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Abstract: Scaling propertiesof neural networks, that aretherelationsbetween
the number of hidden units and the training or generalization error, recently
have been investigated theoretically with encouraging results. In our paper
we investigate experimentally, whether the theoretic results may be expected
in practical applications. We investigate different neural network structures
with varying number of hidden units for solving two time series prediction
tasks. The results show a considerable difference of the scaling behavior of
multi layer perceptronsand radial basis function networks.

Introduction

Time series prediction is one of the applications for which recent metbbdsn-
linear signal processing have led to new and interesting possibilEgzecially the
use of neural networks for prediction [20, 19] and even modeling ofinear dy-
namical systems [11, 13] has been successfully investigated. The basi¢ tbesa o
methods has been developed by a number of groups independently aroOntbt 98
example [2], and has been given a strong theoretical background later 4|17,

One open question concerning the behavior of neural networks is thenebst-

tween the number of hidden units and the network error, in the fotigwienoted
as scaling properties. There exists some recent encouraging theoretidal cesul
cerning this scaling properties of neural networks [1, 6], howeves itriknown
whether these results may be obtained by existing training algoritfinerefore,
we have investigated the scaling of the neural network prediction estaing two

time series prediction tasks and report our results in the follonéatjens.

The following article is organized as follows. In the first two secsiave give a
short introduction into the foundation of time series predictigrpbase space re-
construction with delayed coordinate vectors and summarize on the tloabreti



sults concerned with the scaling properties of neural networks. In sebtiea and
four we describe the network structures and training algorithms we hsed in the
experiments. In section five we report the results for predicting a coengener-
ated time series from the Mackey Glass differential equation and a real veordd s
ophone tone, respectively and we study the relation between the numbddehh
units of the networks and the prediction error on a hold out test set.

1 Reconstructing Attractors

Assume am-dimensional dynamical systefi{-) evolving on an attractad. A has
fractal dimensioni, which often is considerably smaller then The system state
Z is observed through a sequence of measurenigils resulting in a time series
of measurementg = h(Z(t)). Under weak assumptions concerniig) and f ()
the fractal embedding theorem[14] ensures that/dor 2d, the set of alldelayed
coordinate vectors

Ypor = {t>to: (Yo, ye—r,. .. 7yt7(D71)T)}7 1)

with an arbitrary delay tim€", forms an embedding afl in the D-dimensional
reconstructiorspace. Because an embedding preserves characteristic featdres of
especially it is one to one, it may be employed for prediction or modelfriye®
system dynamics. The delayed coordinate vectors are easily obtained frimehe
series by a tapped delay line. Provided the dimension of this tapped dedaig lin
chosen large enough, the embedding theorem ensures that there exislisi@anon
autoregressive (NAR) model that predicts the future behavior dfiitie series.

2 Scaling Propertiesof Basic Neural Network Structures

The approximation capabilities of the different neural network stresthiave been
investigated by various authors [5, 10, 3]. These investigations agtbe point
that the multi layer perceptron as well as the radial basis function netwithk w
a sufficient number of hidden units are capable to approximate smoottidng
to any degree of accuracy. Therefore, neural networks are well suited totbaild
NAR time series model introduced in the previous section.

Up to now, the number of hidden units that has to be used for a desiredxapp
mation error is still unknown. Some recent results address the relagioveen the
training error of a neural network and the number of hidden units [1T&Ese re-
sults are encouraging in that for restricted classes of target functienstibivn that
there exists sequences of networks with increasing number of hiddersuch the
minimal training error depends on the number of hidden units folgwi

C
number of hidden units ’

mean squm’ed error S

)

with a problem dependent constafitand does not depend on the dimension of
the domain of the target function. In a practical situation the exjdfiaining al-



gorithms will generally fail to achieve the optimal solution of thelplem and,
therefore, the question arises, to what extend the theoretical scalingsrapply
for practical applications. In the following sections we report our itsstoncerned
with an experimental investigation of the scaling behavior of neural owt\ior

time series prediction. Here we restrict ourselves to the investigafithe training
process in a somewhat ideal situation with a sufficient number of tigisamples
(no overfitting) and small noise level. Any severe limitation of tteéning set size
or a considerable level of noise in the data would certainly affect ther¢tieal

bounds for the scaling behavior of the neural networks and, thereédseyond the
scope of this investigation.

