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Abstract  30 
 31 
Asthma is a chronic immunological disease affecting all age groups, but often starting in 32 
childhood. Although it has long been ascribed to a single pathology, recent studies have 33 
highlighted its heterogeneity due to the potential involvement of various pathogenic 34 
mechanisms. Here, we present our current understanding of the role of innate-like T 35 
(ILT) cells in asthma pathogenesis. These cells constitute a specific family mainly 36 
comprising γδT, invariant Natural Killer (iNKT) and Mucosal-Associated Invariant (MAIT) 37 
T cells. They all share the ability to massively secrete a wide range of cytokines in a T cell 38 
receptor (TCR)-dependent or -independent manner. ILT cells are prevalent in mucosal 39 
tissues, including airways, where their innate and adaptive immune functions consist 40 
primarily in protecting tissue integrity. However, ILT cells may also have detrimental 41 
effects leading to asthma symptoms. The immune mechanisms through which this 42 
pathogenic effect occurs will be discussed in this overview.  43 
 44 
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INTRODUCTION 48 
 49 
Asthma is now considered an umbrella term encompassing various conditions 50 
characterized by wheeze, cough, shortness of breath, chest tightness and variable 51 
degrees of airflow limitation. These symptoms are associated with different patterns of 52 
inflammation [1-4]. For the sake of clarity, an allergic and a non-allergic type of asthma 53 
are commonly distinguished. In the first case, inflammation is primarily caused by type 54 
2 immune responses mediated through the Th2 cytokines IL-4, IL-5, and IL-13 and 55 
associated with increased Th2 cells and eosinophils in the airways [5]. By contrast, non-56 
allergic asthma is mainly triggered by an inflammatory response to viral infections with 57 
a major neutrophilic component [6]. There is mounting evidence that neutrophilic forms 58 
of murine and human asthma are associated with IL-17A (hereafter referred to as IL-17) 59 
[7-9]. This cytokine is involved in the induction and persistence of neutrophilic 60 
inflammation[10] and can contribute to airway smooth muscle remodeling in 61 
association with TGF-β[11].  62 
 63 
Asthma can adopt diverse phenotypes associated with a number of endotypes[12,2,4]. 64 
Previous reports have implicated Th2 and Th17 cells in mechanisms favoring asthmatic 65 
immune endotypes [13]. However, these two populations alone cannot account for the 66 
great diversity of symptoms, mainly because other cell types present in the airways can 67 
also contribute to the production of Th2- and Th17-type cytokines. The best potential 68 
candidates for this purpose are “unconventional” T cells also currently named “Innate-69 
Like T (ILT) lymphocytes” that recognize non-peptide antigens presented by specialized 70 
MHC class I-like molecules [14-16]. 71 
 72 
Innate-like T (ILT) cells are unique unconventional T lymphocytes sharing features of 73 
both innate and adaptive immunity. This population recognizes non-peptide antigens 74 
presented by specialized MHC class I-like molecules. It includes invariant natural killer T 75 
(iNKT), mucosal-associated invariant T (MAIT) and gamma-delta T (γδT) cells, all 76 
characterized by a conserved and restricted T cell receptor (TCR) [14].  iNKT cells express 77 
an antigen-specific semi-invariant TCR, Vα14-Jα18 (TRAV11-TRAJ18) and Vα24-Jα18 78 
(TRAV10-TRAJ18) in mice and humans, respectively [17,16,14]. Similarly, MAIT cells 79 
display Vα19-Jα33 (TRAV1-2-TRAJ33) in mice and Vα7.2-Jα33 (TRAV1-2-TRAJ33) in 80 
humans [18-20]. The γδT cell population is not homogeneous, even though the Vδ2+ 81 
subset is predominant in human peripheral blood [21]. These cells can produce large 82 
amounts of cytokines shortly after stimulation and play an important role in first-line 83 
defense against microbial infections [22]. γδT, iNKT and MAIT cells are currently divided 84 
into distinct subsets according to their cytokine profile (Table 1). They have all been 85 
associated with a growing number of inflammatory diseases including asthma.  86 
 87 
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The next paragraphs will be focused on the development and functional properties of 88 
ILT cells and their impact on the immune mechanisms leading to asthma. 89 
 90 
 91 
INNATE-LIKE T CELLS  92 

