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AbstractIn the following report the problem of selecting proper training sets for neural networktime series prediction or function approximation is addressed. As a result of analyzingthe relation between approximation and generalization, a new measure, the generalizationfactor is introduced. Using this factor and cross validation a new algorithm, the dynamicpattern selection, is developed.Dynamically selecting the training patterns during training establishes the possibilityof controlling the generalization properties of the neural net. As a consequence of theproposed selection criterion, the generalization error is limited to the training error. Asan additional bene�t, the practical problem of selecting a concise training set out of knowndata is likewise solved.By employing two time series prediction tasks, the results for dynamic pattern selectiontraining and for �xed training sets are compared. The favorable properties of the dynamicpattern selection, namely lower computational expense and control of generalization, aredemonstrated.This report describes a revised version of the algorithm introduced in [Röbel, 1992].
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1 IntroductionSince the formulation of the backpropagation algorithm by Rumelhart, Hinton and Wil-liams [1986] there has been a steadily growing interest on arti�cial neural networks. Dueto some vague analogies between neural networks and the biological nervous systems it hasbeen expected that successful applications of neural networks in �elds like Classi�cation,Pattern Recognition, Nonlinear Signal Processing or Control, all areas in which the knowntechnical solutions remain far behind the performance of the biological systems, will bepossible in the near future. Concerning the theoretical investigations of neural networks,there exists encouraging results supporting these expectations.However, the experiences concerning the practical generalization properties of neural net-works demonstrated that the widely used backpropagation algorithm does not alwaysachieve the desired generalization precision. This is not surprising, because, as a detailedanalysis shows, the two tasks which should be solved during training to represent and togeneralize the training examples are not well determined [Poggio and Girosi, 1990].Mathematically speaking, the conditions for good approximation and good interpolationare only partly related. As a matter of fact, the backpropagation algorithm only considersapproximation errors for gradient descent and improved approximation will, in general,not be accompanied by a better interpolation. Therefore, the interpolation obtained isstrongly in�uenced by the random starting conditions of the optimization, and long train-ing times often results in high quality approximations, but insu�cient interpolations. Thiswidely known e�ect often is called over�tting.There are two di�erent strategies to prevent neural networks from over�tting. The �rstone is especially useful if the available data set is small. It is based on a heuristic argu-ment, which states that the simplest model will in general achieve the best generalizationor interpolation. Following these argument one may try to choose as simple a net struc-ture as possible, or state additional constraints on the weights to limit network complexity[Weigend et al., 1990; Ji et al., 1990]. The latter normally are called Constraint Nets.However, due to the general foundation of this method, only weak heuristic argumentsconcerning the interpolation properties �nd their way into the optimization procedure.An adaption to the special problem under investigation is only obtainable with great ad-ditional e�ort and, consequently, better interpolation is restricted to special well behavedproblems. Moreover, the additional optimization expense leads to considerably increasedtraining times.If there are enough training samples, one may follow another strategy which relies uponthe chosen training set. If the training data is selected carefully, it will contain enoughinformation to ensure that the optimal approximating network will have good interpola-tion properties, too. Up to now, it is a well known practice to achieve this by selectingvery large training sets which in general contain a lot of redundancy.Following the latter strategy, a new method has been developed to ensure valid generaliza-tion. This algorithm, the dynamic pattern selection, is based on the batch training variantof the backpropagation algorithm and has been proven to be useful in applications withvery large data sets. The training data is selected during the training phase, employing1



cross validation to revise the actual training set. The error of the net function is used tochoose the pattern, which should be added to the steadily growing training set [Röbel,1992].The overhead for the selection procedure is small. Due to the initially small trainingset size the dynamic pattern selection algorithm leads to more e�ective training then thestandard algorithm. Practical experiments have shown that it outperforms current onlinetraining variants even in the case of very big and highly redundant data sets.Plutowski and White [1993] have developed a similar algorithm, which they call activeselection of training sets. Their algorithm focuses mainly on reducing training set sizewithout considering generalization e�ects and does not employ cross validation to con-tinually assess the generalization obtained by the training set in use. In contrast totheir algorithm, the dynamic pattern selection proposed here, validates the training setby continually monitoring the the generalization properties of the net.In the following section, the relations between approximation, interpolation and over�ttingwill be discussed on a background of function theory. Subsequently, the known heuristicsconcerning the number and distribution of training patterns are summarized. The actualmethods to choose the training sets for neural nets will be described and the dynamicpattern selection will be established. Thereafter, two examples from the �eld of nonlinearsignal processing are investigated to demonstrate the properties of the new algorithm. Inthe last section, there will be a short discussion concerning data requirements, noise anda comparison to online training methods.The following explanations are based on the well known backpropagation algorithm asintroduced by Rumelhart, Hinton and Williams [1986]. Descriptions of this algorithm arewidely spread in the literature and will not be repeated here.2 Approximation, Interpolation and �Over�tting� inthe context of function theoryThere have been many publications proving that under weak assumptions simple feedfor-ward networks with a �nite number of neurons in one hidden layer are able to approximatearbitrary closely all continuous mappings Rn ! Rm [Hecht-Nielsen, 1989; White, 1990].Concerning practical applications, however, these results are obviously of limited use, be-cause they are not able to establish the required network complexity to achieve a certainapproximation �delity.The conditions by which the stepwise improved approximation, achieved with the back-propagation algorithm, is accompanied by a decreasing interpolation error are not pre-cisely known. To understand the basic relations it is useful to analyze the optimizationprocedure on the background of function theory. The target function ~x 7! ~y = ft(~x) isassumed to be smooth, that is, ft is a member of C1 , the set of functions with continuousderivatives of every order, and the domain Xof ft to be a compact manifold. In general,there is only a limited set of members ~x 2 Xavailable for which the targets ~y = ft(~x) are2



