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Abstract

We investigate a new algorithm for sound morphing that is strictly working in the time domain and

is based on a recent method of modeling natural sounds with neural networks called dynamic modeling.

By means of basic synthetic signals we investigate the fundamental properties of the proposed morphing

scheme. A successful morph of real world sounds of a musical instrument demonstrates the practical

application. The results are particularly satisfactory because the time domain algorithm show frequency

domain characteristics that are desirable for natural sound morphing applications.

1 Introduction

The use of neural networks for the modeling of time se-

ries is one of the important applications of the theory

of nonlinear dynamical systems in the �eld of neural

networks. The basic mathematical foundation for this

application, the reconstruction theorem, has been for-

mulated �rst in 1980 [13, 12]. Recently it has been

discovered that the neural networks might not only

predict chaotic time series, but, may even synthesize

time series with characteristics that are close to those

of the training signal [5, 8]. This application is gener-

ally termed dynamic modeling. Dynamic modeling is

not restricted to chaotic dynamics, but, may be used

for any kind of stable dynamical system. In recent

investigations it has been shown, that the dynami-

cal models of natural sound signals may be used to

resynthesize sound signals with high quality [9]. Up

to now, the possibilities to control the resynthesized

signals have been con�ned to the time evolution of the

dynamics (duration of attack, hold and decay time).

This is rather limited compared to standard sound

synthesis methods, as for example additive synthesis.

Due to the complicated relations between the network

parameters and the attractor of the model it appears

to be impossible to �nd any sensible algorithm that

allows a user to change the model characteristics by

directly altering the model parameters. Therefore, we

follow another approach to achieve signal modi�ca-

tion, which we will call attractor morphing. This ap-

proach is motivated by a recent investigation on homo-

topic mixture of vector �elds [2], which demonstrates

the generation of new system dynamics by means of a

homotopic mixture of chaotic progenitor systems. In

our investigation we have shown that the same homo-

topic mixing algorithm may be used to generate new

sound signals from the dynamic models of two progen-

itor sounds. The results are particularly satisfactory

because for su�ciently related progenitor attractors,

the signals obtained by means of attractor morphing

achieve the characteristics of natural sounds without

using frequency domain information [14]. We conclude

that due to the close relations to the physical dynamics

the attractor modeling of sounds has favorable prop-

erties for modeling natural sounds.

2 Algorithm

Traditional musical instruments belong to the class

of dissipative, nonlinear mechanical systems. The dis-

crete time evolution of such a system may be described

in a k-dimensional state space S by means of a map-

ping f(:)

~z

n+1

= f( ~z

n

) ~z 2 S , (1)

which connects the system state ~z at time n, with the

system state at the next time step. For a stable system

f(:) and for large n!1 the state ~z

n

will be con�ned

to a bounded and closed subset A � S of the state

space, which is called an attractor of f(:) [10]. An at-

tractor may be as simple as a point or as complex as

a fractal set if the system dynamics are chaotic. If the

dynamical system generates an output (sound) signal

y

n

, the characteristics of this signal are closely related

to the topology of the attractor [3].
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Tab. 1: Parameter settings of eq. (5) for all synthetic signals that will be used in the following experiments.

For a d-dimensional attractor generating a sound

signal y

n

the fractal embedding theorem [13, 12] en-

sures under weak assumptions concerning y

n

and f(:)

, that for D > 2d, the set of all delayed coordinate

vectors

Y

D;T

= fn > n

0

: ~y

n

= (y

n

; y

n�T

; : : : ; y

n�(D�1)T

)g;

(2)

with an arbitrary delay time T , forms an embedding of

A in the D-dimensional reconstruction space G. Be-

cause an embedding preserves the characteristic fea-

tures of A, especially it is one to one, it may be em-

ployed for building a system model. To achieve this we

use a neural network to approximate the system func-

tion f(:) in the reconstructed state space G, yielding

a prediction model

y

n+T

= f

N

(~y

n

): (3)

For stable predictor models f

N

the prediction can be

iterated thereby establishing a model of the system

dynamics on attractor A. The building of predictor

based neural network dynamical models has been suc-

cessfully applied to chaotic system dynamics [4, 1] and

also to non chaotic sound dynamics of saxophone, pi-

ano and speech signals [9]. Note, however, that in the

case of music and speech signals the system dynam-

ics are generally not stationary. For slowly varying

dynamics this situation can be described by a system

undergoing a parameter variation and, therefore, fol-

lowing a sequence of attractors [11, 7].