3 Network Topologies

Many different network structures have been proposed in the literadugrédict-
ing time series. For the following investigation, however, werresburselves to
the basic topologies, the multi layer perceptron and radial basis funoétworks,
which are frequently extended to build more sophisticated approachesaomple
the FIR-network [19, pp. 195] or Fuzzy-Neuro-Systems [7].

Multi layer perceptron: The application of multi layer perceptrons (MLP) to
time series prediction has first been investigated by Lapedes and Farber [&]land s
is frequently used today [20]. Lapedes and Farber used a network with isigmo
activation functioru(x) in two hidden layers and a linear output unit. In our ex-
periments we found that the scaling behavior of the MLP does not depetiteo
number of hidden layers. Therefore, we restrict ourselves to use a MIbPavgiin-

gle hidden layer in the following experiments. The network functéthe MLP

is .

T l4e®

n(@) =Y Wia (i x4+ b;),  as(x) (3)
where W; is the hidden to output weight for hidden unjtw; andb; are input
weights and bias of hidden unit i ands the input vector presented to the network.

Radial basis function networks. Radial basis function (RBF) networks have
been proposed for time series prediction by Moody and Darken [9]. Inctse
the activation function is Gaussian shaped

ar (7,10, 0) = e~ ), @)
with « ando describing the center and width of the Gaussian. The overall network
function may be structured equivalently to (3), by replacingwith a,.. Alterna-
tively an additional normalization is incorporated leading to the netviamktion

n(@) =S W, @0 0) (5)

Zi ar(f7 UThO-i) .




In the following we will reference the former type by RBF-G and theeiaby
RBF-N. For both cases Moody and Darken proposed an hybrid trainingthlgor
composed of a vector quantization (VQ) algorithm for determining theeceni;
and the widthsr; and a linear optimization of the output layer. This algorithm is
very fast and, provided the; are selected properly, results in a network with local-
ized response of the hidden units. However, due to the independéntzgiton of
the different layers this algorithm generally does not obtain optimdbpmance.
An improvement may be obtained by employing a global nonlinear optiroizé&d
adapt all parameters after the vector quantization scheme [18]. Note, hoviater, t
the global optimization may destroy the local response of the hiddis) by con-
siderably increasing the respectivg[9].

In our comparison we used both, the RBF-G and the RBF-N, networtks W)
and linear or VQ and nonlinear optimization. The type of optimization leyga

in the second step of the hybrid training scheme is indicated by an lower el
lowing the network type as in RBF-NI for normalized Gaussian unith WiQ and
linear optimization of the output layer or RBF-Gn for Gaussian unitk WQ and
nonlinear optimization of all parameters.

It is widely accepted that due to the local response,ahe RBF-networks require
more hidden units to achieve the same performance as an MLP. To impr@ve t
RBF-NI networks for a small number of hidden units an extended RBFarkthas
been proposed [16]. In this approach the weidhtsare replaced by local linear
models yielding a network function

—

a (2,05, 0;)
> an(Z 0, 04)]

which is equivalent to a recently established Neuro-Fuzzy Modell (ANFISHGr
the following experiments we employed this structure with iniz@tion by VQ and
global nonlinear optimization of all parameters (RBF-Ln) to investigelether
this structure is able to achieve an improvement compared to the moitomad
RBF networks.