N = ftFi(0)Fi( �2 )Fi(�) FnFa(0)Fa( �2 )Fa(�)
Figure 1: A possible relation between the set of all representable net functions Fn,the sets of all �-approximating functions Fa(�), and the sets of all �-interpolatingfunctions Fi(�) out of C1 .known. All known pairs (~x; ~y) form the set of available dataDa = f( ~x0; ~y0); ( ~x1; ~y1); ( ~x2; ~y2); :::g: (1)Given Da , a neural network, and a real number � � 0, we may distinguish between threesubsets of C1 . First, there is the set of �-approximating functions Fa(�), which is the setof functions f approximating the members in Da to a given precisionsupDa kft(~x)� f(~x)k � �: (2)Second, the set of �-interpolating functions Fi(�), with distancesupX kft(~x)� f(~x)k � � (3)to ft. The third set is the set of functions fn representable by the the neural net and isdenoted as Fn. While the sets Fa(�) depend on the set of available data Da , the sets Fi(�)are completely de�ned by the target function ft. Using these terms, the target functionmay be speci�ed as the single member in the set of 0-interpolating functions Fi(0).Figure (1) shows a possible relation between the three function sets de�ned above. De-picted is a special setting in that the target function ft is a member of Fn such that ft3



might be represented by fn without any error. The following statements do not rely onthis and therefore remain valid in general.Note that the backpropagation algorithm generally is used with a squared error functionto measure the approximation quality. To compare approximation results achieved withdi�erent training sets this measure has to be normalized using the number of elementscontained in each training set. Employing this normalized squared error as a measureof distance in equations (2) and (3) would result in more complicated relations betweenFa(�) and Fi(�). Even then however, the following statements remain valid in explainingthe principle properties of the backpropagation algorithm.With respect to the relation �i � �j, it is possible to establish the ordering Fa(�i) � Fa(�j)on the set of all Fa(�) with � � 0. A corresponding relation exists for the set of all Fi(�).As mentioned above, the smallest set Fi(0) consists of one element only, in contrast toFa(0), which may have in�nite cardinality. Note that the set Fi(�) is always a subset ofFa(�). Concerning Fn and Fa(�), however, it is impossible to �nd such a simple generalrelation. Presuming the network weights are bounded, a valid assumption for practicalapplications, there exists an �u such that Fn � Fa(�) for every � > �u. On the other hand,there exists an �l � 0 such that Fn \ Fa(�) is empty for all � < �l. In the case of �gure (1),for example, one �nds �l = 0.The objective of the backpropagation algorithm is to choose a network function fn, whichis in Fa(�l).The area in �gure (1) marked by the dotted line gives the cutting Fan(�l) = Fa(�l) \ Fn,containing all solutions obtainable by gradient descent. It is not possible to ensure thatgradient descent optimization will reach Fan(�l). Due to the speci�c error function, theconstraints on the initial conditions and the selected training set, there might be nodescending connection from the initial function to Fan(�l).As a matter of fact, the generalization of the optimum set Fan(�l) is biased through thedata contained in Da . There exist data sets Da for which the relation between Fi(�) andFa(�), combined with the gradient descend procedure, will result in poor generalizationbehavior.For many applications, especially for function approximation, it is sensible to demandthat the generalization error be equal to, or lower than, the training error. Formally,fn 2 Fa(�) should implicate fn 2 Fi(�). To be able to rank the generalization propertiesof fn, it is sensible to de�ne the generalization factor�(fn) = �i(fn)�a(fn) ; (4)where �a(fn) is the minimal � such that fn 2 Fa(�) and �i(fn) is minimal such thatfn 2 Fi(�). The generalization factor indicates the error made in optimizing on Da insteadof X. As a result, we conclude that �(fn) � 1:0 (5)is a sensible condition for valid generalization.4



