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Generalizing the Statistical Analysis of Objects’
Spatial Coupling in Bioimaging

Suvadip Mukherjee†, Member, IEEE, Catalina Gonzalez-Gomez†, Lydia Danglot, Thibault Lagache† and
Jean-Christophe Olivo-Marin†, Fellow, IEEE

Abstract—We introduce a novel paradigm for statistical analy-
sis of spatial signals, applied to colocalization studies in bioimag-
ing. Quantitative assessment of the spatial colocalization of
different molecules in microscopy provides important functional
information on cellular processes. By reducing objects (molecules
or cluster of molecules) to their position (points), existing methods
are predominantly restricted to point-based analyses, and scale
poorly to applications involving large, asymmetric and complex-
in-shape objects. We address this issue, and propose a statistical
model for shape-based colocalization analysis. Our solution is a
generalization of the Ripley’s K-function for arbitrary shapes,
and provides a method to statistically interpret the coupling of
molecules to biological objects which are implicitly represented
via level set embedding. Compared to the state-of-the-art, our
solution is efficient and generic, and establishes the theoretical
basis for an one-fits-all approach to tackle the heterogeneous
challenges in robust interpretation of molecular association in
biology. The efficacy of our method is established via synthetic
simulations, and a practical application is also described to
measure the statistical accumulation of synaptic molecules’ spots
near the cell’s boundary of cultured neurons.

Index Terms—spatial statistics, colocalization, Ripley’s K-
function, coupling, fluorescence microscopy, level sets

I. INTRODUCTION

THE analysis of the spatial distribution of molecules
and organelles in bioimaging remains a gold-standard

for understanding cellular processes at the molecular level.
Colocalization studies are performed across spatial scales
which range from standard fluorescence microscopy, to super-
resolution imaging (see Fig. 1), and the significant variability
in the data makes it difficult to design an approach which
is robust, yet generic. Traditional intensity-based methods are
often sensitive to the parameters of the imaging system [1], and
have recently led to the object-based techniques which define
colocalization in terms of the spatial proximity of the detected
objects (biomolecules) [2]–[4]. By reducing an object’s shape
to a spatial coordinate (e.g. center-of-mass), such methods are
suitable for small, rounded objects shown in Fig. 1(a) and
(b), but their use is rather limited when the shapes are large
and complex (Fig. 1(c)). Such large objects can be present
when the objects’ size is larger than the PSF in standard
fluorescence microscopy (e.g. cell edges, tubular organelles
such as mithocondria [5] or synaptic aggregates [6]).

We propose a theory to unify both point- and shape-based
colocalization problems in a single mathematical framework.
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Fig. 1. Examples of colocalization studies in bioimaging. A two-channel
fluorescent microscopy image is shown in (a), where the fluorescent spots in
the green and red channel correspond to the individual protein responses. In
(b), 3D single molecule localization of the proteins Synapsin and VGLUT are
shown. Finally, (c) illustrates a widefield fluorescent microscopy image of a
rodent neuron, where the challenge is to quantitatively analyze the association
of the synaptic molecules (green spots) to the neuronal dendrites (in blue).

In this novel paradigm of shape-based spatial pattern analysis,
objects are represented via a level set of a higher dimensional
embedding function [7], which makes this solution attrac-
tive for both point-objects (approximated as circular/spherical
spots), as well as complex shapes. This allows us to study
a generalized notion of spatial proximity, which we call
coupling.

