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prediction of malaria transmission 
drivers in Anopheles mosquitoes 
using artificial intelligence coupled 
to MALDI‑TOF mass spectrometry
cécile nabet1*, Aurélien chaline2,3, Jean‑françois franetich4, Jean‑Yves Brossas2, 
noémie Shahmirian2, olivier Silvie4, Xavier tannier5 & Renaud piarroux1

Vector control programmes are a strategic priority in the fight against malaria. However, vector 
control interventions require rigorous monitoring. Entomological tools for characterizing malaria 
transmission drivers are limited and are difficult to establish in the field. To predict Anopheles drivers 
of malaria transmission, such as mosquito age, blood feeding and Plasmodium infection, we evaluated 
artificial neural networks (ANNs) coupled to matrix‑assisted laser desorption ionization‑time of 
flight (MALDI‑TOF) mass spectrometry (MS) and analysed the impact on the proteome of laboratory‑
reared Anopheles stephensi mosquitoes. ANNs were sensitive to Anopheles proteome changes and 
specifically recognized spectral patterns associated with mosquito age (0–10 days, 11–20 days and 
21–28 days), blood feeding and P. berghei infection, with best prediction accuracies of 73%, 89% and 
78%, respectively. This study illustrates that MALDI‑TOF MS coupled to ANNs can be used to predict 
entomological drivers of malaria transmission, providing potential new tools for vector control. 
Future studies must assess the field validity of this new approach in wild‑caught adult Anopheles. A 
similar approach could be envisaged for the identification of blood meal source and the detection of 
insecticide resistance in Anopheles and to other arthropods and pathogens.

Mosquito species that belong to the genus Anopheles have the capacity to transmit parasites such as Plasmodium 
species, which are the agents of malaria. These pathogens are transmitted to humans during the blood meal of 
an infected female Anopheles  mosquito1. Despite global malaria control efforts, the disease persists, and approxi-
mately 405,000 deaths were estimated to have occurred globally in 2018 by the World Health  Organization2. In 
addition, the increase in insecticide resistance among Anopheles mosquito populations worldwide is of consid-
erable  concern3. Vector control programmes are a strategic priority in the fight against malaria now more than 
 ever4. However, malaria transmission and the efficacy of vector control interventions require rigorous monitoring.

Unfortunately, tools for characterizing the entomological drivers of malaria transmission, such as mosquito 
age or infection status, are limited and difficult to implement in the  field5. Mosquito age can be estimated indi-
rectly by the mark-release-recapture method for  instance6. This approach consists of releasing marked mosquitoes 
(dye, radiolabels, dusts) and recapturing them at a series of time points. It is time-consuming, requires consider-
able human resources and the marking of a large number of mosquitoes to avoid bias. Another indirect method 
for the estimation of mosquito age is the morphological determination of ovariole dilatation to distinguish 
whether a female mosquito is nulliparous (has not yet laid eggs), and therefore likely to be young, or parous (has 
laid eggs), and therefore  older7. It is based on the microscopic observation of modifications of the tracheoles 
that surround the ovaries. To establish Plasmodium infection rates in mosquitoes, the microscopy observation 
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of salivary glands has been routinely performed in malaria-endemic  countries1. However, microscopy methods 
are labourious and require fresh material and technical skills.

The improvement of the estimation of Anopheles drivers of malaria transmission in the field would have impli-
cations for vector control and thus malaria control. Alternative techniques have been developed for Anopheles age 
 grading5. For instance, analyses of cuticular  hydrocarbons8, protein  profiling9, near-infrared and mid-infrared 
spectroscopy (NIRS and MIRS)10,11 and transcriptional  profiling12,13 have been proposed. However, their utility 
for field-based monitoring programs remains largely untested. To detect Plasmodium in mosquitoes, enzyme-
linked immunosorbent assays (ELISAs) targeting circumsporozoite protein and PCR techniques are routinely 
 used14. However, the time required for the preparation of the samples and the cost involved can limit the use 
of these methods for extensive screening. Thus, there is a need for operationally attractive methods to assess 
Anopheles drivers of malaria transmission.

MALDI-TOF MS has been widely used for the species identification of  bacteria15,  fungi16,  parasites17 and, 
more recently, arthropod  vectors18. This proteomic tool is increasingly being employed not only in northern 
countries but also in disease-endemic countries. Indeed, this technique is robust, easy to use and the consuma-
bles that it requires are inexpensive. Protein profiling based on MALDI-TOF MS spectra has provided potential 
biomarkers of pathogen-infected  arthropods17, antimicrobial  resistance15 and closely-related Anopheles  species19. 
Supervised machine-learning methods are a set of algorithms applied to already labelled data to learn a statistical 
model for pattern recognition, classification or prediction. This model must be able to generalize the learned task 
to new, unseen data. Artificial neural networks (ANNs) are a class of machine-learning algorithms. Deep ANNs 
such as convolutional neural networks are able to produce a reduced representation from sequences of elements 
(images as a sequence of pixels, text as a sequence of words). Several previous studies have demonstrated that 
ANNs can recognize informative patterns in mass spectra acquired from MALDI-TOF  MS20,21, but this approach 
has never been tested for medical entomology applications.

