck (NP) equations, which relate electric field to charge and Fick's law of 

diffusion, to model ion concentration dynamics in spines receiving excitatory synaptic 

potentials (EPSPs). We use experimentally measured voltage transients from spines with 

nanoelectrodes to explore these dynamics with realistic parameters. We find that (i) passive 

diffusion and electrodiffusion jointly affect the dynamics of spine EPSPs; (ii) spine geometry 

plays a key role in shaping EPSPs; and, (iii) the spine-neck resistance dynamically decreases 

during EPSPs, leading to short-term synaptic facilitation. Our formulation, which 

complements and extends cable theory, can be easily adapted to model ionic biophysics in 

other nanoscale bio-compartments. 

  

Manuscript Click here to
access/download;Manuscript;Main_Manuscript_revised_TL_R

Click here to view linked References

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

https://www.editorialmanager.com/jcns/download.aspx?id=133078&guid=ea74fd2e-9813-4041-b437-bb98146ad7d9&scheme=1
https://www.editorialmanager.com/jcns/download.aspx?id=133078&guid=ea74fd2e-9813-4041-b437-bb98146ad7d9&scheme=1
https://www.editorialmanager.com/jcns/viewRCResults.aspx?pdf=1&docID=4877&rev=1&fileID=133078&msid=bda549e2-e5de-4ba9-abec-0d2e55f87f84


Figure 1 Click here to access/download;Figure;Fig1.pdf

https://www.editorialmanager.com/jcns/download.aspx?id=133087&guid=15310bf8-d26b-4018-b03f-c308e2504261&scheme=1
https://www.editorialmanager.com/jcns/download.aspx?id=133087&guid=15310bf8-d26b-4018-b03f-c308e2504261&scheme=1


Figure 2 Click here to access/download;Figure;Fig2.pdf

https://www.editorialmanager.com/jcns/download.aspx?id=133088&guid=348dd647-9612-4bdd-a79e-396951d7135e&scheme=1
https://www.editorialmanager.com/jcns/download.aspx?id=133088&guid=348dd647-9612-4bdd-a79e-396951d7135e&scheme=1


Figure 3 Click here to access/download;Figure;Fig3.pdf

https://www.editorialmanager.com/jcns/download.aspx?id=133089&guid=f3d5a760-5603-43c9-be62-7c2ecd04dced&scheme=1
https://www.editorialmanager.com/jcns/download.aspx?id=133089&guid=f3d5a760-5603-43c9-be62-7c2ecd04dced&scheme=1


Figure 4 Click here to access/download;Figure;Fig4.pdf

https://www.editorialmanager.com/jcns/download.aspx?id=133090&guid=72045f1c-4ec0-4392-b6e3-56c02e1ce750&scheme=1
https://www.editorialmanager.com/jcns/download.aspx?id=133090&guid=72045f1c-4ec0-4392-b6e3-56c02e1ce750&scheme=1


Figure 5 Click here to access/download;Figure;Fig5.pdf

https://www.editorialmanager.com/jcns/download.aspx?id=133091&guid=8bd7f8b9-deca-46a4-a440-09b56250c142&scheme=1
https://www.editorialmanager.com/jcns/download.aspx?id=133091&guid=8bd7f8b9-deca-46a4-a440-09b56250c142&scheme=1


Figure 6 Click here to access/download;Figure;Fig6.pdf

https://www.editorialmanager.com/jcns/download.aspx?id=133092&guid=61f5bce1-f9e5-4ab5-9d77-9bb1ea95b068&scheme=1
https://www.editorialmanager.com/jcns/download.aspx?id=133092&guid=61f5bce1-f9e5-4ab5-9d77-9bb1ea95b068&scheme=1


 Lagache et al., p.2 

INTRODUCTION 

Dendritic spines, nanoscale protrusions located along dendrites of principal neurons, 

form the primary site of excitatory synaptic input in the mammalian brain [1-3]. Their 

function and plasticity are likely essential for neuronal function, memory formation and brain 

development [4, 5]. Excitatory neurotransmitters released during synaptic transmission 

activate receptors on the spine head, which causes ion channels to open and current to flow 

into the spine. This current charges the spine causing an excitatory post-synaptic potential 

(EPSP), which subsequently integrates in the dendrite and summates with other excitatory or 

inhibitory synaptic potentials on its way to the soma and axon initial segment [6]. When this 

summation crosses a threshold, the neuron fires an action potential (AP).  Spines thus present 

the first node in the path of neuronal integration, and voltage dynamics (i.e. rise time, fall time 

and amplitude) within a spine during synaptic input determine the characteristics of the 

downstream signal. Voltage recordings from this nanoscale neuronal subdomain have been 

challenging, and measurements have often been at odds with each other, specifically with 

regard to the spine head EPSP magnitude [7-12] and neck resistance values [7, 8, 12-16]. 

Recently however, optical and electrical recordings have reported fast and large EPSP values 

in the spine [8, 10, 15, 17]. But, given that spines exhibit a stereotypical, but highly variable 

geometry [18] comprising a bulbous head (volume ranges ~ 0.01-0.3 μm3) connected to the 

parent dendrite across a narrow neck (length ranges ~ 0.1-5 μm; diameter ranges ~ 5-200 nm), 

there is a need for models to explore the relationship between geometry and voltage dynamics 

during synaptic inputs. Such models may help reconcile the different values that have been 

experimentally procured and possibly help develop an intuition on particular functions carried 

out by different types of spines.   

Traditionally, spine biophysics and the EPSP integration in a neuron are modeled 

using cable theory [19-23], where neuronal compartments, such as dendritic spines and 

dendrites, are regarded as being passive electrical cables. Cable equations treat the membrane 

as an RC circuit and compute the time evolution of the signal in the form of partial 

differential equations. Traditionally, cable theory neglects the effect of concentration 

gradients, which is a reasonable assumption for large neuronal compartments (such as the 

original squid giant axon) but may fail to accurately describe electrostatics in nanoscale 

structures such as dendritic spines. In addition, the spine neck resistance has been indirectly 

estimated with fluorescence recovery after photo-bleaching (FRAP) [13, 14, 24, 25] (i.e. 

charged or uncharged dye molecules diffusing back into the spine head upon a spine head 

photo-bleaching). Here, the mean escape time τe of a single diffusive molecule (with diffusion 
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coefficient D) from the spine head into the dendrite can be described by the relation[26] 𝜏𝑒 =

𝐷−1 𝑉
4𝑟

+ 𝐿2

2
+ 𝑉𝐿

𝜋𝑟2 + 𝑂(𝑉
2
3𝐷−1), where V is the volume of the spine head, r the radius of the 

cylindrical neck and L its length. For a typical spine with head volume V = 0.1 μm3, neck 

length L = 1 μm, neck radius r = 50 nm and a diffusion constant D = 0.5 x 103 μm2 s-1 

(corresponding to the measured coefficient of sodium ions in cytoplasm) [27], we obtain that  
𝑉

4𝐷𝑟
 ≈  𝐿2

2𝐷
= 1 𝑚𝑠  and 𝑉𝐿

𝐷𝜋𝑟2 = 25 𝑚𝑠.  Thus, in most spine geometries we can approximate 

𝜏𝑒 ≈ 𝑉𝐿
𝐷𝜋𝑟2, which is then used to fit the exponential decay rate of the FRAP transient. Neck 

resistance is finally estimated with 𝑅𝑛𝑒𝑐𝑘 = 𝑅𝑐 𝑡
𝐿

𝜋𝑟2 = 𝑅𝑐 𝑡
𝐷𝜏𝑒

𝑉
, where 𝑅𝑐 𝑡, the longitudinal 

cytoplasmic resistivity, is assumed to be constant ≈ 1 − 1.5 Ω. m [11, 22] 

While both cable theory and FRAP measurements are elegant formulations to model 

and extract spine biophysical parameters [7, 14, 21, 25], they do have limitations and, indeed, 

many of the estimated values are at odds with many experiments [9, 11, 24]. One critical 

aspect that is ignored in both approaches is electrodiffusion [28-31], i.e. the effect of the 

electric field on the concentration gradient, which is important when large longitudinal 

voltage gradients and concentration changes occur. This aspect becomes more critical in the 

small dendritic spines where sizeable voltage swings, large concentration changes on the 

order of ~mM, and appreciable electric field gradients across a nanoscale neck can occur 

within a few milliseconds. Such effects could modulate both voltage and current transmission 

at a fundamental level and need to be better understood.   

To extend cable theory and accurately describe electrolyte dynamics in biological 

micro-domains, we use the Poisson-Nernst-Planck (PNP) formalism [29, 32, 33] and 

explicitly account for the effect of geometry and electrodiffusion. PNP equations have been 

extensively used to model thin ion channels [34], and, in addition, their steady-state analysis 

led to the well-known Goldman-Hodgkin-Katz formula and the definition of the reversal 

potential. However, the PNP equations cannot be analytically solved in complex three-

dimensional structures, such as dendritic spines or extracellular space [35, 36]. Previous work 

modelling electrodiffusion effect in spines [28, 33] have either captured the effects of the PNP 

purely through numerical simulations [12], examined dynamics under non-electroneutral 

conditions [12], or solved PNP equations only in cylindrical geometries [28]. Here, we use 

singular perturbation theory and derive coarse-grained PNP equations to describe voltage and 

ion concentration dynamics in the spine head during synaptic input, explicitly accounting for 

the effect of geometry and electrodiffusion. We use recently published measurements of 
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spontaneous EPSP transients from spines to highlight these effects under different geometries. 

