
HAL Id: hal-02911555
https://hal.science/hal-02911555

Submitted on 3 Aug 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Models as Representations for Supporting the
Development of e-Procedures

Marco Winckler, Philippe Palanque

To cite this version:
Marco Winckler, Philippe Palanque. Models as Representations for Supporting the Development of
e-Procedures. Usability in Government Systems: User Experience Design for Citizens and Public
Servants, 3 (1 : Chapter 19 : Models as Abstract Representations for supporting the development of
e-Procedures), MDPI AG, Switzerland, pp.1-3, 2012, 978-0-12-391063-9. �10.3390/admsci3010001�.
�hal-02911555�

https://hal.science/hal-02911555
https://hal.archives-ouvertes.fr

Chapter 19 Models as Abstract Representations for supporting the development of e-

Procedures

[NON PRINT ITEMS]

Abstract: The development of successful electronic procedures is a complex activity

that requires diverse expertise on administrative processes and software development.

Such expertise requires a multidisciplinary team that should combine technical issues

and expectations of all users, including citizens and administrative clerks. This

chapter is aimed to help you to understand how model-based approaches can be used

to deal with development of complex e-procedures and, in particular, to communicate

design options to a multidisciplinary team. To this very purpose this chapter illustrates

two kinds of models: tasks models that describe the actions user should perform at

every step of an administrative procedure; and system models that describe how

design options can be implemented by the system to support user tasks. When used

altogether, these models provide useful information to understand the implications of

individual user’s tasks and the system’s behavior along the different steps in the

underling workflow of an e-procedure.

Key words: development process, model-based approach, e-procurement systems

specification, task models.

Author Contact Information:

Marco Winckler

Assistant Professor of Computer Science

ICS-IRIT, Université Paul Sabatier, Toulouse, France

winckler@irit.fr

Telephone: +33 5.61.55.63.59

Philippe Palanque

Professor of Computer Science

ICS-IRIT, Université Paul Sabatier, Toulouse, France

palanque@irit.fr

Telephone: +33 (0)5.61.55.69.65

[Chapter Starts here]

[ChNum]Chapter 19

[ChTitle] Models as Abstract Representations for supporting the development of e-

Procedures

[H1]Introduction

Government agencies are increasingly moving towards providing web support for

their administrative procedures. Such web applications must do five important things:

1. ensure the security of information exchange (e.g., authentication of users, date

and time, secure transfer of data, etc. as discussed in the Chapter 14 [User

issues in security])

2. provide an efficient notification system that helps all users (citizens and

organizations) to monitor the progress of the process

3. provide flexible support to complex business rules (which might change

according to new regulations and laws)

4. support data exchange among several databases and legacy systems

5. be accessible and usable for a large and diverse public of users.

The development of successful electronic procedures is a complex activity that

requires diverse expertise in administrative processes and software development. Such

expertise can only be acquired by a multidisciplinary team that should be able to

harmoniously combine technical issues and expectations of all users, including

citizens and administrative clerks (which are respectively called external and internal

users [see this book outline]). Despite the fact that e-procurement applications often

focus on citizens as target users, we should not forget the important role played by

stakeholders. By “stakeholder” we mean administrative clerks and agents in charge of

receiving citizens’ applications, analyzing the data provided and deciding the

outcomes. These stakeholders work on the back end of the e-procurement application

and as a consequence they have a different view of e-procedures. (See chapter 18 for a

detailed discussion of the underlying complexity of eliciting and defining

stakeholders’ requirements for e-Government applications). Indeed, some complex

administrative procedures will ultimately require the processing of pieces of

information by many stakeholders, who work for different agencies and departments;

quite often, only a few stakeholders have the entire view of the underlying workflow.

In this context, it seems extremely important to provide each participant involved in

the development process with multiple views for e-procedures:

 an overall view of the different steps in the underlying workflow process

 a detailed view of tasks that users should perform at every step of the

procedure

 a detailed view of how the system supports user tasks in the execution of a

procedure

This chapter shows how to employ abstract representation (called models) to

supporting these three views of e-procurement applications. Such models can be used

to communicate design options and design decisions to all participants of the

development process, including the stakeholders. Beyond that, models are the ideal

place for stimulating information exchanges, for sharing them and for recording them.

