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0 Checking flatness: a difficult problem

e Motion planning and tracking with singularities

© Flatness and PDEs
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The initial hope: distributions and Lie brackets

Affine system
@ Distribution: module of vector fields
@ Lie bracket: [f, g](z) := Dg(z) - f(z) — Df(x) - g(x)
@ involutive distribution: [D, D] C D

| A

Prototype result [JR1980, HSM1983]
&=f(x)+ ) gi(@)u, xR
=1

is linearizable by invertible static feedback and coordinate change iff:
@ Dy :=span{gi,...,gm} IS involutive
@ Dy, :=span{Dy_1, [f, Dx—1]} is involutive, i = 1,...,n — 2

@ rank Dy = n (controllability)

v
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Distributions and Lie brackets, the right tools?

@ Not all flat systems are linearizable by static feedback! J

A collection of results (for affine systems @ = f(z) + > ", gi(z)u;)
@ 1 input: flat iff linearizable by static feedback [CLM1989]
@ n — 1 inputs: flat iff controllable [CLM1989]
@ driftless, 2 inputs, & = g1 (z)u1 + gous [MR1994]:

o & :=span{gi, g2}; & = span{&,_1, [Ex—1,Ek—1,]}, £ >0
o flatiff rank&, =k +2,i=0,...,n—2

@ driftless, general, Y., gi(x)u; [MR1994]:
o & :=span{g1,...,9k}; Ex = span{é’k,l, [Ek-1,Ek-1,]}, K >0
o flatifrank& =k+m, i =0,...,n—m
@ driftless, n — 2 inputs, >} % gi(x )ui: flat iff controllable [MR1995]
@ NSC for systems linearizable by one-fold prolongation [NR2017]:

e 1-fold prolongation: the simplest endogenous feedback
e (not so simple) condition in terms of distributions and Lie brackets
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Beyond distributions and Lie brackets

Sufficient conditions

@ Sufficient condition for 1-flatness, n — 2 inputs [M1993]

@ NSC for 1-flatness, 2 inputs and 4 states [P2002]

@ partial extension to r-flatness, 2 inputs and 4 states [AP2007]
@ try to find flat output by reduction and elimination [KSS]

@ NSC for configuration flatness of Lagrangian systems
underactuated by one control (ie, n — 2 inputs) [MR1998]

@ Several ad hoc methods on many examples

Necessary conditions
@ the ruled manifold criterion [S1993, R1994]
@ generalization of the ruled manifold criterion [P2009]

For flatness, affine system codimension 2 < general system codim 1 |
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Back to criterion for static feedback linearizability

For simplicity, © = f(x) + g(x)u with 1 input and 3 states

y = h(z) (tentative flat output)
y = Dh(z )-(f( ) + g(x)u)
= Lyh(z) + Lohtz)u = Lgh =0
Y= Dth( z) - (f(z) + g(@)u)
= Lih(z) + L T)u = LyLih=0
j = D*Lsh(@) - (f(x) + g(x)u)
= L3h(z) + LyLih(z)u = LyL3h #0

Recover criterion by “closing” Lyh = 0 = LyLsh =0, LyL3h # 0

@ New (higher order) equations by Lie differentiation:
LiLy=0,LsLgLs=0,L2Ls=0,...,LgLyLy =0, L2L; =0,...

@ Recombination at order 1 using LyLyh — LyLyh = Lz 4 h, etc:
Lgh =0, Lis,q = 0, Lig s = 0, Lis,[,q 7 O

v
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Formal integrability [G1967]

@ a system of PDE’s is formally integrable if it has a solution given
by a formal power series (no solution when “too many” equations)

@ “mild” conditions on the system for a formal solution to be a true
(analytic) solution

Main underlying problem:

@ as new independent equations may arise by differentiation and
recombination, difficult to “close” the system

@ a very simple instance: conditions for linearizability by static
feedback (the closure is a system of first-order PDE’s)

Algebraic sufficient condition for formal integrability:
@ 2-acyclicity of some cohomology sequence

@ computable in theory, far from easy in practice!

v
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Checking r-flatness: a question of formal integrability

y = h(z,u,...,u") is an r-flat output iff
span{dzy,...,dx,, duy, ..., du,, dhgu)7 ... ,dhg“)}ogygu

has dimension m(v + 1), with v :=n + rm

This corresponds to the higher order system of PDE’s
dei Ndh Adh---ANdhW) =0, i=1,...,n
dw Ndh Adh---ANdR™) =0, i=3j,....,m

dh Adh--- ANdh™ +£0,

where dh® := dh A - A dn®

@ Is this (big!) system formally integrable?
@ Does its very special structure yield simplifications?

