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n 1 be a sequence of independent and identically distributed random real d × d matrices with law µ. Consider the random walk Gn := gn . . . g1 on the general linear group GL d (R) and the Markov chain X x n := Gnx/|Gnx|, where x is a starting point on the unit sphere S d-1 . Denote respectively by Gn and ρ(Gn) the operator norm and the spectral radius of Gn. For log Gn and log ρ(Gn), we prove moderate deviation principles under exponential moment and strong irreducibility conditions on µ; we also establish moderate deviation expansions in the normal range [0, o(n 1/6 )] and Berry-Esseen bounds under the additional proximality condition on µ. Similar results are found for the couples (X x n , log Gn ) and (X x n , log ρ(Gn)) with target functions.

= {x ∈ R d , |x| = 1}/± be the projective space in R d , obtained from the unit sphere S d-1 by identifying -x with x. For any g ∈ G, denote by g = sup x∈P d-1 |gx| its operator norm, and by ρ(g) its spectral radius. Let (g n ) n 1 be a sequence of independent and identically distributed (i.i.d.) random matrices with law µ on the group G. Consider the random walk G n = g n . . . g 1 on G, and the Markov chain X x n := G n x/|G n x| on P d-1 with any starting point x ∈ P d-1 . The goal of this paper is to investigate Berry-Esseen type bounds and moderate deviation asymptotics for the operator norm G n and the spectral radius ρ(G n ), and more generally, for the couples (X x n , log G n ) and (X x n , log ρ(G n )) with target functions on X x n .

Let Γ µ be the smallest closed subsemigroup of G generated by the support of µ. Denote N (g) = max{ g , g -1 } for any g ∈ G. Consider the following conditions.

A1 (Exponential moments).

There is a constant δ > 0 such that E[N (g 1 ) δ ] < ∞.

A2 (Strong irreducibility).

No finite union of proper subspaces of R d is Γ µinvariant, that is, there do not exist a finite number of proper subspaces

V 1 , • • • , V m of R d such that g(V 1 ∪ . . . ∪ V m ) = V 1 ∪ . . . ∪ V m for all g ∈ Γ µ .
A3 (Proximality). Γ µ contains at least one matrix with a unique eigenvalue of maximal modulus.

Notice that in condition A2, Γ µ can be replaced by G µ , the smallest closed subgroup of G generated by the support of µ. In fact, the set S = {g ∈ G :

g(V 1 ∪ . . . ∪ V m ) = V 1 ∪ . . . ∪ V m } is a subgroup of G, so that Γ µ ⊂ S if and only if G µ ⊂ S, which means that V 1 ∪ . . . ∪ V m is Γ µ -invariant if and only if V 1 ∪ . . . ∪ V m is G µ -invariant.
The topic of products of random matrices has a very rich history and has been studied by many authors. The main distinct feature compared with the case of a sum of i.i.d. real-valued random variables lies in the fact that the matrix product is no longer commutative. Furstenberg and Kesten [START_REF] Furstenberg | Products of random matrices[END_REF] first established the strong law of large numbers for the operator norm G n : if E[max{0, log g 1 }] < ∞, then as n → ∞, 1 n log G n → λ almost surely, where λ is a constant called top Lyapunov exponent of the random walk (G n ). This result can be considered as an immediate consequence of Kingman's subadditive ergodic theorem [START_REF] Kingman | Subadditive ergodic theory[END_REF]. The central limit theorem for G n is due to Le Page [START_REF] Page | Théorèmes limites pour les produits de matrices aléatoires[END_REF] (see also Bougerol and Lacroix [START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF]): if conditions A1, A2 and A3 hold, then for any y ∈ R and any continuous function ϕ on

P d-1 , uniformly in x ∈ P d-1 , lim n→∞ E ϕ(X x n )1 log Gn -nλ σ √ n y = ν(ϕ)Φ(y), (1.1) 
where σ 2 > 0 is the asymptotic variance of the random walk (G n ) n 1 , Φ is the standard normal distribution function, and ν is the unique stationary probability measure of the Markov chain (X x n ) n 0 . Recently, using Gordin's martingale approximation method, Benoist and Quint [START_REF] Benoist | Central limit theorem for linear groups[END_REF] have relaxed the exponential moment condition A1 to the optimal second moment condition that E[log 2 N (g 1 )] < ∞.

Similar law of large numbers and central limit theorem have been known for the spectral radius ρ(G n ). Using the Hölder regularity of the stationary measure ν (see [START_REF] Guivarc | Frontiere de Furstenberg, propriétés de contraction et théorèmes de convergence[END_REF][START_REF] Guivarc | Produits de matrices aléatoires et applications aux propriétés géométriques des sous-groupes du groupe linéaire[END_REF]), Guivarc'h [START_REF] Guivarc | Produits de matrices aléatoires et applications aux propriétés géométriques des sous-groupes du groupe linéaire[END_REF] has established the strong law of large numbers for ρ(G n ): under conditions A1, A2 and A3, 1 n log ρ(G n ) → λ almost surely. Recently, under the same conditions, Benoist and Quint [START_REF] Benoist | Random walks on reductive groups[END_REF] established the central limit theorem for ρ(G n ): for any y ∈ R,

lim n→∞ P log ρ(G n ) -nλ σ √ n y = Φ(y).
Further improvements have been done very recently: Aoun and Sert [START_REF] Aoun | Law of large numbers for the spectral radius of random matrix products[END_REF] proved the strong law of large numbers for ρ(G n ) assuming only the second moment condition E[log 2 N (g 1 )] < ∞, while Aoun [START_REF] Aoun | The central limit theorem for eigenvalues[END_REF] proved the central limit theorem for ρ(G n ) under the second moment condition, the strong irreducibility condition A2 and the unboundedness assumption of the semigroup Γ µ . Very little has been known about the Berry-Esseen bounds and moderate and large deviations, for the operator norm G n and the spectral radius ρ(G n ). For Berry-Esseen type bounds, Cuny, Dedecker and Jan [START_REF] Cuny | Limit theorems for the left random walk on GL(d,R)[END_REF] (see also Cuny, Dedecker and Merlevède [START_REF] Cuny | Rates of convergence in invariance principles for random walks on linear groups via martingale methods[END_REF] in a more general setting) have recently established the following result about the rate of convergence in the central limit theorem for G n : assuming E[log 3 N (g 1 )] < ∞, A2 and A3, we have

sup y∈R P log G n -nλ σ √ n y -Φ(y) C √ log n n 1/4 .
(

However, the rate of convergence in the central limit theorem for the couple (X x n , log G n ) (cf. (1.1)) has not been known in the literature. For the spectral radius ρ(G n ) and the couple (X x n , log ρ(G n )), such type of result has not yet been considered.

Moderate deviations have not yet been studied neither for G n nor for ρ(G n ), to the best of our knowledge. For large deviations, the upper tail large deviation principle for G n has been established in [START_REF] Sert | Large deviation principle for random matrix products[END_REF] and [START_REF] Xiao | Precise large deviation asymptotics for products of random matrices[END_REF] under different conditions; it is conjectured in [START_REF] Sert | Large deviation principle for random matrix products[END_REF] that the usual large deviation principle would hold for ρ(G n ).

1.2. Objectives. In this paper, we shall establish Berry-Esseen type bounds and moderate deviation results for both the operator norm G n and the spectral radius ρ(G n ). Such kinds of results are important in applications because they give the rate of convergence in the central limit theorem and in the law of large numbers.

Our first objective is to establish the following Berry-Esseen type bound concerning the rate of convergence in the central limit theorem (1.1): under conditions A1, A2 and A3, for any continuous function ϕ on P d-1 , we have, sup

x∈P d-1 sup y∈R E ϕ(X x n )1 log Gn -nλ σ √ n y -ν(ϕ)Φ(y) C log n √ n . (1.3)
In particular, with ϕ = 1, the bound (1.3) clearly improves (1.2). See Theorem 2.1 where a slightly stronger conclusion is given.

Our second objective is to prove the moderate deviation principle for the couple (X x n , log G n ) (see Theorem 2.3): under conditions A1, A2 and A3, for any non-negative Hölder continuous function ϕ on P d-1 satisfying ν(ϕ) > 0, for any Borel set B ⊆ R and any positive sequence (b n ) n 1 satisfying bn √ n → ∞ and bn n → 0, we have, uniformly in

x ∈ P d-1 , -inf y∈B • y 2 2σ 2 lim inf n→∞ n b 2 n log E ϕ(X x n )1 log Gn -nλ bn ∈B lim sup n→∞ n b 2 n log E ϕ(X x n )1 log Gn -nλ bn ∈B -inf y∈ B y 2 2σ 2 , ( 1.4) 
where B • and B are respectively the interior and the closure of B. Note that the moderate deviation principle (1.4) is proved under the proximality condition A3. This condition ensures that the Markov chain (X x n ) has a unique stationary measure ν on the projective space P d-1 . When condition A3 fails, we are still able to prove the following moderate deviation principle for G n (see Theorem 2.4) whenever σ > 0: there exists a constant σ 0 > 0 such that for any Borel set B ⊆ R and any positive sequence

(b n ) n 1 satisfying bn √ n → ∞ and bn n → 0, we have, -inf y∈B • y 2 2σ 2 0 lim inf n→∞ n b 2 n log P log G n -nλ b n ∈ B lim sup n→∞ n b 2 n log P log G n -nλ b n ∈ B -inf y∈ B y 2 2σ 2 0 . (1.5)
This is rather interesting compared with the large deviation case, since when the proximality condition A3 fails, the rate function in the large deviation principle is not known (in fact we do not even know whether the large deviation principle holds). Our third objective is to establish the moderate deviation expansion in the normal range [0, o(n 1/6 )] for the couples (X x n , log G n ) with a target function (see Theorem 2.6 for a slightly stronger version): under conditions A1, A2 and A3, for any Hölder continuous function ϕ on P d-1 , we have, uniformly in

x ∈ P d-1 and y ∈ [0, o(n 1/6 )], E ϕ(X x n )1 {log Gn -nλ √ nσy} 1 -Φ(y) = ν(ϕ) + o(1). (1.6)
The expansion (1.6) has not been known in the literature even when ϕ = 1.