A. Background and motivation

Different imaging modalities are used to understand inter-
molecular association, ranging from optical coherence tomog-
raphy in histological samples [8] to fluorescence and electron
microscopy [9], [10] in molecular cell biology. The inherent
heterogeneity in the imaging data has led to two predominant
groups of techniques for quantitative assessment of the spa-
tial coupling of biomolecules. For example, in fluorescence
microscopy the colocalization of bio-molecules labeled with
different fluorescent markers is traditionally quantified through
their signal overlap or correlation [11]–[13]. However, the
colocalization indices derived via these methods are sensitive
to the microscope’s point spread function. Moreover, such
techniques are not applicable in super-resolution microscopy
[14], [15] where the colocalized molecules are either only
partially overlapping, or do not overlap at all [3]. In this
context, object-based methods have been developed which
compute colocalization via spatial analysis of the objects’
positions (defined by either the single molecule localization
or the center of mass of the molecule spot) using a suitable
second-order spatial statistic [3], [4], [16]–[18].

An important factor for robust quantitative assessment
is to distinguish between genuine inter-object coupling and
molecule association due to chance. In [4], the authors describe
a statistical tool, namely SODA, which uses a Ripley-based



Fig. 2. Leveraging level-sets for the analysis of coupling between points and larger objects Our method is designed for analyzing the spatial coupling
of points (or small spotty objects, shown in cyan) to larger and complex-in-shape objects (shown in red). We leverage level-sets to embed the complex shape
of large, red objects and map the distance of all FOV’ s points to embedded contours. We then compute the number of points in several, level-set delimited
domains ωmn for m < n, and statistically characterize the expected distribution under the hypothesis of (cyan) points’ complete spatial randomness. After
having determined the level-set domains where there is a significant accumulation of points (normalized number of points K0

mn above statistical threshold,
highlighted with a red dashed line), our analysis provides a statistical map of coupled points.

statistic [19] to compute the significance of the measured
spatial coupling between individual objects. However, this
technique is also primarily geared towards localization-based
analysis in super-resolution microscopy.

B. Our contribution

The limitations of the contemporary practices motivate us to
develop a generic solution to analyze the statistical coupling
of molecular localizations to objects with arbitrary shapes. A
novel colocalization statistic is introduced, which generalizes
the Ripley’s K-function for any closed shapes that are implic-
itly represented via level set embedding. This also provides
a theoretical generalization of our recent development [4],
and extends its relevance beyond point-point data analysis to
embrace a wider gamut of object based colocalization studies
in bioimaging. In contrast to the cluster-overlap methods
[16]–[18], our solution rejects any stochastic association of
points and only reflects the statistically significant coupling
to the objects. The mathematical details of the algorithm
are described next, followed by experimental evaluations and
concluding remarks in Sec. III and Sec. IV respectively.

II. METHOD

To simplify notations, the following theory is presented
in two-dimensions, but the model extends naturally to three
dimensional data. Let us define the domain of analysis to be
Ω ⊂ R2. We consider the case of analyzing the co-localization
of the elements of a set B to the set A. The set A =
{s1(p), . . . sn1

(p)} of complex-shaped objects is represented
with a collection of curves parameterized by p ∈ [0, 1]. These
objects are assumed to be delineated from the input image
via appropriate segmentation/object detection techniques [20],
[21]. B = {u1, . . . , un2} is a set of points (typically center-
of-mass of fluorescent spots) uj = (x, y) ∈ Ω. The set
cardinalities are represented as n1 = |A| and n2 = |B|. We
graphically summarize our method in Fig. 2.

A. Embedding complex-shaped objects with level-sets

Since the shapes in A are defined over Ω, one may define a
continuous domain image b : Ω 7→ [0, 1] such that b(x, y) = 1
for all pixels (x, y) which are crossed by or enclosed (for

closed contours) by at least one contour in A, and zero
otherwise. The binary image b(x, y) may be interpreted as the
superposition of the (possibly overlapping) segments defined
by the curves in A. We propose an implicit representation of
the components in b(x, y) by embedding the object boundaries
as the zero level shape of a level set function. We introduce
the Lipschitz function φ : Ω→ R, which is defined as follows:

φ(x, y) =

{
≤ 0 ∀(x, y) ∈ ω0

> 0 ∀(x, y) ∈ Ω \ ω0

(1)

Here ω0 ⊂ Ω is the area enclosed by the union of the objects
in A, and the object boundaries correspond to the zero level set
of φ. In general, for any scalar k, the region enclosed by the k-
level set of φ is represented by ωk = {(x, y)|φ(x, y) ≤ k}, and
the intermediate zone between two levels m and n (m ≤ n)
is defined to be ωmn = ωm ∩ ωn.