To provide new tools to monitor entomological drivers of malaria transmission, we evaluated whether 
MALDI-TOF MS could provide a suitable input for ANNs to classify the spectral patterns of Anopheles biology. 
Using MALDI-TOF MS coupled with ANNs and laboratory-reared Anopheles stephensi that were either blood-
fed or not and infected with Plasmodium berghei or uninfected, we evaluated the prediction of age, blood meal 
history and Plasmodium infection status. This paper presents the results of spectral classification performed by 
ANNs and the potential biomarkers obtained by protein profiling.

Methods
Anopheles rearing. Mosquitoes from a colony of Anopheles stephensi (line Nijmegen SDA500) were reared 
at Sorbonne University, Paris, France. In water trays, larval stages were reared at a temperature of 28 ± 1 °C and a 
relative humidity of 70%. Adults were transferred to incubators with a temperature of 20.8 ± 0.2 °C and a relative 
humidity of 70%. We analysed three categories of adult mosquitoes: (1) mosquitoes that did not receive a blood 
meal (unfed), (2) mosquitoes that received an uninfected blood meal (fed and uninfected) and (3) mosquitoes 
that received a Plasmodium berghei (GFP ANKA strain)-infected blood meal (infected)22. The transmission of 
rodent malaria in mosquitoes was conducted in strict accordance with Directive 2010/63/EU of the European 
Parliament and Council on the protection of animals used for scientific purposes. Protocols were approved by 
the local Ethical Committee Charles Darwin C2EA N°05, Sorbonne Université, Paris, France (approval #7475-
2016110315516522). The characteristics of the mosquitoes in each dataset are presented in Tables 1 and 2.

Anopheles feeding and sampling. All adult mosquitoes were sugar-fed ad libitum on a 10% sucrose solu-
tion. The mosquitoes were blood-fed at day 4 post-emergence on two anaesthetized mice after overnight starva-
tion. We removed visibly unfed mosquitoes from the cage in the cohort of blood-fed females. For the cohort of 
infected mosquitoes, we infected mice 4 days prior to mosquito feeding via the i.p. injection of  107 parasitized 
red blood cells infected with GFP-expressing P. berghei (PbGFP)22. We previously checked for gametocytemia 

Table 1.  Mosquito characteristics in the whole dataset, experiment 1.

Mosquito age post-emergence (days) 0 3 6 10 11 14–15 17 20 21 27–28

Unfed (no. mosquitoes) 10 10 10 10 0 10 0 10 0 10

Fed and uninfected (no. mosquitoes) 0 0 0 0 10 10 10 0 10 10

Infected (no. mosquitoes) 0 0 0 0 10 10 10 0 10 10

Table 2.  Mosquito characteristics in the whole dataset, experiment 2.

Mosquito age post-emergence (days) 0 3 6 10 11 14–15 17 20 21 27–28

Unfed (no. mosquitoes) 5 3 2 3 0 5 0 5 0 5

Fed and uninfected
(no. mosquitoes) 0 0 0 0 5 5 5 0 5 5

Infected (no. mosquitoes) 0 0 0 0 5 5 5 0 5 5
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and exflagellation in male gametocytes. Using fluorescence microscopy to observe PbGFP expression, we could 
visualize oocysts in the abdomen from approximately 3 days postfeeding and sporozoites in the salivary glands 
(thorax) from approximately 13 days postfeeding. Thus, we checked the mosquito samples for infection at each 
age point. We recorded the relative intensity of fluorescence for each mosquito, and we discarded nonfluorescent 
Anopheles (abdomen and/or thorax).

Sample preparation for MALDI‑TOF MS. Mosquitoes of various chronological ages (expressed in cal-
endar days) and physiological stages (blood feeding, infection, oviposition) were processed during two inde-
pendent experiments (Tables 1, 2). For each mosquito category, the mosquitoes were killed at different age points 
post-emergence by freezing at − 20 °C for 30 min. We dissected the mosquitoes into 4 body parts (head, tho-
rax with wings, abdomen and legs) immediately after killing (experiment 1, n = 170) or after storage for up to 
5–10 months at − 20 °C (experiment 2, n = 78). The head was severed from the thorax by a complete cut, leaving 
the salivary glands in the thorax. Directly after dissection, we performed protein extraction from the mosqui-
toes’ body parts according to a previously published protocol [23]. The protein extracts were then deposited onto 
a steel plate and covered with an alphacyano-4-hydroxycinnamic acid matrix. To ensure reproducibility of the 
results, we acquired spectra from four replicates of each protein extract, as previously  reported23,24. We consid-
ered each spectrum as a single input.

Acquisition of mass spectra. Mass spectrum acquisition was performed with a Microflex LT (Bruker 
France SAS) using the default acquisition parameters. The spectra were acquired in linear mode in ion-positive 
mode at a laser frequency of 60 Hz and mass range of 2–20 kDa. The data were automatically acquired using 
AutoXecute in FlexControl v3.4 software (Bruker France SAS) with the default parameters and exported into 
Maldi Biotyper v4.1, ClinProTools v.3.0 software and Flex Analysis v3.4 software for data processing and spec-
trum analysis.