 93 
gδT cells 94 

 95 
γδT cells constitute a distinct population of T lymphocytes in mice and humans, which 96 
upon activation can promptly generate a number of cytokines and chemokines with 97 
modulatory activities in innate and adaptive immunity [23-25]. Compared to other 98 
unconventional T cells, they can readily perform effector functions in response to tissue 99 
stress [22,23]. Furthermore, in epithelial tissues including lungs, γδT cells make up the 100 
major resident T cell population and their functions, although still controversial, can be 101 
related to tissue integrity and maintenance of host homeostasis [22].  102 
 103 
γδT cells can be classified by the expression of their γδTCR chains. In humans, the 104 
differential expression of δ (δ1-3) and γ genes (γ2-5, γ8, γ9, and γ11) has been used to 105 
this end, whereas in mice γδT cell subsets are defined by the expression of distinct γ 106 
chains[26] (Table 1). Contrasting with conventional T cells, which recognize peptides 107 
presented by MHC molecules, γδT cells can distinguish uncommon antigens, such as 108 
stress molecules (MICA and MICB), heat-shock proteins or synthetic phosphoantigens 109 
(pAg) [27,28].  It is clear by now that γδT cells do not interact directly with pAg but 110 
require the presence of butyrophilin BTN3A as an intermediate [29]. This indicates the 111 
usage of a fundamentally different mechanism of antigen detection whose molecular 112 
basis remains to be elucidated. 113 
 114 
Although γδT cells can produce several cytokines, two major murine subsets defined by 115 
their capacity to produce IL-17 or IFN-g have been described in recent years [30] (Table 116 
1). Compared to conventional TCRαβ+ CD4 and CD8 T cells, γδT cells are more prompt in 117 
producing significant amounts of IFN-γ [31], thus providing an early source of this factor 118 
that could be protective in tumor immunity [32-34]. However, in some cases, such as 119 
fulminant viral hepatitis in a murine model, the production of IFN-γ by γδT cells can 120 
become deleterious [35]. γδT cells that produce substantial amounts of IL-17 are 121 
frequently termed γδT17 and display a CD27-NK1.1+CCR6+ phenotype [30,36]. They can 122 
take part in tissue surveillance and repair and mediate effective immune responses 123 
against bacterial and fungal infections [37-40]. Conversely, they are potential promoters 124 
of inflammation in type 1 autoimmune diseases, such as arthritis or colitis [41,42]. 125 
According to recent reports, γδT17 cells could also promote tumor progression in 126 
experimental models [43].  127 



 5 

gdT cells in experimental models of asthma 128 
 129 
The role of γδT cells in lung inflammation has been debated in the literature for more 130 
than 30 years. In 1998, one of the first publications supporting the requirement of γδT 131 
cells for promoting IgE production and Th2 airway inflammation in an IL-4-dependent 132 
manner came from experiments with γδT cell-deficient mice, which failed to develop 133 
the pathology [44]. One year later, another team reported that airway reactivity was 134 
increased in the absence of γδT cells, suggesting a protective role of these cells [45]. 135 
These controversial data could be explained by the distinct genetic backgrounds, namely 136 
BALB/c [44] and C57BL/6 [45] in these γδT cell-deficient mice. Indeed, these strains 137 
respond differently in the asthma protocol since BALB/c display more severe AHR than 138 
C57BL/6 mice, while airway eosinophilia is more pronounced in the C57BL/6 strain [46]. 139 
 140 
Further studies using blocking anti-γδTCR mAb administered during the resolution phase 141 
of OVA-induced allergic inflammation, provided evidence for an exacerbation of lung 142 
injury [47]. However, it turned out that GL3 mAb used in this study did not deplete γδT 143 
cells in vivo, but induced the downmodulation of their γδTCR [48]. 144 
 145 
The complexity of γδT cell regulation of asthmatic inflammation may be explained by 146 
the intervention of distinct subsets. In this line of evidence, it has been shown that the 147 
effect of γδT cells on IgE production in an OVA-induced allergic asthma model changed 148 
according to the phenotype of the γδT cell population involved [49]. Indeed Vγ1 γδT cells 149 
promoted an enhanced IgE response, while their Vγ4 counterpart suppressed this 150 
activity [50]. These non-overlapping functions of Vγ4 and Vγ1 γδT cell subsets were also 151 
observed in terms of AHR [51]. Consistent with this observation, it has been shown more 152 
recently that IL-4-producing Vγ1+ γδT cells promoted airway eosinophilia and AHR in 153 
experimental allergic asthma induced by the dust mite Blomia tropicalis [52]. 154 
 155 
γδT cells also produce IFN-γ and IL-17. It has been proposed that the IFN-γ thus 156 
generated might favor allergic inhibition by reducing IgE production [53], while IL-17-157 
producing γδT cells could ameliorate AHR and accelerate the resolution of eosinophilic 158 
airway inflammation [47]. Furthermore, a relationship between reduced thymic 159 
maturation of IL-17-producing γδT cells and decreased lung inflammation has been 160 
described in a murine protocol of OVA-induced allergy [54]. 161 
 162 