The result is interesting because it gives a precise comparison between the moderate deviation probability P log G n -nλ √ nσy with the normal tail 1 -Φ(y). The range y ∈ [0, o(n 1/6 )] is the best for such a comparison.

All the above mentioned results (1.3), (1.4), (1.5) and (1.6) are concerned with the operator norm G n , but we shall also establish the analog of these results for the spectral radius ρ(G n ). 1.3. Proof outline. In [START_REF] Cuny | Limit theorems for the left random walk on GL(d,R)[END_REF][START_REF] Cuny | Rates of convergence in invariance principles for random walks on linear groups via martingale methods[END_REF], the proof of (1.2) consists of establishing the central limit theorem with rate of convergence in Wasserstein's distance utilizing the martingale approximation method developed in [START_REF] Benoist | Central limit theorem for linear groups[END_REF]. With this approach, even if we obtain the best rate of convergence 1 √ n in Wasserstein's distance, while passing to the Kolmogorov distance we can only get the rate 1 n 1/4 in the Berry-Esseen bound. To get a better bound, a new approach is needed. Our proof of (1.3) is based on the Berry-Esseen bound for the couple (X x n , log |G n x|) recently established in [START_REF] Xiao | Berry-Esseen bound and precise moderate deviations for products of random matrices[END_REF] and on the following precise comparison between G n and |G n x| established in [START_REF] Benoist | Random walks on reductive groups[END_REF]: for any a > 0, there exist c > 0 and k 0 ∈ N such that for all n k k 0 and x ∈ P d-1 ,

P log G n G k -log |G n x| |G k x| e -ak > 1 -e -ck .
(1.7)

The basic idea to utilize this powerful inequality consists in carefully choosing certain integer k, taking the conditional expectation with respect to the filtration σ(g 1 , . . . , g k ) and using the large deviation bounds for log G k . This technique, in conjugation with limit theorems for the norm cocycle log |G n-k x|, makes it possible to prove corresponding results for log G n ; see [START_REF] Benoist | Random walks on reductive groups[END_REF] where a local limit theorem for log G n has been established by taking k = log 2 n , where a denotes the integral part of a. In this paper, the proof of (1.3) is carried out by choosing k = C 1 log n with a sufficiently large constant C 1 > 0 and by using the Berry-Esseen bound for the couple (X x n , log |G n x|) with a target function ϕ on X x n . In the same spirit, the moderate deviation principle (1.4) for the couple (X x n , log G n ) is established using the moderate deviation principle for the couple (X x n , log |G n x|) proved in [START_REF] Xiao | Berry-Esseen bound and precise moderate deviations for products of random matrices[END_REF], together with the inequality (1.7) with k = C 1 b 2 n n , where the constant C 1 is sufficiently large and the sequence (b n ) n 1 is given in (1.4).

As to the moderate deviation principle (1.5) for log G n without assuming the proximality condition A3, its proof is more technical and delicate than that of (1.4). Indeed, when condition A3 fails, the transfer operator of the Markov chain (X x n ) n 0 has no spectral gap in general and it may happen that (X x n ) n 0 possesses several stationary measures on the projective space P d-1 . In this case, it becomes hopeless to prove a general form of (1.5) when a target function ϕ on X x n is taken into account. Nevertheless, the proof of (1.5) can be carried out by following the approach of Bougerol and Lacroix [START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF] (first announced in [START_REF] Bougerol | Stabilité en probabilité des équations différentielles stochastiques linéaires et convergence de produits de matrices aléatoires[END_REF]), where central limit theorems and exponential large deviation bounds for G n and |G n x| were established without giving the rate function. Specifically, employing this approach consists in finding the proximal dimension p of the semigroup Γ µ generated by the matrix law µ and then applying Chevaley's algebraic irreducible representation [START_REF] Chevalley | Théorie des groupes de Lie[END_REF] of the exterior powers ∧ p R d , to show that the action of the semigroup Γ µ is strongly irreducible and proximal on ∧ p R d . Using this strategy together with (1.4) for ϕ = 1, we are able to establish (1.5) .

For the proof of the Cramér type moderate deviation expansion (1.6) in the normal range [0, o(n 1/6 )], when y ∈ [0, 1 2

√

log n], we deduce the desired result from the Berry-Esseen type bound (1.3); when y ∈ [ 1 2

√

log n, o(n 1/6 )], we make use of the moderate deviation expansion for the couple (X x n , log |G n x|) recently established in [START_REF] Xiao | Berry-Esseen bound and precise moderate deviations for products of random matrices[END_REF] and the aforementioned inequality (1.7) with k = C 1 y 2 , where C 1 > 0 is a sufficiently large constant.

All of the aforementioned results (1.3), (1.4), (1.5) and (1.6) for the operator norm G n turn out to be essential to establish analogous Berry-Esseen type bounds and moderate deviation results for the spectral radius ρ(G n ). Another important ingredient in our proof is the precise comparison between ρ(G n ) and G n established in [START_REF] Benoist | Random walks on reductive groups[END_REF]; see Lemma 3.3 below.

Main results

To formulate our main results, we introduce some notation below. Let C(P d-1 ) be the space of continuous complex-valued functions on P d-1 and 1 be the constant function with value 1. All over the paper we assume that γ > 0 is a fixed small enough constant. We equip the projective space P d-1 with the angular distance d defined by d(x, y) = |x ∧ y| for x, y ∈ P d-1 , where x ∧ y denotes the exterior product of x and y. Consider the Banach space B γ := {ϕ ∈ C(P d-1 ) : ϕ γ < +∞}, where

ϕ γ := ϕ ∞ + sup x =y |ϕ(x) -ϕ(y)| d γ (x, y) with ϕ ∞ := sup x∈P d-1 |ϕ(x)|.
For any g ∈ G and x ∈ P d-1 , we write g • x := gx |gx| for the projective action of g on the projective space P d-1 . Consider the Markov chain

X x 0 = x, X x n = G n • x, n 1.
Under conditions A1, A2 and A3, the chain (X x n ) n 0 possesses a unique stationary measure ν on P d-1 such that µ * ν = ν (see [START_REF] Guivarc | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF]), where µ * ν denotes the convolution of µ and ν. It is worth mentioning that if the proximality condition A3 fails, then the stationary measure ν may not be unique (see [START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF][START_REF] Benoist | Random walks on reductive groups[END_REF]). It was shown in [START_REF] Benoist | Random walks on reductive groups[END_REF]Proposition 14.17] that the asymptotic variance σ 2 of the random walk (G n ) n 1 can be given by

σ 2 = lim n→∞ 1 n E log G n -nλ 2 .
Throughout the paper, we denote by Φ the standard normal distribution function on R. We write c, C for positive constants whose values may change from line to line.

2.1. Berry-Esseen type bounds. In this subsection, we present Berry-Esseen type bounds for the couples (X x n , log G n ) and (X x n , log ρ(G n )) with target functions on the Markov chain (X x n ) n 0 . Recall that by Gelfand's formula, it holds that ρ(g) = lim k→∞ g k 1/k for any g ∈ G.

Theorem 2.1. Assume conditions A1, A2 and A3. Then there exists a constant C > 0 such that for all n 1,

x ∈ P d-1 , y ∈ R and ϕ ∈ B γ , E ϕ(X x n )1 log Gn -nλ σ √ n y -ν(ϕ)Φ(y) C log n √ n ϕ γ (2.1)
and

E ϕ(X x n )1 log ρ(Gn)-nλ σ √ n y -ν(ϕ)Φ(y) C log n √ n ϕ γ . (2.2)
Using the fact that all matrix norms are equivalent, one can verify that in (2.1), the operator norm • can be replaced by any matrix norm.

In particular, taking ϕ = 1 in (2.1) and (2.2), we have: under conditions A1, A2 and A3, for all n 1 and y ∈ R,

P log G n -nλ σ √ n y -Φ(y) C log n √ n , (2.3) 
P log ρ(G n ) -nλ σ √ n y -Φ(y) C log n √ n . ( 2 

.4)

As mentioned before, the Berry-Esseen type bound (2.3) improves (1.2) established recently by Cuny, Dedecker and Jan [START_REF] Cuny | Limit theorems for the left random walk on GL(d,R)[END_REF].