V.
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Conclusion on checking flatness: much to do!

Open problems:
@ Tractable computable condition for r- flatness?

©@ Bound on r for r-flatness, depending on m and n? Bound possibly
growing at least linearly with state dimension:

xgp) —
(p)
T3 = Urug

y = (w2, 23+ > b (—1)" 2P0y is a (p — 1)-flat output!
© Flat = linearizable by (non-endogenous) dynamic feedback?

@ Even in the absence of a general criterion, a flat output may often
be found by “physical reasoning”

@ No criterion % not interesting (cf Lyapunov functions)

v
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e Motion planning and tracking with singularities
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There are always singularities for nonlinear systems!
@ Locally: controllability may degenerate
@ Globally: flatness relations do not hold globally in general

Ingredients to overcome singularities:
@ reparametrization of time
@ time-varying (dynamic) linearizing feedback
@ overparametrization of state
@ ‘“chart-by-chart” flatness

A

Well-known example: trailer systems
Singularity (of controllability) when system does not move
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2km, the juggling robot [LMR1998]

@ Robot:
3 actuaded dofs

—

Pendul mVe = mg+ F (translation)
@ Pendulum: . . '
2 UNactuated dofs Iix @ =lcux F (rotation)
Pendulum ie’ motor ‘_/:‘5’ = A‘(O_)S, ‘?5’, ﬁ, T) (rObOt)

o T = (T1,7T2,T3) torque inputs
e i pendulum direction (unit vector)
e m, I, positive constants
e F coupling force
Implicit system (F must be eliminated)

7/ laboratory
frame

motor
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2k is flat

Flat output given by the center of oscillation H

® OH = OC + i

@ H is the only point such that VH — g is colinear to the pendulum

4

OH () known = Vi (t), Vi (#) known
= @(t)//Vir — §,ii(¢), ii(£) known
= 05(t),0C(t), Vs(t), Vo (t) known
= F,T known

Problem around intrinsic singularity Vi; = 7

bz
U= iflig (+ rest down, — rest up)
Ve — gl

V.
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Motion planning: crossing the singularity

To go from rest down to rest up, Adjust T" to have t. < T such that

vertical semi-circle for H: ) )
OH = xa7+ XxyJ+ Xx:k Xa(te) = Xe(te) + 9 =0,
Xz(t) :=rcos(a(t/T)) with well-defined tangent around ¢,

t):=0
G %ol + ) = ar + O(?)
X=(t) := rsin(a(t/T)) ) 2
X(T+te)+9g=0br+0(77)
e T duration of motion a2+ b2 £ 0

e Reparametrization of time:

s€0,1] =t = a(s) On this trajectory, the orientation is

always well-defined by
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The tracking feedback law

Two-level design using singular perturbations

@ Low-level: high-gain loops with compensation of gyroscopic
effects transform the robot into a “fast" velocity actuator

6‘;{9 =V-Vs+ O(e) (¢ is “small")

© High-level: a 2-step tracking controller takes care of the “slow”
pendulum with input V¢
2a a global dynamic feedback transforms the system into a
“non-holonomic 3D-car” rolling without sliding on R?
(over-parametrization of state)
2b a time-varying dynamic “linearizing feedback” allows the crossing of
the singularity

This is not only theory! |
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© Flatness and PDEs
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Flatness and PDEs

Flatness of PDEs with boundary control?

@ Generalization of parametrization to infinite dimension?
@ Issues with convergence
@ Motion planning with initial conditions in what space?

