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Abstract—This paper introduces a new method for inter-frame
coding based on two complementary autoencoders: MOFNet and
CodecNet. MOFNet aims at computing and conveying the Optical
Flow and a pixel-wise coding Mode selection. The optical flow is
used to perform a prediction of the frame to code. The coding
mode selection enables competition between direct copy of the
prediction or transmission through CodecNet.

The proposed coding scheme is assessed under the Challenge
on Learned Image Compression 2020 (CLIC20) P-frame coding
conditions, where it is shown to perform on par with the state-of-
the-art video codec ITU/MPEG HEVC. Moreover, the possibility
of copying the prediction enables to learn the optical flow in an
end-to-end fashion i.e. without relying on pre-training and/or a
dedicated loss term.

Index Terms—Video Coding, Deep Learning, Mode Selection,
Optical Flow

I. INTRODUCTION AND RELATED WORKS

Video signals exhibit a high level of redundancies, leveraged
by compression systems to reduce the transmission rate. Those
redundancies can be classified into two categories, spatial
or temporal. Classical video compression systems such as
ITU/MPEG (AVC [1], HEVC [2] and VVC [3]) codecs reduce
temporal redundancies through motion compensation. It relies
on motion vectors, representing motion between reference
frames (available at the decoder) and the current frame,
which are estimated and conveyed as side-information. Motion
vectors are used to perform a prediction of the current frame,
allowing the system to transmit only the prediction error i.e.
difference between the signal and its prediction (the residue),
lowering the required rate. A frame coded without temporal
dependency is called an intra frame in contrast to an inter
frame relying on information from other frames.

Inspired by traditional codecs, most neural network-based
video coding approaches [4]–[7] also rely on motion com-
pensation for inter frame processing. These methods use an
optical flow network (such as SpyFlow [8] or PWC-Net [9])

to compute pixel-wise motion vectors. Motion vectors are
transmitted by a dedicated neural-based coding system and
used for motion compensation. The prediction is exploited
through a simple encoding of the prediction error (difference
between the frame and its prediction), computed either in
image [4], [5] or in latent domain [6]. As stated in [10], it is not
trivial to learn the optical flow with a loss function only based
on the RD-cost. Consequently, previous work relies either on
pre-trained network or on a dedicated loss term during training,
resulting in a cumbersome training process.

In this work a method for inter frame coding is introduced.
This method is based on two autoencoder neural networks.
First, a mode selection and optical flow estimation network
(MOFNet) is proposed. The role of MOFNet is to compute and
convey the optical flow and additionally a pixel-wise coding
mode selection. MOFNet arbitrates each pixel between copy
from the prediction (Skip Mode in classical codecs) or trans-
mission through the coding network CodecNet. Inspired by the
approach proposed in [10], CodecNet learns the appropriate
mixture of the current frame and its prediction, allowing to
exploit more information than direct residual coding.

MOFNet is the key component of the proposed method.
Similarly to traditional codecs, it permits competition between
coding modes, improving the whole coding scheme perfor-
mances by compensating CodecNet potential weaknesses. The
availability of skip mode enables to learn the optical flow in an
end-to-end fashion, without relying on separate training or a
dedicated loss term, overcoming an issue of existing methods.

The proposed method benefits are illustrated under the
Challenge on Learned Image Compression 2020 (CLIC20) P-
frame coding the test conditions [11]. It is shown to achieve
state-of-the-art performance, performing on par with HEVC.

II. PROBLEM FORMULATION

This section introduces the general task of P-frame coding
and narrows it down to the CLIC20 test conditions.978-1-7281-9320-5/20/$31.00 ©2020 IEEE



Fig. 1: Architecture of the proposed system.

Let V = {xi}i∈N be a video, represented as a set of
frames, with each frame xi ∈ RC×H×W where C, H and W
denote the number of color channels, height and width of the
frame, respectively. This work targets a P-frame coding, which
consists in coding the current frame xt with previous frames
x<t = {xt−1,xt−2, . . .} already transmitted and available at
decoder side to be used as references x̂<t = {x̂t−1, x̂t−2, . . .}.
In order to reduce temporal redundancies, a prediction x̃t of
xt is made available, based on x̂<t and side-information (such
as motion).

In this work a lossy P-frame coding scheme is considered
through a rate-distortion (RD) trade-off:

L(λ) = D(x̂t,xt) + λR, with x̂t = s(x̃t,xt), (1)

where D is a distortion measure, x̂t is the reconstruction from
a coding scheme s with an associated rate R weighted by a
Lagrange multiplier λ. Following the CLIC 20 P-frame coding
test conditions, the distortion measure is based on the Multi
Scale Structural Similarity Metric (MS-SSIM) [12]:

D(x̂t,xt) = 1−MS-SSIM(x̂t,xt).