3 Choosing the training setAs a result of the previous section, it should be clear that the set Da strongly in�uencesthe generalization properties of the solutions obtained by gradient descent. Clearly, afurther selection of training data out of Da in general will lead to an even worse situation.The decreasing number of supporting points leads to increasing sets Fa(�) containing lessinformation over the interesting sets Fi(�).Consequently, one might think it would be best to use all available data for trainingpurposes. For many applications, however, this would be awkward due to the immensedata sets available. In speech recognition or signal processing Da often contains manythousands of samples and a large amount of redundancy. Training on all of the samplescan result in unnecessarily expensive computation. Moreover, the redundancy might notbe equally distributed over the input space, thereby preventing optimal generalizationproperties. As a consequence, the question of selecting the proper training set to achieveoptimal approximation and interpolation results arises.Although the su�ciently dense distribution of training patterns on ft is an importantcondition for successful training, there exist only some vague statements concerning thisissue. Surely the suitable number of training patterns depends on the chosen networkstructure, the problem and the required precision. The latter relation, often unjusti�ablyneglected, evidently stems from the fact that Fa(�) has to contain more information aboutFi(�) to achieve an interpolation with higher precision.A �rst hint towards the necessary number of training samples can be obtained by an-alyzing the number of free parameters of fn, given by the number of network weights.Consequently, one of the �rst suppositions concerning the suitable number of trainingpatterns, stated as a rule of thumb for simple linear networks by Widrow [1987], demandsthat the number of training patterns should be ten times the number of free parame-ters. This rule has been utilized for nonlinear neural nets as well [Morgan and Boulard,1990]. Although there exists a unique solution for considerably fewer supporting points,the overhead of information will result in a lower generalization error.The necessary number of training samples heavily depends on their distribution over theinput set Da . It is common to choose the training samples randomly out of Da . This isthought to reproduce the density of the underlying distribution. If there is no furtherinformation available this may be sensible, but because the properties of ft (maxima,minima, curvature, : : : ) and Fn are not involved this will, in general, result in suboptimaltraining sets. One of the main advantages of random selection is its easy implementation.Moreover, the generalization properties of neural networks trained on randomly selectedtraining sets may be investigated theoretically. In analyzing certain classes of networksand randomly selected training sets, Baum and Haussler [1989], for example, obtainedsome coarse estimates of the relation between training set size and achievable generaliza-tion precision.In practical experiments, considerably fewer training patterns than stated in the abovementioned investigations su�ce to give good generalization [Morgan and Boulard, 1990].5



Aside from random selection, there are other approaches to obtain proper training setsby carefully choosing the training data out of the domain X. One might try, for example,to choose the distance between adjacent training patterns to be almost constant. This,however, depends on a meaningful method to measure distances in X. In signal processingapplications, it is sensible to choose the Euclidean distance. Some experimental resultsobtained by the author shows that such an equal distance distribution of training samplesleads to considerably better training/generalization properties then the random distribu-tion. For other applications, however, it might be di�cult to �nd a meaningful distancemeasure.A more adept approach to select a suitable training set would be to adapt the trainingset by dynamically selecting training patterns while training proceeds. Atlas, Cohn andLadner [1990] have proposed an algorithm which, by investigation of the network state,decides which patterns are to be added to the training set. Although their algorithmshows better results then random selection of training sets, it requires expensive compu-tations and is therefore di�cult to use in practical applications.As previously mentioned, another dynamic approach was established by Plutowski, Cot-trell and White [1993]. They train with a speci�c training set until the error stalls andthen search in Da for the element which possesses a gradient vector most similar to theaverage gradient of the entire set. This element is chosen to enlarge the training set. Toprevent over�tting of the initially small training set, the initial network is rather small,with further hidden units added if the capabilities of the actual network to �t the growingtraining set are exhausted. This strategy will lead to very small training sets. For highprecision approximation, however, the selection of the proper training set is computation-ally very expensive, as the neural net is trained to the desired precision for all intermediatetraining sets.4 Online Cross ValidationThe dynamic selection of training patterns proposed in the following section uses a wellknown tool from the �eld of estimation theory, called cross validation. Cross validation,described in detail by Stone [1974], is often used to revise statistical models by applyingthem to test sets. In the �eld of neural computation, cross validation has been used toverify parameter settings [Finno� et al., 1992], the network structure or generalizationproperties. The last is of great interest here and therefore will be explained further. AsHecht-Nielsen [1990] has proposed, the provided data set has to be divided into a trainingand a validation set, the latter not being used for training purposes. Applying the networkfunction to the validation set, it is possible to estimate the generalization error of the net.This can already be done during the training phase. In the beginning of optimization,the estimated generalization error will generally decrease with the training error. Aftersome time, the generalization error will reach a minimum, and start to increase while thetraining error decreases further. This is interpreted as the beginning of over�tting andHecht-Nielsen suggests stopping training at this point.Cross validation is a very �exible tool. However, there unfortunately exist two contrary6