We find that electrodiffusion can indeed play a significant role in determining the overall 

EPSP magnitude and time scales. In addition, changes in ion concentration on a millisecond 

time scale can modulate current across the neck, which suggests that the neck resistance can 

dynamically vary as a function of synaptic current. We also find that the spine geometry 

affects its voltage dynamics and that trains of EPSPs could increase voltage responses.  

  

METHODS 

PNP formalism  

We used singular perturbation theory and analyzed the dynamics of both positive and 

negative ionic charges inside the spine head and neck (Fig. 1a), and derived a novel coarse-

grained system of equations that fully captures the coupled dynamics of ions and voltage with 

the PNP formalism. It uses a coupled system of two differential equations to describe the 

interacting ion and electrical potential dynamics: (1) the Poisson (P) equation (Eq. 1) that 

computes the electrical potential rising from the local differences between the concentrations 

of negative c-(x, t) and positive c+(x; t) charges, 

𝛥𝑥𝛷(𝑥, 𝑡) =  
𝑒

𝜖0𝜖𝑐
𝑐−(𝑥, 𝑡) − 𝑐+(𝑥, 𝑡)    (1) 

Where, 𝛥𝑥 = 𝛻𝑥
2 is the Laplacian operator, e the elementary electrical charge, ε0 the vacuum 

permittivity and εc the relative permittivity of the cytoplasm, and (2), the Nernst-Planck (NP) 

equation (Eq. 2) which captures the contribution of the electrical field on the concentration 

gradient; 
𝜕𝑐
𝜕𝑡

(𝑥, 𝑡) =  𝐷𝛻. [𝛻𝑐 + 𝑣𝛾𝑐𝛻𝛷](𝑥, 𝑡)   (2) 

Where, D is the diffusion constant (that we assumed to be the same for both positive and 

negative charges), 𝛾 =  𝑒
𝑘𝑇

 , and 𝑣 =  ± 1, is the ionic valence. An analytical solution to the 

full system of PNP equations is not possible and hence must be either numerically computed 

or asymptotically estimated.  

 

Modeling electrostatics in the spine head and neck 

We approximated the geometry of the dendritic spine with a ball (spine head, radius 

R) connected to the parent dendrite across a cylindrical thin neck (length L, cross-section 𝑆 =

𝜋𝑎2, with 𝑎, the neck radius, that we assumed to be constant (Fig. 1a). We also assumed that 

the neck radius is smaller than the head radius 𝑎 < 𝑅, as corroborated by ultra-structural 
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reconstructions [18] and super-resolution microscopy of living spines[14]. We modeled the 

spine head membrane as an impermeable membrane (no ion leak), with thickness d and small 

electrical permittivity 𝜖𝑚 ≪ 𝜖𝑐 (Fig. 1a, inset) (Table 1). We also assumed the continuity of 

the electrical field (derivative of the electrical potential) at the membrane boundary, a 

boundary layer condition employed to solve electrostatic equations across dielectric layers 

[37, 38]. Finally, boundary conditions for the potential and ion concentrations at the neck 

entrance were matched to physiological solutions inside the spine neck.  

Using asymptotic analysis of the Poisson equation, we first show that, apart from the 

thin boundary layer near the membrane, the spine head is electro-neutral with constant 

concentration 𝑐+(𝑟, 𝑡) ≈ 𝑐−(𝑟, 𝑡) ≈ 𝑐 𝑒𝑎𝑑(𝑡), and iso-potential 𝛷(𝑟, 𝑡) ≈ 𝛷 𝑒𝑎𝑑(𝑡) (Fig. 1a) 

(see SI-II-A for details). This constant potential approximation in the bulk was also confirmed 

in recent numerical simulations using finite element, steady-state simulations [12], and is true 

for the entire spine microdomain, except for a thin boundary layer near the membrane- i.e. the 

Debye layer (Fig. 1a, inset). Thus, as traditionally represented in electrical circuit analogy, the 

spine head behaves like a small capacitor connected to the parent dendrite through a resistive 

neck [39]. To obtain the full solution for the potential and the ion concentrations inside the 

entire spine head domain (i.e. bulk and boundary layer), we compute the inner solutions near 

the membrane that both match the boundary conditions and the asymptotic solutions in the 

bulk. Due to the small electrical permittivity of the membrane, the maximal potential drop 

occurs across the membrane bilayer, and bulk potential is given by the capacitor formula 

𝛷 𝑒𝑎𝑑(𝑡) =  
(𝑛+(𝑡) − 𝑛−(𝑡))𝑒

4𝜋𝑐𝑚𝑅2    (3) 

Here 𝑛+(𝑡) and 𝑛−(𝑡) are the total number of positive and negative ions inside the spine head 

at time t, and cm is the membrane capacitance per unit of surface. Typically, 𝑐𝑚 ≈ 0.01 Fm−2 

(Table 1), and therefore small differences between the total number of positive and negative 

charges inside the head lead to significant changes of the spine head potential. For example, 

inside a spherical spine head with radius R = 500 nm, the resting potential 𝛷0 ≈

−60 mV corresponds to a net excess of ≈ 12,000 negative charges, while the total number of 

ions is equal to 4
3

𝜋𝑅3𝑐0 ≈ 50𝑥106 ions. To put this in context, a typical single ion channel 

can flux several thousand ions per millisecond [40]. Thus, due to the small capacitance of the 

spine head, the entry of relatively few positive charges during synaptic input, even due to a 

single channel opening, will result in a rapid depolarization.  

The dynamics of ion concentration and potential inside the spine head critically 
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depends on the ionic fluxes with the parent dendrite across the neck. To analyze these fluxes, 

we followed the methodology developed for modeling ion channels [34, 41] and reduced PNP 

equations to one-dimensional equations along the neck’s principal axis from the spine head to 

the dendritic shaft (Fig. 1a, see SI-II-B-1 for details). The total flux 𝐽+(𝑡) of positive and 

𝐽−(𝑡) of negative ions are the solution of the transport Nernst-Planck equation and thus 

comprise of a diffusion term 𝐽𝑛𝑒𝑐𝑘(𝑡), which describes the flux due to concentration gradient, 

and a current term 𝐼𝑛𝑒𝑐𝑘(𝑡), which describes the flux of ions driven by the electric field: 

𝐽+(𝑡) =  
1
2

𝐽𝑛𝑒𝑐𝑘(𝑡) + 𝐼𝑛𝑒𝑐𝑘(𝑡)   and 𝐽−(𝑡) =
1
2

𝐽𝑛𝑒𝑐𝑘(𝑡) − 𝐼𝑛𝑒𝑐𝑘(𝑡)   (5) 

We highlight that, under electro-neutral conditions, the diffusion flux 𝐽𝑛𝑒𝑐𝑘(𝑡) = 𝐽+(𝑡) +

𝐽−(𝑡) drives an equal amount of positive and negative charges in the same direction, and thus 

results in no net electrical current. On the other hand, the electrical current results from 

positive and negative ions that move in opposite directions 𝐼𝑛𝑒𝑐𝑘(𝑡) = 𝐽+(𝑡) − 𝐽−(𝑡). 

Mathematical analysis of PNP equations inside the neck leads to (see SI-II-B-2 for details) 

𝐽𝑛𝑒𝑐𝑘(𝑡) =  
2𝐷𝑆𝑒

𝐿
(𝑐 𝑒𝑎𝑑(𝑡) − 𝑐0)   (6) 

and, 

𝐼𝑛𝑒𝑐𝑘(𝑡) =  𝑅𝑛𝑒𝑐𝑘
−1 𝑐 𝑒𝑎𝑑(𝑡) (𝛷 𝑒𝑎𝑑(𝑡) − 𝛷0)   (7) 

with neck resistance 

𝑅𝑛𝑒𝑐𝑘 𝑐 𝑒𝑎𝑑(𝑡) =  
𝐿

2𝛾𝐷𝑆𝑒(𝑐 𝑒𝑎𝑑(𝑡) − 𝑐0)
ln

𝑐 𝑒𝑎𝑑(𝑡)
𝑐0

  (8)   

Previous expressions for the diffusion flux and the current inside the neck were obtained after 

the 1D reduction of PNP equations and their asymptotic approximation. These mathematical 

techniques are similar to those used for modeling ion channels [34, 41, 42] and remain 

accurate as long as the Debye length 𝜆𝐷 (see Table 1) is small compared to the dimensions 

(length and diameter) of the neck. Otherwise, full 3D numerical simulations are required or, if 

the Debye length is actually large compared to neck diameter, other type of asymptotic 

analysis can be applied [43]. Based on previous expressions, we highlight the following 

findings: First, the asymptotic diffusion flux (Eq. 6) is the expression normally used to 

interpret FRAP experiments. This formulation captures only diffusion and neglects the 

contribution of the electric field on ion dynamics. Second, electrodiffusion predicts that 

changes in ion concentration modulate the neck resistance which is not solely dependent on 

geometry as usually assumed in cable theory (Fig. 1b) but also critically depends on the ion 

concentration inside the spine head (Fig. 1c and Eq. 8). For constant ion concentration, neck 
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resistance reduces to 

𝑅𝑛𝑒𝑐𝑘(𝑐0) =
𝐿

2𝛾𝐷𝑆𝑐0𝑒
  (9). 