B. Quantifying the coupling of points to objects

We define the statistic Kmn which is proportional to the
number of events u ∈ B which occur inside the region ωmn.
Mathematically,

Kmn =
|Ω|
n2

n2∑
j=1

χmn(uj) whereuj ∈ B (2)

The region indicator function χmn(u) = 1 if u ∈ ωmn and
zero otherwise.

Proposition. If the spatial distribution of the events u ∈ B
follow a homogeneous Poisson distribution in Ω, Kmn asymp-
totically converges to a Gaussian distribution.

If the events u ∈ B are realizations of a homogeneous Pois-
son spatial process (a model for complete spatial randomness
(CSR) [22]), it implies that the spatial spread of the events is
uniformly random in the domain Ω. Under CSR, the events in
B are i.i.d, and therefore this serves as the null hypothesis for
(lack of) coupling between the events in B to the regions
in A. Under the null hypothesis, χmn(u) is a Bernoulli
random variable with parameter pmn, and consequently Kmn

is binomially distributed. This parameter may be computed
to be pmn = |ωmn|/|Ω| as each event is equally likely to
occur in any closed sub-domain due to the CSR assumption.



Furthermore, Kmn converges to the Normal law, expressed as
K ∼ N (µmn, σmn) for sufficiently large n2. Our objective is
to estimate the parameters of this distribution in a closed form
under the assumption of a spatial randomness of the points in
B. The expected value of Kmn under the null hypothesis is
calculated to be

µmn = E [Kmn] =
|Ω|
n2

n2∑
j=1

E [χmn(uj)]

=
|Ω|
n2
× n2

(
|ωmn|/|Ω|

)
= |ωmn| (3)

The variance of the statistic can be expressed as follows:

σ2
mn = E

[
(Kmn − µmn)

2
]

= E
[
K2
mn

]
− µ2

mn

=
|Ω|2

n2
2

(
n2∑
i=1

E
[
χ2
mn(ui)

]
+

n2∑
i=1

n2∑
j=1
j 6=i

E [χmn(ui)χmn(uj)]− n2
2p

2
mn

)
(4)

Since χmn is a Bernoulli random variable with expected
value pmn, E

[
χ2
mn(u)

]
= pmn as well. Furthermore, the

complete spatial randomness of the point process ensures that
the location of a point ui ∈ B is independent of another
point uj ∈ B ∀i 6= j, which yields E [χmn(ui)χω(uj)] =
E [χmn(ui)]E [χmn(uj)]. Substituting this result in Eq.4, we
compute the variance as follows:

σ2
mn =

|Ω|2

n2
2

(
n2pmn + n2(n2 − 1)p2

mn − n2
2p

2
mn

)
= |ωmn| (|Ω| − |ωmn|) /n2 (5)

Using vector notations, we have K =
[
K0, . . . ,Kmn, . . .

]′
,

M = [µ0, . . . , µmn, . . .]
′ and Σ = diag

(
[σ0, . . . , σmn, . . .]

′ )
such that K ∼ N (M,Σ).