The result with a general target function ϕ is worth some comments. On the one hand, it concerns the joint distribution of the couples (X x n , log G n ) and (X x n , log ρ(G n )), which give more information and can lead to interesting applications. On the other hand, the extension from the case ϕ = 1 to general ϕ is not trivial, for which a significant difficulty appears. The difficulty will be overcome by using the Berry Esseen bound for the couple

(X x n , log |G n x|).
It is natural to make the conjecture that the optimal rate of convergence on the right hand sides of (2.1), (2.2), (2.3) and (2.4) 

should be C √ n instead of C log n √ n .
For positive matrices, these optimal bounds have been proved in [START_REF] Xiao | Berry-Esseen bounds and moderate deviations for the norm, entries and spectral radius of products of positive random matrices[END_REF]. However, the proofs of the conjecture for invertible matrices seem to be rather delicate, for which new ideas and techniques are required. Nevertheless, we can prove the optimal bound C √ n for large values of |y|, as indicated in the following remark which will be seen in the proof of Theorem 2.1. 

Remark 2.2. Under the same conditions as in

(b n ) n 1 satisfying bn √ n → ∞ and bn n → 0, we have, uniformly in x ∈ P d-1 , -inf y∈B • y 2 2σ 2 lim inf n→∞ n b 2 n log E ϕ(X x n )1 log Gn -nλ bn ∈B lim sup n→∞ n b 2 n log E ϕ(X x n )1 log Gn -nλ bn ∈B -inf y∈ B y 2 2σ 2 , (2.5) and -inf y∈B • y 2 2σ 2 lim inf n→∞ n b 2 n log E ϕ(X x n )1 log ρ(Gn)-nλ bn ∈B lim sup n→∞ n b 2 n log E ϕ(X x n )1 log ρ(Gn)-nλ bn ∈B -inf y∈ B y 2 2σ 2 , ( 2.6) 
where B • and B are respectively the interior and the closure of B.

Note that the target function ϕ in (2.5) and (2.6) is not necessarily strictly positive, and it can vanish somewhere on the projective space P d-1 . The moderate deviation principles (2.5) and (2.6) are all new, even for ϕ = 1.

If we only consider the operator norm G n or the spectral radius ρ(G n ), instead of the couples (X x n , log G n ) and (X x n , log ρ(G n )), we are still able to establish moderate deviation principles without assuming the proximality condition A3: Theorem 2.4. Assume conditions A1, A2 and σ 2 > 0. Then, there exists a constant σ 0 > 0 such that for any Borel set B ⊆ R and any positive sequence

(b n ) n 1 satisfying bn √ n → ∞ and bn n → 0, we have, -inf y∈B • y 2 2σ 2 0 lim inf n→∞ n b 2 n log P log G n -nλ b n ∈ B lim sup n→∞ n b 2 n log P log G n -nλ b n ∈ B -inf y∈ B y 2 2σ 2 0 , (2.7) and -inf y∈B • y 2 2σ 2 0 lim inf n→∞ n b 2 n log P log ρ(G n ) -nλ b n ∈ B lim sup n→∞ n b 2 n log P log ρ(G n ) -nλ b n ∈ B -inf y∈ B y 2 2σ 2 0 , (2.8)
where B • and B are respectively the interior and the closure of B.

Remark 2.5. Assume conditions A1 and A2. Let

Γ µ,1 = {| det(g)| -1/d g : g ∈ Γ µ }
be the set of elements of Γ µ normalized to have determinant 1.

(1) If Γ µ,1 is not contained in a compact subgroup of G, then σ > 0, as will be seen in the proof of Theorem 2.4 .

(2) If Γ µ,1 is contained in a compact subgroup of G, then c 1 = inf{ g : g ∈ Γ µ,1 } > 0 and c 2 = { g : g ∈ Γ µ,1 } < ∞, so that c d 1 | det(g)| g d c d 2 | det(g)| ∀g ∈ Γ µ . (2.9) Since log | det(G n )| = n i=1 log | det(g i )| is a sum of i.i.d. real-valued random variables, from (2.9) (applied to g = G n ) it follows di- rectly that the moderate deviation principle (2.7) holds with λ = 1 d E log | det(g 1 )| and σ 2 0 = E[( 1 d log | det(g 1 )| -λ) 2 ]
(which coincide with their original definitions), provided that | det(g 1 )| is not a.s. a constant (which is equivalent to σ 2 0 > 0).

In fact, in the second case of the remark above, log G n can be expressed exactly as a sum of of i.i.d. real-valued random variables when the norm

• is suitably chosen, as observed by Bougerol and Lacroix [START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF]. See also Lemma 4.5 in subsection 2.3.

Moderate deviation expansions.

In this subsection we formulate the Cramér type moderate deviation expansions in the normal range for the operator norm G n and the spectral radius ρ(G n ). Our first result concerns the operator norm G n . Theorem 2.6. Assume conditions A1, A2 and A3. Then, we have, uniformly in

x ∈ P d-1 , y ∈ [0, o(n 1/6 )] and ϕ ∈ B γ , as n → ∞, E ϕ(X x n )1 {log Gn -nλ √ nσy} 1 -Φ(y) = ν(ϕ) + ϕ γ o(1), (2.10) E ϕ(X x n )1 {log Gn -nλ - √ nσy} Φ(-y) = ν(ϕ) + ϕ γ o(1). (2.11)
In particular, taking ϕ = 1, we obtain the following moderate deviation expansion for the operator norm G n in the normal range: uniformly in y ∈ [0, o(n 1/6 )], as n → ∞, 1), (2.12)

P log G n -nλ √ nσy 1 -Φ(y) = 1 + o(
P log G n -nλ - √ nσy Φ(-y) = 1 + o(1). (2.13)
The expansions (2.12) and (2.13) are also new. The proof of Theorem 2.6 is based on the Cramér type moderate deviation expansion for the couple (X x n , log |G n x|) proved recently in [START_REF] Xiao | Berry-Esseen bound and precise moderate deviations for products of random matrices[END_REF], and on a fine comparison between the operator norm G n and the vector norm |G n x| established in [START_REF] Benoist | Random walks on reductive groups[END_REF] (see Lemma 3.2 below). Note that Theorem 2.6 covers the special case where ν(ϕ) = 0; in this case the exact comparison with the normal tail remains open.

Our second result concerns the moderate deviation expansions for the spectral radius ρ(G n ), also in the normal range.

Theorem 2.7. Assume conditions A1, A2 and A3. Then, we have, uniformly in

x ∈ P d-1 , y ∈ [0, o(n 1/6 )] and ϕ ∈ B γ , as n → ∞, E ϕ(X x n )1 {log ρ(Gn)-nλ √ nσy} 1 -Φ(y) = ν(ϕ) + ϕ γ o(1), (2.14) E ϕ(X x n )1 {log ρ(Gn)-nλ - √ nσy} Φ(-y) = ν(ϕ) + ϕ γ o(1). (2.

15)

Taking ϕ = 1, we obtain the following moderate deviation expansions for the spectral radius ρ(G n ) which are also new: uniformly in y ∈ [0, o(n 1/6 )], as n → ∞,

P log ρ(G n ) -nλ √ nσy 1 -Φ(y) = 1 + o(1), ( 2.16 
)

P log ρ(G n ) -nλ - √ nσy Φ(-y) = 1 + o(1).
(2.17)

The proof of Theorem 2.7 relies on Theorem 2.6 and on an estimate of the difference between spectral radius ρ(G n ) and the operator norm G n established in [START_REF] Benoist | Random walks on reductive groups[END_REF] (see Lemma 3.3). Like in Theorem 2.6, Theorem 2.7 also covers the case where ν(ϕ) = 0, for which the exact comparaison with the normal tail is not known.

Berry-Esseen type bounds

The goal of this section is to prove Theorem 2.1 about Berry-Esseen type bounds for the operator norm G n and for the spectral radius ρ(G n ). We will need the following Berry-Esseen bound for the norm cocycle log |G n x| established in [START_REF] Xiao | Berry-Esseen bound and precise moderate deviations for products of random matrices[END_REF]. Lemma 3.1. Assume conditions A1, A2 and A3. Then, we have, uniformly in

x ∈ P d-1 , y ∈ R and ϕ ∈ B γ , E ϕ(X x n )1 log |Gnx|-nλ σ √ n y -ν(ϕ)Φ(y) C √ n ϕ γ .
The following result is an interesting comparison theorem for log G n and log |G n x|. It shows that the difference between log Gn G k and log |Gnx| |G k x| is smaller than any exponential rate e -ak for any a > 0 and k n, with large probability. Lemma 3.2. Assume conditions A1, A2 and A3. Then, for any a > 0, there exist c > 0 and k 0 ∈ N, such that for all n k k 0 and x ∈ P d-1 ,

P log G n G k -log |G n x| |G k x| e -ak > 1 -e -ck .
Lemma 3.2 was established in [START_REF] Benoist | Random walks on reductive groups[END_REF]Lemma 17.8] and has been used to prove the local limit theorem for the operator norm G n : see [START_REF] Benoist | Random walks on reductive groups[END_REF]Theorem 17.9].

