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Abstract
In an idealised vision of science the scientific literature is error-free. Errors reported during 
peer review are supposed to be corrected prior to publication, as further research estab-
lishes new knowledge based on the body of literature. It happens, however, that errors 
pass through peer review, and a minority of cases errata and retractions follow. Automated 
screening software can be applied to detect errors in manuscripts and publications. The 
contribution of this paper is twofold. First, we designed the erroneous reagent checking 
(ERC) benchmark to assess the accuracy of fact-checkers screening biomedical publica-
tions for dubious mentions of nucleotide sequence reagents. It comes with a test collection 
comprised of 1679 nucleotide sequence reagents that were curated by biomedical experts. 
Second, we benchmarked our own screening software called Seek&Blastn with three input 
formats to assess the extent of performance loss when operating on various publication 
formats. Our findings stress the superiority of markup formats (a 79% detection rate on 
XML and HTML) over the prominent PDF format (a 69% detection rate at most) regard-
ing an error flagging task. This is the first published baseline on error detection involving 
reagents reported in biomedical scientific publications. The ERC benchmark is designed to 
facilitate the development and validation of software bricks to enhance the reliability of the 
peer review process.

Keywords Scientific text · Biomedical literature · Fact-checking · Errors · Nucleotide 
sequences · Reagents · Genes · Benchmark · PDF

Introduction

The original purpose of a scientific paper is to be read. Reading scientific papers is the main 
way that scientists acquire knowledge (Volentine and Tenopir 2013). Most publishing houses 
format and deliver papers in Portable Document Format a.k.a. PDF. Each PDF results from 
a workflow connecting authors with readers. This starts with authors providing their paper: 
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usually multiple Microsoft Word or LaTeX files (Brischoux and Legagneux 2009). Submis-
sions must often follow stringent presentation rules defined in authors’ guidelines which refer 
to font size, reference formatting, and other parameters and specifications (Hartley and Caba-
nac 2017). Publishers ingest this raw material (Morris et al. 2013, pp. 116–117) and trans-
form this into a standard format called XML-JATS, the Journal Article Tag Suite (Beck 2011), 
which is then transformed on-demand into multiple presentation formats: browsers receive 
HTML and readers can download and print in PDF to get the look-and-feel of journal issues 
off the press.

In addition to human reading, literature-based knowledge discovery involves performing 
distant reading based on text- and data-mining algorithms implemented in various software 
(Bruza and Weeber 2008). Automation is necessary as 1.3 million papers are published world-
wide each year (Soete et  al. 2015,  p.  36). Text mining also enhances information retrieval 
tasks by automatically identifying and indexing named entities, such as genes  (Galea et  al. 
2018) and species (Gerner et al. 2010).

For both humans and machines, it is highly critical that the knowledge conveyed in sci-
entific papers is sound and valid as per the current body of knowledge. Nonetheless, part of 
the literature is plagued with various errors and questionable statements, as detected by fact-
checking endeavours and error sleuths (Ledford et  al. 2017,  p.  321). Although individuals 
manage to visually screen biomedical images from thousands of papers (Baker 2016; Chris-
topher 2018; Van Noorden 2015), the enormous worldwide scientific production calls for 
automated approaches relying on machine learning, as described by Acuna et al. (2018), for 
instance. These automated approaches include the detection of plagiarism (Citron and Gin-
sparg 2015), p-value hacking (Nuijten et al. 2016), and discrepancies between the claims pre-
sented and current knowledge on the topic (Labbé et al. 2019).

For both knowledge discovery and fact-checking, it is to be expected that the qual-
ity and format of the input texts will affect the results produced by automatic text screening 
approaches. The aim of this paper is to measure the extent to which various input formats can 
affect the quality of error detection. Based on the benchmark that we develop in this paper, 
our main finding is that the leading file format for publications, which is PDF, is not the most 
appropriate format to perform both knowledge discovery and fact-checking. This calls for the 
release of scientific papers in machine-readable formats such as XML-JATS.