The CLIC20 P-frame challenge asusumes that there is only
one reference frame available, i.e. x̂<t = x̂t−1, whose coding
is supposed to be lossless (x̂t−1 = xt−1).

III. PROPOSED METHOD

This section details the main components of the proposed
coding scheme, presented in Fig. 1.

A. MOFNet: Mode Selection and Optical Flow Estimation

Performing a proper prediction of the current frame is an
essential element of video coding systems. Indeed, most parts
of the frame xt can be recovered from already received frames
x̂<t using motion vectors transmitted at low rate.

In this work, a dense optical flow v ∈ R2×H×W is used to
represent the 2-D motion of each pixel between x̂t−1 and xt.
The estimated optical flow is used to perform the prediction:

x̃t = w(x̂t−1,v), (2)

where w is a bilinear warping, as illustrated in Fig. 1.
The proposed coding scheme splits xt into two complemen-

tary pixels sets S and S̄, corresponding to two coding modes.
The pixels in S are directly copied from the prediction x̃t

as Skip Mode in classical codecs. Those in S̄ are transmitted
by an autoencoder. The presence of two competiting coding
modes allows to select the most suited one for each pixel,
resulting in better RD performances. However, this partitioning
into two sets is not straightforward, as the rate and the
distortion of a pixel depends on the coding choice made for
both previous and future pixels.

A single network MOFNet is proposed, to compute and
convey the coding mode selection and the flow estimation.
MOFNet is defined as a function m:

Rm, α, v = m (xt−1,xt) , (3)

where α ∈ [0, 1]
H×W is the pixel-wise weighting matrix, v

the optical flow and Rm the associated rate. The pixel-wise
weighting matrix α is real-valued such that smooth transi-
tions between coding modes are possible, avoiding blocking
artifacts.

B. CodecNet

An immediate way of using the prediction is to perform
residual coding i.e. coding only the prediction error xt − x̃t.
Albeit widely used in legacy video coding systems, this
method is not the best option for leveraging information from
x̃t. Indeed, from a source coding perspective:

H(xt | x̃t) ≤ H(xt − x̃t), (4)

where H denotes the Shannon entropy. Therefore coding xt

while retrieving all information from x̃t can result in less
information to transmit than residual coding.

In this work, an autoencoder CodecNet is used to transmit
S̄, selected by the pixel-wise weighting matrix α. Codec-
Net learns the appropriate mixture of xt and x̃t for both
the encoder and the decoder, resulting in potentially better
coding performances than direct residual coding. In contrast
with residual coding, the processing performed by CodecNet
is denoted as conditional coding in the remaining of the
paper. CodecNet is defined as a function c, coding xt using
information from x̃t:

Rc, x̂t,c = c (α� x̃t, α� xt) , (5)

where element-wise matrix multiplication is denoted by �,
x̂t,c ∈ RC×H×W is the reconstruction of α � xt and Rc the
associated rate. The same α is used for all C color channels.

C. Complete System

One of MOFNet purposes is to split xt transmission be-
tween CodecNet and skip mode. Thus the complete recon-
struction is:

x̂t = (1−α)� x̃t︸ ︷︷ ︸
Skip

+ c(α� x̃t,α� xt)︸ ︷︷ ︸
Conditional coding

. (6)

This equation highlights that the role of α is to zero areas from
xt before coding them with CodecNet, in order to save their
associated rate. Figures 3c, 3e and 3g illustrate that CodecNet
does not allocate bits to areas zeroed by α. MOFNet and



(a) Basic building blocks of the proposed systems. f and n respec-
tively stand for the number of internal and output features. Rounded
arrows denote non-linearities. Convolutions parameters are filters
number × kernel size / stride. TConv and MConv stand respectively
for Transposed convolution and Masked convolution. (b) MOFNet architecture. All components use LeakyReLU.

(c) CodecNet architecture. ga and gs use GDN [13], ha, hs and r
use LeakyReLU.

(d) Residual coding architecture used for ablation study, section VI-B.
ga and gs use GDN [13], ha, hs and r use LeakyReLU.

Fig. 2: Detailed architecture of all proposed networks. ga and gs are the main encoder/decoder, ha and hs are the hyperprior
encoder/decoder and r is an auto-regressive module as in [14]. There is no weight sharing among transforms denoted by the same
function. cat stands for concatenation along the feature axis, Q for quantization, AE and AD for arithmetic encoding/decoding
with a Laplace distribution L.