Proof of (2.1) of Theorem 2.1. Without loss of generality, we assume that the target function ϕ is non-negative. On the one hand, using Lemma 3.1 and the fact that log G n log |G n x|, we easily get the following upper bound: there exists a constant C > 0 such that for all x ∈ P d-1 , y ∈ R and ϕ ∈ B γ ,

I n := E ϕ(X x n )1 log Gn -nλ σ √ n y ν(ϕ)Φ(y) + C √ n ϕ γ . (3.1)
On the other hand, applying Lemma 3.2, we deduce that for any a > 0, there exist c > 0 and k 0 ∈ N, such that for all n k k 0 , it holds uniformly in x ∈ P d-1 and ϕ ∈ B γ that

I n E ϕ(X x n )1 log Gn -nλ σ √ n y 1 log Gn -log |Gnx| |G k x| -log G k e -ak E ϕ(X x n )1 log |Gnx|-log |G k x|+log G k -nλ+e -ak σ √ n y -e -ck ϕ ∞ . (3.2)
For simplicity, for any n > k 1, we write

G n = G n,k G k with G n,k = g n . . . g k+1 , G k = g k . . . g 1 .
From the large deviation bounds for log G k (see [START_REF] Benoist | Random walks on reductive groups[END_REF] or [START_REF] Xiao | Precise large deviation asymptotics for products of random matrices[END_REF]), we have that for any q > λ, there exists a constant c > 0 such that for sufficiently large k 1,

P(log G k > kq) e -ck . (3.3)
Denote the σ-algebra F k = σ(g 1 , . . . , g k ). From (3.2), taking the conditional expectation with respect to the filtration F k , we derive that for any q > λ,

I n E E ϕ(X x n )1 log |Gnx|-log |G k x|+log G k -nλ+e -ak σ √ n y F k -e -ck ϕ ∞ E E ϕ(X x n )1 log |Gnx|-log |G k x|+log G k -nλ+e -ak σ √ n y 1 {log G k kq} F k -e -ck ϕ ∞ E E ϕ(X x n )1 log |Gnx|-log |G k x|+kq-nλ+e -ak σ √ n y F k -2e -c 1 k ϕ ∞ ,
where in the last step we use the large deviation bound (3.3) and the constant c 1 > 0 is taken to be small enough. Note that

X x n = G n • x = G n,k • X x k and log |G n x| -log |G k x| = log |G n,k X x k |.
It follows that

I n E E ϕ(G n,k • X x k )1 log |G n,k X x k |+kq-nλ+e -ak σ √ n y F k -2e -c 1 k ϕ ∞ .
Since it is shown in Lemma 3.1 that the Berry-Esseen bound for the norm cocycle log |G n x| holds uniformly in x ∈ P d-1 , we obtain

I n ν(ϕ)Φ(y 1 ) - C √ n -k ϕ γ -2e -c 1 k ϕ ∞ ,
where To estimate the above integral, by elementary calculations, there exists a constant C 2 > 0 such that

y 1 = √ n √ n -k y - k(q -λ) + e -ak σ √ n -k . Taking k = [C 1 log n] with C 1 = 1 2c 1 ,
|y -y 1 | C 2 log n n |y| + log n √ n ,
and for n > k 0 large enough,

e - y 2 1 2 exp - 1 2 n n -k y 2 + √ n k(q -λ) + e -ak n -k y exp - 1 2 y 2 + C 2 log n √ n |y| .
Thus, it follows that there exists a constant C > 0 such that

y y 1 e -t 2 2 dt |y -y 1 | max e -y 2 2 , e - y 2 1 2 C 2 log n n |y| + log n √ n exp - 1 2 y 2 + C 2 log n √ n |y|    C log n √ n ∀y ∈ R, C 1 √ n if |y| > √ 2 log log n.
Consequently, we get the following lower bound for I n : there exists a constant C > 0 such that for all x ∈ P d-1 and ϕ ∈ B γ ,

I n    ν(ϕ)Φ(y) -C log n √ n ϕ γ ∀y ∈ R, ν(ϕ)Φ(y) -C √ n ϕ γ if |y| > √ 2 log log n.
Together with the upper bound (3.1), this concludes the proof of (2.1) of Theorem 2.1 and the corresponding results in Remark 2.2.

We now proceed to prove the Berry-Esseen type bound (2.2) of Theorem 2.1 for the spectral radius ρ(G n ). The proof relies on the following comparison lemma between the operator norm G n and the spectral radius ρ(G n ), established in [5, Lemma 14.13] using the Hölder regularity properties of the stationary measure ν. It shows that ρ(G n ) behaves like G n up to a factor lying between 1 and e -εk for any ε > 0 and k n, with high probability. Notice that ρ(G n )

G n by Gelfand's formula and the submultiplicity of the operator norm. Lemma 3.3. Assume conditions A1 and A2. Then, for any ε > 0, there exist c > 0 and k 0 ∈ N, such that for all n k k 0 ,

P 1 ρ(G n ) G n > e -εk 1 -e -ck .
Proof of (2.2) of Theorem 2.1. Without loss of generality, we assume that the target function ϕ is non-negative. The lower bound is a direct consequence of (2.1) together with Remark 2.2 on it, and the inequality log ρ(G n ) log G n , from which we get that, uniformly in x ∈ P d-1 , y ∈ R and ϕ ∈ B γ ,

I n := E ϕ(X x n )1 log ρ(Gn)-nλ σ √ n y    ν(ϕ)Φ(y) -C log n √ n ϕ γ ∀y ∈ R, ν(ϕ)Φ(y) -C √ n ϕ γ if |y| > √ 2 log log n.
The upper bound is a consequence of (2.1) together with Remark 2.2 on it and Lemma 3.3. In fact, applying Lemma 3.3, we deduce that for any ε > 0, there exist c 1 > 0 and k 0 ∈ N, such that for all n k k 0 ,

I n E ϕ(X x n )1 log ρ(Gn)-nλ σ √ n y 1 log ρ(Gn)-log Gn >-εk + e -c 1 k ϕ ∞ E ϕ(X x n )1 log Gn -εk-nλ σ √ n y + e -c 1 k ϕ ∞ . Taking k = C 1 log n with C 1 = 1 2c 1 , we have e -c 1 k C √
n for some constant C > 0. Using the bound (2.1) with y replaced by y 1 := y + εk σ √ n , we obtain the following upper bound for I n : there exists a constant C > 0 such that for all x ∈ P d-1 , y ∈ R, ϕ ∈ B γ , and n k 0 with k 0 large enough,

I n    ν(ϕ)Φ(y 1 ) + C log n √ n ϕ γ ∀y ∈ R, ν(ϕ)Φ(y 1 ) + C √ n ϕ γ if |y| > √ 2 log log n.
(Notice that |y| > √ 2 log log n implies |y 1 | > √ 2 log log n for n large enough.) By an argument similar to that used in the proof of (2.1), it can be seen that

Φ(y 1 )    Φ(y) + C log n √ n ∀y ∈ R, Φ(y) + C √ n if |y| > √ 2 log log n.
This concludes the proof of (2.2) and Remark 2.2 on it.

Moderate deviation principles

The goal of this section is to establish Theorems 2.3 and 2.4 about moderate deviation principles for the operator norm G n and the spectral radius ρ(G n ). Notice that in the first theorem, we need the proximality condition, while in the second, we do not need it. 4.1. Proof of Theorem 2.3. We shall make use of the following moderate deviation principle for the couple (X x n , log |G n x|), which is a direct consequence of Cramér type moderate deviation expansion for (X x n , log |G n x|) recently established in [START_REF] Xiao | Berry-Esseen bound and precise moderate deviations for products of random matrices[END_REF]. 

∈ P d-1 , -inf y∈B • y 2 2σ 2 lim inf n→∞ n b 2 n log E ϕ(X x n )1 log |Gnx|-nλ bn ∈B lim sup n→∞ n b 2 n log E ϕ(X x n )1 log |Gnx|-nλ bn ∈B -inf y∈ B y 2 2σ 2 ,
where B • and B are respectively the interior and the closure of B.

Proof of (2.5) of Theorem 2.3. Since the rate function I(y) := y 2 2σ 2 , y ∈ R, is strictly increasing on [0, ∞) and strictly decreasing on (-∞, 0] with I(0) = 0, by Lemma 4.4 of [START_REF] Huang | Moments, moderate and large deviations for a branching process in a random environment[END_REF], it suffices to prove the following moderate deviation asymptotics: for any y > 0, uniformly in

x ∈ P d-1 , lim n→∞ n b 2 n log E ϕ(X x n )1 log Gn -nλ bn y = - y 2 2σ 2 , (4.1) lim n→∞ n b 2 n log E ϕ(X x n )1 log Gn -nλ bn -y = - y 2 2σ 2 . (4.2)
We first prove (4.1) using the moderate deviation principle for the norm cocycle log |G n x| stated in Lemma 4.1.

For the lower bound, by Lemma 4.1 and the fact that log |G n x| log G n , we easily get: for any y > 0, uniformly in

x ∈ P d-1 , lim inf n→∞ n b 2 n log E ϕ(X x n )1 log Gn -nλ bn y - y 2 2σ 2 .
We now prove the upper bound. Denote by (e i ) 1 i d the standard orthonormal basis of R d . Since all matrix norms in R d are equivalent, and both g → g and g → max 1 i d |ge i | are matrix norms, there exists a positive constant c 1 such that log G n max 1 i d log |G n e i | + c 1 . From this inequality, we derive that

E ϕ(X x n )1 log Gn -nλ bn y d i=1 E ϕ(X x n )1 log |Gne i |-nλ+c 1 bn y .
Since b n → ∞ as n → ∞, we have that for any ε > 0, it holds that c 1 bn < ε for large enough n. Thus using Lemma 4.1, we obtain for any y > 0, lim sup

n→∞ n b 2 n log E ϕ(X x n )1 log |Gne i |-nλ+c 1 bn y lim sup n→∞ n b 2 n log E ϕ(X x n )1 log |Gne i |-nλ bn y-ε = - (y -ε) 2 2σ 2 .
Since ε > 0 can be arbitrary small, we get the desired upper bound. This concludes the proof of (4.1).