demands, which refer to the necessary division of the data into training and validationsets. On the one hand, one would like to choose the test set as large as possible to achievevalid estimations for the generalization properties, on the other hand, all data containedin the test set can not be used for training and its information is lost to the trainingprocess. This will especially be a problem in situations where the available number oftraining data is very limited.4.1 Dynamic selection of training patternsIn the preceding discussion, the principal relations between approximation and generaliza-tion have been clari�ed. The two results essential for the understanding of the proposeddynamic pattern selection are, in short form:1. The number and the distribution of training patterns have an important in�uenceon the resulting generalization properties of a neural network, but there exist onlyincomplete �ndings concerning practical solutions for selecting the training data.2. Online cross validation is a useful tool to monitor the generalization properties ofthe network and can be applied during the training phase.If one is willing to select the training patterns dynamically, two basic questions arise.Starting with an empty training set, the �rst question becomes: Which pattern shouldbe chosen? There are several possible answers. The easiest, excluding random selection,is to select the pattern which has the highest error contribution. Compared to otherpossibilities, for example the sophisticated �-ISB criterion proposed by Plutowski andWhite [1993], the maximum error criterion is very easy to compute and has the advantageof being directly coupled to the generalization factor, equation (4). Therefore this criterionis used for the dynamic pattern selection algorithm [Röbel, 1992].The second question, at which time the next pattern should be selected, turns out to bemore tricky. There are two objectives. First, as is given by equation (5), the generalizationfactor ought to be less than one, and second, to prevent over�tting, the selection of newdata should take place as early as necessary. The �rst objective may be achieved byestimating the generalization factor and inserting a new training pattern whenever itgrows beyond one.A number of experiments have shown this straightforward strategy results in reasonabletraining sets, which in many cases leads to better results then comparable sized �xedtraining sets. However, by employing this criterion alone, the generalization factor tendsto oscillate between one and a value considerably below, at about 0.3-0.8.1 Each selectedpattern e�ects that the generalization factor decreases and reaches a minimum. Then itslowly increases again and due to the long time it takes the generalization factor to reachone, the selection of proper training sets for high precision training takes a long time. Itwould obviously be better to catch the generalization factor at its minimum and select1This is especially true for training to very small errors7



a new training pattern just when it starts to increase. Following this we have found thesecond objective to aim for: keep the generalization factor at its minimum.There is one problem left now, which is to obtain valuable estimates of the generalizationfactor and its tendency without extensive computational e�orts. We do not want to com-pute fn for the whole data Da , but try to estimate the generalization factor by comparingthe error function on the selected training set and a validation set. Following the methodof cross validation, section 4, the available data Da is divided into subsets DT and DV . DTcontains all possible training patterns and is referred to as the training store. DV , thevalidation store, contains all possible validation patterns. The actual training set D t � DTand the validation set Dv � DV are selected from the respective stores.The estimation of the generalization factor � is obtained by selecting a random validationset Dv and computing �v = E(Dv )E(D t) ; (6)with E() denoting the error function of the backpropagation optimization. To achievecomparable statistical properties of E(Dv ) and E(D t), one chooses jDv j = jD t j2. Havingcomputed the generalization factor estimate, it now remains to use this value to estimatethe generalization factor tendency. We compute the average a� and standard deviation�� of the generalization factors from a �xed number of preceding epochs M3. To catchthe increasing of the generalization factors as early as possible, we choose the thresholdfor the generalization factor to be��(n) = min(��(n� 1); a� + ��; 1:0) (7)and select a new training pattern whenever�(n) > ��(n): (8)Here the argument n re�ects the number of training epochs computed so far. Note that ��is monotonically decreasing. As the optimal threshold � might increase, it is appropriateto allow a small increase of the � after the selection of a new training pattern. Thereforethe threshold is initialized after each selection to��(n+ 1) = min(�(n); 1:0) (9)and is �xed at this level for the number of epochs M used to calculate the statisticalproperties a� and ��. Note that, due to the selection criterion (8), in case of a selection�(n) is always above ��(n).Regarding section 4, there is a sensible extension of the algorithm. Calculating E(DV )we are able to achieve a good, less �uctuating estimate of the generalization error of theactual net. This estimate may then be used to select the net which achieves best gen-eralization properties during training. Moreover, a further investigation of the relation2jA j here denotes the cardinality of A3In the following experiments M = 100 is used. 8



between generalization error and training set size jD t j helps get further insight into thereasons for bad training results.At �rst, the growing of D t will be accompanied by a decrease of the generalization errorestimation. If ft is not contained in Fn or, due to the actual state of the network, notachievable by gradient descent, there will be a certain minimal generalization error. Afterhaving reached this limit, the further decreasing training error obtained by the back-propagation algorithm results in increasing generalization errors. The dynamic patternselection algorithm prevents over�tting by frequently inserting new training patterns intoD t . As a result, the generalization error will �uctuate around the minimum value with D tslowly increasing. When this situation arises, the training process could be stopped, asthe generalization will not improve further.While this e�ect is due to the limited net complexity and may easily be prevented bychoosing a larger network, there exists another situation which results in a fast growingof D t up to DT accompanied by an increasing generalization error. This rapid growth isdue to missing information in DT compared to DV . Therefore, we are able to decide whichgeneralization precision might be achieved with the available data Da , by monitoring therate of selection and the generalization error.Whenever the set of available data Da is rather small, the partitioning of the data intotraining and validation sets can impede successful training. This is the case if the infor-mation contained in each of these sets is incomplete. For such situations, there exists amodi�ed version of the dynamic pattern selection algorithm. The modi�cation consistsin choosing both sets DT and DV to completely cover Da . As a consequence, the assertionobtained by the validation tests are less reliable. However, the experiments which arepartly presented in the following section showed that the selected training sets remainsquite reasonable, as long as they remain small. If D t grows to more than half Da one willin general not expect to obtain sound generalization estimates.In the following, the dynamic pattern selection algorithm will be described more formallyusing a very general application example. The task which is to be learned consists inlearning a target function ft which is given, in accordance to equation (1), by a setof examples only. Formally the error function E(Da) has to be minimized and the netfunction fn ought to generalize to ft outside the given examples.The algorithmInitialization:The neural net weights are initialized with small random numbers, as is usualwith the backpropagation algorithm. This initialization establishes a randomnet function fn which is used to select the member ~di = (~xi; ~yi) out of DT thatshows the maximal error with respect to the error function E. The trainingset D t is now set up containing just this maximal error element. The thresholdof the generalization factor is set to one.The minimal generalization error E(DV )min is initialized using the randomstart error on DV , which is E(DV ). 9