The approach presented in this chapter combines several notations for representing

models that can additionally be used for engineering interactive systems. Our main

goal is twofold:

 define in an unambiguous way the behavior of several components (mainly

user tasks and e-procurement application behavior)

 provide a means to ensure the cross-consistency between these two

complementary views of the same socio-technical system

For this very purpose, we use two different notations for describing two types of

models: tasks models that represent the actions users should perform at every step of

an administrative procedure, and system models that describe how design options can

be implemented by the system to support user tasks. The word “system” is used here

to refer to the interactive and functional part of the e-procurement application. It does

not encompass the hardware and network parts even though they could be modeled

with adequate notations. We illustrate user task modeling by using a hierarchical

notation called HAMSTERS (which stands for Human-centered Assessment and

Modeling to Support Task Engineering for Resilient Systems). The system behavior is

described by the means of the StateWebCharts notation dedicated to the modeling of

Web-based applications. The use of these notations is illustrated on a real case study

extracted from the French Regional Administration (Région Midi-Pyrénées). When

used in an integrated and complementary way, these models can provide the various

stakeholders with detailed and structured information to understand the interrelations

between individual user’s tasks and the system’s behavior.

[H1]Development process for e-procurement applications

Models are valuable tools for reducing ambiguities of specifications, making large

and complex projects more manageable, documenting the design, and supporting the

communication among developers and stakeholders. Models can be useful at a

specific phase of development as well as throughout the application life cycle. The

main goal of this chapter is to show how model-based approaches can contribute to

the development process of e-procurement applications. To understand this, Figure

19.1 depicts a life cycle that illustrates the use of models along the development

process of Web applications as proposed by Scapin, Vanderdonckt, Farenc, Bastide,

Bastien, Leulier, Mariage & Palanque (2000). Currently, there is no consensus on

which phases of development are required or which life cycle better describes the

development process of e-procurement applications. Nonetheless, the lifecycle for

Web development can be helpful in understanding how e-procurement applications

are developed to be deployed on the Web platform. As we shall see, the lifecycle

presented in Figure 19.1 is an iterative process made up of six steps:

1. Requirements engineering: Identify the main goals of the stakeholders,

context of use, and requirements (see Chapter 18).

2. Specification: Produce models for describing the context of use and

requirements gathered in the previous phase. Detailed models formalize

requirements including user tasks and e-procurement application behavior, for

instance.

3. Design: Refine the specifications according to their content. At the end of this

phase a navigation map and page templates are prepared. This phase produces

detailed specification to guide the implementation of the Web application.

4. Development: Construct the Web application, produce the Web pages, and

integrate tools for visualizing media (e.g., sound, video). At the end of this

phase, all the pages have content, links and graphic elements incorporated: the

application is delivered.

5. Site usage and evaluation: Evaluate advanced prototypes with end users. The

product of previous phases is checked with respect to the requirements and the

context identified in the first phase. For further information about usability

evaluation along the development process the interested reader should refer to

chapter 17.

6. Maintenance: Gather new information, and plan modifications that have been

requested from the use and evaluation phase.

*** INSERT Figure 19.1 ***

[Caption]Figure 19.1 Life Cycle for Web application development

The process of Figure 19.1 is cyclical going sequentially through the 6 phases

presented above. However, it is widely known that interactive applications

development requires faster and sometimes incomplete iterations especially when

prototyping activities have to be performed. Fast iterations are represented in the

model by the two arrows (in dotted lines) in the middle of the loop. In Figure 19.1, the

arrow on the left-hand side indicates possible shortcuts of the specification phase.

Indeed, at the beginning of design, the information architects and web designers may

start immediately to design the site, to have precise information to exchange and

discuss with the stakeholders. The arrow on the right-hand side (implementation

changes) represents a possible shortcut for increasing development speed and taking

into account in a more central manner the usage and the evaluations.

In the next section we will focus on models used during the specification phase of

administrative e-procurement.

[H1]Modeling of e-procurement applications

An e-procurement application should coordinate seamlessly the relationships between

information concerning the organization, the underlying workflow process, and the

database (see Pontico, Farenc & Winckler, 2006). Figure 19.2 presents a graphical

representation of such information exchange between these three components in the

case of an e-procurement application dealing with the submission and evaluation of

students’ requests for scholarships. This example is similar to many of currently

available e-procurements in terms of coordination of activities, responsibilities and

resources. This example does not exhibit the critical aspects of the administrative

procedures and of the data handled in such contexts, but it has the advantage of both

simplicity and of conveying most of the concepts we want to address in this chapter.