Classification of mass spectra
Data preparation. To build the model, we used a training dataset to fit the parameters. To predict the 
responses from the fitted model and to evaluate the performance, we used a test dataset that contained new and 
unseen data. We trained three separate ANNs with different classification targets: age-grading, past blood meal 
and P. berghei infection. For each classification target, we performed training and testing using all the mosquito 
categories (unfed, fed and uninfected, infected). Each body part was tested in a separate dataset. To avoid blood 
interactions, we included fed mosquitoes from day 7 post-blood meal. We first used a dataset of 680 spectra to 
build and test each network model (experiment 1, Table 3). For each mosquito category, spectra were acquired 
with the same instrument during independent analysis using two MALDI-TOF plates. For each acquisition, we 
split the data into a training dataset (50%) and a test dataset (50%) according to the plate that was used (one or 
two). For unfed mosquitoes, the second plate was acquired in a different period. Then, we verified that the ANN 
classification was not biased by the date of acquisition. For this purpose, we processed frozen mosquitoes from 
previous sampling points into the same target to simultaneously acquire spectra from each different category of 
Anopheles (experiment 2, Table 4). The dataset of 312 spectra was split temporally into training (60%) and test 
datasets (40%).

Machine learning. We preprocessed the spectra by smoothing using the moving average method and 
removing the baseline. As input for the ANNs, an entry of 10,000 distinct values in a single dimension was 

Table 3.  Spectral characteristics in the training and test datasets for each mosquito body part, experiment 1. 
a One leg spectrum was missing in the leg dataset.

Age grading Past blood meal Plasmodium infection

Training Test Training Test Training Test

Unfed (no. spectra) 140 140 140 140 140 140

Fed and uninfected (no. spectra) 100 100 100 100 100 100

Fed and infected (no. spectra) 100 100a 100 100a 100 100a

Table 4.  Spectral characteristics in the training and test datasets for each mosquito body part, experiment 2. 
a One leg spectrum was missing in the leg dataset.

Age grading Past blood meal Plasmodium infection

Training Test Training Test Training Test

Unfed (no. spectra) 80 32 80 32 80 32

Fed and uninfected (no. spectra) 60a 40 60a 40 60a 40

Fed and infected (no. spectra) 60 40 60 40 60 40
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reduced to 100 values by searching for local maxima. These 100 values corresponded to the 100 highest peaks to 
avoid background noise. The classifier was a convolutional neural network composed of 4 convolutional blocks 
(Fig. 1). The convolutional block consisted of a convolutional layer, followed by a batch normalization layer, then 
a ReLU activation layer, a pooling layer and a dropout layer, with a dropout rate of 0.3. The numbers of successive 
convolutional filters by layer were 8, 16, 32, 64, with a stride of 1, with filter sizes of 50, 25, 10 and 10. Finally, 
there were 3 dense layers with sizes of 140, 130 and 2. The used loss is a standard categorical cross-entropy loss, 
but weighted to obtain a better balance between false positives and false negatives (penalty factor of 5). We then 
conducted optimization with the Adam  optimizer25 and a learning rate of 0.001. The networks were trained for 
100 continuous iterations, at which point the training was stopped. To reduce the variance due to the random-
ness of the optimization algorithm, we trained 9 neural networks in parallel, and they all voted to provide the 
final result.

Classification performance evaluation. We performed a quantitative evaluation of the classification 
performance of the three trained ANNs based on the output of the test dataset. The output variables were the 
number of spectra in each labelled class. Sensitivity (SS) and specificity (SP) were computed as the rates of cor-
rectly classified spectra in the positive and negative labelled classes, respectively. The positive predictive value 
(PPV), negative predictive value (NPV) and classification accuracy (Acc) are a combination of sensitivity and 
specificity. The mean accuracy was calculated from the results of 10 different training runs of the model.

*
(

Acc =

∑

TP

Total

)

 if more than 2 labelled classes (age prediction).

Protein profiling. To compare the profiles between categories of Anopheles, we loaded the mass spectra into 
ClinProTools 3.0 software. We generated a peak list in the 2–20 kDa mass range. The parameter settings for peak 
picking in average spectra were as follows: resolution of 8,000 ppm; noise threshold of 1.00 (arbitrary intensity 
unit); maximum peak shift of 1,000 ppm; and match to calibration peaks of 30%. According to the mass range, 
the mass resolving power was estimated at 5–10 Da. Then, we analysed the spectra with the Peak Statistic tool 
using the t-test/ANOVA sort mode to generate a list of peaks with differences in intensity. We analysed the 25 
most discriminant peaks (p value < 0.05).