CodecNet are trained in an end-to-end fashion to minimize
the rate-distortion trade-off:

L(λ) = D (x̂t,xt) + λ (Rm + Rc) . (7)

IV. PRACTICAL IMPLEMENTATION

A. Networks Architecture

The two neural networks proposed in section III, MOFNet
and CodecNet, are described in Fig. 2. They are both based
on the common autoencoder with hyperprior (AE-HP) archi-
tecture [15] used in previous learned image coding systems.

MOFNet role is to compute and convey the optical flow v
and the pixel-wise weighting α. Authors in [5] show that a
single network can perform both estimation and coding of v.
This work follows this method and uses a common learned
image coding architecture, depicted in Fig. 2b. MOFNet takes
xt−1 and xt as inputs and retrieves v and α at the decoder
side. To ensure that α remains in [0, 1], a clipping function is
used. A bias of 0.5 is added before clipping as it empirically
ensures better convergence.

The purpose of CodecNet is to transmit pixels S̄ of xt

conditioned to its prediction x̃t. It is designed as an AE-HP
system with the ability to learn an arbitrary complex mixture of
xt and x̃t, at the encoder side and the decoder side. CodecNet
architecture (see Fig. 2c) is a direct extension of image coding
autoencoders with both the frame and its prediction as inputs.
Therefore, the encoder is able to learn a non-linear mixture of
xt and x̃t. The same principle is used for the decoder, which
has the latents from xt and x̃t as input, allowing it to invert
the transform performed by the encoder.

B. Training

All networks are trained in an end-to-end fashion to
minimize the global loss function stated in eq. (7). Non-
differentiable parts are approximated as in Ballé’s work [13],
[15] to make the training possible.

To the best of our knowledge, all previous work learn the
flow v with either a pre-trained network and/or a dedicated
loss term. In the proposed coding scheme, the optical flow
can be learned without a seperately pre-trained network or
a dedicated additional loss term. Indeed, the areas directly



(a) The pair of frames (xt−1,xt). (b) Reconstructed frame: x̂t = (1−α)� x̃t + c(α� x̃t,α� xt).

(c) Coding mode selection matrix α. Black areas correspond to skip
mode, white ones to CodecNet.

(d) Optical flow v. Displacements are in pixels.

(e) Areas selected for the CodecNet: α� xt. (f) Areas selected for skip mode: (1−α)� x̃t.

(g) Spatial distribution of CodecNet rate in bits. (h) Spatial distribution of MOFNet rate in bits.

Fig. 3: Details of the system behavior. The pair of frames (xt−1,xt) represents a static man with a rotating background. For
this example, MS-SSIM = 0.982, Rc = 0.022 bpp and Rm = 0.019 bpp.

copied from x̃t heavily foster the learning of a proper flow,
with no need of pre-training and/or a dedicated loss term.

However, due to the competition between signal paths, some
care is taken when training. The training process is composed
of three phases:

1) During the first five epochs, skip mode and CodecNet
are not ready to compete. Thus, α is frozen and set to
1 for one half of the frame, 0 for the other half. This
allows to learn a meaningful MOFNet and CodecNet

without interference between them.
2) Alternate training of MOFNet and CodecNet, one epoch

for each (i.e. the other network weights are frozen) for
45 epochs.

3) Joint training of MOFNet and CodecNet for 20 epochs.

Training is performed on the CLIC20 P-frame dataset [11].
The training set is composed of half a million 256×256 pairs
of crops, randomly extracted from consecutive frames. The
same learning rate of 10−4 is used for all three phases with a



decrease down to 4× 10−6 during the final phase.

V. SYSTEM BEHAVIOR AND VISUALISATION

The processing of a pair of frames (xt−1,xt) is thoroughly
described in this section, illustrated in Fig. 3. The example
frames are extracted from the CLIC20 P-frame dataset, se-
quence Vlog 2160P-310b frames 36 and 37.