Training:After each training epoch4 one selects a random validation set Dv � DV holdingas much elements as D t .Whenever E(Dv ) > �� �E(D t); (10)D t will be enlarged by adding ~di 2 DT nD t, the element from DT which con-tributes most to E(DT ) and is not already a member of D t . At each trainingepoch, the threshold �� has to be updated as per equations (7) and (9).In the case that E(DV ) is smaller than E(DV )min, the actual net will be storedand E(DV )min will be updated. After checking the respective stopping criteria,training continues.Break:If the generalization error stalls although D t is growing or if any other stoppingcriterion matches, training will be �nished and the optimal net stored so farrepresents the result of optimization.The procedure just described has several advantages:� The training patterns will be inserted whenever and wherever the information con-tained in D t fails to yield a regular convergence of the net function fn to the targetfunction ft. The algorithm could be interpreted as a dynamic adaption of Fa(�) toFi(�), whereby especially the critical regions are formed.� The redundancy contained in D t remains small, and the number of training patternsis related to the reached training and generalization errors.� The interpolation is controlled using the full information contained in Da withoutusing all the data for training. An over�tting of the training patterns is suppressed.� Analyzing the relation between jD t j and jDT j may give some hints about the redun-dancy contained in DT and, moreover, about the validity of the achieved generaliza-tion.� The slowly growing training set leads to a slowly increasing complexity of the trainedtask, which, as was shown by Jacobs [1988], will often result in better trainingresults.Several additional remarks concerning the proposed algorithm are in turn:4As long as the changes of the net function fn remains small, it is possible to train several epochswithout correcting the training set. Otherwise, the adaption of the training set stays too far behind theactual network state and training and generalization error diverge.10



Between two enlargements of D t there should be at least one training cycleto ensure that the additional information could have had some e�ect on thenet function. This is ensured by the threshold initialization of equation (9),which takes place after each training data selection. Because the data points inthe neighborhood of the latest added training pattern often show comparableerrors, one might otherwise select a number of patterns in the actual criticalplace. This would lead to groups of redundant patterns and thereby preventa regular convergence.Because the estimation of the generalization is a computationally expensivetask for large sets DV and because the changes of the generalization error areusually very slow, especially at the end of the optimization procedure, onemay choose to evaluate this estimation after a number of training epochs only.This will generally have a negligible e�ect on the achieved results.As the generalization is controlled by adapting the training set this estimationof the generalization error can even be omitted at all. The experiments haveshown, that the di�erences between the optimal and the �nal state of theoptimization procedure is fairly small.The proposed algorithm results in a monotonously increasing training set D t .There have been some experiments done with decreasing training sets, byremoving the best pattern from D t . In general this results in poorer perfor-mance. Even if the training process has adapted fn to ft in the neighborhoodof the selected patterns, it seems that they retain their importance in ensuringregular interpolation.5 Experimental resultsIn the following section the favorable properties of the dynamic pattern selection aredemonstrated. The learning algorithm used here is an accelerated batch mode back-propagation algorithm with dynamically adapted learning rate and momentum [Salomon,1991; Röbel, 1993]. All neural nets are simple feedforward structures with sigmoidalactivation function of the hidden units and linear output units.The tasks to solve stems from the �eld of nonlinear signal processing. Precisely speaking,two examples of continuous, nonlinear system functions shall be represented by the neuralnets. After successful training, the net function may be used as a predictor for the futurebehavior of the dynamical system. The underlying theory is beyond the scope of thisarticle. A suitable introduction has been given by Lapedes and Farber [1987a; 1987b].5.1 Predicting the Henon modelIn the �rst experiment, the network is trained to predict the chaotic dynamic of the henonmodel [Grassberger and Procaccia, 1983a]. This two dimensional model is given by the11