 

RESULTS 

Fast electrical and slow diffusional dynamics inside the dendritic spine 

During synaptic input, both AMPA and NMDA receptors are activated. For the sake 

of computational simplicity, we chose to neglect NMDA receptors given that AMPA 

receptors are assumed to be the major source of Na+ current. Moreover, by considering the 

relative permeability of AMPA receptors to main ions and Goldman-Hodgkin-Katz equation, 

we computed that the reversal potential of AMPA receptors is 𝛷𝑟𝑒𝑣𝑒𝑟𝑠𝑎 (𝑡) ≈

𝛾−1 ln 𝑐0
𝑐 𝑒𝑎𝑑(𝑡)  (see SI-II-C-1 for details), and that the synaptic current is governed by the 

Nernst –Planck equation of transport: 

𝐼𝑠 𝑛𝑎 𝑡 𝑐(𝑡) = −𝑔+(𝑡) 𝛷 𝑒𝑎𝑑(𝑡) − 𝛾−1 ln
𝑐0

𝑐 𝑒𝑎𝑑(𝑡)    (10). 

 Here 𝑔+(𝑡) is the time-dependent conductance of AMPA receptors. The ionic influx 

is thus maximum at resting potential 𝛷0 ≈ −60 mV and concentration 𝑐0 and collapses when 

the spine head potential and concentration increase.  

Using charge conservation principles for both positive and negative charges inside the 

spine head (see SI-II-C-1 for details), together with the capacitance relation (4), we obtained 

the coarse-grained system of differential equations  

𝑒𝑣 𝑒𝑎𝑑
𝑑 𝑐 𝑒𝑎𝑑(𝑡)

𝑑𝑡
=

1
2

 𝐼𝑠 𝑛𝑎 𝑡 𝑐(𝑡) − 𝐽𝑛𝑒𝑐𝑘(𝑡)    (11) 

and  𝑐𝑚𝑠 𝑒𝑎𝑑
𝑑𝛷 𝑒𝑎𝑑(𝑡)

𝑑𝑡
= 𝐼𝑠 𝑛𝑎 𝑡 𝑐(𝑡) − 𝐼𝑛𝑒𝑐𝑘(𝑡)   (12) 

where diffusive gradient 𝐽𝑛𝑒𝑐𝑘(𝑡) and neck current 𝐼𝑛𝑒𝑐𝑘(𝑡) are respectively given by Eq. (6) 

and (7), and synaptic current 𝐼𝑠 𝑛𝑎 𝑡 𝑐(𝑡) is given by Eq. (10). Here 𝑣 𝑒𝑎𝑑 =  4
3

𝜋𝑅3and 

𝑠 𝑒𝑎𝑑 = 4𝜋𝑅2 are the volume and the surface area of the spine head respectively. Equation 

(11) describes the gradual increase of ion concentration inside the spine head during channel 

opening, while equation (12) captures the potential dynamics. Equations (11) and (12) are 

non-trivially coupled because synaptic and neck current depend on spine head potential and 

concentration.  

The coarse-grained system of equations (11-12) is a slow-fast dynamical system. The time 

constant of concentration changes 𝜏𝑐 = 𝑣 𝑒𝑎𝑑𝐿
𝑆𝐷

≈ 10 − 100 ms is much longer than the time 
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scale of voltage transients, which is due to the charging/discharging of the spine head 

(capacitor) through the neck resistance (time constant 𝜏𝛷 = 𝑐𝑚𝑠 𝑒𝑎𝑑 𝑅𝑛𝑒𝑐𝑘 + 1
𝑔+(𝑡)

≈ 10 −

100 μs) (Supplementary Fig. 1). Thus, for a Heaviside step function input (constant channel 

conductance, 𝑔+(𝑡) =  𝑔+), voltage increase is rapid at the onset of ion-channel opening, 

with significant depolarization values and reaches a plateau given by 𝛷 𝑒𝑎𝑑 =
𝛷0

1+ 𝑔+𝑅 𝑒𝑐 (𝑐0) in less than 100 μs (Fig. 2a). We termed the first few hundred microseconds of 

the transient as the electrostatic phase, which is accurately described by cable theory. The 

rapid voltage depolarization during the electrostatic phase causes a decrease in synaptic 

current (Eq. 10 and Fig. 2e), mirrored by an increase in neck current (Fig. 2f) which plateaus 

as voltage reaches a steady state. Synaptic and neck currents are then equal. Yet, while the 

synaptic current only involves an influx of positive ions, the neck current is composed of 

positive and negative ions moving in opposite directions (positive ions are pushed out the 

spine head and negative ions are pushed in). If we assume that positive and negative ions have 

the same diffusivity, only half of the entering positive ions are actually pushed out the spine, 

while the other half stays inside the spine head and is counter-balanced by incoming negative 

ions. Thus, due to current conservation, there are twice more positive ions that enter the spine 

than ions that are pushed out, and positive ions that stay inside the spine head are counter-

balanced by incoming negative ions (so electro-neutrality is preserved). After few 

milliseconds, the concomitant accumulation of positive and negative ions inside the spine 

head leads to a significant increase of ion concentration, corresponding to the electrodiffusion 

phase (Fig. 2b). Thus, concentration changes during the electrostatic phase are negligible and 

voltage dynamics can be described accurately by cable theory, but become significant during 

the electrodiffusion phase. Increased ion concentration has two main effects: the decrease of 

effective neck resistance (Eq. 8 and Fig. 2c) and of reversal potential (Fig. 2d). Synaptic (and 

neck) current subsequently decreases with concentration, as reversal potential decreases and 

reduces the synaptic electromotive force.  

At steady-state, the amplitude of current through the neck 𝐼𝑛𝑒𝑐𝑘(∞) is equal to the amplitude 

of the synaptic current 𝐼𝑠 𝑛𝑎 𝑡 𝑐(∞) and also to twice the diffusive outflux 𝐽𝑛𝑒𝑐𝑘(∞), where ∞ 

denotes the steady state value for 𝑡 ≫ 𝜏𝑐. These relations lead to an implicit equation for the 

steady state current that is solved numerically (see SI-II-C-2 for details), and I-V relationship 

across the spine neck (Fig. 2h and Supplementary Fig. 2) 

𝛷 𝑒𝑎𝑑(∞) =  𝛷0 + 𝑅𝑛𝑒𝑐𝑘(∞)𝐼(∞) = 𝛷0 +  𝛾−1log 1 +
𝐿𝐼(∞)

2𝐷𝑆𝑐0𝑒
   (13) 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 Lagache et al., p.9 

We stress that steady state voltage and net ion concentration depend solely on spine neck 

geometry (Eq. 70-72 in supplementary material and Fig. 2 a-b), whereas their dynamics is 

controlled by the size of the spine head, through its volume and membrane capacitance (time 

constants on the left hand side of the dynamical system (11-12) and transition phases in Fig. 

2).  

Eq. 13 shows an highly non-linear relation, similar to current rectification observed in 

nanofluidic diodes [44] (Fig. 2h, inset). Such a non-linear relationship - a consequence of the 

PNP, was also observed with finite element simulations [12] of spine neck electrostatics, 

albeit with the assumption that only positive ions contribute to the overall current. This is an 

important electrodiffusion effect that arises as ion concentration changes. 

Finally, the long and sustained synaptic input (Heaviside function) that leads to significant, 

long-term changes in spine head concentration and neck resistance is a condition that we used 

only to illustrate the slow-fast dynamics of the coarse-grained system of equations (11-12). 

Indeed, the kinetics of opening and closure of AMPA channels is rather of the order of few 

milliseconds [22]. To explore whether changes in concentration and neck resistance are 

already significant at this time scale during spontaneous synaptic activity, in the following 

section, we used recent electrical recordings of voltage transients in spine heads and estimated 

the corresponding currents and changes in ion concentration for different putative spine 

geometries. 