Results
Two experiments were performed in order to validate our results. Because it was the first study that assessed 
ANN classification of Anopheles mass spectra, we prioritized the using of fresh mosquitoes from insectary 
colony. Therefore, experiment 1 tested ANN classification of spectra from freshly killed mosquitoes, when each 
category and each age was acquired independently and immediately after killing. As each category of mosquito 
was acquired independently, a bias of classification could have occurred. Thus, to validate experiment 1 results, 
we performed a simultaneous acquisition of each category and age, with mosquitoes stored at − 20 °C (experiment 
2). To more closely approximate field conditions, the training and testing of the model were carried out with the 
3 categories of mosquitoes (unfed, fed and uninfected, infected) at different ages and times post blood-feeding.

Classification of mass spectral profiles using ANNs
As ANNs successfully discriminated spectra categories whether categories were acquired independently or simul-
taneously, we have shown that ANNs classification was truly supported by physiological changes and was not 
biased by experimental conditions. The classification was not impacted by the age of the mosquitoes (data not 
shown) or by the mode of spectrum acquisition. ANNs could recognize informative patterns in mass spectra 
acquired from MALDI-TOF MS during two different experiments. Spectra of different categories obtained during 
the same acquisition (experiment 2) were successfully classified by the ANNs, showing that the classification was 

SS =
TP

TP + FN
; SP =

TN

TN + FP

PPV =
TP

TP + FP
; NPV =

TN

TN + FN

Acc∗ = (TP + TN)/(TP + TN + FP + FN)

Figure 1.  Architecture of the artificial neural network used for the prediction of Anopheles categories.
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based on physiological status. Spectra of each category and each age obtained independently (experiment 1) were 
also successfully classified, which indicated robustness, especially as the test set for unfed Anopheles was obtained 
during an independent manipulation conducted several months from the other experiments. We present the 
complete results for the anatomic parts that provided the best ANN classification performance for the test set. 
For age predictions, the ANN classification performance using the thorax is presented in Table 5. For blood meal 
prediction, the ANN classification performance using the legs or thorax is presented in Table 6. For Plasmodium 
infection prediction using the legs or thorax, the ANN classification performance is presented in Table 7. The 
results for other anatomic parts are provided in the supplementary data (Supplementary Tables S1–S5).

Table 5.  Classification performance of the artificial neural network trained for age prediction using the 
thorax. TP true positive, FP false positive, TN true negative, FN false negative, SS sensitivity, SP specificity, PPV 
positive predictive value, NPV negative predictive value, Acc accuracy.

Thorax Experiment 1 (n = 340) Experiment 2 (n = 112)

Age category (days) 0–10 11–20 21–28 0–10 11–20 21–28

TP 57 117 69 6 52 25

FP 40 52 5 2 17 10

TN 220 128 235 102 31 62

FN 23 43 31 2 12 15

SS (%) 71 73 69 75 81 63

SP (%) 85 71 98 98 65 86

PPV (%) 59 69 93 75 75 71

NPV (%) 91 75 88 98 72 81

Acc (%) 81 72 89 96 74 78

Table 6.  Classification performance of the artificial neural network trained for past blood meals. TP true 
positive, FP false positive, TN true negative, FN false negative, SS sensitivity, SP specificity, PPV positive 
predictive value, NPV negative predictive value, Acc accuracy.

Experiment 1 Experiment 2

Legs (n = 339) Thorax (n = 340) Legs (n = 112) Thorax (n = 112)

TP 92 70 23 24

FP 39 82 7 6

TN 160 118 73 74

FN 48 70 9 8

SS (%) 66 50 72 75

SP (%) 80 59 91 93

PPV (%) 70 46 77 80

NPV (%) 77 63 89 90

Acc (%) 74 55 86 88

Table 7.  Classification performance of the artificial neural network trained for the detection of Plasmodium 
infection. TP true positive, FP false positive, TN true negative, FN false negative, SS sensitivity, SP specificity, 
PPV positive predictive value, NPV negative predictive value, Acc accuracy.

Experiment 1 Experiment 2

Legs (n = 339) Thorax (n = 340) Legs (n = 112) Thorax (n = 112)

TP 87 57 20 33

FP 54 109 16 16

TN 186 131 56 56

FN 12 43 20 7

SS (%) 88 57 50 83

SP (%) 78 55 78 78

PPV (%) 62 34 56 67

NPV (%) 94 75 74 89

Acc (%) 81 55 68 79
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Aging. For age prediction, the best classification performance was observed using the thorax (Table 5). There 
was no imbalance in performance between the age groups. The results were robust, with comparable classifica-
tion accuracies between experiment 1 and experiment 2. The mean accuracy ± SD values for the 3 age groups 
during experiment 1 and experiment 2 were 72.1 ± 2.5% and 73.4 ± 4%, respectively. The thorax was the most 
interesting anatomic part, as it showed the best accuracy and NPV, particularly for the extreme age categories 
of 0–10 days (accuracy = 96%, NPV = 98%, experiment 2) and 21–28 days (accuracy = 89%, NPV = 88%, experi-
ment 1). The age category of 11–20 days showed a lower accuracy and NPV (accuracy = 72%, NPV = 75%, exper-
iment 1). The legs, head and abdomen exhibited a classification performance close to that of the thorax, but the 
accuracy was lower for the 11–20-day and 21–28-day categories (see Supplementary Tables S1–S3 online). The 
abdomen presented the lowest accuracy, down to 60% (experiment 1) and 67% (experiment 2) for the 11–20-day 
and 21–28-day categories.