di�erence equation �xn+1yn+1 � = � yn + 1� a � x2nb � xn � : (11)Choosing the parameters a = 1:4 and b = 0:3 will result in a solution showing chaoticbehavior. A simple transformation of equation (11) gives the prediction functionxn+2 = 1 + b � xn � a � x2n+1; (12)which is to be approximated by the neural net.The available data setDa = f(xn; xn+1; xn+2); (xn+1; xn+2; xn+3); :::g (13)consists of 331 vectors, built from the solution of (11) and the initialization x0 = 0:6; y0 =0:18. An additional independent validation setDu = f(xn+333; xn+334; xn+335); (xn+334; xn+335; xn+336); :::g (14)has been built from the following 667 vectors of the solution.The neural net architecture used for this task is chosen to have an input layer with twounits, one hidden layer with seven units and an output layer with one unit. The initialweights are randomly chosen out of the interval [�1; 1]. It turns out that equation (12) iseasily approximated by this fairly small neural net, and therefore this task is well suitedto compare the training results of the dynamic pattern selection with the results obtainedwith �xed training sets of varying sizes. Moreover, by virtue of the low dimensionality ofthe problem, it is possible to get a visual impression of the distribution of the selectedtraining samples on ft.The �xed training sets are subsets of Da , and are chosen to approximate with varyingdensity a uniform covering of Da . While, in the case of �xed training sets, each trainingrun consists of 6000 epochs, the dynamic pattern selection algorithms were stopped after2000 epochs. This results in similar average generalization errors. To obtain statisticallyvalid assertions in comparing the results, 20 di�erent initial weight settings have beenused with each training algorithm.The average training and generalization results are presented in table (1). The errorbars are proportional to the variance of the results. In the upper part of this table theresults using the di�erent sized �xed training sets are shown, in the lower part one �nds theresults using both variants of the dynamic pattern selection. Here, the �rst line representsthe dynamic pattern selection with an independent validation set. For the training andvalidation repertoire, the relations DT = Da and DV = Du are chosen. The second lineshows the results for the modi�ed version without a special validation set. In this case,the data sets are chosen following the relation DT = DV = Da .The number of training patterns in the �xed training sets and the average number ofselected training patterns at the end of the training are listed in column one. The columns12



training training - generalization - generalization - forward-/backwardset size error E(D t) error E(Du) factor �u propagations5 4.50e-2 � 4.84e-2 3.75e-1 � 6.60e-2 8.33 0.18e+615 4.29e-3 � 2.00e-3 2.50e-2 � 1.66e-2 5.83 0.54e+625 3.77e-3 � 1.79e-3 4.80e-3 � 2.04e-3 1.27 0.90e+635 2.46e-3 � 1.24e-3 2.90e-3 � 1.35e-3 1.18 1.26e+650 3.02e-3 � 1.61e-3 3.46e-3 � 1.75e-3 1.15 1.80e+675 2.99e-3 � 1.54e-3 3.14e-3 � 1.65e-3 1.05 2.70e+6100 2.90e-3 � 1.55e-3 3.21e-3 � 1.73e-3 1.10 3.60e+6150 4.53e-3 � 2.11e-3 5.08e-3 � 2.38e-3 1.12 5.40e+6300 3.56e-3 � 2.19e-3 3.90e-3 � 2.42e-3 1.09 10.8e+669 � 10 3.69e-3 � 1.36e-3 3.06e-3 � 1.10e-3 0.83 0.74e+665 � 7 2.65e-3 � 5.78e-4 2.24e-3 � 4.84e-4 0.84 0.69e+6Table 1: Predicting the Henon model. Comparison of the average training andgeneralization results using a 2-7-1 neural net and di�erent training sets.two and three contain the training and generalization results measured by means of thenormalized prediction error E(D) = vuutPx2D(ft(~x)� fn(~x))2�2DjD j ; (15)where �D represents the standard deviation of the target function measured on the dataset D .All the errors contained in table (1) have been measured using the optimal weight set,which was determined during the training phase by cross validating the generalizationerror on DV . Using equation (6) the generalization factor � has been estimated to be�u = E(Du)E(D t) : (16)Column �ve shows the average computational expense neede to achieve the generalizationresults for the respective training set. It is estimated by the number of propagation passesthrough the net. Here the simple approximation of equal computational e�orts for forwardand backward propagations is made. The acceleration algorithm needs four additionalforward propagations for each training pattern and each training epoch, so each trainingcycle consists of 5 forward and 1 backward propagation for a selected training pattern.For the dynamic selection there is an additional overhead of 1 forward propagation foreach pattern in the randomly chosen validation set Dv . Moreover, each pattern selectionresults in 1 forward propagation for each member of DT to select the training pattern withthe maximum error contribution.The smallest of the �xed training sets contain just �ve and �fteen training patterns andthe net function fn is obviously under-determined. The examples are learned quickly and13