 

Exploring the role of electrodiffusion with electrical recording data 

Recently, we demonstrated the first direct measurements of spontaneous EPSP from 

spines using nanopipettes [8]. These recordings revealed voltage changes on a millisecond 

time scale with a fast rising phase (≈ 1 ms), followed by a slower decay phase (≈ 10 ms). A 

recent study measuring synaptic input currents revealed a similar time scale [15], providing 

further evidence that spine electrical transients can be large and fast. These time-scales are 

much slower than the estimated charging and discharging time constants of the spine head 

capacitor (tens of micro-seconds). Thus, the rising and decay phases likely correspond to the 

opening and closing kinetics of ion channels. We used the time course of this published data, 

along with models of the rising and decay phase of ion channels [22], to explore the effect of 

electrodiffusion under different spine geometries. Although these recordings were made on 

spines with relatively long (>1 µm) necks, the large, fast, and spontaneous millisecond apart 

EPSPs could be used as a test input to explore the role of electrodiffusion on different spines 

geometries. We modeled the rising phase of synaptic conductance 𝑔+(𝑡) with a sigmoidal 
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function followed by a mono-exponential decay phase: 𝑔+(𝑡) =  
𝑔0  (−

2
)

1+  (− −
1

)
  (Fig. 3a-1). To 

determine the conductance parameters for each EPSP, we used the following grid-search 

fitting procedure: First, we considered four different putative spine geometries with either a 

large (600 nm) or small (300 nm) head diameter, and either a large (70 nm) or thin (40 nm) 

neck radius (neck length is fixed to L = 1 μm). Then, for each individual EPSP and each 

spine geometry, we determined manually the initial time 𝑡  of rising phase and corresponding 

resting potential 𝛷0(𝑡 ) that slightly varies around -58 mV for each EPSP. We then computed 

synaptic conductance 𝑔[𝑔0,𝜇,𝜏1,𝜏2]
+ (𝑡) for a large range of conductance parameters [𝑔0, 𝜇, 𝜏1, 𝜏2] 

(grid search), and solved the dynamical system of equations (11-12) with a finite-elements 

scheme (time step 0.1 μs), over time intervals [𝑡 ; 𝑡 + 10 ms]. We then compared the 

computed head voltage 𝛷 𝑒𝑎𝑑(𝑡) for each set [𝑔0, 𝜇, 𝜏1, 𝜏2] of conductance parameters with 

the measured voltage. Finally, the optimal set of parameters for each EPSP was then 

determined by minimizing the least-square distance between computed and measured voltage 

over each time interval [𝑡 ; 𝑡 + 10 ms] (Fig. 3a-2). We found similar kinetics parameters for 

the different spine geometries and EPSPs, with a rapid opening kinetics (median of the 4 

EPSPs: 𝜇 = 0.52 ms and τ1 = 0.11 ms) followed by a slower decay (median 𝜏2 = 3.95 ms) 

(Fig. 3a-3 and Table 1). On the other hand, we found that the conductance amplitude 

increased with the EPSP amplitude, and was also modulated by the spine geometry: first, 

synaptic conductance decreased in spines with high neck resistance (small diameter), as a 

lower current is needed for the head voltage to reach measured value. Moreover, for dendritic 

spines with smaller head volume, we found that, due to increased head concentration during 

EPSPs (Fig. 3b), the estimated synaptic conductance was significantly higher (up to +30% for 

small neck diameter (high resistance/low current) and +200% for larger necks). Because the 

measured head voltage is equal to the product of the current and the neck resistance, the 

increased synaptic conductance actually compensated the lower reversal potential and neck 

resistance due to higher ion concentration (Fig. 3b). Finally, we compared the electrodiffusion 

response of the different spine geometries for a single EPSP with median kinetics parameters 

(𝜇 = 0.52 ms, τ1 = 0.11 ms and τ2 = 3.95 ms) and increasing conductance 𝑔0 = 2 → 9 nS 

(Fig. 4).  

Variations of ion concentration were particularly significant within spines with small 

head (reduced volume) and large necks (high current), leading to important modulation of 

synaptic current. The dynamics of concentration variations was much slower than the EPSP 
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time course, and, for large EPSPs, we observed that the head concentration did not necessarily 

return to its resting state 𝑐0 before the arrival of a second EPSP. We thus predict that the 

concentration increase (i.e. resistance decrease) could result in a significant reduction in neck 

resistance during repeated synaptic stimulations at high-frequency (≥ 50 Hz) (Fig. 5). This 

finding has one important implication, i.e., that the effective electrical resistance of the spine 

neck is fundamentally dynamic as it may vary with synaptic activity and associated changes 

in concentration. Lacking other compensatory or homeostatic mechanisms, the reduction in 

neck resistance during a train of EPSPs will effectively reduce the filtering effect of the neck 

resistance, leading to synaptic facilitation. 

 

DISCUSSION  

The spine neck appears to be an important diffusional barrier, but its role in 

electrically shaping EPSPs has remained controversial due to the lack and difficulty in 

performing precise experimental measurements from dendritic spines. This has led to an 

incomplete and often contradictory understanding of spine electrical properties [7, 8, 10, 11, 

14, 17, 39, 45]. One way to overcome this problem is with accurate biophysical models. This 

has been traditionally attempted with cable theory modeling, which is widely used in 

simulations of neuronal biophysics. However, cable equations traditionally neglect local 

changes in ionic concentration and the role of electrodiffusion (i.e. electric field effect on 

ionic gradients), which can become appreciable in small neuronal compartments such as 

spines [33]. To explore this, we use an electrodiffusion framework and fully model the 

electrostatics inside the spine during synaptic stimulation. We emphasize that our model does 

not discard cable theory but actually extends it by considering possible changes in ion 

concentration at millisecond time-scale in femto-liter compartments such as dendritic spines. 

Following previous efforts using non electroneutral conditions [33] or numerical simulations 

[12], here, using singular perturbation theory of the PNP equations to model dynamics, we 

derive a coarse-grained model that fully captures the coupled dynamics of ion concentration 

and potential inside the spine head. Specifically, we find that (i) diffusion and electrodiffusion 

jointly govern the dynamics of spine excitatory post-synaptic potentials (EPSPs); (ii) the spine 

geometry (both head and neck) plays a key role in shaping the EPSP time course; and, (iii) 

that the current-voltage relationship across the spine-neck is non-linear, which results in the 

neck resistance varying as a function of ion concentration and can lead to synaptic facilitation 

for high frequency EPSPs. We briefly discuss the functional implications of the above 

findings.   
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Effect of electrodiffusion on synaptic potentials in dendritic spines 

Using a coupled slow-fast dynamical system analysis with a Heaviside step input waveform, 

we find that the EPSP voltage transient at a spine head can be divided into an electrostatic 

phase - lasting a few hundred microseconds; and a electrodiffusional phase - lasting several 

milliseconds. Our results show that, during an EPSP, the electrical voltage first rises very fast 

due to fast charging of the spine head (due to a low membrane capacitance), with a steady-

state value determined by , while the diffusion of ions begins to occur only a few 

milliseconds later. If the EPSP is sufficiently large, it adds a significant electromotive force 

on the ions, driving them out of the spine head through the neck, contributing to a fast and 

large synaptic current. After few microseconds (Fig. 2g), the spine head capacitor is charged 

and the neck current equilibrates with synaptic current. The amplitude of the synaptic current 

is proportional to the receptors’ conductance but also to the difference between head potential 

and reversal potential, a difference which decreases as ion concentration builds-up in the 

spine head (Eq. 10). Because of this, the synaptic current also depends on spine geometry and 

neck resistance. Moreover, increased ion concentration inside the dendritic spine raises the 

electrical conductivity of the spine neck, i.e. lowers its electrical resistance. Together,  

decreases of synaptic current and neck resistance as ion concentration builds-up inside the 

spine head synergistically lower the head potential over millisecond time-scales (Figure 2a). 

This down-regulation might have important downstream effects by regulating ion flux of 

voltage dependent receptors. In particular, we hypothesize that concentration builds-up and 

voltage decrease might down-regulate the influx of calcium ions through NMDAs receptors 

and its associated synaptic plasticity. Finally, as neck resistance is inversely proportional to 

the apparent neck cross-section (Eq. 52 in SI), the local membrane curvature and constriction 

of the neck, or the reduction of the apparent cross-section due to crowding with organelles 

such as spine apparatus [46], can further increase the neck resistance and the increase voltage 

gradients across the spine neck.  

 

Regulation of spine neck resistance by ionic concentration 

As expected, we find that the rapid voltage increase during the opening of AMPA 

receptors drives electrical currents through the spine neck. The neck current here corresponds 

to an exchange between positive ions flowing from the spine head to the dendrite with 

negative ions flowing from the dendrite to the spine head. After few microseconds, when the 

necksyn RI u
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head capacitor is charged, synaptic and neck currents equalize. But, as synaptic current only 

involves positive ions, whereas neck current results from an exchange between positive and 

negative ions, a fraction of entering sodium ions remains inside the spine, and their relatively 

slow diffusion through the neck enables a gradual sodium accumulation inside the head 

during receptors opening. At the same time, an inward neck current of negative ions maintains 

the overall electro-neutrality.  