*** INSERT Figure19.2 ***

[Caption] Figure19.2 Information flow between the organization, the process, and the

database

As we can see in Figure 19.2, a user can evaluate a submission only if the

corresponding document is available in the database and if the organization grants

him or her the rights associated to the role of reviewer. Notice that the task “Evaluate

a submission” is represented only through the relationships between actors. This way

of representing user tasks can be easily justified from an information systems point of

view, but it raises a big problem for understanding user activity on the system,

especially when actors must cooperate to perform a single activity (e.g., support the

discussion of a student application among administrative clerk and possibly a school

principal). Such graphical representation is usually perceived by the developers of

data intensive web application as sufficient (Ceri, Fraternali, Bongio, Brambilla,

Comai & Matera 2003) as it supports quite efficiently the identification of information

that has to be stored in the database. However, when it comes to the design of the

interactive part of the e-procurement application, there is a need to provide more

accurate behavioral description. In order to do so, two complementary perspectives

have to be described: all the tasks a user can perform with the system (this

representation is called tasks model), and a specification of all function- and

scheduling-centered behaviors that should be embedded into administrative e-

procurement applications (this description is called the system model). These two

models including the information they embed and how they are built are described in

the following sections.

[H2] Modeling user tasks

Task modeling has been proposed as a mean of recording information gathered in the

task analysis phase and is widely recognized as one fundamental way to focus on the

specific user needs and improve the general understanding of how users may interact

with a user interface to accomplish a given interactive goal (Diaper & Stanton, 2004).

Task models do not imply any specific implementation, so that one can focus on

dependencies between activities, availability of resources required to perform tasks

and steps users should follow to achieve a task.

Most notations for describing tasks feature a hierarchical organization of goals that

are connected by logical and temporal operators for expressing dependencies between

them. A task model should describe what users must do to accomplish a given goal

without including how the system processes information even though this might

determine the outcomes of a task execution. This is usually represented by alternative

paths in the task model making explicit the possible outcomes. For this reason, many

scenarios (which describe a unique sequence of task execution) can be produced from

a single task model. As we shall see in the case study below, one of the advantages of

modeling user tasks and scenarios is they help to analyze conflicts between users and

administrative goals long before system constraints are considered.

[H2] Modeling the system

Several user interface (UI) description languages (UIDLs) exist for describing the user

interface and the expected system behavior (see Shaer, Jacob, Green & Luyten 2009).

A UIDL might cover one or more of three different aspects of the UI: the static

structure of the user interfaces (including the description of user interface elements —

i.e., widgets — and their composition), the dynamic behavior (the dialog part,

describing the dynamic relationships between components, including event, actions,

and behavioral constraints), and the presentation attributes. For the sake of simplicity,

we will focus only on the behavioral aspects of the systems and, in particular, how we

can represent all the user navigation available on a Web portal featuring e-

procurement applications. This exhaustive set of navigations is called the system

model and should provide a clear description of system behavior, including how the

system processes user inputs and generates appropriate output. This system model

must then be exploited for prototyping the UI and in the implementation phases of the

development process.

[H1]Case study: modeling e-procurement applications

To illustrate the complementary use of task and system models, this section presents a

case study1 of an e-procurement application provided by the Regional French

Administration Midi-Pyrénées (RMP, www.midipyrenees.fr). We introduce all actors

involved and their interactions along the administrative procedures; however, due to

space constraints the models only embed citizens’ interactions.

[H2] Informal description of the case study

Our case study concerns an e-procedure developed as part of the BRPE program (the

French acronym for “Regional Scholarship for First Equipment”) whose aim is to

provide students with scholarships for buying the required equipment (e.g., for

1 This case study omits some internal aspects of the application.

hospitality students the purchase of knives, aprons, and suits) for attending classes in

vocational high schools. Like many other governmental programs, BRPE is a complex

program that integrates actors with diverse juridical status such as citizens

(students/parents), units of the regional governmental (RMP) units, state

governmental units (the accounting department), and educational units (high schools).