This paper is organised as follows. The first section introduces the research issue that we 
tackle: the need to flag errors in the biomedical literature. We hypothesise that the format of 
input materials will produce results of varying quality. To measure the extent to which the 
input format impedes error detection, we designed the original benchmark called ERC (errone-
ous reagent checking) presented in the second section. This is a generic benchmark released as 
supplementary material (see “Appendix ERC benchmark ERC_H_v2 test collection”) allow-
ing the assessment of any fact-checker, namely systems that aim to spot errors in biomedical 
papers. We ran this benchmark on our fact-checking system called Seek&Blastn (Labbé et al. 
2019). The third section reveals that automatic error detection from materials formatted in 
PDF—the leading publishing format—is sub-optimal. This leads us to stress the need to per-
form fact-checking on text-preserving formats such as XML-JATS which is already employed 
by scientific publishers.
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Research issue: flagging errors in papers

With the increase in scientific publications and retractions (Brainard and You 2018), there 
is an urgent need to automate error screening to improve the quality of the literature. The 
people who engage in this text-mining task generally use materials available online: the 
articles in PDF, as the de facto standard. Most error-detection software, however, rely on 
plain text analysis. As a result, systems need to disentangle the textual content from the 
presentation markers such as layout, logos, headers, footers, and so on. Many programs 
strive to extract plain text from PDFs: Bast and Korzen (2017) tabulated 14 programs such 
as the well-known pdftotext,1 Grobid (Lopez 2009), and Icecite (Bast and Korzen 2013). 
Bast and Korzen (2017) stress how challenging this task remains today.

Given that text extraction from a PDF file often proves problematic (Bast and Korzen 
2017), we as text-miners legitimately wonder about the extent to which a degraded text 
lowers the quality of results for a particular error detection tool. In this paper we tackle this 
research question to quantify the impact of degraded texts on the performance of an error 
detection tool.

The ERC benchmark that we designed assesses error detection failures attributed to 
degraded input. As a case study, we ran this benchmark on Seek&Blastn, thus extending 
our published research on flagging errors in the biomedical literature  (Byrne and Labbé 
2017). In this field of science, authors report their experiments with details about the bio-
logical materials employed (e.g., nucleotide sequences, cell lines), stressing their key prop-
erties. Expert readers are able to check the claims for errors such as where a biological 
material is said to have particular properties which are not supported by state-of-the-art 
resources, such as knowledge bases (Labbé et al. 2019).

Since it is likely that the performance of error detection software depends on the qual-
ity of the text input, one needs to perform failure analysis in order to attribute poor per-
formance to (1) the poor quality of input text and/or (2) flaws related to the fact-checking 
algorithm. This is the rationale behind the twofold contribution of this paper. First, the next 
section specifies the ERC benchmark. Second, we run this benchmark on the ERC_H_v2 
biomedical test collection whose corpus comes in three formats: (i)  native markup lan-
guage (XML-JATS or HTML), (ii) inferred markup language from PDFs, and iii) extracted 
text from PDFs. We then comment on the varying quality of error detection with regards to 
the input text format used.

Contribution 1: Benchmarking the error flagging task

There is a long tradition of evaluation in Information Retrieval, namely the field dealing 
with the design of search engines. So-called ‘test collections’ were designed to enable the 
automatic, systematic, reproducible evaluation of search engines (Voorhees 2007). A test 
collection is comprised of:

• Input of the system under study: a textual corpus.
• Ground truth: the expected output of the system under study.
• Metrics to assess the quality of a given output regarding the expected output.

1 http://www.xpdfr eader .com/pdfto text-man.html.

http://www.xpdfreader.com/pdftotext-man.html
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This framework enables one to: 

1. Benchmark the quality of a system compared with other systems, with a fixed input.
2. Check the performance gain/loss of a new system configuration compared to a baseline 

configuration, with a fixed input.
3. Benchmark the quality of a fixed system fed with varying inputs.

The ERC error-detection benchmark that we introduce in this section addresses these 
three purposes. In the subsequent experiments section, we report results according to 
point (3) above as we assess the quality of Seek&Blastn regarding varying inputs.

