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On 179253 new satellites of the Broucke-Hadjidemetriou-Hénon family of periodic unequal-mass three-body orbits

The Broucke-Hadjidemetriou-Hénon's (BHH) orbits are a family of periodic orbits of the three-body system with the simplest topological free group word a, while the BHH satellites have free group words a k (k > 1), where k is the topological exponent. Janković and Dmitrašinović [Phy. Rev. Lett. 116, 064301 (2016)] numerically gained 58 BHH satellites (k > 1) with equal mass, and mentioned the importance of extending their study "to the realistic case of three different masses" in their open questions. In this letter, we numerically found 419743 new BHH orbits (k = 1) and 179253 new BHH satellites (k > 1) for three-body system with unequal mass. Especially, 48761 among the 179253 new BHH satellites are stable and have unequal masses. It should be emphasized that all practically observed periodic triple star systems belong to the family of BHH orbits, but up to now BHH satellites with unequal mass were never reported before even in theory. Therefore, these 48761 stable BHH satellites with unequal masses have important meaning in practice: many among them could be observed someday in the universe. Besides, for the threebody system with equal mass at a fixed energy E = -1/2, Janković and Dmitrašinović numerically demonstrated that the relationship between the angular momentum (L) and topological period (T /k) of the BHH satellites is the same as that of the BHH orbits. However, this does not hold for the three-body system with unequal mass, as reported in this letter. Therefore, our study has important meanings not only in practice but also in theory: they could greatly deepen our understandings and enrich our knowledge for the practical observation of the BHH satellites (k > 1), formation of multiple stars, the gravitational waves pattern, the gravitational waves observation of the triple system, and so on.

I. INTRODUCTION

The three-body problem can be traced back to Newton in 1680s, but is still an open question in astrophysics and mathematics today, mainly because it is not an integrable system [1] and besides has the sensitivity dependance on initial condition (SDIC) [2], i.e. butterfly-effect that broke a new field of scientific research, i.e. chaos. Even today the three-body problem is still one of central issues for scientists [3]. Especially, periodic orbits of triple system play an important role since they are "the only opening through which we can try to penetrate in a place which, up to now, was supposed to be inaccessible", as pointed out by Poincaré [2]. However, since the famous three-body problem was first put forward, only three families of periodic orbits were found in about three hundred years: (1) the Lagrange-Euler family discovered by Lagrange and Euler in the 18th century; (2) the Broucke-Hadjidemetriou-Hénon (BHH) family [4][5][6]; (3) the figure-eight family, discovered numerically by Moore [7] in 1993 and then proofed by Chenciner & Montgomery [8] in 2000, until 2013 when Šuvakov and Dmitrašinović [9] numerically found 13 distinct periodic orbits of the three-body system with equal mass. In recent years, numerically searching for periodic orbits of the three-body system has been received much attention [10][11][12][13][14]. Šuvakov [10] reported the satellites of the figure-eight periodic orbit with equal mass. Especially, more than six hundred new families of periodic orbits of equal-mass three-body system were found by Li and Liao [11] using a new numerical strategy, namely the clean numerical simulation (CNS) [15][16][17] that can give the convergent/reliable numerical solution of chaotic systems in a long enough duration. Li et al. [12] further used the CNS to obtain 1223 new families of periodic orbits of three-body system with two equal-mass bodies. All of these greatly enrich our knowledge of the famous three-body problem.

With the topological classification method [18], the so-called BHH orbits have the simplest topology (free group word w = a), while the BHH satellites have more free group words w = a k , where k is the topological exponent. In theory, Janković and Dmitrašinović [19] numerically gained 58 BHH satellites (k > 1) with equal mass, and found that the relationship between the scale-invariant angular momentum (L) and the topologically rescaled period (T /k) is the same for both of the BHH orbits (k = 1) and satellites (k > 1). On the other side, all practically observed periodic triple star systems belong to the BHH orbits (k = 1). This fact raises a question of whether we can observe any BHH satellites (k > 1) in a universe. Unfortunately, all previously reported BHH satellites have equal mass, which are impossible to be observed in practice. Obviously, we should first numerically find some BHH satellites (k > 1) with unequal mass before we can observe them in practice. Note that in the discussion part of their paper in 2016, Janković and Dmitrašinović [19] also mentioned the importance of extending their study (in cases of three equal masses) "to the realistic case of three different masses".
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In this letter, we numerically investigate the BHH (periodic) orbits (k = 1) and satellites (k > 1) with unequal mass. In § 2, the basic ideas of our numerical strategy are briefly introduced. In § 3, we numerically search for the BHH orbits and satellites with unequal mass, and show the corresponding results. Brief conclusions are given in § 4.

II. THE INITIAL CONFIGURATION AND NUMERICAL METHOD

Let us consider a three-body system in the Newtonian gravitational field. Without loss of generality, let the Newtonian gravitational constant G = 1. As shown in Figure 1, the three bodies have collinear initial configuration for the BHH family of periodic orbits: r 1 (0) = (x 1 , 0), r 2 (0) = (x 2 , 0), r 3 (0) = (x 3 , 0), and their initial velocities are orthogonal to the line determined by the three bodies: ṙ1 (0) = (0, v 1 ), ṙ2 (0) = (0, v 2 ), ṙ3 (0) = (0, v 3 ).