Educational units are controlled by Education Offices, which negotiate once a year

BRPE scholarships entire budget with RMP. For the sake of simplicity, Education

Offices, accounting departments and national banks will be considered as “state

units”.

A student can apply for a BRPE scholarship only once, and only while attending a

specific technical program in a vocational high school. High-school principals are in

charge of advising students about the calendar and procedures and helping them

prepare applications. BRPE applicants obtain forms from high-school principals. For

students under the age of majority, their parents or legal guardian must sign the form.

They send the forms and required documents (e.g., a bank account statement) to the

high-school principals, who verify the completeness of the forms and send the

complete ones to RMP. On receipt, RMP agents analyze BRPE applications. If the

application is accepted by RMP, the accounting department (a state institution distinct

from RMP) pays the BRPE scholarship through bank transfer to the account of the

student (or his or her parents). Figure 19.3 shows the general procedure and depicts

how the BRPE processes (gray boxes) are connected to outside processes (black

boxes).

*** insert Figure 19.3 ***

[Caption] Figure19.3 Overview of the BRPE process

From an administrative point of view, the procedure starts with the annual definition

of the amount of money allocated per scholarship which varies according to the

technical program (Figure 19.3, step 1). Scholarships are subject to annual budget

approval from the RMP’s council (step 2) which determines the number of

scholarships that can be founded. Students do not send applications directly to RMP:

the process is mediated by the principals, who notifies students (step 4) and explains

how they should fill in the form (step 5). Principals are also responsible for checking

that all required documents are present and that student regularly attend a vocational

high school (step 6). RMP receives student applications and verifies again their

correctness and eligibility (step 8). Problems (e.g., fraud, missing information) are

reported to the principals (step 7), who can also monitor (step 6) the status of

applications of students attending a program at their schools. Eligible applications are

duly recorded, and letters of credit are sent to recipients (step 9). Finally, RMP

addresses a payment request (step 10) to the accounting department (step 11). Table

19.1 shows the roles that have been identified for the application — “student” and

“Administrative clerks” — and their corresponding (allowed) tasks. The role

“student” includes profiles “students without login” and “registered students”. The

task “Query (for scholarships)” is available to everyone, but a user can apply for

scholarship only if s/he is logged in the system. The user role “Administrative clerks”

refers to someone who is responsible for supervising the submissions.

Table 19.1. Tasks associated with BRPE scholarship applications

Role User Profile Pre-conditions (allowed) Tasks

Student Student without login none Query (for scholarships)

Create an account

Log into the system

Registered students

logged in Query (for scholarship)

Update user account

Apply for scholarships

Monitor status of requests

Administrative

clerks
Full control over

scholarship

applications

logged in Process scholarship request

Notify students

[H2] Modeling user tasks for BRPE

User tasks for the BRPE have been modeled using HAMSTERS which is a graphical

notation for describing task models hierarchically. The notation is supported by a

software tool for the editing and simulation of the models and is publicly available2.

The elements of task models described by HAMSTERS include various tasks types

(e.g. abstract, system, user, and interactive tasks) aimed at expressing who performs

the task. Similar to other task model notations such as the Concur Task Tree (CTT)

notation (Paternò, Mancini & Meniconi, 1997), temporal and logical operators (e.g.

“[]” for choice, “>>” for sequence, “|||” order independency) are used to define the

relationships between tasks. Figure 19.4 presents a task model describing the set of

actions and their temporal ordering in order for a user to log into the system (user goal

represented at the top level of the task model). In order to reach this goal the user has

to perform the abstract task “Provide identification” which, in sequence (operator >>)

will be processed by the system “Validate user id”. In order to perform the

identification task the user can perform in any order (operator |||) “provide email” and

“provide password” tasks.

*** Insert Figure 19.4 ***

[Caption] Figure 19.4 Task model in HAMSTERS, describing a simple user login.