To the best of our knowledge, there is no existing benchmark dealing with the error 
detection in the biomedical literature. Our original benchmark depicted in Fig. 1 aims to 
address this issue. Let us introduce a handful of biomedical concepts prior to explain-
ing this figure—they appear in italics in the following. We consider scientific papers in 
the field of life sciences reporting gene-related experiments. These papers mention rea-
gents: sequences of nucleotides, each nucleotide being represented as a letter among A, 
T, C, G, and U. Each reagent may or may not bind to a target within the genome or tran-
scriptome. The presence or absence of binding depends on the homology between the 
reagent and its target, which is typically a defined place/localisation in the genome, such 
as a named gene. A gene is identified with a standard name (e.g., NOB1 and TPD52L2) 

Fig. 1  Synoptic view of the ERC benchmark introduced in this paper, designed to assess the quality of auto-
matic fact-checking in the biomedical literature. A scientific paper is input to the error-detection software. 
Extracted Claimed facts are extracted from the paper: each one is a nucleotide sequence with its claimed 
properties (non-targeting vs. targeting with associated target). It is then matched to Computed Endorsed 
facts stemming from accessing an endorsed knowledge source. This comparison leads to a Computed 
Class{0,6,7,8} for each nucleotide sequence. The benchmark aims to compute quality metrics by comparing 
system outputs to the Ground Truth 
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and the reagent–gene homology can be assessed using the BLASTN software (Altschul 
et al. 1997). A reagent is said to be:

• targeting gene X when it exhibits a significant level of homology or identity with gene 
X.

• non-targeting when it exhibits no significant homology with any gene or sequence of 
the stated genome.

The rule-based algorithm illustrated in Fig. 2 of the “Appendix” (Reagent–gene assess-
ment of nucleotide sequence homology) assesses the significance of homology, leading to 
predictions of whether reagents are likely to be targeting or non-targeting. These rules have 
been determined and validated on the base of laboratory practices (BF, JAB, and TG) and 
on common siRNA and shRNA rule design (Yu et al. 2002). Deciding on the (non-)tar-
geting nature of a reagent requires feeding this rule-based algorithm with the output of 
the BLASTN software (run with the reagent given as input). An endorsed fact (Computed 
Endorsed fact in Fig. 1) reflects the current knowledge provided from BLASTN and refined 
by the rule-based algorithm.

In biomedical publications, nucleotide sequence reagents are claimed to be (non-)
targeting a gene. For various reasons a claim may be wrong (Labbé et al. 2019), such as 
through typographical errors, copy and paste errors or through limited understanding of 
the experiments described. Invalidating a claim requires a comparison of an automatically 
extracted claimed fact with the BLASTN endorsed fact. This fact-checking process tags 
each sequence with one of the four2 following classes:

• Class0 : supported claim. The nucleotide sequence in the text and its associated claim is 
valid according to current knowledge.

• Class6 : unsupported claim of targeting status. A nucleotide sequence is said to be tar-
geting but is predicted to be non-targeting according to current knowledge.

• Class7 : unsupported claim of non-targeting status. A sequence is said to be non-target-
ing but is predicted to be targeting according to current knowledge.

• Class8 : targeting claim supported but incorrect target. A stated targeting nucleotide 
sequence is predicted to target a different gene or nucleotide sequence to that claimed.

Papers with unspecific targets or claimed status were removed from the ground truth.
The ERC benchmark aims to measure the quality of a fact-checking system by com-

paring its output to a test collection. The test collection stores nucleotide sequences that 
human experts tagged with a Class{0,6,7,8} . Benchmarking a fact-checking system consists 
of comparing its output to the expected answer for each sequence. The metrics we defined 
in ERC are run on the output of a fact-checking system: one of these classes (0, 6, 7, or 8) 
or a ‘no-decision’ answer for each sequence. This latter case occurs when the system is not 
able to provide an answer and reports this to end-users.

Metrics are defined to assess the overall performance of the system relying on three 
chained processes (CP1 to CP3) that one needs to evaluate separately. Each metric com-
bines quantities from the set of variables introduced in Table 1. For each CP, we distin-
guish three metrics: either the system is successful (metric OK) or the system either fails to 

2 Other classes were also considered but not used in this paper. The description of Class{1,2,3,4,5,9} appears in 
the supplementary materials (“Appendix ERC benchmark ERC_H_v2 test collection”).
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extract the information to be checked (metric KO1), or it fails to check correct information 
(metric KO2, wrong decision is made). These metrics in the [0, 1] range are computed as 
follows: 

 CP1. Sequence:

• Sequence_OK = c∕s is recall-oriented and reflects the ability to extract all the 
nucleotide sequences from the corpus.

• Sequence_KO1 is not computed as the nucleotide sequence is either correctly 
extracted (i.e., Sequence_OK) or missed (i.e., Sequence_KO2).

• Sequence_KO2 = f∕(f+c) is precision-oriented and reflects the trust that the user 
can place in the results of the sequence extraction task.