with high precision but the generalization error minimum stalls at a very early state. Allthe other �xed training sets lead to comparable precisions. A remarkable result is the�at minimum for training and generalization error, when using a training set with 35-100 elements. The increasing error for larger training sets is a result of poorly distributedtraining patterns. The full set DT with all 331 training patterns obviously does not providean equally spaced distribution of the patterns. The more patterns that have to be chosenout of this set, the harder it is to select a training set with proper distribution in theinput space.Using dynamic pattern selection, 2000 training epochs are su�cient to reach the sameaverage generalization error as with the best �xed training set. Compared to the �xedtraining set with the minimal generalization error, which is the set containing 35 trainingpatterns, the dynamic training sets contains a higher number of patterns. This is toensure that the generalization error stays below one, which is not obtained by any of the�xed training sets.In comparing both variants of the dynamic selection algorithm, one �nds that the trainingsets selected by the modi�ed algorithm are signi�cantly smaller. This is due to the lesssevere validation, without an additional validation set. In the case of the henon model,the loss in model reliability does not a�ect the generalization properties and thereforethe training results are even improved. In general this is not the case. An example fordi�erent behavior will be found in the next experiment.As mentioned earlier, all experiments are done with a �xed number of training cycles.Due to the varying training sets this leads to varying computational costs for the di�erentruns. For the �xed training sets, the total number of forward and backward propagationsincrease from about 200 thousand up to 10.8 million. The total computational cost forthe dynamic pattern selection is comparable to that for 25 patterns in a �xed training set.However, compared to this �xed training set size, the dynamic pattern selection achievesconsiderably better generalization results. The smaller cost of the dynamic selectionalgorithm is a result of the initially small training sets, which compensate for the largertraining sets in the �nal training phase.In �gure (2), the dependency between generalization factor �u and the number of trainingepochs is shown. As can be seen, the number of training patterns considerably e�ectsthe generalization properties. As the �xed training sets are enlarged the reliability of thegeneralization is increased, but with a higher number of training epochs and improvedtraining error this reliability decreases. For very long training or small training setsover�tting takes place and the generalization properties tend to become random.The evolution of the generalization factor for �xed training sets with 25 and 50 patternsshows that there is a randomly varying training epoch for which the information containedin the training set does not ensure the desired generalization quality. This limit is movedtowards smaller training errors if the training set is enlarged. Regarding the dynamicselection it is shown that the generalization factor is controlled to stay well below one5.5The initially higher variance of the generalization factor is a consequence of the learning rate adap-tion. The learning rate is fairly high in the �rst few hundred epochs. This leads to a quickly varyinggeneralization error, which nevertheless is controlled by inserting new training patterns.14
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Figure 2: Generalization factor �u as a function of the number of training epochsfor learning to predict the henon model.As was already mentioned, despite the size of the training set, the distribution of thetraining patterns has a considerable e�ect on the generalization results. A typical distri-bution obtained by the dynamic pattern selection is depicted in �gure (3). The criticalregions, as maxima, minima, margins and parts of high curvature, are occupied. Thedistribution is not uniform but re�ects the error distribution of the net function. Thisindicates the advantage of the dynamic selection in contrast to the �xed training sets,which must be selected based on general heuristics and without any knowledge of theintermediate network state.5.2 Predicting the Mackey-Glass modelAfter having shown the basic properties of the dynamic pattern selection by means of afairly easy problem, the more complicated task of predicting the chaotic behavior of the15



Available data
-1 -0.50 0.5 1-1-0.500.51 xn xn+1xn+2 Selected Patterns 33 33 3 33 33 33 3 333 3 33 33333 33 33 333 33 33333 3 3 333 33 333 3 33Figure 3: A typical distribution of training patterns on the prediction functionof the henon model. Depicted is the distribution of training patterns subsequentto 1000 training cycles.Mackey-Glass model is investigated. Due to the time delay, the Mackey-Glass model
x(t) = a � x(t� � )(1 + x(t� � )10) � b � x(t) (17)has in�nite degrees of freedom. The stationary motion is, however, governed by a lowdimensional attractor [Farmer, 1982; Grassberger and Procaccia, 1983b]. This is thereason why the Mackey-Glass model is often used as an emulation of real world systemsand predicting this model has been established widely as a kind of benchmark for testingpredictors [Farmer and Sidorowich, 1988; Lapedes and Farber, 1987b; Crowder, 1990]. AsLapedes and Farber [1987b] have shown, the prediction of the Mackey-Glass model, withthe parameter set a = 0:2; b = 0:1 and � = 30, might be attained by using a neural netwith six input units, two hidden layers with ten units each and a linear output unit. Thissettings will be used here as test for the dynamic pattern selection, too.Solving the equation (17) has been done using a second order Runge-Kutta method,where the �rst 1000 steps of the solution were skipped to reach the steady state. Thedata set, Da , is built from the following 5000 steps of the solution, with a total of 4964vectors ~vi = fxi; xi+6; xi+12; xi+18; xi+24; xi+30; xi+36g. Following Lapedes and Farber, thevectors are constructed with a time delay of six steps and the �xed training set contains500 vectors out of Da , which has been selected with nearly uniform distribution in inputspace. The independent generalization test set contains 2000 vectors chosen randomlyout of the following 10000 steps of the solution.The �xed training set and each of the dynamic selection algorithms has been used fortraining with ten initial weight sets. Each run consists of 20000 cycles and the averageresults are shown in table (2). The labeling here is identical to that in table (1).The �xed training sets give rise to a generalization factor considerably beyond one. As is16
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Figure 4: Generalization factor �u as a function of the number of training epochsfor learning to predict the Mackey-Glass model.training training - generalization - generalization - forward-/backwardset size error E(D t) error E(Du) factor �u propagations500 2.47e-2 � 3.6e-3 2.73e-2 � 3.4e-3 1.11 60e+6207 � 11 4.62e-2 � 3.9e-3 2.74e-2 � 1.4e-3 0.59 18e+6202 � 13 4.27e-2 � 3.2e-3 2.74e-2 � 1.5e-3 0.64 18e+6Table 2: Predicting the Mackey-Glass model. Comparison of the average trainingand generalization results using a 6-10-10-1 neural net and di�erent training sets.depicted in �gure (4) the generalization factor increases monotonically. In contrast to this,the generalization factor of the dynamic selection algorithm is well below one, indicatinga more reliable generalization and the selected sets contains, on average, less than halfthe number of training patterns. The generalization results being approximately equal,the computational expenses of the dynamic selection algorithms are less by a factor of0:3. Note that there is no need to do any initial investigations to determine the optimaltraining set.6 DiscussionAfter having demonstrated the basic properties of the dynamic pattern selection, somefurther topics, concerning possible extensions, data requirements and noise shall be dis-cussed.Obviously, the application of the dynamic pattern selection is limited to problems where17