γδT cells in asthmatic patients 163 
 164 
In humans, peripheral γδT cells were reported to be decreased in difficult-to-control 165 
asthmatic patients compared to controls [55]. Further, a higher frequency of IL-4-166 
producing versus a lower incidence of IFN-γ-producing γδT cells was described in 167 
patients with allergic asthma, as compared with healthy controls [56]. 168 
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 169 
In another study γδT cells were found to be more frequent at the site of inflammation 170 
in bronchoalveolar lavage fluid (BALF) of untreated asthmatic patients, as compared 171 
with control volunteers [57]. Among the scarce data available on this issue, according to 172 
another group, γδT cells occurred at similar levels in BALF or lung biopsies, whether the 173 
donors where suffering from asthma or not [58], while another research confirmed that 174 
the frequency of γδT cells in BALF from stable asthmatic subjects was not significantly 175 
different from controls [59]. However, after in vivo allergen challenge, BALF γδT cells 176 
increased their capacity to produce Th2-type cytokines, including IL-5 and IL-13, and 177 
reduced their secretion of Th1-type cytokines, such as IFN-γ [59]. These findings suggest 178 
that the γδT cytokine profile is flexible in BALF, ready to be skewed toward the Th2-type 179 
in asthmatic patients [59]. 180 
 181 
Overall, the studies cited here reveal that γδT cells exert a highly complex control in lung 182 
inflammation, possibly because of the contribution of various subsets whose 183 
composition could differ according to the clinical status of asthmatic patients (Fig.1).  184 

 185 
invariant Natural Killer T cells  186 
 187 
Differentiation and maturation of iNKT cells occur in the thymus, where they appear 188 
slightly later than MHC-restricted conventional T cells [60-63]. Thymic iNKT cell 189 
differentiation requires a particular rearrangement between Vα and Jα gene segments 190 
in the TCRα locus. This is believed to be a random process that occurs at very low 191 
frequency leading to the characteristic iNKT cell invariant TCRα chain: Vα14Jα18 192 
(TRAV11-TRAJ18) in mice and Vα24Jα18 (TRAV10-TRAJ18) in humans[64,65]. The TCRα 193 
chain associates with a limited set of TCRβ chains [66-68] (Table 1).  194 
 195 
Once they have completed a tightly controlled thymic differentiation pathway, iNKT cells 196 
migrate to peripheral organs as CD4+CD8- and double-negative (CD4-CD8-) cells. In 197 
humans, the CD4-CD8+ subset does likewise occur [69]. iNKT cells are mostly resident in 198 
tissues, where they are believed to act as sentinels of tissue integrity by “patrolling” to 199 
identify threats to the body [70]. They are rare in most peripheral sites (0.1-1% among 200 
T lymphocytes) but numerous in the liver [16]. The invariant TCRα chains in mice and 201 
humans are conserved, enabling iNKT cells to recognize the same glycolipids in both 202 
species, as is the case for the glycolipid α-galactosylceramide (α-GalCer) [71,72].  203 
 204 
iNKT cells are restricted by lipids and glycolipids loaded onto CD1d molecules present 205 
on the surface of APCs [73]. Moreover, their cytokine production along with their 206 
cognate interactions, enable them to modulate the activities of different immune cells 207 
playing a pivotal role in the orchestration of the immune response [74].  208 