 CP2. Status for each correctly extracted nucleotide sequence:

• Status_OK = a∕c reflects the ability to automatically assign the claimed status to a 
nucleotide sequence reagent: non-targeting vs targeting.

• Status_KO1 = n∕c measures the proportion of nucleotide sequences for which the 
fact-checking tool failed to assign a specific status.

• Status_KO2 = w∕c measures the proportion of nucleotide sequences for which the 
fact-checking tool misassigned the claimed status.

 CP3. Targeted gene or sequence for each targeting nucleotide sequence:

• Gene_OK = a�∕c measures the proportion of correctly extracted sequences to which 
the claimed gene identifier was associated (none for non-targeting sequences).

• Gene_KO1 = n�∕c measures the proportion of correctly extracted nucleotide 
sequences to which no gene identifier was associated (value unknown).

• Gene_KO2 = w�∕c measures the proportion of correctly extracted sequences to which 
a wrong gene identifier was associated (e.g., the text mentions TPD52L2 whereas 
the fact-checking tool extracted a different identifier).

Table 1  Variables used to define the metrics of the ERC fact-checking benchmark

Symbol Definition

s # of nucleotide sequences present in the corpus
c # of nucleotide sequences correctly extracted from the corpus
f # of extracted nucleotide sequences that are alien to the corpus. For example, a text mining tool 

might extract a reagent appearing across two columns as two different reagents, which is incor-
rect

a # of correctly extracted nucleotide sequences whose status was correctly assigned by the fact-
checking tool

n # of nucleotide sequences for which the system failed to assign any status
w # of nucleotide sequences for which the system assigned the wrong status
a′ # of correctly extracted nucleotide sequences whose target was correctly assigned
n′ # of nucleotide sequences for which the system failed to assign any target
w′ # of nucleotide sequences for which the system assigned the wrong target
o # of nucleotide sequences for which the system output is correct: either Fact-checked as Class0 or 

error flagged as Class{6,7,8}
p # of nucleotide sequences for which the system failed to take a decision
q # of nucleotide sequences for which the system assigned a wrong decision (i.e., incorrect class 

assigned)
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The fact-checking system compares (1) the text stated and extracted fact with (2) the 
endorsed fact to produce an output Class{0,6,7,8} for a given nucleotide sequence. An 
error while performing CP1, CP2, or CP3 is responsible for a false output from the fact-
checking system. We measure the end-to-end performance of the benchmarked tool as:

• Fact-check_OK = o∕s measures the proportion of correctly checked nucleotide 
sequences.

• Fact-check_KO1 = p∕s measures the proportion of nucleotide sequences for which 
the fact-checking process did not produce a decision.

• Fact-check_KO2 = q∕s measures the proportion of nucleotide sequences for which a 
wrong decision was made (e.g. Class0 instead of Class8).

At this point, the metrics-defined can be used to answer the main question of this paper, 
namely what is the performance decay (if any) when providing inputs in PDF format 
compared to other, more structured, formats? We answer this question by comparing 
Fact-check_OK across all tested input formats. Running through the whole processing 
chain (CP1, CP2, and CP3) indicates where performance decreases. This helps system 
designers to decide where to focus their future efforts.

People who employ the fact-checking system include biologists, journal staff, and 
text miners. Detecting errors in the papers that they read is crucial to not trust errone-
ous literature. From the end-users’ perspective, flagging errors automatically can prove 
risky, as no system is perfect. Reporting a trust level for each output of the detector (i.e., 
Class{0,6,7,8} ) can help end-users to assess the trustworthiness of the system result. This 
is why the benchmark provides the following extra metrics regarding the success rate 
per error class.

As a reminder, each nucleotide sequence in the ground truth is tagged with one 
expected output ( Class{0,6,7,8} ). Due to this partition, the number of sequences s is the 
sum of the number of sequences in each class, that is s =

∑

i∈{0,6,7,8} si where si is the 
number of sequences for Classi in the test collection. The following numbers are useful 
to measure the accuracy of a system under test:

• oi is the number of nucleotide sequences of Classi that were correctly reported by the 
system.

• ui is the number of nucleotide sequences of Classi for which no decision was taken 
by the system.

• mi is the number of nucleotide sequences of Classi that were incorrectly reported by 
the system.

For each Classi , we define the following metrics:

• Classi_OK = oi∕si is the proportion of nucleotide sequences for which the system out-
put matches the expected class given in the Ground Truth.