C. Statistical characterization of the spatial coupling

To statistically characterize the coupling of points to objects
from the computed K vector, we first reduce it to

K0 = Σ−1. [K−M] , (6)

which converges to a standard gaussian vector under the
complete spatial randomness hypothesis: K0 ∼ N (0N ,1N,N )
where N is the length of the vector K, 0N a 0-vector of length
N and 1N,N a N by N identity matrix. Components of K0 are
independent random variables and we can therefore compute
the probability that the maximum component of K0, which we
denote supN

[
K0
]
, is greater than arbitrary value x is equal

to

Pr

{
sup
N

[
K0
]
> x

}
= 1−

∏
0<m<n

Pr
{
K0
mn < x

}
= 1− cdfN (x), (7)

where cdf(x) =
∫ x
−∞

exp
(
−u2

2

)
√

2π
du is the cumulative density

function of the normal gaussian law. Therefore, we can com-

Fig. 3. Validation with synthetic images a- Using the stochastic algorithm
described in sub-section III-A, we generate elongated objects (n1 = 100) with
different lengths, and the corresponding regions ωmn are shown in different
colors. b- For each colocalization level α, we compare the predicted coupling
with Ripley-based analysis SODA [4] (in cyan) and our method (in red).
Dashed black line corresponds to the ideal estimation.

pute the p-value for rejecting the null hypothesis of points’
complete spatial randomness (CSR) with

p-value[CSR] = 1− cdfN
(

sup
N

[
K0
])

. (8)

To detect significant components of K0 where points accumu-
late around objects, we use the threshold T (N) =

√
2 log(N)

which computes the significant components of a N -length
vector corrupted with unit-variance, white noise [23]. Thus,
for each component K0

mn > T (N) we estimate the number
of coupled points Cmn between level sets 0 < m < n,
i.e. statistically above the expected number of points under
complete spatial randomness, with

Cmn = χ{K0
mn>T (N)}

[
n2

|Ω|
(Kmn − |ωmn|)

]
(9)

The indicator function χ{K0
mn>T (N)} = 1 if K0

mn > T (N)
and zero otherwise. Finally, for each point’s position uj ∈ B,
for 1 ≤ j ≤ n2, we can compute the probability pC(uj) that
this point is coupled to objects of set A

pC(uj) =
|Ω|
n2

∑
0<m<n

χmn(uj)
Cmn
Kmn

(10)

The mean coupling distance dC [B → A] of points of set B
to objects of set A is therefore given by

dC [B → A] =
1∑

j pC(uj)

∑
1≤j≤n2

pC(uj)d [uj → A] (11)

where the distance d [uj → A] of point uj to set A is
equal to the minimum distance of uj to any pixel x, y
such that the level set function Φ(x, y) = 0: d [uj → A] =
minx,y s.t. Φ(x,y)=0 d [uj → (x, y)].

III. EXPERIMENTS

In this section we evaluate the proposed methodology using
both simulation studies and examples in bioimaging.



Fig. 4. Measuring the coupling of synaptic molecules to neuronal dendrites with wide-field fluorescence microscopy. a- Imaging of synaptic molecules
(Synapsin in green) and neuronal dendrites (MAP2 marker in blue) in rodents’ hippocampal neurons (culture). Upper-right corner is zoomed. b- The cell
cytoplasm is automatically segmented, and the cell boundary corresponds to zero level-set ω0 (shown in white). We also show other level-set enclosed domains
ωmn, for 0 ≤ m < n ≤ 9 in different colors. Here 1 pixel u 100 nanometers. Normalized accumulation of spots are shown for 18 cells.

A. Validation with simulations

To simulate elongated objects with different shapes and
length, for each object we generate an open contour sj(p), p ∈
[0; 1]. For each object 1 ≤ j ≤ n1, we start by drawing
a random initial position sj(0) in the FOV Ω. Then, for
l = 1..L, with L the length of objects, we compute iteratively
the curvilinear position as sj

(
p = l

L

)
= sj

(
l−1
L

)
+ reiθl .