n(@) =Y (Wi + B;) (6)

i

4 Training Algorithms

Most of the chosen neural network structures need to be initialized by ak€rse.
For our experiments we started that scheme by randomly choesimgut vectors
from the training data to initialize the hidden unit weightsd;. Then we apply all
thep training data input vectors and try to minimize the vector quantizaticor er

n

P
E,q(wy,...,wy,) = ZZ&Z]W} —i]? @)
]

proposed in [9]. In this equatiof}; is the cluster membership function beihgf
patterns; is nearest tas; and0 otherwise.E,, is locally minimized by an VQ iter-
ative algorithm that randomly presents the training patterns and adhesnearest



hidden unit position by
Wi (b4 1) = wi(t) + e(t) (25 — i (1)). (8)

The learning rate(t) is initialized t00.5 and decreased for each training pass until
the errorE,, converged. According to [18] the width factoss of the RBF units
are initialized to zero and are also adapted during the vector quantization scheme
following

oi(t+1) = (1 —e(t)oi(t) + 2e(t) |25 — wi(t)]. 9)

For the nonlinear optimization part of the training we have chosen ity apstate

of the art training algorithm calleRPROR which has been demonstrated to out-
perform many known algorithms in various test settings [15, 12]is Bigorithm

is easy to implement and does not need any critical parameter settings to be se-
lected. Moreover, it incorporates local learning rates, a feature which is @dect

to be useful especially for optimizing the various RBF networks. Insetting this
algorithm has been applied to the MLP, RBF-Nn, RBF-Gn and RBF-Ln mktwo
nonlinear optimization as well as for the adaptation of the output weightof the
RBF-NI networks.

5 Experimental Results

The first time series we used for our experiments consists of compeieragted
data from the well known Mackey Glass equation

(1) = a-x(t —Ty)

which exhibits chaotic behavior for the parameters 0.2, 5 = 0.1 and7y = 30

[4]. For integration of the system we apply a second-order Rung&kunéthod
with an integration time step aft = 0.05. The resulting time series has been sub-
sampled to obtain a sample period of 1. After skipping 1000 samplesoto tide
transients to decay we recorded 10000 samples for the training data seedoH th
lowing 5000 samples as hold out test set. The Mackey Glass attractonisikno
have fractal dimensiod ~ 3.1 According to the embedding theorem we choose the
neural network input dimensiontoRd + 1 = 7.

As a second example we have chosen a real world time series, a saxophene to
consisting of 16000 samples sampled at 32kHz. The neural modelingafthind
has been described in [13], where we have shown that the sound may bedioygel

a neural network with 9 dimensional inputs from the time series and aitiaud
input which allows to consider the nonstationarity of the signale Buthis nonsta-
tionarity the training set and test set both have to span the entieeséimes and are
selected to contain the odd and even samples respectively. Both signalssleave b

INote that the Mackey Glass equation describes a time dektgrayand, therefore, has infinite di-
mensional phase space.



Mackey-Glass system
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Fig. 1. NRMSE of various neural network structures for predictingcanputer
generated Mackey Glass time series and a saxophone souadi sig



normalized betweep-1 : 1] and in both cases the delay tiffieof the tapped delay
line has been chosen to be

Obviously, due to the lack of an optimal training algorithm thedwaling experi-
ments does not hold for a strong validation of the theoretical reswdtgioned in
section2. However, the experiments are intended to show, how close the various
network structures will achieve the theoretical limits in a practical sgitOne of

the main practical limitations is given by finite computational powerer€fore, it

is natural to supply a fixed iteration count for the nonlinear optimima{RPROP)

of the different networks. In the following experiments we havefqrened 5000
batch-cycles for the nonlinear optimization of the parameters. At the etrdin-

ing the decrease of the training error for one batch-cycle normalizeddiydhing

error has been analyzed to be of the same order for all networks. Therefore, we
expect that a moderate increase of training cycles will not qualitativelygshtire
results. In case of the linear RBF-XI networks the linear optimizatesitbeen ver-

ified to reach the global minimum.

We apply the 6 different network structures with increasing numberdddm units

to both of the selected time series prediction tasks. For each task and eactknetwor
we used 5 different initializations for optimization. After optimizatiwe calcu-

late the average normalized prediction error (NRM&S&)d its variance in using

the hold out test set. As mentioned earlier, by using a sufficient améaraioing

data we prevent any overfitting, which would have been indicated by erelif€e
between training and test error.