generalization is possible. Otherwise, any selection of a training subset will fail to endup with usable network performance. Up to now, there have been no investigations withproblems other than the approximation of continuous functions. To apply the dynamicpattern selection to classi�cation problems with binary target values, the criterion forproper selection times probably has to be modi�ed. In those cases, it seems quite reason-able to expect the dynamic pattern selection to reveal clustering properties and furtherinvestigation might lead to interesting results.As a matter of fact, the dynamic pattern selection does not depend on a special errorfunction. Therefore one might use the dynamic training sets in combination with otherbackpropagation extensions, as for example constrained networks, thus getting bene�tsfrom each of the methods.6.1 Data requirementsAs should be clear from the discussion above, an important precondition for the utiliza-tion of the dynamic pattern selection is a su�cient number of training patterns in thedata set Da. In fact, even with very small data sets, the dynamic selection algorithm is afavorable choice, due to the increased control over network results. Although the trainingset will cover the whole training store more or less quickly, one gains the possibility toestimate the achievable generalization by measuring the training error at the time whenthe training repertoire is exhausted. After having selected all available training patterns,the di�erent versions of the algorithm are equivalent to the standard backpropagationalgorithm, with or without cross validation. As a consequence of this limiting behavior,the dynamic pattern selection has the same data requirements as the standard backprop-agation algorithm.6.2 NoiseIn the preceding discussion, one question has been left unasked that is of great interestfor the practical virtue of the proposed algorithm. What happens if there is considerablenoise in the data?There is one important di�erence between dynamic and �xed training sets, which mightresult in a somewhat higher sensitivity to noise in the dynamic case. If only some of theavailable training patterns are disturbed, the selection process will probably select most ofthese patterns trying to improve the bad generalization results. Due to the concentratedtraining sets the averaging between the selected samples is smaller and consequently thetraining results are a�ected more by the additional noise then in the case of �xed trainingsets.In many cases, however, the noise will be uniformly distributed over the data and inthis cases the dynamic training sets will yield similar averaging properties as the �xedsets. In many experiments the dynamic selection has been applied for training neuralnetwork predictors of real world signals, which are disturbed by noise levels that are small18



compared to the training error [Röbel, 1993]. In all cases the dynamic selection provedto be stable with superior training results then the standard algorithm.6.3 Comparison with online trainingIt has been argued that the dynamic pattern selection is obviously well suited to processvery large data sets containing highly redundant data. In contrast to this, it is often as-sumed that, in the case of redundant data, the online training variant of backpropagationwill yield superior results. Therefore, we have compared the computational expenses foran up to date online training method, the Search-Then-Converge learning rate schedule asis set forth in [Darken and Moody, 1991] and the batch mode dynamic pattern selectionalgorithm. The neural networks have been trained to predict a real world piano signalconsisting of 15000 samples and the learning rate adaption of the online training methodhas been optimized in a number of preceding runs. For the dynamic pattern selectionthe automatic learning rate adaption already mentioned in the previous sections has beenemployed.Despite the preceding optimization necessary for the online training algorithm and the factthat there have been only 50 patterns selected by the dynamic selection, which results ina big overhead for the selection process, the overall expense for the batch mode, dynamicpattern selection training has been lower than the online training expense by a factor of0.3.6As a consequence of this experiment, it follows that the proposed dynamic pattern selec-tion combined with an accelerated batch mode training is the method of choice in all caseswhere the complete training set Da is available at training time. Only in cases where thenet has to be adapted to time varying situations during application should online trainingbe used.7 ConclusionBased on the fact that the generalization properties of neural networks are heavily deter-mined by the training sets, an extension to the standard backpropagation algorithm, thedynamic pattern selection, has been introduced. The proposed algorithm has been testedon two problems from the area of nonlinear signal processing. Comparing the results tostandard backpropagation training on optimized �xed training sets it has been shown thatthe dynamic pattern selection algorithm achieves the same average generalization resultswith less computational expense and without any preceding investigation of the availabledata.The dynamic pattern selection has especially proven to be useful for very large and highlyredundant data sets which are often used in signal processing applications. In these cases,one should select a reasonable subset as a training and validation store. Further selection6I would like to thank Jens Ehrke for his support on online training experiments.19
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