We next prove (4.2). The upper bound is easy: using Lemma 4.1 and the fact that log |G n x| log G n , we get that for any y > 0, uniformly in

x ∈ P d-1 , lim sup n→∞ n b 2 n log E ϕ(X x n )1 log Gn -nλ bn -y - y 2 2σ 2 . ( 4.3) 
We now come to the proof of the lower bound using Lemma 3.2. For any n k, consider the event

A n,k = log G n -log |G n x| |G k x| -log G k e -ak ,
and denote by A c n,k its complement. From Lemma 3.2, we know that for any a > 0, there exist c 1 > 0 and k 0 ∈ N, such that for all n k k 0 and x ∈ P d-1 ,

P(A c n,k ) e -c 1 k . (4.4)
Using (4.4), we see that

I n := E ϕ(X x n )1 log Gn -nλ bn -y E ϕ(X x n )1 log Gn -nλ bn -y 1 {A n,k } E ϕ(X x n )1 log |Gnx|-log |G k x|+log G k -nλ+e -ak bn -y 1 {A n,k } E ϕ(X x n )1 log |Gnx|-log |G k x|+log G k -nλ+e -ak bn -y -e -c 1 k ϕ ∞ . (4.5)
As in the proof of (2.1), for any n k k 0 , we write

G n = G n,k G k with G n,k = g n . . . g k+1 , G k = g k . . . g 1 .
Taking the conditional expectation with respect to the filtration F k = σ(g 1 , . . . , g k ), and using the large deviation bound (3.3) for the operator norm G k , we derive that for any q > λ, there exists a constant c 2 > 0 such that

I n E E ϕ(X x n )1 log |Gnx|-log |G k x|+log G k -nλ+e -ak bn -y F k -e -c 1 k ϕ ∞ E E ϕ(X x n )1 log |Gnx|-log |G k x|+log G k -nλ+e -ak bn -y 1 {log G k kq} F k -e -c 1 k ϕ ∞ E E ϕ(X x n )1 log |Gnx|-log |G k x|+kq-nλ+e -ak bn -y F k -2e -c 2 k ϕ ∞ =: J n -2e -c 2 k ϕ ∞ . (4.6)
According to Lemma 4.1, for any y > 0 and > 0, we have that for sufficiently large n, uniformly in

x ∈ P d-1 , e -b 2 n n y 2 2σ 2 + E ϕ(X x n )1 log |Gnx|-nλ bn -y e -b 2 n n y 2 2σ 2 -. (4.7) Note that X x n = G n,k • X x k and log |G n x| -log |G k x| = log |G n,k X x k |.
In the sequel, we take

k = C 1 b 2 n n , ( 4.8) 
where C 1 > 0 is a constant whose value will be chosen sufficiently large. If we denote

b n = b n + k(q -λ) + e -ak y ,
then the term J n defined in (4.6) can be rewritten as

J n = E    E ϕ(G n,k • X x k )1 log |G n,k X x k |-(n-k)λ b n -y F k    .
Note that the sequence (b n ) n 1 satisfies b n √ n → ∞ and b n n → 0, as n → ∞. Applying the moderate deviation bound (4.7) with n replaced by n -k, and with b n replaced by b n , we obtain the following upper and lower bounds for J n : with fixed y > 0 and > 0, for n large enough, uniformly in

x ∈ P d-1 , e -(b n ) 2 n-k y 2 2σ 2 + J n e -(b n ) 2 n-k y 2 2σ 2 -.
(4.9)

From (4.6) and (4.9), it follows that, there exists a constant c 3 > 0 such that lim inf

n→∞ n b 2 n log I n lim inf n→∞ n b 2 n log e -(b n ) 2 n-k y 2 2σ 2 + -2e -c 2 k lim inf n→∞ n b 2 n log e -(b n ) 2 n-k y 2 2σ 2 + (1 -2e -c 3 k ) ,
where the last inequality holds due to the fact that as n → ∞,

(b n ) 2 k(n -k) y 2 2σ 2 + → 1 C 1 y 2 2σ 2 + < c 2 by choosing C 1 > y 2 2σ 2 + /c 2 . Recalling that k = C 1 b 2 n n → ∞, by elementary calculations, we get lim n→∞ n b 2 n log(1 -2e -c 3 k ) = 0 and lim n→∞ n b 2 n log e -(b n ) 2 n-k y 2 2σ 2 + = -lim n→∞ n n -k 1 + k(q -λ) + e -ak yb n 2 y 2 2σ 2 + = - y 2 2σ 2 + .
Taking → 0, we get the desired lower bound: for any y > 0, uniformly in

x ∈ P d-1 , lim inf n→∞ n b 2 n log E ϕ(X x n )1 log Gn -nλ bn -y - y 2 2σ 2 .
Combining this with the upper bound (4.3), we obtain (4.2) and thus conclude the proof of (2.5).

Using the moderate deviation principle (2.5) for the couple (X x n , log G n ) and Lemma 3.3, we are now in a position to establish the moderate deviation principle (2.6) for the couple (X x n , log ρ(G n )).

Proof of (2.6) of Theorem 2.3. As explained in the proof of (2.5), according to Lemma 4.4 of [START_REF] Huang | Moments, moderate and large deviations for a branching process in a random environment[END_REF], it is sufficient to prove the following moderate deviation asymptotics: for any y > 0, uniformly in

x ∈ P d-1 , lim n→∞ n b 2 n log E ϕ(X x n )1 log ρ(Gn)-nλ bn y = - y 2 2σ 2 , (4.10) lim n→∞ n b 2 n log E ϕ(X x n )1 log ρ(Gn)-nλ bn -y = - y 2 2σ 2 . (4.11)
We first prove (4.10). On the one hand, since the function ϕ is nonnegative, using the moderate deviation principle (2.5) for the operator norm G n and the fact that ρ(G n )

G n , we immediately get the upper bound: for any y > 0, uniformly in

x ∈ P d-1 , lim sup n→∞ n b 2 n log E ϕ(X x n )1 log ρ(Gn)-nλ bn y - y 2 2σ 2 . (4.12)
On the other hand, using Lemma 3.3, we obtain that for any ε > 0, there exist c 1 > 0 and k 0 ∈ N, such that for all n k k 0 ,

I n : = E ϕ(X x n )1 log ρ(Gn)-nλ bn y E ϕ(X x n )1 log ρ(Gn)-nλ bn y 1 {log ρ(Gn)-log Gn -εk} E ϕ(X x n )1 {log Gn -nλ ybn+εk} 1 {log ρ(Gn)-log Gn -εk} E ϕ(X x n )1 {log Gn -nλ ybn+εk} -e -c 1 k ϕ ∞ . (4.13)
As in the proof of (2.5) of Theorem 2.3, we take

k = C 1 b 2 n n , ( 4.14) 
where C 1 > 0 is a constant whose value will be chosen sufficiently large. By the moderate deviation principle (2.5) for the couple (X x n , log G n ), it follows that for any y > 0 and η > 0, there exists n 0 ∈ N such that for all n n 0 , 

E ϕ(X x n )1 log Gn -nλ bn y e -b 2
∈ P d-1 , E ϕ(X x n )1 {log Gn -nλ ybn+εk} e -(b n ) 2 n y 2 2σ 2 +η .
Substituting this bound into (4.13), we obtain

I n e -(b n ) 2 n y 2 2σ 2 +η 1 -e -c 1 k+ (b n ) 2 n y 2 2σ 2 +η ϕ ∞ .
Taking into account of (4.14), by elementary calculations, choosing

C 1 > 1 c 1 y 2 2σ 2 + η , we have, as n → ∞, (b n ) 2 kn y 2 2σ 2 + η → 1 C 1 y 2 2σ 2 + η < c 1 .
Hence we get for some constant c 2 > 0,

I n e -(b n ) 2 n y 2 2σ 2 +η 1 -e -c 2 k ϕ ∞ . Therefore, using k = C 1 b 2 n n → ∞, we obtain lim inf n→∞ n b 2 n log I n lim n→∞ n b 2 n - (b n ) 2 n y 2 2σ 2 + η + lim n→∞ n b 2 n log(1 -e -c 2 k ϕ ∞ ) = lim n→∞ -1 + εk yb n 2 y 2 2σ 2 + η + 0 = - y 2 2σ 2 + η .
Taking η → 0, we obtain the desired lower bound: for any y > 0, uniformly in

x ∈ P d-1 , lim inf n→∞ n b 2 n log E ϕ(X x n )1 log ρ(Gn)-nλ bn y - y 2 2σ 2 .
Together with the upper bound (4.12), this concludes the proof of (4.10).