In our simulations r = 1 and θl ∼ U [0;π]. Restricting
the range of each θl to [0;π] ensures that each object in
the set A is rather elongated. Finally, the simulated set
of objects contours A = {s1(p), . . . sn1

(p)} are embedded
as the zero level set of a level set function computed via
signed distance transform [7]. To simulate spatial coupling
of a given proportion 0 ≤ α ≤ 1 of n2 for the points
in B to the objects of the set A, we simulate a Thomas
process [3] to randomly sample (1−α)n2 points in Ω. Then,
for each remaining αn2 coupled point uk, one simulated
curvilinear position sj

(
l
L

)
is selected at random, and the

spatial coordinate is computed as uk = sj
(
l
L

)
+rcke

iθck , where
rck ∼ N (µc, σc) and θck ∼ U [0; 2π]. For different levels of
coupling α = 0, 0.1 . . . 1.0 and distance µc = 1 pixel and
σc = 0.3 pixels, we compare the simulated and the measured
percentage of coupling for increasing objects’ length. Ideally,
the measured percentage of coupling should be close to the
simulated percentage, which corresponds to the black dashed
line in Fig. 3. We also compare the accuracy of our method
with Ripley-based analysis SODA [4]. We observe that, while
level-sets and Ripley-based methods produce almost similar
results for point objects (L = 1), the efficacy of level-set
method is significantly better for more elongated structures.

B. Coupling of synaptic spots to neuronal dendrites

To demonstrate an application in bioimaging, we use wide-
field fluorescence imaging (Fig. 4) and measure the spatial
coupling of pre-synaptic spots (Synapsin, labeled in green)
with the dendrite of a post-synaptic neuron labeled with MAP2
(blue). Projecting axons of pre-synaptic neurons are known to
be apposed to post-synaptic dendrites, and we expect to find
a significant accumulation of Synapsin in close proximity to
the cell boundary. We validate this phenomenon quantitatively
using our proposed technique. Conventional colocalization
methods are not applicable here, as the neuron dendrites
are large, asymmetrical objects and the Synapsin spots are

physically apposed, but not entirely superposed to the cell
shapes.

Quantitative evaluations are performed on a set of 18 dif-
ferent images by designing a protocol in ICY [24]. For spatial
analysis, the set of objects (set A) is obtained by segmenting
the MAP2 response using k-mean thresholding algorithm in
ICY [24]. Centroids of the Synapsin spots, automatically
extracted via a wavelet-based spot detector [20] constitute the
point set B. Over 92% of the detected spots were found to
be accumulated within the domains ωmn(0 ≤ m < n ≤ 9)
defined by the level sets of the segmented cells, of which more
that 89% spots were found to be statistically apposed to the cell
shape with non-zero coupling probability (Eq. 10). Statistically
significant accumulation of spots (p-value = 10−178±18) were
observed at an average coupling distance of 2.1 pixels, with
a peak at a distance less than 100nm from cell bound-
ary. Additionally, our method also predicts the uncertainty
in the spatial process via the average coupling probability
p̄C = 1

n2

∑n2

j=1 pC(uj) = 56.4%. This relatively low value
is expected, as the dendrites span a considerable area which
increases the risk of observing Synapsin accumulation due to
chance. The distance of accumulation of synaptic vesicles are
found to be in agreement with the typical size of synaptic
buttons [25], and the quantitative results indeed suggest a
strong association between the two markers used in this
positive control.

IV. CONCLUSION

This paper describes a mathematically rigorous approach to
analyze inter-molecular coupling in quantitative bioimaging.
The method is robust, generic and addresses the limitations of
the state-of-the-art. Experimental validations establish the effi-
cacy of our algorithm over standard Ripley-based techniques,
especially for elongated objects. Although this work primarily
addresses colocalization studies in bioimaging, the described
principles are suitable for generic spatial data analysis with
applications in histopathology, geoscience and remote sensing.
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T. Provoost, V. Meas-Yedid, P. Pankajakshan, T. Lecomte, Y. Le Mon-
tagner, T. Lagache, A. Dufour, and J.-C. Olivo-Marin, “Icy: an open
bioimage informatics platform for extended reproducible research,” Nat
Methods, vol. 9, no. 7, pp. 690–6, Jul 2012.

[25] B. G. Wilhelm, S. Mandad, S. Truckenbrodt, K. Kröhnert, C. Schäfer,
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