Figure 19.5 shows the task model of the students represented using HAMSTERS

notation corresponding to the goal “Submit BRPE”. The level immediately below

describes the tasks that users can perform without having a user account, such as

“Query (for scholarships)”, “Create account” and “Select scholarship” in any order

2 htpp://www.irit.fr/ICS/hamsters

(operator |||). Connected to that operator, the sequence operator “>>” indicates the fact

that the user must perform in sequence, first the task “Log into the system” and then

the task “Manage account”. The decision to start this sequence is performed in any

order with the tasks of the same level. The task “Select scholarship” is a cognitive

task which refers to user’s inner decision process. The process of refinement of tasks

proceeds until all the details for understanding the user goals and activities have been

reached. For example, the task “Query (for scholarships)” is decomposed into

“provide keyword” and “show results” (which have to be performed in sequence

(“>>”)), representing respectively the expected user input and the outcome provided

by the system.

The task ‘Apply for scholarship’ encompasses a set of subtasks that are required to

accomplishing the procedure that follows Figure 19.5 (Administrative constraints

cause the administration to request paper-based certificates, so the subtask “provide

certificates” is not supported by the system). Similarly, the task model describes how

a student can “submit forms” either online on its printed version (represented by the

choice operator “[]”).

*** insert figure 19.5 ***

[Caption] Figure19.5 HAMSTERS task model for the application BRPE

Exploiting the task model presented in Figure 19.5 can yield many scenarios. Table

19.2 shows three possible scenarios for the task “Apply for scholarship”. Scenario 1

considers the situation of a student that connects to the system and ultimately submits

forms online. In scenario 2 the user also connects to the system but finally decides to

submit printed forms. Scenario 3 describes the situation where a user updates account

information after the application is submitted. This might violate the constraint of

applying for a scholarship only while attending a specific technical program in a

vocational high school. Notice that these scenarios do not impose any particular

implementation; user tasks can be better understood without having information about

how the system will support them. This kind of analysis is possible because it

considers user tasks from the perspective of the users’ needs from the application,

rather than how to represent the user activity using a particular system.

Table 19.2. Three scenarios related to “manage account” subtask

Scenario 1 Scenario 2 Scenario 3

Apply to for scholarship

Prepare documents

Request application

form

Fill in forms

Submit forms

Submit forms online

Provide certificates

Process request

Monitor status

Apply to for scholarship

Prepare documents

Request application form

Fill in forms

Submit forms

Submit printed forms

Provide certificates

Process request

Monitor status

Apply to for scholarship

Prepare documents

Request application

form

Fill in forms

Submit forms

Submit forms online

Provide certificates

Process request

Update account

Update school

Monitor status

[H2] Modeling the navigation in the BRPE systems

To describe the navigation of the BPRE application, we employ the StateWebCharts

notation (SWC) (Winckler, Barboni, Farenc, & Palanque, 2004). SWC is a formal

description technique based on Harel’s (1987) StateCharts and developed to specify

the dynamic behavior of Web applications. StateCharts can be defined as a set of

states, transitions, events, conditions, variables, and their interrelationships. The

behavior described in SWC is directly related to the user interface. Sates in SWC, are

depicted on the user interface by means of containers for objects (graphic or

executable objects) e.g. HTML pages. During the execution of the model the current

state (and its content) is made visible to the users. SWC transitions explicitly

represent how user events trigger state changes in a model (user actions are

graphically represented as continuous arrows). Autonomous behaviors are graphically

represented as dashed arrows. When a user selects a transition the system leaves the

current state, which becomes inactive, letting the target state be the next active state in

the configuration. Figure 19.6 presents an excerpt of a system model using SWC

supporting user login.

*** Insert Figure 19.6***

[Caption] Figure 19.6 Simple login described using SWC

In Figure 19.6 the state “login” contains three static states “fill in email and pwd”,

“logged in”, “error: try again” that describe the three possible pages the user can see

whilst navigating the application. The state “check password” is a transient state that

represents the information processing performed at the server side without any visual

representation to the user. The round-shaped state is an “end state” used to describe

the end of the execution of the application. Notice the SWC model presented in Figure

19.5 is just one of many alternatives for defining the system behavior for performing

the task login depicted in Figure 19.4; nonetheless, it describes one agreed upon

design for the navigation of the login part of the BRPE application.

Figure 19.7 shows the complete navigation model for BRPE system including the

support for the tasks “Log into the system” and “Query (for scholarships)”. In

addition to the functions required to support the tasks represented in the task model, it

features some transitions supporting content-based navigation such as “home”,

“connected”. Simply by connecting states by means of transitions we can create all

the navigation required by the users, whether it concerns content-based navigation or

is navigation required to follow a specific procedure.