Blood feeding and Plasmodium infection. For the blood meal and Plasmodium infection predictions, 
the best classification performance was observed using the legs and the thorax (Tables 6, 7). The best mean accu-
racy ± SD values for the blood meal and P. berghei infection predictions were 88.8 ± 2.7% (thorax, experiment 2) 
and 78.1 ± 1.9% (legs, experiment 1), respectively. The lowest classification performance was observed using the 
head. Both the abdomen and head provided insufficient sensitivity, resulting in low accuracy for both the blood 
meal and infection predictions (see Supplementary Tables S4 and S5).

From experiment 1 to experiment 2, the mean accuracy of blood meal anteriority prediction using the legs 
rose from 78.3 ± 2.9% to 87.3 ± 2.7%, respectively. However, the mean accuracy of P. berghei infection prediction 
using the legs decreased from 78.1 ± 1.9% to 65.0 ± 2.6%. In contrast, when using the thorax, the performance 
for past blood meal and infection predictions increased. The mean accuracy for blood meal anteriority predic-
tion using the thorax increased from 58.6 ± 2.4% to 88.8 ± 2.7%, and the mean accuracy for P. berghei infection 
prediction rose from 57.6 ± 3.6 to 75.9 ± 3.9%.

Protein profiling
The mass spectra were very similar, without any apparent, consistently reproducible single peak(s) correlated 
with each category. However, we observed variations in peak intensity that may provide interesting biomarkers 
(Figs. 2, 3, 4). Representative mass spectra protein profiles are provided in the Supplementary data (Supplemen-
tary Fig. S1–S5). No significant changes of peak intensity and profile were observed between mosquitoes stored 
at − 20 °C from 5 to 10 months.

Aging. During aging, we observed peaks with a decreasing or increasing intensity in the thorax spectrum 
profiles of An. stephensi (Fig. 2, Table 8). We observed a constant peak linked to aging in experiment 1 (Fig. 2a) 
and experiment 2 (Fig. 2b) with a similar mass (m/z 8,127 and 8,126, respectively). Another peak present in both 
experiments showed a better correlation with aging after freezing in experiment 2 (m/z 10,736).

Blood feeding. Following a blood meal, proteomic comparative analysis of blood-fed and non-blood-fed 
mosquitoes revealed peaks with varying intensities in the leg and thorax spectrum profiles (Fig. 3, Table 9). 
Using the legs, at least 4 discriminant peaks (m/z 5,737, m/z 5,751, m/z 11,471, m/z 11,498) corresponding to 2 

Figure 2.  Box and whisker plot showing 6 peaks of distinct m/z (Da) with varying intensity for the complete 
dataset (line: mean, whiskers: standard deviation). (a, b) Spectra obtained at 7 age points using the thorax of 
Anopheles stephensi (non-blood-fed) during (a) experiment 1 and (b) experiment 2.
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proteins (double charged) were observed in experiment 1 (Fig. 3a) and in experiment 2 (m/z 5,735, m/z 5,749, 
m/z 11,468, m/z 11,495) (Fig. 3b). Using the thorax, we observed 3 discriminant peaks (m/z 2,611, m/z 3,644, 
m/z 4,477) in experiment 1 (Fig. 3c). In experiment 2 (Fig. 3d), we observed other discriminant peaks (m/z 
2,593, m/z 2,983, m/z 3,264, m/z 3,916). Following frozen storage (experiment 2), we observed more peaks of 
interest for both the legs and thorax (Fig. 3b, d, respectively).

Plasmodium infection. Following Plasmodium berghei infection of An. stephensi, proteomic comparative 
analysis of infected and uninfected blood-fed mosquitoes revealed peaks with varying intensities in the leg and 
thorax spectrum profiles (Fig.  4, Table  10). The variations in peak intensity were small, and most discrimi-
nant peaks exhibited a low intensity. Using the legs, at least 4 discriminant peaks (m/z 3,580, m/z 4,503, m/z 
6,171, m/z 6,380) were observed in experiment 1 (Fig. 4a). In experiment 2, one discriminant peak (m/z 4,476) 
observed using the legs (Fig. 4b) was also present using the thorax (Fig. 4d). Using the thorax, we observed at 
least 4 other discriminant peaks in experiment 2 (m/z 2,640, m/z 5,240, m/z 7,119, m/z 8,638). Following frozen 
storage (experiment 2), we observed more peaks of interest for the thorax (Fig. 4d) but not for the legs (Fig. 4b).