• Classi_KO1 = ui∕si is the proportion of nucleotide sequences for which the system 
was unable to associate a class (‘no-decision’ was reported).

• Classi_KO2 = mi∕si is the proportion of nucleotide sequences for which the system 
produced a wrong class. The distribution of these wrong decisions among the dif-
ferent classes can then be computed to identify the most frequent erroneous pairs of 
Classi and Outputi.
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Classi_KO2 is crucial to highlight situations when the fact-checking software confused one 
class for another one. For example, the Class0 sequences (endorsed facts) may be confused 
with Class8 sequences (gene mismatch). This measure reflects the likelihood of misclas-
sifying a nucleotide sequence of a given class. This informs the end-user about the level of 
confidence (s)he may have with regards to each type of output.

The next section reports the results of the benchmark that we performed on the ERC_H_
v2 test collection that we built and distributed for reproducibility concerns.

Contribution 2: Benchmarking various text input formats

Deriving the ERC_H_v2 test collection

The benchmarking of fact-checking software requires the assembly of a test collection that 
represents a variety of errors. This is challenging as most of the literature is supposed to 
be free from such errors! We therefore designed a threefold strategy to identify error-prone 
papers: 

1. Two of the authors (JAB and CL) reported 48 highly similar publications that com-
monly described nucleotide sequence reagents (Byrne and Labbé 2017). JAB fact-
checked a proportion of the nucleotide sequence reagents described in these papers 
using BLASTN.

2. The list of aforementioned dubious sequences was used as query to Google Scholar to 
retrieve additional, potentially questionable, papers. We hypothesised that some erro-
neous papers may stem from paper mills (Liu and Chen 2018) that are known to pro-
duce papers with similar textual contents. Hence, we used the PubMed Similar articles 
feature3 to retrieve the most similar papers to a given one according to their textual 
contents. This resulted in the corpus of 155 papers used in (Labbé et al. 2019).

3. All 48 papers flagged in Step 1 were used as seeds (i.e., starting points) to collect 1,664 
similar papers using the PubMed Similar articles feature.

We manually screened these error-prone papers to constitute the ground truth illustrated in 
Fig. 1.

In a preliminary analysis, four experts (BF, JAB, TG, and Ms Natalie Grima (Labbé 
et  al. 2019)) annotated 44 papers. Each paper was presented in PDF format while the 
markup-language counterpart was also downloaded in XML-JATS or HTML for fur-
ther processing. Experts performed manual fact-checking, involving paper reading to 
identify nucleotide sequences, delineation of the purpose of each nucleotide sequence in 
the reported experiments, as well as the analysis of the BLASTN results they obtained. 
Among the annotated 44 papers mentioning 77 error-prone sequences, 21 sequences from 
12 papers triggered discussions and all conflicting cases were resolved after reaching con-
sensus. This preliminary analysis stressed two kinds of issues. First, the wording of some 

3 http://ncbi.nlm.nih.gov/books /NBK38 27/#pubme dhelp .Compu tatio n_of_Simil ar_Artic l.

http://ncbi.nlm.nih.gov/books/NBK3827/#pubmedhelp.Computation_of_Similar_Articl
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papers was either ambiguous or difficult to understand. Second, all papers mentioning any 
nucleotide sequence not related to the human genome or transcriptome required the identi-
fication of the appropriate nucleotide sequence database for reagent fact-checking.

Following this preliminary analysis, we decided to focus on papers where all nucleotide 
sequence reagents relate to the human genome or transcriptome.

The ground truth capturing expert knowledge was acquired as follows. Biomedical 
researchers (JAB, RAW, and Natalie Grima) annotated a subset of 161 papers among the 
previously collected ones. The annotators’ assessment of each nucleotide sequence was 
recorded in the ground truth pictured in Fig. 1, namely the claimed characteristic targeting 
or non-targeting with gene name or target where applicable, the endorsed fact, and the out-
put Class{0,6,7,8} . Eventually, the ground truth resulted from the analysis of 161 papers con-
taining 1679 nucleotide sequences annotated by at least one expert (JAB, RAW, or Natalie 
Grima).

All papers were processed by Grobid and pdftotext to extract two plain text versions. 
This resulted in three different input formats denoted as: 

1. ML: markup-language (either XML or HTML).
2. GB: plain text extracted using Grobi d v. 0.5.2 released October 17, 2018.
3. PT: plain text extracted using pdfto text v. 0.78.0 released June 26, 2019.