*** insert Figure19.7 ***

[Caption]Figure 19.7 SWC modeling for BRPE e-procurement application

[H2]Prototyping e-procurement applications from specifications

SWC notation is supported by a computer tool suite making it possible to edit and

execute models. This specificity support iterative prototyping as described in the

development process of Figure 19.1. After we have created and verified that the

navigation model embed our requirements, we can create the Web pages for the e-

procurement application that corresponds to the SWC model. When the navigation is

described, the graphical part of the user interface can be connected to the states of the

model while user events can be connected to transitions. Executing the models thus

allow for simulation of the user interface according to the high fidelity prototyping

philosophy. The SWCEditor supports the simultaneous simulation of SWC models

and the execution of the corresponding Web pages. Figure 19.8 provides a view-at-a-

glance of this process. The navigation modeling for the digital library of BRPE is

presented on the left-hand side of Figure 19.8, highlighting the current state in the

simulation (i.e., the state “home”). Its right-hand side presents the corresponding

implementation of the home page. We also can observe in the center of Figure 19.8 a

dialog window showing a list of transitions going out from the current state “home”.

This list represents the set of links currently available for the user navigation.

*** insert figure 19.8***

[Caption]Figure 19.8 Prototyping BRPE using SWC models connected to a web page

[H1] Discussion

This chapter has illustrated the use of task models and system models for dealing with

the development of e-procurement applications. The case study presented might look

small but it exhibits the huge importance that models will play in the development of

even more complex applications. Without appropriate support from models, the

development team will get lost and the chance of unexpected and undesired behaviors

would increase. These models provide different point of views on the same socio-

technical system so that when working in multidisciplinary teams all stakeholders can

use the most suitable model to make explicit their concerns and requirements to be

embedded in the final application.

Most of existing development methods for web applications bases their conceptual

modeling on the objects (or data) and their related methods, functions, or services, and

they derive tasks from the traditional CRUD (Create, Read, Update, Delete) pattern:

tasks are limited to basic operations on objects and their relationships (Ceri et al,

2003). These data-centric development methods only integrate the graphical and

interaction designers' point of view by means of stereotypes preventing any creativity

about the user interface presentation and navigation.

The use of task models reinforces the focus on users during the development process

of application. Indeed, we must pay attention to the users’ tasks to help users navigate

the application effectively and efficiently. Several other approach for designing e-

procedures exist, many of which do not include explicit representation of user tasks.

Even though task modeling is widely considered as helpful activity that lets design

analyze the user activity without the influence of technological constraints, the actual

use of task models for the design of e-procurement applications is often

misunderstood, mainly because current approaches for the design do not provide any

guidance on how to integrate task models into the design process. This chapter

focused on tasks models and system models rather than on the underlying workflow

process of e-procedure applications. Nonetheless, the workflow can be derived from

the co-execution of task models and navigation models.

One of the key contributions of the models presented in this chapter is that task

models (HAMSTERS) and system models (SWC) can be integrated and that their

compatibility can be assessed prior to implementation. For instance, if the task model

features 4 interactive tasks then the system model should embed the same set of

transitions between states. Beyond that lexical compatibility, syntactic compatibility

has to be insured too. For instance, if there is a sequence of actions in the task model

(describing a constraint in user activity that can be administrative, physical or

cognitive) this constraint must be reflected in the system model. This is precisely

where the power of models is exacerbated. While checking-by-testing such

compatibility is impossible due to the potentially very large number of states and state

changes, models bissimulation and model-checking techniques can provide efficient

solutions. Bissimulation of task models and system models is detailed by Barboni,

Ladry, Navarre, Palanque & Winckler (2010).

One of the key assumptions of the approach presented here is that user activity should

be represented in tasks models only and that system behavior should only be

represented in the system models. Keeping the content of task models different from

(but compatible with) the system models allows provide methodological guidelines

about the construction of these models. A task model should not inform how many

pages a user must visit to accomplish a task because this is often a system constraint.

A scholarship application form such as BRPE might feature a single page in a Web

browser on a desktop but designers can decide to slice the form in several pages

accordingly to groups of information requested. Moreover, accessing the same

application through a mobile Web browser will request that form will be sliced into

many pages. Notwithstanding the number of pages used to present the BRPE form,

the user task remains the same.