 209 
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iNKT cells in experimental models of asthma 210 
 211 
In the nineties, several studies demonstrated that iNKT cells promptly and massively 212 
secreted IL-4 [75-78]. Consequently, it was proposed that their major role was to 213 
promote Th2 differentiation via this cytokine [79]. This has led a number of groups to 214 
test IL-4-producing iNKT cells in specific experimental models requiring Th2 cells, 215 
including allergic asthma models.  216 
 217 
Initial studies using iNKT cell-deficient mice, namely β2microglobulin (β2m)-/- and CD1d-218 
/- strains, revealed no major differences in the severity of allergic airway inflammation 219 
[80-82]. More recently, other investigators using these same mutants concluded that 220 
NKT cells were dispensable for T cell-dependent allergic airway inflammation [83,84]. 221 
However, it turned out that both b2m-/- and CD1d-/- mice are also deficient for other T 222 
cell subsets (CD8+ T and CD1d-dependent T lymphocytes, respectively), thus masking a 223 
potential effect of INKT cells. To solve this issue, two groups used more specific iNKT 224 
cell-deficient (Jα18-/-) mice, for which they reported attenuated asthma symptoms, 225 
including AHR, airway eosinophilia, Th2 inflammation and OVA-specific anti-IgE 226 
production relative to wild-type controls [85,86]. The adoptive transfer of wild type iNKT 227 
cells was sufficient to restore asthma severity in Jα18-/- mice. Of note, adoptive transfers 228 
of iNKT cells from IL-4-/- or IL-13-/- mice were much less effective and iNKT cells from 229 
double knockout IL-4-/-IL-13-/- mice had no effect at all [86]. This finding demonstrated 230 
that iNKT cells enhanced allergic asthma symptoms through the production of IL-4 and 231 
IL-13 [85,86].  232 
 233 
Recently, a new mouse strain with the deletion of Traj18 was created on a C57BL/6 234 
genetic background [90]. These Traj18-deficient mice lack iNKT cells but have a normal 235 
Ja-region repertoire. They display significantly less eosinophils and AHR in an airway 236 
hyper-reactivity model [90], thereby confirming the implication of iNKT cells in 237 
asthmatic airway inflammation. In further support of this conclusion, Ezh2 (Enhancer of 238 
zeste homolog 2)-deficient mice spontaneously developed an asthma-like disease [91] 239 
associated with abnormally high iNKT cell counts, increased IL-4 and IL-13 production, 240 
AHR, lung inflammation and IgE levels, all consistent with a contribution of iNKT cells to 241 
asthma pathogenesis [91].  242 
 243 
Even though iNKT cells do not recognize OVA as an antigen, their ability to promote lung 244 
inflammation is TCR-dependent since the injection of blocking anti-CD1d antibodies 245 
reduced the effect, indicating that endogenous lipidic antigens stimulated the iNKT cells 246 
[85]. Indeed, in this setting we cannot exclude that commensal microbial antigens 247 
present in the lung could take part in the activation of iNKT cells. In the same line of 248 
evidence, an elegant study by Blumberg’s team showed that iNKT cells accumulated in 249 
the lung and in the colonic lamina propria in germ-free (GF) mice, rendering these 250 
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animals more susceptible to OVA-induced asthma and oxazolone-induced colitis [87]. 251 
The colonization of neonatal GF mice with a normal flora or Bacteroides fragilis 252 
decreased the number of iNKT cells and protected the mice against these diseases, 253 
clearly establishing a link between iNKT cells and the microbiota [87,88]. Knowing that 254 
a bacterial community is present in the airways and that this microbiota could be altered 255 
in the case of asthma [89], we postulate that some bacterial antigens might activate 256 
iNKT cells in the lung, thus promoting inflammation. Further studies are required to test 257 
this hypothesis. 258 
 259 
For asthma that is not associated with pro-Th2 allergic immune responses, it has been 260 
reported that i.n. administration of α-GalCer activates IL-17-secreting iNKT cells, which, 261 
in turn, promote airway neutrophilia [92]. IL-17-secreting iNKT cells are also required for 262 
the pathogenic mechanisms leading to AHR after exposure to ozone, a major component 263 
of air pollution [93]. Hence, iNKT cells may promote asthma inflammation in different 264 
ways, depending on their cytokine profile (Fig. 2).  265 
 266 