These constitute the test collection of the proposed benchmark, called ERC_H_v2 for 
Error Reagent Collection, Human, version 2. We used ERC_H_v2 to report the results of 
benchmarking the Seek&Blastn tool in the next section. Note that these results do not gen-
eralise to the entire biomedical literature, as the ground truth is biased towards error-prone 
papers.

Assessing the efficiency of the fact‑checking Seek&Blastn tool

Running the ERC benchmark allowed us to examine the extent to which input format 
impedes the flagging of errors in the biomedical literature. All metrics reported in Table 2 
were computed for the three different input formats: ML, GB, and PT. Overall, the share 
of correctly classified sequences in Class{0,6,7,8} reflects the performance of the fact-check-
ing on a given input format (see the aforementioned Fact-check_OK definition). ML is the 
most appropriate format for Seek&Blastn with a 79% success rate (Fact-check_OK) when 
processing text in HTML or XML formats. Grobid (GB) appears to be a viable alterna-
tive with a 69% success rate (Fact-check_OK) on the text extracted from PDFs with this 
software. Fact-checking effectiveness decreases to 58% of all sequences correctly classified 
based on the text produced with pdftotext (PT).

Let us unpack the overall performance according to the three underlying chained pro-
cesses CP1, CP2, and CP3 :

• Sequence detection (CP1) performs the best on ML input with 96% Sequence_OK 
compared to GB and PT characterised by a lower Sequence_OK of 87% and 79% 
respectively. As a reminder, each ATCGU sequence is made up of 9 to 100+ characters; 
some authors use spaces to group nucleotides in blocks. Nucleotide sequences appear 
as described above in ML but may be altered when formatted in PDF. Sequences may 
be split across columns or pages, which can then mix them up with the headers and 
footers of the pages.

https://github.com/kermitt2/grobid/releases
https://poppler.freedesktop.org/releases.html
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• With the correctly identified sequences as input:

• Status identification (CP2) is also more accurate for ML and GB (93% and 92% 
Status_OK) compared to PT (88% Status_OK). CP2 is a difficult task, requiring the 
parsing of the sentence or table featuring each sequence. The variability and struc-
tural ambiguity of either natural language or table layouts makes CP2 particularly 
challenging. The tied performance of ML and GB suggests that text extraction with 
GB managed to preserve text structure. In contrast, PT produced a less suitable text 
for Seek&Blastn to identify sequence status correctly.

• Gene identification (CP3) with ML or GB inputs (66% and 64% Gene_OK) outper-
forms PT (49% Gene_OK). This task first identifies gene names out of the tokenized 
sentence, where there can be variability in naming genes and spelling gene iden-
tifiers  (Giorgi and Bader 2020). Then the associated nucleotide sequence must be 
identified. Results reflect that CP3 is the most complex task. Seek&Blastn clearly 
needs to be improved in this direction. Again, the tied performance of ML and GB 
suggests that text extraction with GB is a suitable alternative to ML.

Let us now focus on the ‘Fact-checking failed’ columns of Table 2 to perform a fail-
ure analysis. The input format has barely no influence on KO1 and KO2, which suggests 
that even with a well-formatted input (ML) Seek&Blastn fact-checks with the same per-
formance as with GB or PT. For CP1, either a sequence is correctly extracted (OK) or not 
(KO2), hence no value provided for KO1. We split the denominators in KO2 into two parts 
reflecting (1) the number of altered (e.g., truncated) nucleotide sequences and (2) the num-
ber of unaltered nucleotide sequences. This number (i.e., unaltered nucleotide sequences) 
becomes the denominator of the metrics used for CP2 and CP3 to identify the source of 
errors. CP3 is the most poorly performed task, which suggests that more engineering 
should be devoted to enhance the detection of gene identifiers within text. A noticeable fig-
ure of 58% (Fact-checking succeeded) characterises PT: it appears that the text provided by 
pdftotext is not well suited for gene detection as implemented by Seek&Blastn.