Our model predicts that the currents associated with recorded EPSPs increases ion 

concentration inside the spine by up to 90%. This agrees with recent experiments using 

fluorescent sodium indicators that reported a up to 5 mM concentration increase leading to a ~ 

9 mM maximal concentration following the AMPA receptors opening during EPSPs [25] and 

large synaptic conductance’s ranging between 2-8 nS measured from spines [15]. It is 

important to point out that we made two major assumptions when modeling ion dynamics: 

First, we neglected the specific dynamics of the different ionic species such as protons, or 

potassium and calcium ions, which could further change the electrostatic landscape and 

signaling. For example, potassium ions could enter the spine neck from the dendrite via SK 

channel dependent shunting [47]. This current could counter the decrease in spine neck 

resistance due to the increased sodium concentration and thus tune the net synaptic current. 

The second important assumption of our model is that negative charges were only accounted 

for by chloride ions, while it is known that negative charges are also partly accounted for by 

less mobile proteins [48]. An important effect of lower negative charges’ motility and inward 

negative current would be to down-regulate changes in ion concentration and electrodiffusion 

effects (i.e. lowering neck resistance and reversal potential) (Fig. 6). Moreover, decreased 

motility of negative ions would reduce the neck current (see SI-II-B-3 for details). However, 

as the neck resistance would be increased and electrodiffusion effect decreased, the voltage in 

the spine head during the EPSP would, overall, reach higher values (Fig. 6). We highlight that 

we did not consider the extreme scenario where the negative charges would be completely 

immobile (diffusion coefficient 𝐷− = 0). Indeed, in that case, positive charges might not be 

well-mixed in the bulk and shall accumulate near immobile negative charges, and our 

mathematical analysis would not be valid anymore as it relies on the bulk electro-neutrality 

and the accumulation of excess charges within a small Debye layer. This extreme scenario has 

been discussed in [33] and treated mathematically in [49, 50]. Finally, as diffusive extrusion 

of accumulated ions from the spine head is relatively slow (ten’s to hundreds of milliseconds), 

we predict that high-frequency synaptic inputs will lead to a significant decrease in neck 

resistance, as the rate of ion concentration buildup in the spine nanodomain will exceed the 
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rate of diffusion through the neck, leading to increase in the effect of the synaptic potentials 

on the dendrite. Our analysis thus reveals that electrodiffusion could be a novel physiological 

mechanism of post-synaptic facilitation on a millisecond time scale.  

To finish, we speculate that part of the reason that spine neck resistance measurements 

have been at odds with each other could be due to the fact that changes in ion concentration in 

the spine dynamically alters its resistance, an effect which critically depends on the 

morphology which varies in different spine. Therefore, in addition to the voltage dynamics in 

the spine head, the net current through the neck could be influenced by the net ion 

concentration inside the spine nanodomain, and care must be taken to measure those in order 

to properly interpret the electrical function of spines. The potential effect of ionic 

concentration on spine electrical properties is something which is not of purely academic 

interest, as the extent to which spines implement electrical compartments and shape the 

dynamics and amplitudes of EPSPs is of fundamental importance to neuroscience, because 

they serve to mediate most excitatory transmission in the vertebrate central nervous system. 

 

 

Supplementary information (SI) accompanies this manuscript. SI includes detailed 

mathematical derivations of the equations presented here in this manuscript 
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Table 1: Parameters of electrodiffusion model 

 

Variable Name Value Reference 

𝑒 Elementary charge ≈ 1.6 10−19C  

𝜖0 Vacuum permittivity ≈ 8.85 10−12Fm−1  

𝜖𝑐 Cytoplasmic permittivity 60  [51] 

𝜖𝑚 Membrane permittivity 
2 (= phospholipid 

bilayer) 
 

𝛾 =
𝑒

𝑘 𝑇
 NP constant ≈ 37 V−1  

𝑅 Radius of the spine head 50 − 500 nm [18] 

𝐿 Length of the spine neck 0.1 − 2 μm [18] 

𝑎 Neck radius 30 − 100 nm [18] 

𝑆 = 𝜋𝑎2 Cross section of the spine neck 0.28 − 3.1 10−2μm2  

𝐷 Diffusion constant of ions 0.5 10−9m2s−1 [27] 

𝑔0 Maximum synaptic conductance 1 − 16 nS  
Fitted to 

data 

𝑐𝑚 
Membrane capacitance per unit of 

surface 
0.01 Fm−2 [20] 

𝑐0 Bulk ion concentration 150 mM [20] 

𝛷0 
Resting membrane potential −60 mV 

Fitted to 

data 

𝜇 

Kinetics parameter (1) of ion 

channel opening (sigmoidal 

function) 

0.27 − 0.71 ms 
Fitted to 

data 

𝜏1 

Kinetics parameter (2) of ion 

channel opening (sigmoidal 

function) 

0.075 − 0.202 ms 
Fitted to 

data 

𝜏2 
Kinetics parameter of ion channel 

closure (mono-exponential) 
3.76 − 4.54 ms 

Fitted to 

data 
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𝜆𝐷

=
𝜖0𝜖𝑐

2𝑒𝛾𝑐0
 

Debye length ≈ 1 nm  

𝛿1 =
𝜆𝐷

𝑅

2

 
Singular perturbation parameter in 

the spine head 
= 0.02 − 0.002  

𝛿2 =
𝜆𝐷

𝐿

2

 
Singular perturbation parameter in 

the spine neck 
= 0.01 − 0.001  
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Figure Legends 

 

Figure 1: Modeling the dendritic spine geometry and its electro-diffusional properties a) 

Spine head contains ion channels. It is connected to the parent dendrite with a thin cylindrical 

neck. Membrane is modeled as an impermeable dielectric with small electrical permittivity 

compared to cytoplasm (𝜖𝑚 ≪ 𝜖𝑐). At resting state, the spine head is polarized with negative 

electrical potential 𝛷0 ≈ −60 mV compared to external potential 𝛷𝑒𝑥𝑡 ≈ 0 mV. Ion 

concentration 𝑐 𝑒𝑎𝑑(𝑡) also varies compared to bulk concentration 𝑐0. Bulk is electroneutral 

except for a thin boundary layer near the membrane- i.e. the Debye layer (inset), where 

positive (red line) and negative (blue line) ion concentrations differ due to local variation of 

the electrical potential (black line). Most of the electrical potential drops through the poorly 

conducting cell membrane. Equivalent circuit describing the dendritic spine electrostatics is 

represented: Cm denotes the capacitance of the head membrane, Cneck and Rneck denote the 

membrane capacitance and the longitudinal cytoplasmic resistance of the spine neck. Cdend 

and Rdend denote the membrane and resistance of the dendrite. An additional membrane 

resistance Rleak models the ion leaks through the dendrite membrane. All of which combine to 

determine the voltage dynamics inside the spine head. b) Geometrical determinants of passive 

spine neck resistance (ion diffusion coefficient and concentration are respectively fixed to 

𝐷 = 1
4

𝐷0 = 0.5 10−9𝑚2𝑠−1and 𝑐0 = 150 𝑚𝑀). c) Physiological determinants of spine neck 

resistance (neck length and radius are respectively fixed to 𝐿 = 1 𝜇𝑚 and 𝑟0 = 50 𝑛𝑚).  

 

Figure 2. Slow-fast dynamics of ion concentration and electrical potential within the spine 

head during a step entry of positive ions (constant synaptic conductance 𝒈+(𝒕) =  𝟑 𝒏𝑺). a) 

Log plot of the voltage dynamics within different spine geometries, with large (R = 600 nm, 

dashed line) and small (R= 300 nm, solid lines) head, and different neck diameters (140 nm 

(red, 𝑅𝑛𝑒𝑐𝑘(𝑐0) = 368 MΩ) and 80 nm (grey, 𝑅𝑛𝑒𝑐𝑘(𝑐0) = 120 MΩ)). The electrostatics 

forces dominate at small time scales (< 100 𝜇𝑠) and diffusion at larger time scales (> 1 ms). 

Note the deflection of the electrical potential due to concentration changes and diffusion. b) 

Log plot of the concentration dynamics. c) Log plot of the neck resistance dynamics. d) Log 

plot of the synaptic reversal potential dynamics. e) Log plot of the synaptic current dynamics. 

f) Log plot of the neck current dynamics. g) Dynamical model of synaptic and neck currents. 

h) I-V curve of dendritic spine for two different neck diameter (140 nm (grey, 𝑅𝑛𝑒𝑐𝑘(𝑐0) =

368 MΩ) and 80 nm (black, 𝑅𝑛𝑒𝑐𝑘(𝑐0) = 120 MΩ)). The discrepancy between the spine I-V 
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curve (dashed line, (Δ𝑐 > 0) when ion concentration change and Ohm’s law with constant 

resistance (solid line, Δ𝑐 = 0) is highlighted. For thin and highly resistive neck, the spine 

behaves like a diode (inset scheme). 