Figure 3.  Box and whisker plots demonstrating varying intensities of 25 peaks of distinct m/z (Da) for the 
complete dataset (line: mean, whiskers: standard deviation). Each peak corresponds to blood-fed (red) or non-
blood-fed (black) mosquitoes of the same ages. (a, b) Spectra obtained using the legs of Anopheles stephensi that 
were blood fed (not infected) or were not blood fed during (a) experiment 1 and (b) experiment 2. (c, d) Spectra 
obtained using the thorax of Anopheles stephensi that were blood fed (not infected) or were not blood fed during 
(c) experiment 1 and (d) experiment 2.
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Figure 4.  Box and whisker plots demonstrating varying intensities of 25 peaks of distinct m/z (Da) for the 
complete dataset (line: mean, whiskers: standard deviation). Each peak corresponds to infected (green) or 
uninfected (black) blood-fed mosquitoes of the same ages. (a, b) Spectra obtained using the legs of Anopheles 
stephensi that were infected or not infected by Plasmodium berghei during (a) experiment 1 and (b) experiment 
2. (c, d) Spectra obtained using the thorax of Anopheles stephensi that were infected or not infected by 
Plasmodium berghei during (c) experiment 1 and (d) experiment 2.

Table 8.  List of the characteristic peaks and intensity variation from day 0 to day 28, using the thorax of 
Anopheles stephensi.  a Peak present in both experiments 1 and 2.

Mass m/z (Da) Intensity

4,063 ↗

6,256 ↘

6,354 ↗

6,824 ↘

7,120 ↗

8,127a ↗

8,185 ↗

8,196 ↗

8,788 ↗

10,738a ↗
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Discussion
Using laboratory-reared An. stephensi, spectra from three cohorts of mosquito and four body parts (head, thorax 
with wings, legs, abdomen) were analysed with different overlapping and complex Anopheles biology targets: 
age, past blood meal and P. berghei infection. These Anopheles biology patterns are malaria transmission drivers 
useful for vector control. We have shown for the first time that MALDI-TOF MS spectra represent a suitable 
input for ANNs to classify Anopheles spectra. This proteomic study of Anopheles also revealed the presence of 
biomarkers showing intensity variations.

Proteomic analysis of Anopheles vectors are already performed to identify new targets for parasite or vec-
tor control and new diagnostic  biomarkers26. However, this approach has been underutilized in comparison 
to genomic or transcriptomic methods, potentially due to limited access to high-end mass spectrometers and 
complex workflows. Advances in computational biology have permitted the detection and recognition of complex 
spectral patterns using the simplest workflows, such as MALDI-TOF MS. In microbiology, the machine-learning 
analysis of MALDI-TOF MS spectra has enabled the differentiation of strains that are resistant and sensitive 
to antimicrobials such as azole in Candida albicans27, methicillin in Staphylococcus aureus28 or carbapenem 
in Klebsiella pneumoniae29. A recent study used a similar approach to distinguish between E. coli and Shigella 
 species21. In clinical pathology, this strategy was applied to the blood serum proteome to predict the presence 
of monoclonal gammopathy of undetermined  significance30 and to discriminate between multiple myeloma 
patients and healthy  donors20. In entomology, MALDI-TOF MS coupled with machine learning approaches 
has been tested to distinguish closely related Anopheles vector  species19. However, to our knowledge, the use of 
ANNs coupled with MALDI-TOF MS for the investigation of Anopheles vector biology has not been assessed, 
which would expand the field of proteomics applications.

The average age of Anopheles female mosquito population is an important determinant of the likelihood 
of malaria transmission. Indeed, only the oldest mosquitoes in a population are responsible for Plasmodium 
transmission, as the parasite requires 9–14 days of incubation inside female mosquito vectors before it becomes 
infectious to humans, once its sporozoites are present in the salivary  glands5. We have shown that age-dependent 
protein expression patterns can be specifically recognized by ANNs, allowing age-related spectral classification. 
The best age prediction results were obtained using the thorax. For 0–10-day-old mosquitoes, we obtained a good 
accuracy (up to 96%) and NPV (up to 98%), enabling a good estimation of the proportion of mosquitoes older 

Table 9.  List of the characteristic peaks and intensity variation following blood-feeding, using the legs and the 
thorax of Anopheles stephensi.  a Peak present in both experiments 1 and 2.

Legs Thorax

Mass m/z (Da) Intensity Mass m/z (Da) Intensity

3,823 ↘ 2,593 ↘

5,240 ↗ 2,611 ↗

5,737a ↘ 2,983 ↘

5,751a ↘ 3,264 ↘

6,738a ↘ 3,644 ↗

7,883a ↘ 3,724 ↘

7,894a ↘ 3,916 ↘

8,567 ↗ 4,477 ↗

11,471a ↘ 6,823 ↘

11,498a ↘ 10,046 ↘

Table 10.  List of the characteristic peaks and intensity variation following infection by Plasmodium berghei, 
using the legs and the thorax of Anopheles stephensi.  a Peak present in both experiments 1 and 2.