Due to the homogeneity of the potential field of the three-body system, there is a scaling law :

r ′ = αr, v ′ = v/ √ α, t ′ = α 3/2 t, energy E ′ = E/α and angular momentum L ′ = √ αL.
The known periodic orbits of the BHH family and their satellites with equal mass [4,6,19] have zero total momentum, i.e., m 1 ṙ1 + m 2 ṙ2 + m 3 ṙ3 = 0. Using the scaling law, we can transform the initial conditions of the known periodic orbits of the BHH family and their satellites to the initial positions

r 1 (0) = (x 1 , 0), r 2 (0) = (1, 0), r 3 (0) = (0, 0), (1) 
and the initial velocities

ṙ1 (0) = (0, v 1 ), ṙ2 (0) = (0, v 2 ), ṙ3 (0) = ( 0, - m 1 v 1 + m 2 v 2 m 3 ) . ( 2 
)
We use the numerical continuation method [START_REF] Allgower | Introduction to numerical continuation methods[END_REF] to gain the BHH orbits (k = 1) and their satellites (k > 1) with unequal mass. Briefly speaking, the numerical continuation method can be used to gain solution of a differential system u = F (u, λ), (3) where λ a physical parameter, called "natural parameter". Assume that u 0 is a solution at a natural parameter λ = λ 0 . Using the solution u 0 at λ = λ 0 as an initial guess, a new solution u ′ can be obtained at a new natural parameter λ = λ 0 + ∆λ through the Newton-Raphson method [START_REF] Farantos | [END_REF]22] and the clean numerical simulation (CNS) [15][16][17], if the increment ∆λ is small enough to make sure iterations convergence. Note that the CNS [15][16][17] is a numerical strategy to obtain reliable numerical simulation of chaotic systems in a given time of interval. The CNS (a) ) The stable BHH satellites (k > 1) of the three-body system with unequal mass in a rotating system. Blue line: body-1; red line: body-2; black line: body-3. The corresponding physical parameters are given in Table I.
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is based on an arbitrary high order Taylor series method [23,24] and the multiple precision arithmetic [25], plus a convergence check using an additional computation with even smaller numerical error. The CNS [15][16][17] is used here mainly because three-body system is chaotic in general.

Note that all of the known BHH orbits (k = 1) and satellites (k > 1) are "relative periodic orbits": after a period, these relative periodic orbits will return to initial conditions in a rotating frame of reference. So, there is an individual rotation angle θ for each relative periodic orbit.

First of all, using the known BHH orbits (k = 1) and satellites (k > 1) with equal mass (m 1 = m 2 = m 3 = 1) as initial guesses and m 1 as a natural parameter of the continuation method, we obtain new periodic orbits with various m 1 by continually correcting the initial conditions x 1 , v 1 , v 2 , the period T and the rotation angle θ. Then, using these periodic solutions with m 1 ̸ = 1, m 2 = m 3 = 1 as initial guesses and m 2 as a natural parameter of the continuation method, we similarly gain periodic orbits for different values of m 2 . In this way, we can obtain the corresponding BHH (relative periodic) orbits (k = 1) and satellites (k > 1) with unequal mass m 1 ̸ = m 2 ̸ = m 3 , where m 3 = 1.

TABLE I. Initial conditions and periods

T of some BHH satellites of three-body system with unequal mass in case of r1(0) = (x1, 0), r2(0) = (1, 0), r3(0) = (0, 0), ṙ1(0) = (0, v1), ṙ2(0) = (0, v2), ṙ3(0) = (0, -(m1v1 + m2v2)/m3). Here mi, xi and vi are the mass, initial position and velocity of the ith body, θ is the rotation angle of relative periodic orbits, and k is the topological power of periodic orbits, respectively. 

III. RESULTS

Starting from the 16 known Broucke's periodic orbits (k = 1 with equal mass) [4], the 45 known Hénon's periodic orbits (k = 1 with equal mass) [6] and the 58 known BHH satellites (k > 1 with equal mass) [19], we respectively obtain 124780, 294963 and 179253 new periodic orbits of the three-body system with unequal mass for m 1 ∈ [0.1, 1), m 2 ∈ [0.1, 1) and m 3 = 1. Totally, we gain 419743 new BHH (relative periodic) orbits (k = 1 with unequal mass) and 179253 new BHH (relative periodic) satellites (k > 1 with unequal mass). Note that all of them are retrograde, say, the binary system and the third body move in opposite direction. Besides, these orbits are relatively periodic, say, the orbits are closed curves in a rotating frame of reference. The corresponding initial conditions, the periods T and the rotation angles θ of these new BHH orbits (k = 1) and satellites (k > 1) with unequal mass are given in the corresponding supplementary files. The return distance of these periodic orbits and satellites satisfies