We next prove (4.11). Using (4.2) and the fact that ρ(G n ) G n , we easily get the desired lower bound: for any y > 0, uniformly in

x ∈ P d-1 , lim inf n→∞ n b 2 n log E ϕ(X x n )1 log ρ(Gn)-nλ bn -y - y 2 2σ 2 . (4.16)
For the upper bound, we still choose k as before:

k = C 2 b 2 n n , (4.17)
where C 2 > 0 is a constant whose value will be chosen sufficiently large. By Lemma 3.3, we see that for any ε > 0, there exist c 3 > 0 and k 0 ∈ N, such that for all n k k 0 ,

J n : = E ϕ(X x n )1 log ρ(Gn)-nλ bn -y = E ϕ(X x n )1 log ρ(Gn)-nλ bn -y 1 log ρ(Gn)-log Gn -εk + E ϕ(X x n )1 log ρ(Gn)-nλ bn -y 1 log ρ(Gn)-log Gn <-εk E ϕ(X x n )1 log Gn -nλ -ybn+εk + e -c 3 k ϕ ∞ .
By the moderate deviation principle (4.2) for G n , we have that for any η > 0, there exists n 0 ∈ N such that for any n n 0 ,

E ϕ(X x n )1 log Gn -nλ bn -y e -b 2 n n y 2 2σ 2 -η . (4.18) Let b n = b n -εk y .
In view of (4.17), we see that b n √ n → ∞ and b n n → 0, as n → ∞. From (4.18), it follows that uniformly in x ∈ P d-1 ,

J n e -(b n ) 2 n y 2 2σ 2 -η + e -c 3 k ϕ ∞ . (4.19) Since b n = b n -εk y and k = C 1 b 2 n n , it holds that as n → ∞, b n bn → 1 and, choosing C 1 > 1 c 3 y 2 2σ 2 -η , we have, (b n ) 2 kn y 2 2σ 2 -η → 1 C 1 y 2 2σ 2 -η < c 3 . Thus, lim sup n→∞ n b 2 n log J n lim sup n→∞ n b 2 n log e -(b n ) 2 n y 2 2σ 2 -η = -lim n→∞ b n b n 2 y 2 2σ 2 -η = - y 2 2σ 2 -η . Since η > 0 is arbitrary, we get the desired upper bound for J n : lim sup n→∞ n b 2 n log J n - y 2 2σ 2 .
Combining this with the lower bound (4.16), we conclude the proof of (4.11). Combining (4.10) and (4.11), we obtain the moderate deviation principle (2.6), as mentioned in the beginning of the proof. 4.2. Proof of Theorem 2.4. We now come to the proof of Theorem 2.4 without assuming the proximality condition A3. The proof is based on Theorem 2.3 applied to ∧ p G n which will be introduced below and which satisfies the proximality condition A3, using the p-th exterior power representation approach developed in [START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF]. In [7, Theorem V. 6.2], this approach is used to establish large deviation bounds for the vector norm |G n x| and the operator norm G n ; it allows to relax the proximality condition A3, but fails to give the rate function. For moderate deviations, the situation is different: with this approach we are able to get the rate function explicitely.

In order to prove Theorem 2.4, we need to introduce some additional notation. For any integer 1 p d, the p-th exterior power ∧ p (R d ) is the d p -dimensional vector space with basis

{e i 1 ∧ e i 2 ∧ • • • ∧ e ip , 1 i 1 < i 2 < • • • < i p d},
where (e i ) 1 i d is the standard orthonormal basis of R d ; it is endowed with the standard norm still denoted by | • | as in the case of R d (there should be no confusion in the context). For any v 1 , . . . , v p ∈ R d , the vector

v 1 ∧ • • • ∧ v p is nonzero if and only if v 1 , .
. . , v p are linearly independent in R d . We write ∧ p g for the image of g ∈ GL d (R) under the representation ∧ p (R d ); for any v 1 , . . . , v p ∈ R d , the action of the matrix ∧ p g on the vector

v 1 ∧ • • • ∧ v p is given by ∧ p g(v 1 ∧ • • • ∧ v p ) = gv 1 ∧ • • • ∧ gv p .
The associated operator norm of ∧ p g is defined by

∧ p g = sup{|(∧ p g)v| : v ∈ ∧ p (R d ), |v| = 1}.
Since ∧ p (gg ) = (∧ p g)(∧ p g ) for any g, g ∈ GL d (R), the submultiplicative property holds: ∧ p (gg ) ∧ p g ∧ p g . If the singular values of a matrix g ∈ GL d (R) is given by a 11 , . . . , a dd (arranged in decreasing order), then it holds that

∧ p g = a 11 . . . a pp . ( 4.20) 
As a consequence, we have ∧ p g g p and ∧ p g ∧ p+2 g ∧ p+1 g 2 .

Let V be a subspace of

∧ p (R d ). A set S ⊂ ∧ p (G) := {∧ p g : g ∈ G} is said to be irreducible on if there is no proper subspace V 1 of V such that gV 1 = V 1 for all g ∈ S. A set S ⊂ ∧ p (G) is said to be strongly irreducible on V if there are no finite number of subspaces V 1 , . . . , V m of V such that g(V 1 ∪ . . . ∪ V m ) = V 1 ∪ . . . ∪ V m for all g ∈ S.
The strong irreducibility condition A2 means that Γ µ is strongly irreducible on R d , or, equivalently, G µ is strongly irreducible on R d . We refer to [START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF] for more details.

The following purely algebraic result is due to Chevalley [START_REF] Chevalley | Théorie des groupes de Lie[END_REF]; see also Bougerol and Lacroix [START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF]. Lemma 4.2. Let G be an irreducible subgroup of GL d (R). Then, for any integer 1 p d, there exists a direct-sum decomposition of the p-th exterior power:

∧ p (R d ) = V 1 ⊕ . . . ⊕ V k such that (∧ p g)V j = V j for any g ∈ G and 1 j k. Moreover, ∧ p (G) := {∧ p g : g ∈ G} is irreducible on each subspace V j , j = 1, • • • , k.
We say that an integer 1 p d is the proximal dimension of the semigroup Γ µ , if p is the smallest integer with the following property: there exists a sequence of matrices {M n } n 1 ⊂ Γ µ such that Mn Mn converges to a matrix with rank p. By definition, it is easy to verify that the proximality condition A3 implies that the proximal dimension of Γ µ is 1. The converse is also true if we assume that Γ µ is irreducible, see [START_REF] Benoist | Random walks on reductive groups[END_REF] for the proof. Under the first moment condition E(log N (g 1 )) < ∞, according to Kingman's subadditive ergodic theorem [START_REF] Kingman | Subadditive ergodic theory[END_REF], the Lyapunov exponents (λ p ) 1 p d of µ are defined recursively by

λ 1 + . . . + λ p = lim n→∞ 1 n E(log ∧ p G n ) = lim n→∞ 1 n log ∧ p G n , a.s..
This formula, together with the fact that

∧ p-1 G n ∧ p+1 G n ∧ p G n 2 , yields that λ 1 λ 2 . . . λ d .
The following fundamental result is due to Guivarc'h and Raugi [START_REF] Guivarc | Frontiere de Furstenberg, propriétés de contraction et théorèmes de convergence[END_REF] and gives a sufficient condition for ensuring that two successive Lyapunov exponents are distinct. It can also be found in [7, Proposition III. 6.2]. Lemma 4.3. Assume condition A2. If E log N (g 1 ) < ∞ and the proximal dimension of the semigroup Γ µ is p, then we have

λ 1 = λ 2 = . . . = λ p > λ p+1 .
From (4.20) we have seen that ∧ p g g p for 1 p d. The following result (see [START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF]Lemma III. 1.4]) provides a two-sided comparison between ∧ p g and g p , where p is the proximal dimension of the semigroup Γ µ .

Lemma 4.4. Assume condition A2. If E log N (g 1 ) < ∞ and the proximal dimension of the semigroup Γ µ is p, then there exists a constant c > 0 such that for all g ∈ Γ µ , c g p ∧ p g g p .

The following lemma was proved in [7, Proposition III. 1.7 and Remark III. 1.8]. Recall that Γ µ,1 = {| det(g)| -1/d g : g ∈ Γ µ }. (b) If the set Γ µ,1 is contained in a compact subgroup of G, then there exists a scalar product on R d for which all the matrices in Γ µ,1 are orthogonal. In this case, log G n can be written as a sum of i.i.d. real-valued random variables. Now we are equipped to prove the moderate deviation principle (2.7) for the operator norm G n without assuming the proximality condition A3.

Proof of (2.7) of Theorem 2.4. We assume that Γ µ,1 is not contained in a compact subgroup of G; the opposite case was already proved in Remark 2.5 [START_REF] Aoun | Law of large numbers for the spectral radius of random matrix products[END_REF]. Note that λ = λ 1 . Without loss of generality, we assume that λ 1 = 0 since otherwise we can replace each matrix g ∈ Γ µ by e -λ 1 g. As mentioned before, by Lemma 4.4 of [START_REF] Huang | Moments, moderate and large deviations for a branching process in a random environment[END_REF], in order to prove (2.7), it is sufficient to establish the following moderate deviation asymptotics: for any y > 0,

lim n→∞ n b 2 n log P log G n b n y = - y 2 2σ 2 0 , (4.21) lim n→∞ n b 2 n log P log G n b n -y = - y 2 2σ 2 0 . (4.22)
We first give a proof of (4.21). Let p be the proximal dimension of the semigroup Γ µ . Since the set Γ µ,1 is not contained in a compact subgroup of G, by Lemma 4.5 (a), we have 1 p d -1. Using Lemma 4.3, under condition A2, this implies that the Lyapunov exponents (λ p ) 1 p d of µ satisfy

λ 1 = . . . = λ p = 0 > λ p+1 .
It follows that the two largest Lyapunov exponents of ∧ p G n are given by λ 1 +• • •+λ p = 0 and λ 2 +• • •+λ p+1 = λ p+1 < 0 (see [START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF]Proposition III. 1,[START_REF] Aoun | Law of large numbers for the spectral radius of random matrix products[END_REF]). Applying Lemma 4.2 to G = G µ (the smallest closed subgroup of G generated by the support of µ), we get the following direct-sum decomposition of the p-th exterior power ∧ p (R d ):