 

Figure 3. Estimation of synaptic conductance and changes in ionic concentration during 

experimentally measured EPSPs a) Estimating the synaptic conductance during spontaneous 

activity. 1- Conductance of AMPA receptors is modeled with sigmoidal opening (parameters 

𝜇 𝑎𝑛𝑑 𝜏1) and single-exponential closure (parameter 𝜏2). 2- Optimal conductance parameters 

[𝑔0, 𝜇, 𝜏1, 𝜏2] for each EPSP are estimated with a multi-dimensional grid-search algorithm 

where the conductance 𝑔+(𝑡), the synaptic current (Eq. 10) and the voltage (Eq. 12) are 

computed for a large range of parameters. Best conductance parameters are those 

minimizing the distance between the computed and measured EPSPs [8]. 3- Boxplots show 

fitted parameters for the 4 EPSPs recorded experimentally, and optimal conductance is 

plotted for the different spine geometries (large (diameter = 140 nm, 𝑅𝑛𝑒𝑐𝑘(𝑐0) = 120 MΩ, 

red) and thin (diameter = 80 nm, 𝑅𝑛𝑒𝑐𝑘(𝑐0) = 368 MΩ, grey) spine neck, and large (diameter 

= 600 nm, dashed line) and small (diameter = 300 nm, solid line) spine head). b) Dynamics 

of synaptic current, head concentration, neck resistance and reversal potential as reflected by 

coarse-grained electro-diffusion model during spontaneous spine activity in the different 

spine geometries (large (diameter = 140 nm, red) and thin (diameter = 80 nm, grey) spine 

neck, and large (diameter = 600 nm, dashed line) and small (diameter = 300 nm, solid line) 

spine head).  

 

 

Figure 4: Electrodiffusion simulation of a single EPSP with increased synaptic 

conductances. Simulations of single EPSPs (conductance 𝑔+(𝑡) =  
𝑔0𝑒𝑥  (−

2
)

1+𝑒𝑥  (− −
1

)
, with 

increasing conductance (from 𝑔0 = 2 𝑛𝑆 to 𝑔0 = 9 𝑛𝑆) and dynamical parameters 𝜇 =

0.52 𝑚𝑠, 𝜏1 = 0.11  𝑎𝑛𝑑 𝜏2 = 3.95 𝑚𝑠) in 4 different spine geometries.  

 

Figure 5: Incremental increase of ionic concentration and associated neck resistance 

decrease during high-frequency synaptic stimulation. a) Relative variations of ion 

concentration in the spine head  (R= 300 nm) and associated neck resistance for a 20 Hz 

synaptic stimulation (geometrical neck resistances (i.e. at concentration 𝑐0): 500 MΩ (blue) 
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and 100 MΩ (red)). The kinetics of the synaptic conductance is 𝑔+(𝑡) = 𝑔+
𝑒𝑥 −

2

1+𝑒𝑥 − −
1

 with 

𝑔+ = 2 𝑛𝑆, 𝜇 = 0.55 𝑚𝑠, 𝜏1 = 0.12 𝑚𝑠 𝑎𝑛𝑑 𝜏2 = 4 𝑚𝑠. b) Relative variations for 50 Hz 

synaptic stimulation. 

 

 

Figure 6: Electrodiffusion simulation of a single EPSP for decreased diffusivity of negative 

ions. Simulations of single EPSPs (conductance 𝑔+(𝑡) =  
𝑔0𝑒𝑥  (−

2
)

1+𝑒𝑥  (− −
1

)
, with maximal 

conductance 𝑔0 = 5 𝑛𝑆, and dynamical parameters 𝜇 = 0.52 𝑚𝑠, 𝜏1 = 0.11  𝑎𝑛𝑑 𝜏2 =

3.95 𝑚𝑠) in 4 different spine geometries. Diffusion coefficient 𝐷− of negative ions ranges 

from 0.2 𝐷+ to 1.0 𝐷+, with 𝐷+fixed equal to D (see Table 1).  
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Friday, July 29th, 2019 
Dear Pr. Victor and Destexhe, 
 
We are submitting our revised manuscript entitled "Electrodiffusion model of synaptic 
potentials in dendritic spines" for your consideration as an Article in the Journal of 
Computational Neuroscience. We would like to thank you for giving us the opportunity to 
respond to the referees’ concerns. 
 
To answer Reviewer 1’s concerns, we are giving more details in the the Figures titles and 
have shortened their captions. Also, for reproducibility, we will deposit our Matlab code into 
ModelDB (https://senselab.med.yale.edu/modeldb/) as soon as our manuscript is formally 
accepted for publication. 
 
To answer the  main concerns of Reviewer 2, 

1. We now clearly state that PNP modeling does not negate, but complements, cable 
theory by computing the local changes in ion concentration and the related electro-
diffusion effects (i.e., a decrease of reversal potential and neck resistance). We have 
also highlighted that our computations rely on the 1D reduction of PNP equations 
inside the neck and on asymptotic analysis. This mathematical analysis remains 
accurate as long as the Debye length (~ 1nm) is much smaller than the neck 
dimensions (length and radius). Otherwise, more extended mathematical analysis or 
full 3D simulations would be required. 

2. We have added two figures to the main manuscript: one that illustrates how varying 
the synaptic conductance in spines of different geometries affects the voltage, 
current, ion concentration, neck resistance and reversal potential during a single 
EPSP. And a second that shows how a decreased motility of negative ions affects 
the electro-diffusion effects without perturbating the voltage response during a single 
EPSP in different spine geometries.  

 
Looking forward to a favorable response 
 

Yours sincerely,  
 

 
 

 

Response to Reviewer Comments

https://senselab.med.yale.edu/modeldb/


Reviewer #1: The objective of this paper is to present theoretical work introducing 
electrodiffusion into the voltage dynamics in dendritic spines. The approximations result in 
the spine head as a capacitor, which acts as a reservoir of charges that then are non-linealrly 
drained by the neck under the influence of electrodiffusion.  
 
The paper is succinct and will be of interest to JCNS readers. However, the explanation of 
the figures in the text and in the captions requires some attention. I think it is important to 
deposit the model in widely available databases, such as ModelDB. 
 
Answer: We will deposit our model code (Matlab) in ModelDB 
(https://senselab.med.yale.edu/modeldb/) as soon as our manuscript would be 
accepted for publication. 
 
Here are my comments on the figures:  There is no point to have Figure 1b. I think a 
reference suffices. 
 
Answer: We have now removed panel 1b in figure 1.  
 
I have a general issue with the figure captions. The title of the captions contains very little 
information. In contrast, the actual text of the caption is very long with a lot of details that can 
be added to the figure or are better addressed in the text. This is in particular evident for 
Figure 2.  
 
Answer: We have now added more information in Figures’ titles, and removed details 
from captions. In particular, for Figure 2, the title and caption is now: 
“Slow-fast dynamics of ion concentration and electrical potential within the spine 
head during a step entry of positive ions (constant synaptic conductance 𝒈 (풕) =

 𝑪𝒐𝒏풔풕𝒂𝒏풕 = ퟑ 𝒏𝑺). a) Log plot of the voltage dynamics within different spine geometries, 
with large (R = 600 nm, dashed line) and small (R= 300 nm, solid lines) head, and different 
neck diameters (140 nm (red, 𝑅 (𝑐 ) = 368 MΩ) and 80 nm (grey, 𝑅 (𝑐 ) = 120 MΩ)). 
The electrostatics forces dominate at small time scales (< 100 𝜇𝑠) and diffusion at larger time 
scales (> 1 ms). Note the deflection of the electrical potential due to concentration changes 
and diffusion. b) Log plot of the concentration dynamics. c) Log plot of the neck resistance 
dynamics. d) Log plot of the synaptic reversal potential dynamics. e) Log plot of the synaptic 
current dynamics. f) Log plot of the neck current dynamics. g) Dynamical model of synaptic 
and neck currents. h) I-V curve of dendritic spine for two different neck diameter (140 nm 
(grey, 𝑅 (𝑐 ) = 368 MΩ) and 80 nm (black, 𝑅 (𝑐 ) = 120 MΩ)). The discrepancy 

https://senselab.med.yale.edu/modeldb/


between the spine I-V curve (dashed line, (Δ𝑐 > 0) when ion concentration change and 
Ohm’s law with constant resistance (solid line, Δ𝑐 = 0) is highlighted. For thin and highly 
resistive neck, the spine behaves like a diode (inset scheme).” 
 
 
What is the importance of the reference in the caption of Fig 3? 
 
Answer: This was a typo, and we have now replaced it with a standard reference. 
 
Fig 3b, I couldn't find the correspondence of the traces in each sub-panel to the geometrical 
conditions.  
 
Answer: The color code is actually the same than the one used in Fig. 3a. We have 
now indicated also in the caption of Fig. 3b that grey lines correspond to a thin spine 
neck (diameter = 80 nm, geometrical resistance 𝑹𝒏𝒆𝒄𝒌(𝒄ퟎ) = ퟑퟔퟖ 𝐌훀) and red 
correspond to a larger neck (diameter = 140 nm, geometrical resistance 𝑹𝒏𝒆𝒄𝒌(𝒄ퟎ) =

ퟏퟐퟎ 𝐌훀). Solid lines correspond to smaller spine heads (diameter = 300 nm) and 
dashed lines to larger ones (diameter = 600 nm). We have also specified the color-
code of neck size and corresponding resistances in the lower left subpanel of Fig. 3b. 
 