iNKT cells in asthmatic patients 267 
 268 
Analysis of the incidence of iNKT cells in the peripheral blood of adult asthmatic patients, 269 
revealed no significant differences when compared to control subjects [94]. Further 270 
studies suggested however that IL-4-producing iNKT cells were more frequent in these 271 
cases and that they were associated with lung functions [95]. In children with asthma, 272 
the percentage of peripheral blood iNKT cells did not differ significantly between 273 
asthmatic children classified as exacerbators (1 or more severe exacerbations in the last 274 
12 months) and non-exacerbators [96]. Similarly, no relationship was observed between 275 
the frequency of circulating iNKT cells and IL-4- or IFN-γ-producing iNKT cells in one-276 
year-old children and asthma-related clinical outcomes at the age of seven years [97].  277 
 278 
In addition to peripheral blood analysis, a number of studies have evaluated iNKT cells 279 
in BALF or bronchial biopsies of asthmatic patients. The first data in adult asthmatic 280 
patients revealed that about 60% of the pulmonary CD4+CD3+ T cells in the group with 281 
moderate-to-severe persistent asthma were iNKT cells [98]. These results were not 282 
reproduced by others [99,100], who found that up to 2% of the T cells recovered from 283 
airway biopsies, BALF and sputum induction from subjects with mild or moderately 284 
severe asthma were iNKT cells. Umetsu and collaborators reported later that only a 285 
small fraction of T cells in the lung of adult asthmatic patients were iNKT cells [101], 286 
which accounted for less than 1% of T cells in BALF from children with severe asthma 287 
[102]. The discrepancies between these studies could be explained by the limited 288 
number of samples, the heterogeneity of the cohorts, or by non-specific staining of cells 289 
in BALF, as suggested by the study of Thomas et al [100]. 290 
 291 
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Taken together, these findings show that large adult and children cohorts composed of 292 
asthmatic patients with well-defined symptoms and grades of severity (controlled, non-293 
controlled and severe asthma) associated with relevant controls are required to 294 
definitely assess whether iNKT cells are involved in asthma pathology or not. 295 
 296 
Mucosal-Associated Invariant T cells  297 
 298 
MAIT cells are restricted by the MHC class I-related molecule MR1 and recognize 299 
microbial-derived vitamin B2 (riboflavin) metabolites [103] (Table 1). Riboflavin 300 
metabolites are not present in mammalian cells but occur in several bacteria and yeast 301 
[104], which suggests that MAIT cells can sense antigens displayed by a limited number 302 
of microbes.  303 
 304 
MAIT cells develop in the thymus, where they become functionally competent and able 305 
to promptly produce Th1 (IFN-γ, TNF-α) and Th17 (IL-17 and IL-22) cytokines in response 306 
to stimulation [105]. In contrast, MAIT cells produce only low to moderate levels of Th2 307 
(IL-4 and IL-13) cytokines [106-109]. Similarly to iNKT cells, MAIT precursors undergo a 308 
positive selection of MR1+ double-positive (CD4+CD8+) thymocytes [110,111]. Previous 309 
reports have stressed the key role of the microbiota in MAIT cell expansion since these 310 
cells are nearly absent in germ-free mice [20]. Recently, Lantz’s team made a major 311 
breakthrough in this field by demonstrating that microbial metabolites control the 312 
thymic development of MAIT cells [112]. This finding paved the way for revisiting the 313 
concept of exogenous and self-antigens.  314 
 315 
Human MAIT cells express high levels of CD161 and IL-18Rα and are mainly CD8+ [113]. 316 
A smaller proportion among these is double-negative (CD4-CD8-) and some CD4+ cells 317 
have been described in the literature [114]. MAIT cells can be activated in a TCR-318 
dependent and -independent manner. They account for up to 10% of peripheral blood 319 
T cells and are numerous in the gut, lung, and liver [115,113,20]. Their abundance in 320 
mucosal tissues supports their involvement in antimicrobial responses [20].  321 
 322 
Because of the scarce pieces of evidence for a role of MAIT cells in experimental models 323 
of asthma, we will not discuss this issue, but pass on directly to studies with asthmatic 324 
patients. 325 