∧ p (R d ) = V 1 ⊕ V 2 ⊕ . . . ⊕ V k ,
where V j are subspaces of ∧ p (R d ) such that (∧ p g)V j = V j for any g ∈ G µ and 1 j k, i.e. each V j is invariant under ∧ p (G µ ) := {∧ p g : g ∈ G µ }. Moreover, ∧ p (G µ ) is irreducible on each subspace V j . Note that the set of all Lyapunov exponents of ∧ p G n on the space ∧ p (R d ) coincides with the union of all the Lyapunov exponents of (∧ p G n ) restricted to each subspace V j , 1 j k. Hence we can choose V 1 in such a way that the restrictions of ∧ p G n to V 1 and V 2 ⊕ . . . ⊕ V k , denoted respectively by G n and G n (as usual we identify the linear transform with the corresponding matrice), satisfy: 

lim n→∞ 1 n log G n = λ 1 + • • • + λ p = 0, a.s., (4.23) 
lim n→∞ 1 n log G n = λ 2 + • • • + λ p+1 = λ p+1 < 0, a.s., (4.24) 
∧ p G n = max{ G n , G n }. ( 4 
G n = [G n (G km ) -1 ] [G km (G (k-1)m ) -1 ] • • • [G 2m (G m ) -1 ] G m , it follows that log G n log G n km ) -1 + log G km (G (k-1)m ) -1 + • • • + log G m . (4.30)
For fixed integer m 1, we denote u m := -E(log G m ) > 0. Notice that

P(log G n 0) P log G n (G km ) -1 k u m 2 + P log G km (G (k-1)m ) -1 + • • • + log G m + ku m k u m 2 . (4.31)
Using (4.25) and the fact that ∧ p g g p for any g ∈ Γ µ , we get that for constant c > 0 small enough,

E( G n (G km ) -1 c ) = E( G r c ) E( ∧ p G r c ) E( G r cp ) E( g 1 cp ) r ,
which is finite by Condition A1. By Markov's inequality and the fact that u m > 0 is a constant, it follows that there exist constants c, C > 0 such that From (4.26) we derive that for any y > 0 and > 0, there exists n 0 1 such that for any n n 0 ,

P log G n (G km ) -1 k u m 2 E( G n (G km ) -1 c )e -ck
P log G n yb n exp - b 2 n n y 2 2σ 2 1 - .
Similarly to (4.33), with fixed integer m 1 and u m = -E(log G m ) > 0, taking into account (4.30), we write

P(log G n > -yb n ) P log G n (G km ) -1 > k u m 2 -yb n + P log G km (G (k-1)m ) -1 + • • • + log G m + ku m > k u m 2 .
In an analogous way as in the proof of ( 

Moderate deviation expansions

This section is devoted to proving Theorems 2.6 and 2.7 about Cramér type moderate deviation expansions in the normal range, for the operator norm G n and the spectral radius ρ(G n ). We will use the following moderate deviation expansion for the norm cocycle log |G n x| recently established in [START_REF] Xiao | Berry-Esseen bound and precise moderate deviations for products of random matrices[END_REF] (where the usual range y ∈ [0, o(n 1/2 )] is considered): Lemma 5.1. Assume conditions A1, A2 and A3. Then, we have, uniformly in

x ∈ P d-1 , y ∈ [0, o(n 1/6 )] and ϕ ∈ B γ , as n → ∞, E ϕ(X x n )1 {log |Gnx|-nλ √ nσy} 1 -Φ(y) = ν(ϕ) + ϕ γ O y + 1 √ n , E ϕ(X x n )1 {log |Gnx|-nλ - √ nσy} Φ(-y) = ν(ϕ) + ϕ γ O y + 1 √ n .
Proof of Theorem 2.6. Using the Berry-Esseen type bound (2.1) for the couple (X x n , log G n ), we get that there exists a constant C > 0 such that for all n 1, x ∈ P d-1 , y > 0 and ϕ ∈ B γ , 

E ϕ(X x n )1 {log Gn -nλ - √ nσy} Φ(-y) -ν(ϕ) C log n √ nΦ(-y) ϕ γ . ( 5 

√

log n, o(n 1/6 )]. Without loss of generality we assume that the target function ϕ is non-negative (otherwise we can consider the positive and negative parts of ϕ). We only give a proof of (2.11), since (2.10) can be established in a similar way. For simplicity, we denote for any x ∈ P d-1 and y ∈ [ 1 2

√

log n, o(n 1/6 )],

I n := E ϕ(X x n )1 log Gn -nλ - √ nσy .
The proof consists of establishing the upper and lower bounds. From Lemma 5.1 on log |G n x| and the fact that |G n x| G n , the upper bound of I n immediately follows: there exists a constant C > 0 such that for all n 1,

x ∈ P d-1 , y ∈ [ 1 2 √ log n, o(n 1/6 )] and ϕ ∈ B γ , I n Φ(-y) ν(ϕ) + C ϕ γ y + 1 √ n . ( 5.3) 
For the lower bound of I n , we shall use Lemma 3.2. For any a > 0 and n > k 1, consider the event

A n,k = log G n -log |G n x| |G k x| -log G k e -ak ,
and we write A c n,k for its complement. Since the function ϕ is assumed to be non-negative, using Lemma 3.2 we get that for any a > 0, there exist c 1 > 0 and k 0 ∈ N such that for all n k k 0 , uniformly in x ∈ P d-1 ,

I n E ϕ(X x n )1 log Gn -nλ - √ nσy 1 {A n,k } E ϕ(X x n )1 log |Gnx|-log |G k x|+log G k -nλ+e -ak - √ nσy 1 {A n,k } E ϕ(X x n )1 log |Gnx|-log |G k x|+log G k -nλ+e -ak - √ nσy -e -c 1 k ϕ ∞ =: J n -e -c 1 k ϕ ∞ .
(5.4)

We now give a lower bound for J n . As before, for any n > k 1, we write G n = G n,k G k with G n,k = g n . . . g k+1 and G k = g k . . . g 1 . We take the conditional expectation with respect to the filtration F k = σ(g 1 , . . . , g k ) and use the large deviation bound (3.3) for the operator norm G k , to obtain that, for any q > λ, there exists a constant c 2 > 0 such that

J n = E E ϕ(X x n )1 log |Gnx|-log |G k x|+log G k -nλ+e -ak - √ nσy F k E E ϕ(X x n )1 log |Gnx|-log |G k x|+log G k -nλ+e -ak - √ nσy 1 {log G k kq} F k E E ϕ(X x n )1 log |Gnx|-log |G k x|+kq-nλ+e -ak - √ nσy F k -e -c 2 k ϕ ∞ =: J n -e -c 2 k ϕ ∞ . ( 5.5) 
For brevity, we set

y 1 = y n n -k - k(q -λ) σ √ n -k - e -ak σ √ n -k , ( 5.6) 
then J n can be rewritten as

J n = E E ϕ(G n,k • X x k )1 log |G n,k X x k |-(n-k)λ - √ n-kσy 1 F k .
For any y ∈ [ 1 2 √ log n, o(n 1/6 )], we take

k = C 1 y 2 , ( 5.7) 
where C 1 > 0 is a constant whose value will be chosen large enough. From (5.6) and (5.7), we see that y ∼ y 1 = o(n 

√

log n, o(n 1/6 )],

I n := E ϕ(X x n )1 {log ρ(Gn)-nλ √ nσy} .
The proof consists of establishing upper and lower bounds.

For the upper bound, we use the inequlility ρ(G n ) G n , and the moderate deviation expansion (2.10) for the operator norm G n , to get the desired bound: as n → ∞, uniformly in y ∈ [ 1 2

√

log n, o(n 1/6 )],

I n 1 -Φ(y) ν(ϕ) + ϕ γ o(1).

(5.10)

For the lower bound, we shall apply Lemma 3.3 for a precise comparison between ρ(G n ) and G n . For any ε > 0 and n > k 1, we denote

A n,k = log ρ(G n ) -log G n > -εk .
From Lemma 3.3 we know that for any ε > 0, there exist c 1 > 0 and k 0 ∈ N such that for all n k k 0 , we have P(A n,k ) > 1 -e -c 1 k . Thus, 1), (5.14) where in the second inequality we use (5.2) and in the last inequality we take C 1 > 1 2c 1 . Combining this lower bound (5.14) with the upper bound (5.10), we conclude the proof of Theorem 2.7.

I n E ϕ(X x n )1 log ρ(Gn)-nλ √ nσy 1 {A n,k } E ϕ(X x n )1 log Gn -nλ √ nσy+εk 1 {A n,k } E ϕ(X x n )1 log Gn -nλ √ nσy+εk -e -c 1 k ϕ ∞ . ( 5 
I n 1 -Φ(y) ν(ϕ) + ϕ γ o(1) - e -c 1 k 1 -Φ(y) ϕ ∞ ν(ϕ) + ϕ γ o(1) -2y exp -c 1 C 1 y 2 + y 2 2 ϕ ∞ ν(ϕ) + ϕ γ o(

1 . Introduction 1 . 1 .