It is important to note that several other models have been proposed over the last

decade that might fit with the objectives and processes presented in this chapter. We

only presented SWC and HAMSTERS to illustrate the applicability of the concepts

and the benefits that can be gained following such an approach.

[H1] Success factors for modeling users and systems behaviors for e-procurement

applications

The following check list is supposed to help the reader with key information while

using a model-based approach and a model-based development process as presented

in this chapter.

- Keep clear the distinction between the information included in the task model

and the system model

- The system model should exhibit infinite sequences supporting the same tasks

to be executed by several users one after the other. The execution of one task

should not impact the future execution.

- The tasks model should terminate. An iterative tasks model would represent

the fact that infinite sequences of action are required for reaching a goal.

- Do not start using models if there is no tool support for editing the models

- A simulation engine allowing to “see” how the model behaves is required

- Make sure to reflect in the models all the changes that are made on the

application otherwise there would lose their interest as a tool for analysis and

information sharing

- Make sure that your models are readable and understandable by the various

stakeholders so that they can validate and modify them

- Reading and building a model requires different skills (don’t expect

stakeholder with a non-technical background to build system models)

- If you use a multiple models approach make sure that there is a support to

assess cross-models compatibility as performing it by hand is usually

unmanageable

- Do not try to use models everywhere. Models should be kept for the complex

part of the system and for the complex user tasks. The rest of the system can

be built using prototyping approaches. There are different ways to identify

these complexities (looking at user and/or system failures are a good

indicator).

 [H2]References

Barboni, E., Ladry, J.-F., Navarre, D., Palanque, P., & Winckler, M. (2010). Beyond

Modelling: An Integrated Environment Supporting Co-Execution of Tasks and

Systems Models. In proceedings of ACM Symposium on Engineering Interactive

Systems (EICS'2010), New York, United States : Sheridan.

Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S. & Matera, M. (2003).

Designing Data-Intensive Web Applications. San Franscico, United States: Morgan-

Kaufmann Publishers.

Diaper, D., & Stanton, N. A. (2004). The Handbook of Task Analysis for Human-

Computer Interaction. Mahwah, New Jersey: Lawrence Erlbaum Associates.

Harel, D. (1987). StateCharts: A Visual Formalism for Complex Systems. Science of

Computer Programming, 8(3), pp. 231-274, Amsterdam: Elsevier.

Martinie, C., Palanque, P., & Winckler, M. (2011). Structuring and Composition

Mechanism to Address Scalability Issues in Task Models. In Proceedings of IFIP

TC13 Conference on Human-Computer Interaction (INTERACT 2011), 593-611,

LNCS 6949, Berlin: Springer.

Paterno, F., Mancini, C., & Meniconi, S. (1997). ConcurTaskTrees: A Diagrammatic

Notation for Specifying Task Models. In Proceedings of the IFIP TC13 Conference on

Human-Computer Interaction (INTERACT’97), 362-369, London: Chapman & Hall.

Pontico, F., Farenc, & C., Winckler, M. (2006). Model-based support for specifying

eService eGovernment Applications. In Proceedings of the 5th International

Workshop on TAsk MOdels and DIAgrams (TAMODIA’2006), 54-67, LNCS 4385.

Berlin: Springer.

Scapin, D., Vanderdonckt, J., Farenc, C., Bastide, R., Bastien, C., Leulier, C.,

Mariage, C., & Palanque, P. (2000). Transferring Knowledge of User Interfaces

Guidelines to the Web. In Proceedings of TWWG 2000: International Conference on

Tools for Working With Guidelines, 293-304, London, UK: Springer.

Shaer, O., Jacob, R. J. K;, Green, M., & Luyten, K. (special editors). (2009). User

Interface Description Languages for Next Generation User Interfaces. Special Issue of

ACM Transactions on Computer-Human Interaction (ACM TOCHI), 16(4), New

York: ACM.

Winckler, M., Barboni, E., Farenc, C., & Palanque, P. (2004). SWCEditor: a Model-

Based Tool for Interactive Modelling of Web Navigation. In Proceedings of

International Conference on Computer-Aided Design of User Interface

(CADUI'2004), Kluwer Academic Publisher.