 326 
MAIT cells in asthmatic patients 327 

 328 
As indicated by their name, MAIT cells are preferentially associated with mucosal tissues 329 
including lungs, where they promote antimicrobial defenses through the secretion of 330 
IFN-γ, TNF-α, IL-17, perforin and granzyme B [116-120]. Evidence for MAIT cell expansion 331 
in the lungs of MAIT cell-enriched Vα19iCα-/-MR1+/+ mice experimentally infected with 332 
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Mycobacterium tuberculosis supports their role during pulmonary infection [121]. This 333 
proliferative response was rapid and depended on the MR1 presentation of riboflavin 334 
biosynthesis-derived bacterial ligands [121]. In line with these experimental data it has 335 
been reported that adult patients suffering from active pulmonary tuberculosis (TB) had 336 
more MAIT cells in BALF and lung parenchyma than uninfected controls [122]. However, 337 
in children with similar symptoms, reduced MAIT cell counts were found both in 338 
peripheral blood and BALF [123]. This discrepancy might be due to clinical differences 339 
between pediatric and adult active TB, calling for further studies to ascertain the role of 340 
MAIT cells in in this infectious disease. 341 
 342 
The data gained from lung infections prompted several groups to address the 343 
involvement of MAIT cells in other lung pathologies like asthma. Pioneer studies by 344 
Hinks et al. reported that the frequency of MAIT cells was significantly lower in 345 
peripheral blood, sputum and bronchial biopsy samples of asthmatic patients, relative 346 
to control subjects [124]. This deficiency was correlated with clinical severity and the 347 
use of oral corticosteroids [124].  348 
 349 
A recent study provided evidence for a relationship between a high frequency of 350 
circulating MAIT cells in one-year-old children and a lower risk of developing asthma by 351 
the age of seven years [97]. Furthermore, these high MAIT cell levels were correlated 352 
with higher frequency of IFN-γ-producing CD4+ T cells, suggesting a possible protective 353 
effect of MAIT cells as children grow older [97]. IL-17 production by MAIT cells did not 354 
correlate with asthma in this study. In children with mild asthma, the frequency of 355 
circulating MAIT cells did not differ between exacerbators and non-exacerbators [96]. 356 
However, the proportion of MAIT cells producing IL-17 correlated positively with the 357 
number of severe exacerbations and negatively with the asthma control test score in 358 
these children, which was not the case for their IFN-γ-producing counterpart [96]. More 359 
recently, the same team showed that MAIT cells, including their IL-17-producing subset, 360 
were present in BALF from children with severe asthma [125]. It is noteworthy that when 361 
this group was divided into two according to the frequency of their IL-17-producing 362 
MAIT cells in BALF into MAIT17-low and MAIT17-high, the latter presented more severe 363 
exacerbations than their MAIT17-low counterpart [125]. 364 
 365 
Overall, the results of these studies suggest that IL-17-producing MAIT cells may be 366 
associated with asthma symptoms, whereas the pro-Th1 subset might provide 367 
protection [97,96,125] (Fig. 3).  368 
 369 

 370 
  371 
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CONCLUDING REMARKS 372 
 373 