First, MOFNet takes xt−1 and xt (shown in Fig. 3a) as
inputs. The pair of frames are encoded and decoded as v and
α. The optical flow v (illustrated in Fig. 3d) is used to perform
a prediction x̃t of xt through a bilinear warping. Then, the
pixel-wise weighting α (see Fig. 3c) arbitrates between skip
mode and CodecNet. Fig. 3e and 3f present the areas selected
for both coding modes1. Finally, the two coding modes are
combined to obtain the reconstructed frame, shown in Fig.
3b.
S represent areas in (xt−1,xt) more suited for skip mode

than coding, i.e. areas which are either well handled by motion
compensation or too costly to transmit. In order to select these
areas for skip mode, α tends to be zero for pixels in S. These
areas correspond to the green ones in Fig. 3e, e.g. the grass
and most of the man. By contrast, α is close to one for pixels
in S̄, which are not well predicted enough or relatively easy to
transmit. To achieve an acceptable quality, those pixels rely on
transmission by CodecNet. These areas appear in green in Fig.
3f. They correspond to contents which are difficult to predict
such as the edges of the man or the leaves of the tree.

Figures 3g and 3h represent the spatial distribution of the
rate of CodecNet and ModeNet. As expected from eq. (6),
areas with a small α are zeroed before CodecNet and thus
transmitted for free. The motion and the partitioning conveyed
by MOFNet is complex throughout the frame, resulting in a
small rate almost evenly distributed spatially.

This illustration highlights that MOFNet is able to learn a
complex optical field, e.g. modeling a rotation motion for the
background while not including the man in the foreground. In
the meantime, MOFNet is also able to learn α, an accurate and
smooth partitioning of the frame, which indicates the properly
predicted areas and those needing to rely on CodecNet. Both
v and α are conveyed at low-bitrate (around 0.02 bpp in this
example).

VI. EXPERIMENTAL RESULTS

A. System Performance

The performance of the proposed inter frame coding scheme
is assessed on the CLIC20 validation set, under the challenge
test conditions. In order to obtain a RD-curve, the system is
trained with different λ. The rate-distortion curves are shown
Fig. 4.

The proposed method is evaluated against the state-of-
the-art video coder HEVC in low-delay P (LDP) coding
configuration. HEVC encodings are performed with the HM
16.20 reference software slightly modified to be aligned with

1As images are in YCbCr format, zeroed areas appear in green
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Fig. 4: Rate-distortion performance of the systems, evaluated
on CLIC20 P-frame validation dataset. Quality metric is
MS-SSIMdB = −10 log10(1 − MS-SSIM) (the higher the
better). Rate is indicated in bits per pixel (bpp). Uncomplete
systems used for ablation study are in dashed lines.

CLIC20 test conditions where the reference frame is loss-
less. Our approach performs as good as HEVC, proving the
relevance of the proposed method. This demonstrates that
the optical flow learned in an end-to-end fashion, without
pre-training or a dedicated loss term, is able to achieve a
temporal prediction competitive with state-of-the-art motion
compensation.

B. Ablation study

The benefits of each component of the proposed system is
also assessed in Fig. 4. In order to estimate the rate saving
offered by the different components, the BD-rate [16] metric
is used. It represents the rate difference necessary to obtain
identical quality between two systems.

The interest of performing a conditional coding of xt

and x̃t instead of residual coding is evaluated by training a
complete systems (i.e. including skip mode) while substituting
CodecNet by a neural-based residual codec, detailed in Fig.
2d. Its performance is presented on Fig. 4 as Residual + Skip.
According to the BD-rate metric, conditional coding reduces
the rate by 32 % compared to direct residual coding, high-
lighting its relevance.

The improvements brought by the competition between skip
mode and CodecNet is evaluated by setting α = 1 (CodecNet
only) or α = 0 (Skip only) configuration. Both configurations
are re-trained starting from the complete system and result in
a performance decrease. In Skip only configuration, the system
output is directly the prediction x̃t. Since prediction can not
explain all the frame to code the performance saturates at
low quality. In CodecNet only configuration, the absence of



competition between coding modes results in a rate increase
of 53 % according to the BD-rate metric. This experiment
demonstrates the benefit of using a competition between skip
mode and CodecNet.

VII. CONCLUSIONS

In this paper, a new method for inter frame coding is intro-
duced, based on two autoencoders: MOFNet and CodecNet.
MOFNet role is to compute and convey the optical flow and
a pixel-wise mode selection, allowing to choose between skip
mode and coding through CodecNet.

The proposed coding scheme performances are illustrated
under the CLIC20 P-frame coding task and it is shown to be
competitive HEVC. Moreover, skip mode enables to learn the
optical flow in an actual end-to-end fashion i.e. with no need
of a pre-training or a dedicated loss term.

In future work, we plan to adapt the proposed coding
scheme to more complex video coding tasks such as coding
frames with multiple references, both in the past and in the
future. This implies to enhance all sub-networks to leverage
as much information as possible from the references.
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