Next, Table  3 reflects the confidence that the user can place in Seek&Blastn results 
according to the Class{0,6,7,8} associated with each sequence analysed. We tabulated the 
three input formats and, for each class, provided the obtained performance (OK, KO1, and 
KO2). For ML, Class0 is reliable with Class0_OK = 84%. Class0 occurs the most frequently 
with N = 1137 out of N = 1361 nucleotide sequences. For KO2, the nature of the wrong 
decision made is also reported with its class number. This enables one to estimate which 
class is more likely to be confused with another one: Class0 and Class8 are the most chal-
lenging in this regard. The table shows that 16% of results tagged with Class0 are failures 
(i.e., KO1 and KO2). When KO2 occurs, the most frequent class is Class8 with a 79% like-
lihood. All inputs considered (i.e., ML, GB, PT), Class6 appears to be the most reliable 
one ( Class6_OK = 86% for ML) and Class8 is the least reliable one ( Class8_OK = 65% for 
ML).

Users of the benchmarked fact-checking software are expected to benefit from the 
reports (Tables  2, 3) highlighting the strengths and weaknesses expected. In addition, 
these reports enable the designers of fact-checking software to assess the accuracy of 
their software; they also reveal cases of low performance that should be further investi-
gated. The contribution of this paper is twofold: defining the ERC benchmark and populat-
ing the expert-annotated ERC_H_v2 test collection. We expect this latter component to 
help fact-checking designers to create and tune their systems to reach higher accuracy. In 
closing, let us stress the sensitivity of most classification approaches to class imbalance 
which is a well-known problem in machine learning (Japkowicz and Stephen 2002). This 
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is also characteristic of the fact-checking ground truth contributed in this paper, revealed 
by the sizes of each class for the text in ML format ( Class0 : 1361, Class6 : 74, Class7 : 
35, Class8 : 139, as seen in Table  3) While the rule-based classification implemented in 
Seek&Blastn  (Labbé et  al. 2019) makes this software resilient to data imbalance, using 
other techniques (e.g., Support Vector Machines) on such imbalanced classes may require 
advanced over/under-sampling.

Discussion

Let us now discuss the ERC_H_v2 test collection we contributed in this paper comprising: 

1. The input given to the fact-checking system under study: a textual corpus.
2. The ground truth: the expected output of the system under study.
3. Metrics to assess the quality of a given output regarding the expected output.

First, we reported the results of Seek&Blastn (Labbé et al. 2019), which is the first biomed-
ical reagent fact-checking software to our knowledge. By releasing the benchmark with the 
associated ERC_H_v2 test collection,4 we encourage other researchers to tackle the error 
detection problem. Running the benchmark on the outputs of different systems will inform 
on the accuracy of the benchmarked approaches (e.g., machine learning vs. rule-based 
decision making). As such, Seek&Blastn contributes a baseline for such other systems.

Second, the results reported in Tables  2, 3 using ERC_H_v2 concern human rea-
gents only. Covering a larger scope of the literature would require to build a ground truth 
addressing multiple species (e.g., rat, mouse, zebrafish).5 In addition, these results reflect 
the state-of-the-art knowledge accessed through BLASTN and the expert rules (“Appendix 
(Reagent–gene assessment of nucleotide sequence homology)”) applied to this knowledge. 
The advance of science may update these in future. Such changes can be propagated to 
ERC_H_v2 to reflect this evolution and the benchmark can be run again based on new 
versions.

Third, we conceived the performance metrics with the user and the fact-checking 
designer in mind. Other metrics can be computed and the chained processes can be decon-
structed for fine-grained analysis. CP3 is a good candidate as it entails two subtasks: a gene 
entity recognition task (e.g., Galea et al. 2018, p. 2477) and an association with the reagent 
detected by CP1.

In summary, finding errors in the literature is a challenging task requiring the alliance of 
skills in text mining, natural language processing, and scientometrics. This benchmark as a 
whole contributes to raise awareness of this critical issue.

4 Each paper is identified with its PMID in ERC_H_v2 (Fig.  1). Using open access (OA) papers only 
would enhance the benchmark usability. However, this would not reflect that errors appear in both non-OA 
and OA papers. Due to licensing concerns, we must leave the harvesting of the plain texts to the benchmark 
users.
5 This would insert another chain process—between CP2 and CP3—to extract the species name, which 
would be used to restrict the sequence database for the BLASTN query. While the targeting status appears 
close to the concerned nucleotide sequence, this is not always the case for the species under study. Fur-
thermore both vernacular species name and Latin identification would have to be recognised by this future 
Seek&Blastn.
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Conclusion

The introduction of bibliographic databases fostered the indexing of scientific literature 
(De Bellis 2009). These products have been indexing metadata only: title, abstract, key-
words, and authors. Current endeavours aim to collect the entire literature in plain text. 
For instance, Pulla (2019) reported that the Indian JNU initiative has indexed 73 million 
journal articles in PDF. Specific indexing of genes and chemicals for knowledge extraction 
is one of the reported purposes of such a giant resource. This endeavour is in the spirit of 
literature-based discovery of new knowledge (Bruza and Weeber 2008).