The explanation of Figure 4 in the text does not match very well the emphasis of the caption 
on high-frequency synaptic stimulation.  
 
Answer: We have now replaced “repeated synaptic stimulations” with “repeated high-
frequency (≥ ퟓퟎ Hz) synaptic stimulations ” in the explanation of Figure 4 in the text. 
 
Fig 4a and b should have the same Y-axis to have an easier comparison.  
 
Answer: We have scaled Fig. 4a and 4b to have the same Y-axis. 
 
I don't want to be too picky, but I hope you agree that kinetics is not the appropriate term 
(which is about reactions), instead what you are talking about is how things change in time, 
which is dynamics. This is throughout the text. 
 
Answer: We have replaced “kinetics“ with “dynamics” throughout the text.  
 
 



 
Reviewer #2: The manuscript by Lagache et al. is potentially quite interesting because it 
simulates an electrodiffusion model of realistic synaptic conductances, which is much more 
relevant than the steady state conditions explored in a recent Neuron paper (ref 12). But, like 
many electrodiffusion papers, it does not make fair comparisons to cable modeling. Also it is 
limited by its initial assumptions, and some results are poorly presented. 
 
Main concerns: 
1. The straw man comparison to cable modeling, going back to Qian and Sejnowski 1989 
and repeated here on page 2, always refers to models with fixed reversal potentials. But 
using standard software like NEURON, it is easy to compute concentration changes caused 
by ion influx, either in a well-mixed compartment or using 1D diffusion, and use these 
concentrations to update the reversal potential. This approach was already demonstrated by 
Yamada, Koch and Adams in 1989 and has been used repeatedly to model synapses. In 
fact, eq. 10 is equivalent to the Ohmic equation for synaptic current with the Nernst potential 
in place of the reversal potential…  
 
Answer: In this manuscript, our goal is not to substitute “electro-diffusion” for “cable 
theory” but rather to complement the standard cable theory that assumes negligible 
concentration changes and related electrodiffusion effects on the electrical response. 
Our main contribution is therefore the derivation of the coarse-grained system of 
dynamical equations (11-12) that couples the voltage and ion concentration dynamics 
inside the spine head. 
 
Electrodiffusion and PNP equations have been used before for modeling synaptic 
current. In particular, treatment of 1D PNP equations at steady state led to the well-
known Goldman-Hodgkin-Katz formula for the reversal potential. We have thus added 
on page 3 that ”PNP equations have been extensively used to model thin ion 
channels, and their steady-state analysis led to the well-known Goldman-Hodgkin-
Katz formula and the definition of the reversal potential”. Also, we have clearly stated 
throughout the manuscript that our main objective is to complement the standard 
cable theory and model the potential changes in ion concentration and related electro-
diffusion effects (e.g. decreasing of the reversal potential and neck resistance) during 
synaptic EPSPs. 
 
Main changes (underlined) are: 
 



-In the abstract, we added “However, cable theory generally assumes that 
concentration changes associated with ionic currents are negligible and, therefore, 
ignores electrodiffusion,.... To extend cable theory and explore electrodiffusion 
effects, we use here the Poisson (P) and Nernst-Planck (NP) equations…”.  
 
-On page 6, we replaced “Second, the neck resistance is not solely dependent on 
geometry, as assumed in cable theory models (Fig. 1b)” with “Second, 
electrodiffusion predicts that changes in ion concentration modulate the neck 
resistance, which is not solely dependent on geometry as usually assumed in cable 
theory (Fig. 1b)” 
 
- On page 7, we added “ We termed the first few hundred microseconds of the 
transient as the electrostatic phase, which is accurately described by cable theory.” 
 
-On page 8, we added “…concentration changes during the electrostatic phase are 
negligible and voltage dynamics can be described accurately by cable theory,…” 
 
-On page 11 we added “However, cable equations traditionally neglect local changes 
in ionic concentration and the role of electrodiffusion” 
 
-In Figure 2h, we no longer contrast PNP with cable theory but rather differentiate 
between “no concentration changes (횫𝒄 = ퟎ)” and “ increased ion concentration (횫𝒄 >

ퟎ).” 
 
Even eq. 8 could probably be replaced by eq. 9 using local concentrations if the neck was 
discretized spatially (as was done in ref 12).  
 
Answer: Indeed, if we discretize the neck into n small, identical cylinders, with 
constant base S and height dl = L/n (L is the total neck length, and S the neck constant 
cross-section), and assume that ion concentration 𝒄𝒊 𝐟𝐨𝐫 ퟏ ≤ 𝒊 ≤ 𝒏, and resistance 풓𝒊 =

𝒅𝒍
ퟐ휸𝑫𝑺𝒄𝒊𝒆

 are nearly constant in each small cylinder, then the total resistance of the neck 

is equal to  

𝑹 = 풓𝒊

𝒏

𝒊 ퟎ

=
𝑳

ퟐ휸𝑫𝑺𝒆
 

ퟏ
𝒏

ퟏ
𝒄𝒊

𝒏

𝒊 ퟏ

 

 



As Fick’s law ensures that concentration along the neck cylinder is linearly 
decreasing we then have 
 

𝑹 =
𝑳

ퟐ휸𝑫𝑺𝒆
 

ퟏ
𝒏

ퟏ

𝒄𝒉𝒆𝒂𝒅(풕) − 𝒊 − ퟏ
𝒏 − ퟏ (𝒄𝒉𝒆𝒂𝒅(풕) − 𝒄ퟎ)

𝒏

𝒊 ퟏ

 

 
In the limit 𝒏 → ∞, the previous sum converges to the integral 
 

𝑹 =
𝑳

ퟐ휸𝑫𝑺𝒆
 

𝒅풙
𝒄𝒉𝒆𝒂𝒅(풕) − 풙 ∗ (𝒄𝒉𝒆𝒂𝒅(풕) − 𝒄ퟎ)

ퟏ

ퟎ
=

𝑳
ퟐ휸𝑫𝑺𝒆(𝒄𝒉𝒆𝒂𝒅(풕) − 𝒄ퟎ)

 𝒍𝒏
𝒄𝒉𝒆𝒂𝒅(풕)

𝒄ퟎ
 

 
Which exactly corresponds to Eq. 9 of the main manuscript. 
For a sake of clarity and concision, we did not include these additional computations 
in the main manuscript. 
 
The approach used in this paper is, like cable theory, 1D though in principle it could be 
applied to the 3D domain, which would have been more interesting. The authors should 
rephrase the relevant parts of the manuscript. 
 
Answer: We state in the Introduction that PNP equations cannot be solved analytically 
in 3D domains and that we had to simplify equations (1D reduction of neck equations) 
and approximate solutions (singular perturbation theory). Approximations should be 
accurate as long as the Debye length (~ 1 nm in experimental conditions) is small 
compared to the neck diameter. Also, we have now rephrased many parts of the 
manuscript (see above) to clearly state that PNP equations are actually 
complementing the cable theory by computing the potential changes in ion 
concentration during synaptic activity, and the related electrodiffusion effects.  
 
2. As mentioned by the authors on p. 12 most of the negative charge is not ionic and has a 
lower diffusion constant. While the actual proper value for this parameter is not known, the 
authors should repeat their simulations with a smaller D for negative charge, preferably for a 
few possible values. This may strongly affect the inward negative current. 
 
Answer: We have repeated our PNP simulations for a single EPSP, with a fixed 
synaptic conductance 𝒈ퟎ = ퟓ 𝐧𝐬 and decreasing diffusion coefficient 𝑫  of negative 
ions compared to positive ions 𝑫 = 휶𝑫  for ퟎ < 휶 ≤ ퟏ (new Fig. 6 in the main 



manuscript, shown below). We can observe thata  decreased motility of negative ions 
tunes down the neck current, but leads to higher neck resistance (see detailed 
computations in the Supplementary material section II-B-3). As concentration changes 
and electrodiffusion effects (decreased neck resistance and reversal potential), that 
usually tend to lower the voltage inside the spine head, are decreased, we observe 
that, overall, the spine head depolarization during EPSPs is higher when negative 
diffusivity is decreased. 
We highlight that our mathematical analysis cannot be applied to the extreme case of 
completely immobile negative charges (𝑫 = ퟎ) because, in that case, positive 
charges might not be well-mixed in the bulk and shall accumulate near immobile 
negative charges. This extreme scenario has been discussed in [1] and treated 
mathematically in [2] and [3]. In addition to the new figure 6, we have added the 
following paragraph on page 13 of the main manuscript: 
“An important effect of lower negative charges’ motility and inward negative current 
would be to down-regulate changes in ion concentration and electrodiffusion effects 
(i.e. lowering neck resistance and reversal potential) (Figure 6). Moreover, decreased 
motility of negative ions would reduce the neck current (see SI-II-B-3 for details). 
However, as the neck resistance would be increased and electrodiffusion effect 
decreased, the voltage in the spine head during the EPSP would, overall, reach higher 
values (Figure 6). We highlight that we did not consider the extreme scenario where 
the negative charges would be completely immobile (diffusion coefficient 𝑫 = ퟎ). 
Indeed, in that case, positive charges might not be well-mixed in the bulk and shall 
accumulate near immobile negative charges, and our mathematical analysis would not 
be valid anymore as it relies on the bulk electro-neutrality and the accumulation of 
excess charges within a small Debye layer. This extreme scenario has been discussed 
in [1] and treated mathematically in  [2] and [3]. 
 