Legs Thorax

Mass m/z (Da) Intensity Mass m/z (Da) Intensity

2,235 ↘ 2,060 ↗

3,580 ↘ 2,076 ↗

4,476 ↘ 2,640 ↗

4,503a ↘ 2,766 ↗

4,514 ↘ 3,060 ↘

4,605 ↗ 3,265 ↘

4,639 ↘ 4,241 ↗

5,371 ↗ 4,476a ↘

6,171 ↘ 5,240 ↘

6,830 ↗ 8,638a ↘
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than 10 days, which are more likely to be infectious. However, the overall mean accuracy was lower (approxi-
mately 73%) and was maybe due to the lower performance of the intermediate category (11–20 days). Indeed, it 
presented the largest sample size and was probably characterized by intermediate physiological changes. Using 
a combination of two-dimensional difference gel electrophoresis (2D-DIGE), MALDI-TOF/TOF, and LC–MS, 
aging-related proteome changes were observed in the thorax and head across the three age groups of An. ste-
phensii (9, 17 and 34 days old) and four age groups of An. gambiae (1, 9 and 17 days old)9. The authors showed 
that approximately 4% of Anopheles proteins displayed robust age-dependent regulation, including metabolic 
proteins, stress-related molecular chaperones, and cuticular proteins. If field-validated, this age-grading approach 
will be useful for assessing the efficacy of vector control measures, showing a reduction in age  populations5,10,11. 
Moreover, a reduction in mosquito survival has been shown to be the most effective measure for reducing 
malaria  transmission5.

Recent blood meals are usually assessed by the visual examination of the abdominal state or the stage of blood 
 digestion1. However, within 48–72 h in tropical and subtropical climates, mosquitoes have digested the blood 
and oviposited [1], making it impossible to visually determine a past blood meal. We have shown that the prot-
eomic changes that occur in response to a blood meal (≥ 7 days delay) can be specifically recognized by ANNs, 
allowing the successful classification of spectra from 7 to 25 days post-blood meal. The best results of blood 
meal anteriority prediction were obtained using the legs and thorax after storage of the mosquitoes by freezing 
at − 20 °C. The overall mean accuracy was acceptable and comparable between the two body parts, at 87% and 
89% for the legs and the thorax, respectively. In addition, the NPVs were high, at 89% and 90% for the legs and 
thorax, respectively. Thus, this method allows a good estimation of the proportion of unfed mosquitoes. This 
approach should also be evaluated to look for host-specific proteomic changes following blood meal. Indeed, 
PCR success rate for host identification, drops sharply after blood meal  digestion31,32, from 84.5 to 25% for the 
most digested  ones32. This decreased in success rate has been shown to occur about 30–36 h after  feeding32. The 
proteomic responses of Anopheles to blood feeding have been previously explored by comparative analysis of the 
midgut proteins of sugar- and blood-fed An. albimanus using 2D-PAGE33. The author identified several molecules 
with altered abundance after blood intake, including enzymes related to innate immunity, the cytoskeleton, stress 
responses, signalling, digestion, detoxification and metabolism. The anteriority of the blood meal is an indica-
tor of how often mosquitoes feed and provides information on the ability of a vector to transmit malaria. This 
method could lead to a new estimation of the proportion of blood-fed mosquitoes, which is assumed to decrease 
under effective vector control measures.

The evidence of Anopheles infection by Plasmodium is necessary to confirm the role of a given species as a 
vector, and the proportion of mosquitoes with sporozoites in the salivary glands (thorax) is a determinant of 
the capacity of malaria  transmission1. We have shown that proteomic changes in response to Plasmodium infec-
tion can be specifically recognized by ANNs, allowing spectral classification according to infectious status. The 
best results of P. berghei infection prediction were obtained using fresh leg and thorax specimens after storage 
at − 20 °C. The overall mean accuracy was acceptable and comparable between the two body parts, at 78% and 
76% for the legs and thorax, respectively. In addition, the NPVs were high, at 94% and 89% for the legs and 
thorax, respectively. Thus, this method allows good estimation of the proportion of uninfected mosquitoes. This 
is interesting as one of the drawbacks of PCR approaches for the detection of mosquito Plasmodium infection 
is the presence of non-specific amplifications. Indeed, a previous study has reported a specificity of 60% with 
a real-time qPCR targeting the COI  gene34. Similarly, the ELISA that detects surface circumsporozoite protein 
has been shown to overestimate the infection rate due to false positive antigen  reactions35. A previous study 
distinguished MALDI-TOF MS spectra of An. stephensi according to P. berghei infection status using the cepha-
lothorax, without machine  learning24. Nevertheless, spectra were acquired only at day 18 post-infection, and the 
dataset was small (only 100 spectra in total). Proteomic studies investigating the mosquito immune response to 
Plasmodium infection in the salivary  glands36,37,  haemolymph38,39,  head40 and  brain41 showed differential expres-
sion of proteins related to metabolism, synaptic transmission, signalling, and cytoskeletal remodelling. Changes 
in the haemolymph proteome could explain the detection of Plasmodium infection using the legs, which are not 
assumed to host the parasite. Our approach provides a new estimation of the proportion of Plasmodium-infected 
mosquitoes (legs and thorax), which would decrease under effective vector control measures. A proteomic char-
acterization of the biomarkers from the thorax would help to determine the presence of biomarkers specific of 
the salivary glands’ infection, in order to estimate the entomological inoculation rate.