 111 Background and previous results. For any integer d 2, denote by G = GL d (R) the general linear group of real invertible d×d matrices. We equip R d with the canonical Euclidean norm | • |. Let P d-1

  we get that there exists a constant C > 0 such that 1 √ n-k C √ n and e -c 1 k C √ n . Since Φ is the standard normal distribution function, we write Φ(y 1 ) = Φ(y) -

Lemma 4 . 1 .

 41 Assume conditions A1, A2 and A3. Then, for any nonnegative function ϕ ∈ B γ satisfying ν(ϕ) > 0, for any Borel set B ⊆ R and any positive sequence (b n ) n 1 satisfying bn √ n → ∞ and bn n → 0, we have, uniformly in x

  It is easy to see that the sequence (b n ) n 1 satisfies b n √ n → ∞ and b n n → 0, as n → ∞. Using the bound (4.15), we get that uniformly in x

Lemma 4 . 5 .

 45 (a) If the set Γ µ,1 is not contained in a compact subgroup of G, then the proximal dimension p of the semigroup Γ µ satisfies 1 p d -1.

  Theorem 2.1, if we consider |y| > √ 2 log log n instead of y ∈ R, then the bound C log n

	√	n	in (2.1), (2.2),
	(2.3) and (2.4) can be improved to be C √ n .		

2.2. Moderate deviation principles. We first state moderate deviation principles for the couples (X x n , log G n ) and (X x n , log ρ(G n )) with target functions on the Markov chain (X x n ) n 0 . Theorem 2.3. Assume conditions A1, A2 and A3. Then, for any nonnegative function ϕ ∈ B γ satisfying ν(ϕ) > 0, for any Borel set B ⊆ R and any positive sequence

  .25)As in the case of G n , G n and G n are products of i.i.d. invertible matrices of the formG n = g n • • • g 1 and G n = g n • • • g 1 .We denote by µ 1 the law of the random matrix g 1 , by d 1 the dimension of the vector space V 1 , and by Γ µ 1 the smallest closed subsemigroup of GL d 1 (R) generated by the support of µ 1 . Then, following the analogous argument used in the proof of the central limit theorem for G n (see[START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF] Theorem V.5.4]), one can verify, under Condition A2 on µ, that the semigroup Γ µ 1 is strongly irreducible and proximal on R d 1 . Therefore, µ 1 satisfies Conditions A2 and A3, so that we are allowed to apply the moderate deviation principle (2.5) with ϕ = 1 and G n replaced by G n , to get the following moderate deviation asymptotics: for any y > 0, On the other hand, since the upper Lyapunov exponent of the sequence (G n ) n 1 is strictly less than 0 (see (4.24)), we have E(log G m ) < 0 for sufficiently large integer m 1. Write n = km+r with k 1 and 0 r < m. By the identity

	where σ 2 1 > 0 is the asymptotic variance of the sequence (G n ) n 1 given by
		σ 2 1 = lim n→∞	1 n	E (log G n ) 2 .			(4.28)
	From (4.25), it follows that log ∧ p G n lower bound for ∧ p G n : for any y > 0,	log G n . By (4.26), we get the
	lim inf n→∞	n b 2 n	log P	log ∧ p G n b n	y	-	y 2 1 2σ 2	.	(4.29)
	lim n→∞	n b 2 n	log P	log G n b n	y = -	y 2 1 2σ 2	,	(4.26)
	lim n→∞	n b 2 n	log P	log G n b n	-y = -	y 2 1 2σ 2	,	(4.27)

  4.32), by Markov's inequality and the fact that k = O(n) and b n = o(n), the first term on the right hand side of the above inequality is bounded by Ce -ck , where c, C > 0 are constants. It has been shown in the proof of (4.33) that the second term is also bounded by Ce -ck . Therefore, taking into account k n/(m + 1), we get that there exist constants c, C > 0 such that P(log G n > -yb n ) Ce -cn .

	Combining this bound with (4.27), we obtain	
	lim inf n→∞	n b 2 n	log P	log ∧ p G n b n	-y	-	y 2 1 2σ 2	.
	By Lemma 4.4, this implies				
	lim inf n→∞	n b 2 n	log P	log G n b n	-y	-	y 2 0 2σ 2	,	(4.38)
	where σ 2 0 = (σ 2 1 )/p 2 > 0. Putting together (4.37) and (4.38), we conclude the
	proof of (4.22). Combining (4.21) and (4.22), we get the desired moderate
	deviation principle (2.7) for the operator norm G n .
	Proof of (2.8) of Theorem 2.4. Using Lemma 3.3, we can obtain (2.8) from
	(2.7) just as we obtained (2.6) from (2.5). The details are omitted.

  1/6 ) as n → ∞. Hence we are allowed to apply Lemma 5.1 to obtain the following moderate deviation expansion for J n : as n → ∞, uniformly inx ∈ P d-1 , y ∈ [ 1We first remark that for the range of small values y ∈ [0, 1 2√log n], the moderate deviation expansion (2.14) is a direct consequence of the Berry-Esseen type bound (2.2). Indeed, from (2.2) and the fact that |Eϕ(X x n )ν(ϕ)| Ce -cn ϕ γ , we derive that uniformly in y > 0, In the sequel we prove that(2.14) holds uniformly in y ∈ [ 1 2 √ log n, o(n 1/6 )]. Without loss of generality, we assume that the target function ϕ is nonnegative. For brevity, we denote for y ∈ [ 1 2

	E ϕ(X x n )1 {log ρ(Gn)-nλ 1 -Φ(y)	√	nσy}	-ν(ϕ)	C	√	log n n(1 -Φ(y))	ϕ γ .
	Using the inequality (5.2), Using the inequality (5.2), one can verify that log n √ n(1-Φ(y)) → 0, as n → ∞, uniformly in y ∈ [0, 1 2 √ log n]. Hence the expansion (2.14) holds uniformly in y ∈ [0, 1 2 √ log n].
									2	√ log n, o(n 1/6 )]
	and ϕ ∈ B γ ,							
	J n Φ(-y 1 )	= ν(ϕ) + ϕ γ O	y 1 + 1 √ n	.	(5.8)

  .11) By Theorem 2.6, we have, uniformly inx ∈ P d-1 , y ∈ [ 1 √ log n, o(n 1/6 )], we take k = C 1 y 2 , (5.13)where C 1 > 0 is a constant whose value will be chosen large enough. From the asymptotic expansion ∞ y e -t 2 2 dt = 1 y e -y 2 2 [1 + O( 1 y 2 )] as y → ∞ (see (5.2)), we infer that as n → ∞, uniformly in y ∈ [ 1

	For y ∈ [ 1 2									
											2	√	log n, o(n 1/6 )],
	1 -Φ(y + εk √ nσ ) 1 -Φ(y)	=	y y + εk √ nσ		exp	1 2	y 2 -	1 2	(y +	εk √ nσ	) 2 (1 + o(1))
							=	y y + εk √ nσ		exp -y	εk √ nσ	-	ε 2 k 2 2nσ 2 (1 + o(1)).
	Since y ∈ [ 1 2	√	log n, o(n 1/6 )], taking into account (5.13), we get
	y y + εk √ nσ	= 1 -	εk √ nσ y + εk √ nσ	1 -	y	εk √ nσ	= 1 -	ε C 1 y 2 y √ nσ	= 1 + o(1),
	and									
	exp -y	εk √ nσ	-	ε 2 k 2 2nσ 2 = exp -y	ε C 1 y 2 √ nσ	-	ε 2 C 1 y 2 2 2nσ 2	= 1 + o(1).
											2	√	log n, o(n 1/6 )] and
	ϕ ∈ B γ ,									
	E ϕ(X x n )1 1 -Φ(y + εk log Gn -nλ √ nσ ) √	nσy+εk	= ν(ϕ) + ϕ γ o(1).	(5.12)

Hence, substituting the above estimates into (5.12), we get, uniformly in

x ∈ P d-1 , y ∈ [ 1 2 √ log n, o(n 1/6 )] and ϕ ∈ B γ , E ϕ(X x n )1 log Gn -nλ √ nσy+εk 1 -Φ(y) ν(ϕ) + ϕ γ o(1).

This, together with (5.11), implies the lower bound for I n : uniformly in

x ∈ P d-1 , y ∈ [ 1 2 √

log n, o(n 1/6 )] and ϕ ∈ B γ ,

This, together with (4.33) and (4.25), yields the upper bound for ∧ p G n : for any y > 0 and > 0, lim sup -

Since > 0 can be arbitrary small, it follows that lim sup where σ 2 0 = (σ 2 1 )/p 2 > 0. We next give a proof of (4.22). From (4.25) and (4.27), the upper bound easily follows: for any y > 0, lim sup

To prove the lower bound, observe that from (4.25) we have

Using the asymptotic expansion

Taking into account (5.6) and (5.7), one can find that, as

)], we have y 1 y = 1 + o( 1) and

Consequently, substituting the above estimates into (5.8), we get that, as n → ∞, uniformly in

This, together with (5.5), implies the following lower bound for I n : there exists a constant c 3 > 0 such that uniformly in -y) .

Using the inequality (5.2) and taking C 1 > 1 c 3 , it follows that, uniformly in

(5.9)

Combining this with the upper bound (5.3), we conclude the proof of the expansion (2.11).

We proceed to establish Theorem 2.7 based on Theorem 2.6, Lemma 3.3 and the Berry-Esseen type bound (2.2).

Proof of Theorem 2.7. We only prove the first expansion (2.14) since the proof of the second one (2.15) can be carried out in an analogous way.