 
 
Fig. 6: Electrodiffusion simulation of a single EPSP for decreased diffusivity of 

negative ions. Simulations of single EPSPs (conductance 𝑔 (𝑡) =  
 ( )

 ( )
, with maximal 

conductance 𝑔 = 5 nS, and dynamical parameters 𝜇 = 0.52 ms, τ = 0.11  and τ = 3.95 ms) 
in 4 different spine geometries. Diffusion coefficient 𝐷  of negative ions ranges from 0.2 𝐷  
to 1.0 𝐷 .    
 
 
3. The authors should do a better job of explaining "We stress that steady state voltage and 
net ion concentration depend solely on spine neck geometry, whereas their kinetics is 
controlled by the size of the spine head, volume and membrane capacitance." (Figure 2, 
page 8). The result that steady state change in ionic concentration does not depend on head 
volume is surprising.  
 
Answer: Steady state voltage and net ion concentration depend solely on steady-state 
neck current, which in turn, only depends on spine neck geometry (Eq. 70-72 in 
supplementary material and Fig. 2 a-b). On the other hand, the time constants of the 



dynamical system of equations (11-12) that couple the voltage and ion concentration 
dynamics depend on the spine head geometry. Indeed, the head volume controls the 
dynamics of concentration changes, while the head membrane capacitance (which is 
proportional in internal head membrane surface) determines the charging time 
constant of the head capacitor. This dependence of kinetics on the head size can be 
observed in the lower transition phases inside spines with bigger heads in Fig. 2). We 
have now better explained this statement in the main manuscript: “We stress that 
steady state voltage and net ion concentration depend solely on spine neck geometry 
(Eq. 70-72 in supplementary material and Fig. 2 a-b), whereas their dynamics is 
controlled by the size of the spine head, through its volume and membrane 
capacitance (time constants on the left hand side of the dynamical system (11-12) and 
transition phases in Fig. 2). “ 
  
In addition to changing the neck radius the authors should also provide data on the effect of 
changing the neck length in Figure 2.  
 
Answer: As stated above, the two main parameters affecting the amplitude and 
dynamics of EPSPs are the size of the spine head and the neck resistance, which is 
proportional to the length of the neck divided by its cross-section. For concision and 
clarity, to vary the neck resistance in Fig.2 we chose to only modulate the neck cross-
section. As neck resistance is actually the key modulated parameter, we have now 
added the resistance values corresponding to each neck diameter (𝐑𝐧𝐞𝐜𝐤(𝐜ퟎ) =

ퟏퟐퟎ 𝐌훀 𝐟𝐨𝐫 𝐝𝐢𝐚𝐦𝐞𝐭𝐞𝐫 = ퟏퟒퟎ 𝐧𝐦, 𝐚𝐧𝐝 𝐑𝐧𝐞𝐜𝐤(𝐜ퟎ) =  ퟑퟔퟖ 𝐌훀 𝐟𝐨𝐫 𝐝𝐢𝐚𝐦𝐞𝐭𝐞𝐫 = ퟖퟎ 𝐧𝐦). 
  
They should also discuss whether the 1D simplification may hide mechanisms that would 
change this result. 
 
Answer: After Eq. 6-8, we have now highlighted that expressions for the diffusion flux 
and the current in the neck were obtained after 1D reduction of PNP equations and 
asymptotic analysis, and that our analysis will remain accurate as long as the Debye 
length is small compared to neck dimensions (length and diameter). If not, full 3D 
simulations will be required, or, if actually the Debye length is large compared to the 
neck radius, one can use another type of asymptotic analysis as in [4]. We have added 
the following paragraph after Eq. 8: 
“Previous expressions for the diffusion flux and the current inside the neck were 
obtained after the 1D reduction of PNP equations and their asymptotic approximation. 
These mathematical techniques are similar to those used for modeling ion channels 



[5-7] and remain accurate as long as the Debye length 흀𝑫 (see Table 1) is small 
compared to the dimensions (length and diameter) of the neck. Otherwise, full 3D 
numerical simulations are required or, if the Debye length is actually large compared 
to neck diameter, other type of asymptotic analysis can be applied [4].” 
 
4. Figure 4b may be the most important panel in the manuscript but is difficult to interpret 
because, if I understand well, a different conductance value was used for each geometry. 
The authors should use identical conductance values to facilitate comparison of the 
geometrical effects and, if they want to emphasize the fit to data, they can show several 
versions of this panel with different conductance values. 
 
Answer: In Fig. 3b, we indeed fitted the synaptic conductance to voltage data for each 
EPSP and putative spine geometry. We have now added a figure to the manuscript 
(new Fig. 4, shown below) to show how varying the synaptic conductance affects the 
voltage, current, ion concentration, neck resistance and reversal potential in each 
spine geometry.   
 

 
 



Fig. 4: Electrodiffusion simulation of a single EPSP for increased synaptic 

conductances. Simulations of single EPSPs (conductance 𝑔 (𝑡) =  
 ( )

 ( )
, with 

increasing conductance (from 𝑔 = 2 nS to 𝑔 = 9 nS) and dynamical parameters 𝜇 =

0.52 ms, τ = 0.11  and τ = 3.95 ms) in 4 different spine geometries.  
 
 
5. The authors do not mention how they solved their equations (Matlab?). They should 
deposit the model code in a public repository and refer to this in the manuscript. 
 
Answer: We will deposit our Matlab code in ModelDB 
(https://senselab.med.yale.edu/modeldb/) as soon as our manuscript would be 
accepted for publication. 
 
 
Minor concerns: 
 
1. Table 1: is it correct to use the permittivity for water to simulate cytoplasmic permittivity? 
Other parameters used, like the diffusion constant, have cytoplasmic values which are lower 
than those in water. The presence of charges should affect permittivity. 
 
Answer: In Table 1, we have now replaced the value of water permittivity 흐𝒄 = ퟖퟎ 흐ퟎ 
with the cytoplasmic permittivity estimated in neurons and glial cells 흐𝒄 = ퟔퟎ 흐ퟎ [8]. 
However, we highlight that the value of cytoplasmic permittivity only affects the value 
of the Debye length, which remains much smaller than the dimensions of dendritic 
spines that we have considered in our model.  
 
2. Figure 1a legend: what is meant by "At resting state, the spine head is depolarized with 
negative electrical potential ≈ −60 mV"?  Why would the spine head be depolarized at rest? 
This is also what seems to be shown in the inset (difference between Chead to C0) and is 
confusing. 
 
Answer: This was a typo, and we have now changed the legend with “At resting state, 
the spine head is polarized with negative electrical potential 횽ퟎ ≈ −ퟔퟎ 𝐦𝐕 compared 
to external potential 횽𝒆풙풕 ≈  ퟎ 𝐦𝐕”. At resting state, ion concentration 𝒄𝒉𝒆𝒂𝒅(풕 = ퟎ) 
equal to 𝒄ퟎ, and we have also edited the figure accordingly. 

https://senselab.med.yale.edu/modeldb/


 
3. page 4: "neck radius is much smaller than the head radius a ≪ R". One can discuss the 
meaning of the word 'much' but for some of the cases shown in Figure 2 the ratio is 0.47, 
which seems "…is smaller than… a < R". 
 
Answer: We have replaced "neck radius is much smaller than the head radius a ≪ R" 
with "neck radius is smaller than the head radius a < R".  
 
4. Figure 4: it is difficult to interpret the neck resistance values used because nowhere else in 
the paper actual values for neck resistance are mentioned. Please mention the range of 
values for the geometries used in Figure 2. 
 
Answer: We have now added the resistance values corresponding to each neck 
diameter: 𝐑𝐧𝐞𝐜𝐤(𝐜ퟎ) = ퟏퟐퟎ 𝐌훀 for diameter = 140 nm, and 𝐑𝐧𝐞𝐜𝐤(𝐜ퟎ) =  ퟑퟔퟖ 𝐌훀 for 
diameter = 80 nm. 
 
5. page 12: "This agrees with… that reported up to 10 mM concentration increase…". The 

actual study mentions a 5 mM increase leading to a ~ 9 mM maximal concentration. Correct 
this statement. 
 
Answer: We have corrected this statement. 
 
6. The Supplementary Methods often uses jargon that is not referenced: "Debye length", 
"Debye-Hückle boundary layer" 
 
Answer: We have replaced “Debye-Hückle boundary layer" with “Debye layer”, which 
is defined in the main manuscript. 
 
7. Supplementary Methods after eq. 28: n+(t) and n-(t) 
 
Answer: We have corrected this typo. 
 
8. Supplementary Methods eq. 55 uses log, corresponding main text eq. 8 uses ln. 
 
Answer: We have replaced all “log” with “ln” in the supplementary material. 
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