Proteomic profiling did not show specific distinct peaks between the categories to be classified but showed 
variations in peak intensity, thereby revealing potential biomarkers related to mosquito age, past blood meal 
and Plasmodium infection status. These results support an ANN classification based on physiological variations. 
Similarly, in a previous study involving MALDI-TOF MS coupled with the use of  ANNs20, the authors did not 
observe distinct peaks specific to a category and postulated that ANNs were sensitive to small variations in the 
peak intensities. Additionally, we have shown that freezing mosquitoes at − 20 °C can modify the spectra. Some 
proteins might have been degraded at − 20 °C, generating new biomarkers and eliminating others. However, the 
stability of protein profiles from frozen mosquitoes indicates that the ANNs classification of frozen mosquitoes 
was not biased by modifications induced by storage over the time (5–10 months at − 20 °C). Overall, there was 
an increase in discriminant biomarkers after freezing, and ANN classification was improved, except for infec-
tion prediction using the legs. For example, using the thorax, blood meal and Plasmodium infection could be 
predicted effectively only after freezing. Similarly, the MALDI-TOF characterization of Cryptosporidium showed 
that a freeze–thaw procedure increased spectral biomarkers and improved  sensitivity42. The authors observed a 
loss of some spectral biomarkers and a gain of others, suggesting a biomolecule degradation or separation by the 
freeze–thaw procedure. Another MALDI-TOF MS study showed that freezing preprocessing at − 20 °C yielded 
better identification results for mycobacteria, possibly by improving protein  extraction43. In addition, the simul-
taneous acquisition of frozen mosquitoes may also have decreased the mass spectra variability and increased 
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the detection of small variations of intensities. To ensure feasibility of the method for future Anopheles spectra 
library constructions, freezing should be recommended as well as simultaneous acquisition of each category. It 
would facilitate the implementation of this new approach in the field.

This is a proof of concept, and despite showing good specificity, the sensitivity could be further optimized. 
The biomarkers described here should be used for the further optimization of ANN classification and to obtain a 
deeper understanding of Anopheles biology, using high-end mass spectrometers such as LC–MS/MS systems. As 
the aim of the study was to build a field application, we used a simple workflow not adapted to protein characteri-
zation and we were not in capacity to compare our biomarkers to those previously published. Nevertheless, the 
specificity of the biomarkers needs to be further evaluated as important changes were observed between the two 
experiments. The preprocessing of the spectra could also be improved. Indeed, we selected the 100 highest peaks 
to avoid background noise, but we identified the presence of low-intensity biomarkers, especially for the Plasmo-
dium infection target. In addition, despite the presence of discriminant biomarkers, the sensitivity of the ANNs 
was sometimes insufficient. This may derived from the presence of overlapping peaks between the mosquito 
categories and from an insufficient reproducibility of the observed biomarkers, as peak picking was performed 
on the average spectrum. Surprisingly, the abdomen did not yield an acceptable classification performance for 
infection and blood meal predictions. Insufficient spectral reproducibility and interference between overlapping 
physiological parameters, such as the blood meal and infection could explain this disparity. The optimization 
of spectral acquisition parameters could decrease the spectral variability and increase the intensity of peaks of 
interest. Only the most reproducible and informative peaks identified by protein profiling could then be selected 
as an input of ANNs, as previously performed by Deulofeu et al.20, who selected 28 informative peaks. Other 
network architectures can also be tested, such as recurrent networks, which retain the entire sequence in their 
memory and can then better take into account the succession of the peaks and lower signals. Similarity metric 
learning would allow a comparison between two spectra, one of which is known. Even if separated body parts 
have shown performance disparities, the accuracy of ANN classification of MALDI-TOF mass spectra using the 
entire mosquito is worth to be tested to facilitate field analysis. Finally, field validation needs to be performed and 
the applicability to wild-caught Anopheles and Plasmodium species need to be assessed, especially if Plasmodium 
infection is to be detectable at the parasite densities observed in the field. As kinetics of aging may vary between 
field and laboratory, semi-field conditions will have to be reproduced. To train the ANNs with mosquitoes of pre-
determined age, larvae will have to be collected on the field and bred to the adult stage, using the F1  generation11.

conclusions
We evaluated the use of ANNs coupled with MALDI-TOF MS to predict Anopheles drivers of malaria transmis-
sion. We have shown that ANNs are sensitive to proteome changes and specifically recognize spectral patterns 
linked to Anopheles biology, such as aging, blood feeding and Plasmodium infection. We obtained good prediction 
accuracies and negative predictive values for the test dataset, but sensitivity should be further optimized. Peaks 
with intensity variations offer discriminant biomarkers that might be recognized by ANNs. This proof of concept 
extends the field of the proteomics applications of MALDI-TOF MS, providing new tools for vector control. In 
a context of malaria elimination, a large proportion of old mosquitoes with blood meal anteriority could reflect 
insufficient vector control measures and a risk of transmission resurgence following new malaria cases. A similar 
approach could be applied to the identification of blood meal source and the detection of insecticide resistance 
in Anopheles and to other arthropods and pathogens. Future studies must assess the field validity of this new 
approach to wild-caught adult Anopheles replicated across field sites.

Data availability
The datasets generated and/or analysed during the current study are available from the corresponding author 
upon reasonable request.
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