Collecting nearly all scientific publications in a single place offers another opportunity: 
one could screen the entire literature for errors. Retracting dubious papers is critical for 
human readers as well as for automated text-mining processes: misleading reasoning and 
inference must be prevented to improve the integrity of science and the trust that people 
place in science and the scientific method. Previous work has flagged plagiarism (Citron 
and Ginsparg 2015), nonsensical papers  (Labbé and Labbé 2013), and erroneous papers 
(Byrne and Labbé 2017). Thousands of papers have been retracted from the literature (Van 
Noorden 2014; Ledford et al. 2017).

In the present study, we have screened published papers. Triggering the fact-checker 
earlier, during the peer review process, could save time and effort by desk-rejecting the 
offending submission. As is currently done to combat plagiarism (Smart and Gaston 2019), 
fact-checkers such as Seek&Blastn could be used to screen submitted manuscripts ahead of 
referee assignment.

The ERC benchmark proposed in this paper contributes to enhance the quality of such 
systems. Designers can measure the failures related to each subcomponent of the fact-
checker, make changes to improve the subcomponents, and then check that no regressions 
in performance have occurred. Running the benchmark for Seek&Blastn highlighted the 
superiority of plain text (ML) over text extracted from PDFs (GB and PT) for the error 
detection task. Hence we recommend:

• To run fact-checkers over formats that preserve text integrity (e.g., HTML, XML-JATS, 
LaTeX formats) instead of formats that alter text by mixing up form and content (PDF) 
whenever possible.

• When PDF is the only material available, use Grobid (Lopez 2009) to extract textual 
contents with minimum quality loss.

Literature-based knowledge discovery through text-mining benefits from open access to 
error-free sources. In the foreseeable future when Open Science prevails, open access to 
papers published in a text-preserving format is likely to be the norm and fact-checkers such 
as Seek&Blastn will perform at their full potential.



1153Scientometrics (2020) 124:1139–1156 

1 3

Acknowledgements We gratefully acknowledge the assistance of Ms Natalie Grima (Children’s Cancer 
Research Unit), and funding from the Post-Truth Initiative, a Sydney University Research Excellence Ini-
tiative (SREI 2020) (to JAB), and from the US Office of Research Integrity Grant ORIIR 18003 8-01-00 (to 
JAB and CL). This work was supported by donations to the Children’s Cancer Research Unit of the Chil-
dren’s Hospital at Westmead.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

Appendix

ERC benchmark ERC_H_v2 test collection

The ERC_H_v2 test collection of the ERC benchmark is available from https ://doi.
org/10.5281/zenod o.37739 05.

Reagent–gene assessment of nucleotide sequence homology

A reagent (i.e., a nucleotide sequence defined by the letters ATGCU) is said to be targeting 
or non-targeting with regards to a genome or transcriptome if it fulfils some conditions. A 
targeting sequence has significant homology with an intended target, such that the targeting 
sequence is likely to bind to the target. A non-targeting sequence must have non-significant 
homology to the corresponding genome or transcriptome. In Seek&Blastn, the ERC bench-
mark and associated ERC_H_v2 test collection, rules that were adopted to define signifi-
cant homology are described in Fig. 2 and Table 4.

Fig. 2  Notations used to define targeting vs non-targeting reagents. Variable d is the distance from the end 
of the BLASTN-predicted hit to the most 3’ nucleotide of the query sequence. Variable l is the length of the 
BLASTN-predicted hit. Variable h is the percentage of nucleotides that are identical between the tested rea-
gent (BLASTN query) and the identified sequence (BLASTN subject). When a hit is composed of several 
fragments, start

i
 and end

i
 are the start and the end of the hit for the ith fragment

https://taggs.hhs.gov/Detail/AwardDetail?arg_AwardNum=ORIIR180038&arg_ProgOfficeCode=241
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.5281/zenodo.3773905
https://doi.org/10.5281/zenodo.3773905
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