The prediction error obtained by the various networks on the holdestitsets of
both time series are shown in figure 1. In both cases we observe, thatltRe M
network does not show the expected scaling behavior at all. While in cabe of
saxophone time series the average prediction error of the MLP and iéswarre-
mains nearly constant. For the Mackey Glass time series the results ammexen
in contrast to the expectations, with an increasing average trainingksyond a
network complexity of 20 hidden units. In this case the increasingiqgied error
is accompanied by an considerable increase in the variance of the resulteatsis
to the explanation that the complexity of the optimization problechtae number
of local minima prevents any reasonable improvement of the solutiare, Nhat
the behavior is not confined to the special training algorithm usedhbatbeen ob-
served with more sophisticated algorithms, too.

As a second result we find that the scaling of all the RBF-related netwsda-
parable and, moreover, it is comparable to the expected relation given iif i2)
error for both types of RBF-XI networks is similar and we present dhé&/ RBF-
NI networks, which obtained in both applications a slightly lower pr&an error.
In the logarithmic scaling of figure 1 the pairwise difference of thediction error
for the various RBF networks is roughly independent of the networkptexity,
which is related to the expectation that the constaim (2) will differ for the dif-
ferent type of networks. The comparison of the RBF-Xn type netwsiksvs, that

2For normalization we use the variance of the time series.



all this networks obtain similar results. For both tasks, howeber]awest predic-
tion error has been obtained with the RBF-Nn networks. Compared toBReNR
network the nonlinear optimization yields an improvement in the NRMS&&bout
an order of magnitude.

As a last result we compare the prediction error achieved by the RBF-Xvornlet
and the MLP. As expected the RBF-XI network, due to the heuristicragdtion of
the parameters of the first layer, given by (8) and (9), and due to tlt\stocal
activation function, needs lots of hidden units more than the MLP tainlcompa-
rable prediction quality. However, the nonlinear global optimizatibthe RBF-Xn
networks has outperformed the MLP in almost all cAségoreover, the RBF-Nn
networks converged considerably faster and, therefore, may be expected to need
less computation expense to be optimized.

At first glance it might be surprising that the optimization of RER-networks does
not suffer from the increase in complexity and local minima as the MisParex-
planation one might argue that the VQ initialization of the RBF neks@aichieves a
fairly good initialization of the network. The remaining optimizatidoes not start
from scratch and, therefore, does not end in a local minima as often as in the case
of the MLP. A further advantage of the optimization of the RBF-Xx na&tg is the
local behavior of the hidden units. If we accept the number of interactiiig for a
specific location in input space as an indicator for the optimization cofitpleve
may argue, that due to the local response of the RBF hidden units thieemuh
overlapping hidden units remains nearly constant even for large netwiorken-
trast to this in case of the MLP nearly all hidden units contribute tolaogtion of
the target function and, therefore, the number of interactions and thelexitypof
the optimization raises with the power of two of the number of hiddatsu

6 Conclusion

The results presented in this paper indicate that the time series pradictar of
RBF neural networks obtained by a practical algorithm does show the relatio
the number of hidden units that is expected from recent theoretical reByl{se-
dicting a computer generated and a real world time series we have demonstrated
that the global nonlinear optimization of RBF networks improves tiegligtion er-
ror by an order of magnitude compared to the RBF networks that are agtihonly
in the output layer. Compared to MLP networks with the same numbeidodih
units, we obtained the result that RBF networks with nonlinear dpétion give
rise to lower generalization error, even in the case of small networksthEdvILP
networks we do not find the expected scaling behavior and conjecture ¢harth
dom initialization and the global response of the hidden units areghsons for
the optimization not being able to adequately solve the problem for@rasing
number of hidden units.

3A similar result has been described for the logistic funetiy Moody and Darken [9].
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