Much progress has been achieved in understanding the physiological and pathological 374 
role of γδT, iNKT and MAIT cells, which have by now acquired a lasting position among 375 
the complex immune mechanisms leading to distinct asthma phenotypes and 376 
endotypes. Nonetheless, major uncertainties remain. For instance, asthma often begins 377 
early in childhood, at a time when the amount and functional properties of lung γδT, 378 
iNKT and MAIT cells are about to be established. However, very few studies have 379 
addressed the evolution of these populations in the airways with age. The cross-talk 380 
between lung γδT, iNKT and MAIT cells needs likewise to be investigated in more detail, 381 
as well as the influence of microorganisms present in the lung. In sum, studies of 382 
experimental models and pediatric asthma will be crucial for the comprehension of 383 
these complex interactions and the development of new therapeutic approaches.  384 
 385 
  386 
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Figure Captations 853 
 854 
Figure 1: gd T cell immune response in asthma. In experimental asthma models (left) IL-855 
4-producing gdT cells could enhance Th2 inflammation, IgE production, airway 856 
eosinophilia and airway hyperreactivity (AHR), while IL-17-producing gdT17 cells could 857 
have an opposite effect. In BALF (bronchoalveolar lavage fluid) from asthmatic patients 858 
(right), the frequency of gdT cells was elevated. These gdT cells improved their ability to 859 
secrete IL-5 and IL-13 following allergen challenge. The main effects resulting from the 860 
activation of gdT are listed within the lung figure.  861 
= induction/augmentation; ¯= reduction/inhibition.  862 
 863 
Figure 2: iNKT cell immune response in asthma. In experimental asthma models (left) 864 
IL-4-and IL-13-producing iNKT2 cells will enhance IgE production, airway eosinophilia 865 
and airway hyperreactivity (AHR), while IL-17-producing iNKT17 cells could promote 866 
airway neutrophilia and AHR. The frequency of iNKT cells in BALF (bronchoalveolar 867 
lavage fluid) from asthmatic patients (right) rang from 0.1% to 10%. The main effects 868 
resulting from the activation of iNKT cells are listed within the lung figure.  869 
= induction/augmentation; ?= no functional effects described.  870 
 871 
Figure 3: MAIT cell immune response in asthma. The studies concerning the implication 872 
of MAIT cells in experimental asthma models (left) are currently in progress. IL-17-873 
producing MAIT cells are associated with severe exacerbations in asthmatic patients 874 
(right) while their IFNg-producing counterpart maybe involved in protection.  875 
?= no functional effects described.  876 
 877 
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Table&1.!Major!features!of!!"T,!iNKT!and!MAIT!cells.!
!
!

! !"T& iNKT& MAIT&

TCR!

•!Mice:!V!1,!V!4,!V!5,!V!7!(TRGV1,!
4,!5,!7).!
•!Humans:!V"1E3!(TRDV1E3),!V!2E5,!
V!8,!V!9,!V!11!(TRDV2E5,!8,!9,!11).!

•!Mice:!Vα14EJα18!(TRAV11ETRAJ18).!
•!Humans:!Vα24EJα18!(TRAV10E
TRAJ18).!

•!Mice:!Vα19EJα33!(TRAV1E2E
TRAJ33).!

•!Humans:!Vα7.2EJα33!(TRAV1E2E
TRAJ33).!

AntigenEpresenting!
molecules!

BTN3A!(as!an!intermediate)! CD1d! MR1!

Antigens!
stress!molecules!(MICA!and!MICB),!
heatEshock!proteins!or!synthetic!
phosphoantigens!(pAg)!

glycolipids!(#EGalCer,!iGb3,!others)! Riboflavin!derivates!(5EOPERU)!

Major!subsets! !"T&IFN0!+! !"T17! iNKT1& iNKT2& iNKT17& MAIT1& MAIT17&

Transcription!factors! Tbet! RORC!
Tbet,!
GATAE3!

GATAE3! RORC! Tbet! RORC!

Major!cytokines!
produced!

IFNE!! ILE17! IFNE!,!ILE4!
ILE4,!
ILE13!

ILE17! IFNE!! ILE17!

!
!
!