d = 3 ∑ i=1 ( (r i (T ) -r i (0)) 2 + ( ṙi (T ) -ṙi (0)) 2 ) < 10 -10
in a rotating frame of reference, where T is the period. Note that Broucke and Boggs [26] gave dozens of the BHH orbits (k = 1) with unequal mass (their ratios of mass are different from ours), but neither have any BHH satellites (k > 1) with unequal mass been reported, to the best of our knowledge. Note that, among our newly-found 598996 BHH orbits and satellites with unequal mass, there are 151925 stable BHH orbits (k = 1) and 48761 stable BHH satellites (k > 1). Here, it should be emphasized that these stable 48761 BHH satellites have unequal masses and thus many among them could be observed in practice. The stability of these periodic orbits and satellites is marked by "S" in the corresponding supplementary files. For examples, six new BHH satellites with unequal mass are shown in Figure 2. All of the six BHH relatively periodic satellites are linearly stable. Their initial conditions, periods and topological powers (k) are listed in Table I. It should be emphasized that we can modify these 200686 stable new BHH orbits and satellites with unequal mass to an arbitrary accuracy by means of the above-mentioned numerical strategy and the CNS. For example, we further obtained much more accurate initial conditions of the six BHH relatively periodic satellites (listed in Table I) with return distance d < 100 -100 , as shown in the corresponding supplementary file. From the viewpoint of accuracy, all of these numerical solutions have no essential difference from "closed-form" analytic solutions that however unfortunately do not exist for three-body problem in general.

With rescaling to the same energy E = -1/2, Janković and Dmitrašinović [19] found that, in case of equal mass, the relationship between the scale-invariant angular momentum (L) and the topologically rescaled period (T /k) is the same for both of the BHH orbits (k = 1) and satellites (k > 1), as shown in Figure 3(a), where k is the topological exponent of periodic orbits. However, for our newly-found periodic orbits with unequal masses (at the same energy E = -1/2), it is found that the relationship between the scale-invariant angular momentum (L) and period (T /k) of the BHH satellites (k > 1) is different from that of the BHH orbits (k = 1), as illustrated in Figure 3 (b)-(d). It suggests that the relationship between the scale-invariant angular momentum (L) and topologically rescaled period (T /k) of the BHH orbits (k = 1) and satellites (k > 1) should be more complicated in general cases of unequal masses m 1 ̸ = m 2 ̸ = m 3 than in the case of the equal mass m 1 = m 2 = m 3 .

IV. CONCLUSION

In 2016 Janković and Dmitrašinović [19] numerically gained 58 BHH satellites (k > 1) with equal mass, and mentioned the importance of extending their study "to the realistic case of three different masses" in their open questions. In this letter, we numerically found 419743 new BHH (relative periodic) orbits (k = 1) and 179253 new BHH (relative periodic) satellites (k > 1) for three-body system with unequal mass, which have never been reported, to the best of our knowledge. Especially, 48761 (about 27.2% ) among the 179253 new BHH (relative periodic) satellites (k > 1) are stable and have unequal mass. It should be emphasized that all practically observed periodic triple star systems belong to the family of BHH orbits (k = 1), but up to now BHH (relative periodic) satellites (k > 1) with unequal mass were never reported before even in theory. Therefore, these 48761 stable BHH (relative periodic) satellites (k > 1) with unequal masses have important meaning in practice: many among them could be observed someday in the universe. Besides, for the three-body system with equal mass at a fixed energy E = -1/2, Janković and Dmitrašinović [19] numerically demonstrated that the relationship between the angular momentum (L) and topological period (T /k) of the BHH satellites (k > 1) is the same as that of the BHH orbits (k = 1). However, this does not hold for the three-body system with unequal mass, as reported in this letter. Therefore, our study has important meanings not only in practice but also in theory: they could greatly deepen our understandings and enrich our knowledge for the practical observation of the BHH satellites (k > 1), formation of multiple stars, the gravitational waves pattern, the gravitational waves observation of the triple system, and so on.
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 1 FIG. 1. (color online.) The initial configuration of the three-body system. Here m1, m2 and m3 denote the mass of body-1, body-2 and body-3, respectively. The corresponding initial velocities are v1, v2 and v3 = -(m1v1 + m2v2)/m3, and the corresponding initial positions are (x1, 0), (1,0) and (0,0).

  FIG. 2. (color online.)The stable BHH satellites (k > 1) of the three-body system with unequal mass in a rotating system. Blue line: body-1; red line: body-2; black line: body-3. The corresponding physical parameters are given in TableI.
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 3 FIG. 3. (color online.) The angular momentum (L) versus the topological rescaled period (T /k) for BHH periodic orbits and their satellites at fixed energy E = -1/2 with different mass: (a) m1 = m2 = m3 = 1; (b) m1 = 0.7, m2 = 0.9, m3 = 1; (c) m1 = 0.5, m2 = 0.8, m3 = 1; (d) m1 = 0.4, m2 = 0.7, m3 = 1.

This work was carried out on TH-1A (in Tianjin) and TH-2 (in Guangzhou) at National Supercomputer Center, China. It is partly supported by National Natural Science Foundation of China (Approval No. 91752104), China Postdoctoral Science Foundation (Approval No. 2020M673058) and International Program of Guangdong Provincial Outstanding Young Researcher.