3 Morphing sound models

The new morphing algorithm we are going to present

now, is based upon the homotopic mixing of dynamical

systems [2]. We use as progenitor systems the sound

models obtained from the respective sounds and con-

struct a new sound model with an additional morph-

ing parameter � that consists of the convex sum of the

progenitor sound models, f

1

(:) and f

2

(:), following

f

m

(~y; �) = �f

1

(~y) + (1� �)f

2

(~y): (4)

The morphing parameter � is con�ned to the interval

[0; 1], such that the parameterized model f

m

(:; �) es-

tablishes a linear transformation between the progen-

itor models. For � = 1:0 and � = 0:0 the morphing

model f

m

(:; �) reproduces one of the progenitor mod-

els, and for intermediate values of � new sound dy-

namics are produced. Smooth changes of � results in

smooth changes of the dynamical model f

m

(:). How-

ever, smooth changes in f

m

(:) does not necessarily re-

sult in smooth changes of the attractor, because for

varying � all kinds of bifurcations may occur [2]. To

achieve interpolating dynamics with the desired acous-

tical properties the progenitor attractors have to be

su�ciently similar. While it is very di�cult to quan-

tify this similarity it seems necessary that the progen-

itor attractors lie in the basin of attraction of each

other.

Note that, due to the fact that the training data is re-

stricted to the related attractor, a sensible model be-

havior is generally restricted to a close neighborhood

of the attractor. This might become a problem for a

morphing application if the morph drives the model

to far from its attractor.

4 Results

To obtain a fundamental understanding of the prop-

erties of the homotopic mixture of sound models we

tried the algorithm for morphing between a number

of arti�cial sound signals given by

y

n

= sin(w

0

n) + a

3

sin(3w

0

w

r

n+ �

3

) + 0:2 sin(5w

0

n):

(5)

By varying the parameters w

0

,a

3

, �

3

and w

r

a

number of interesting situations for the investigation

of sound morphing may be established.

For all the signals given in table (1) we trained

dynamical sound models as explained in [9]. The neu-

ral networks used are of the radial basis function type

with normalized hidden units. We select the num-

ber of hidden units to be high enough (60 for INH



Morphing PHA to HIG
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Fig. 1: Morphing signal PHA into HIG. The solid lines represent the cases � = 0:0 and 1:0 while the dotted

lines represent � = 0:2; 0:4; 0:6; 0:8.

and 20 in all other cases) to achieve stable iteration of

the model. Because the delay time T determines the

down sampling of the time series that is generated by

the iterated model it should be chosen to lie below the

Nyquist sampling period. Therefore, we choose T = 4.

To prevent local loops in the reconstructed attractor

we used input vectors ~y

n

that span at least half a pe-

riod of the time series. Therefore, we have chosen the

number of input units to be 10 which is well above the

required embedding dimension D.

As an example we consider here the case of morph-

ing between signal PHA and HIG. After having trained

dynamical models for both signals we used eq. (4)

with �xed �, 0:0 � � � 1:0, to synthesize sound sig-

nals with interpolating dynamics. The evolution of the

morphing model in a reconstructed state space shown

in �gure 1 reveals how the parameter � drives the

model f

m

(:; �) from one progenitor attractor to the

other. This smooth geometrical transformation results

in a smooth transformation of the time series. To as-

sess the sound characteristics of the morphed signals

we analyze their Fourier spectra. As shown in �gure 1

we �nd that the geometrical morph shifts the frequen-

cies of the individual partials such that the partials

are always harmonic and the resulting signal is always

periodic. This is the kind of behavior one would gen-

erally expect from a natural glissando.

These results are particularly satisfactory because

the morph with glissando like spectral properties of

the morphed signals have been obtained by means of

an algorithm that is strictly working in the time do-

main. We have obtained this type of result in all cases

where the progenitor sound attractors are topological

equivalent, that is they have the same local dimen-

sion. In case of a morph between the arti�cial signals

PHA and INH, which have topologically di�erent at-

tractors, the morphing results did not show the simple

natural characteristics. This setting, however, is itself

not natural because for a musical instrument it is gen-

erally impossible to shift a single partial.

4.1 Application to saxophone sound

signals

To verify our results we used two segments of real

world saxophone signals that have been played by a

professional player with similar excitation and pitch

di�erence of one half tone. The signals with a funda-

mental frequency of about 330 Hz have been recorded

with 48000 kHz sample frequency and 16 Bit resolu-

tion.

The morphing algorithm is applied to obtain mor-

phed saxophone signals with di�erent pitch for the set

of �xed �. The results presented in �gure 2 con�rms

the �ndings obtained for synthetic signals. Again the

attractors of the saxophone signals are smoothly trans-

formed, while their topology is preserved. The Fourier

spectra reveal the fact that the partials of the inter-

mediate signals are smoothly shifted, such that all in-

termediate signals preserve the characteristics of the

original saxophone sound signals.

However, we have to note here that without ad-

ditional constraints of the network parameters the

morphed saxophone signals did exhibit a considerable

amount of nonlinear distortion at high frequencies.

This is due to the fact that some of the RBF units of

each model are located well apart from the attractor.

If the model is operated in this regime the large dis-

tance to the other units and the normalization of the

hidden layer leads to a prediction function that is lo-

cally constant, which in turn produce the undesirable

distortion. The problem has been cured by formulat-

ing an additional constraint for the training algorithm,

such that the width parameters of the RBF units are

kept above a �xed value. With this constraint the

distortions in the synthesized signals are no longer au-

dible.



Morphing between two saxophone signals
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Fig. 2: Morphing results for saxophone signals. Line types as in �gure 1.
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