@ Several notions of controllability (exact controllability may be
impossible, except between “prepared” states)

@ Fairly general theory for 1D linear parabolic PDEs

@ Approach somehow generalizes to PDEs with order in time <
order in space

@ Some generalizations to nonlinear PDEs
@ Some generalizations to 2D (linear) PDEs
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A typical example
1-D piecewise constant heat equation (e.g. composite material)

{a—OHM(a:,t), 0<z< X

Ou(z,t) =4 P
@,¢) %Gm(x,t), X<zx<l1
0409(0, t) 4+ ﬁoaoex(o, t) =0
ale(l,t) + ,31&1933(1,75) e U(f)
O(X,t) =0(XT,1)
a()@x(X_,t) = alew(X+,t)

@ X location of interface; ag, a1, po, p1, ag, a1, Bo, S1 constants > 0

Main result: null controllability

Given final time T > 0 and initial state 6(-,0) := 6y € L*(0, 1) find
(explicit and smooth) control ¢ € [0, 7] — w(t) such that (-, 7) = 0

Ph. Martin Flatness: an overview (part Il: new trends) SIAM CT19 19/27



Interlude: Gevrey functions

Definition (Gevrey function of one variable)
y € C*(I,R)isin G°(I,R) if there exists M, R > 0 such that

. 16
[y (t)| < M% forallt e Tandi >0

“Gevrey step function” ¢4(t), s = 1+ 1 > 1

ift <0 .

0 ift >1 &
e~ (17" , Z:
g p—— ift € (0,1) i
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Special case of general null controllability result

1-D parabolic system with fairly irregular coefficients
POt — (aby)z — bl — 0 =0, (x,t) € (0,1) x (0,7)
a9f(0,2) + Bo(abz)(0,t) = 0
a10(1,t) + B1(aby)(1,t) = u(t)

with a, b, ¢, p functions on (0, 1) such that:

@ a(x) > 0and p(z) > 0 for almost all z € (0,1)

@ JK > 0 such that ¢(x) < Kp(x) for almost all z € (0,1)
15 e pe LY(0,1); a"rpe Lr(0,1) for some p € (1, 0]
Theorem
Letfo € Ly(0,1), T >0ands € (1,2 — ). Then:

@ there exists a control u € G*([0, T],R) steering the system from

the initial state 0, to the final state 6(-,T) = 0

® 6,a0, € G*([e, T],W(0,1)) foralle € (0,T)

SIAM CT19 21/27
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The system is “flat”

Parametrization by “flat output” y(t) := 5,6(0,t) — oo (ab,)(0,1)

= gi(x)y (¢

>0
u(t) =) (ergi(1) + Br(agh) (1)) y @ (1)
>0
with the generating functions g; solutions of
(ago)" =0, (agi)' = pgi |

aogo(0) + Bo(agn)(0) =0, 0gi(0) + Fo(ag;)(0) =
Bogo(0) — ao(agy)(0) =1, Bogi(0) — co(ag;)(0) =

Proposition (regularity of parametrization)
Assume y € G*(I,R), s € (0,2). Then:

@ ueG(I,R),se(0,2)

@ 0,a6, € G*(I, WH1(0,1))

4
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Construct control with two-step procedure

First step (specific of PDE, not based on flatness)

Find a “regular” trajectory ¢t € (0,7] — 6~ (-, t) starting from the initial
condition 6. Choose control on [0, 7], 7 < T as

u(t) == a0~ (1,t) + S1(aby )(1,1)

Second step: use flatness to connect (-, 7) t0 0

ut) ==Y (ergi(1) + Br(ag)) (1)) YO (), T<t<T

>0

-

flat parametrization of input

t—T _ _
Y (1) = ¢ () (B0~ (0,1) — a0 (a6;) (0, 1))
trace of 6~ on flat output
@ ¢, “Gevrey step”, s € (1,2)
@ ¢, hence y and u are in G*([r,T], R)

v
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First step: null control on [0, 7] (“smoothing effect”)

Sturm-Liouville problem corresponding to system with u(¢) := 0

3 orthonormal basis e,, of L2(0,1) and sequence \,, > 0 solution of

—(aey,)" = Anpen
apen(0) + Bo(ael,)(0) =0
aten(1) + Bi(ael)(1) =0

= Fourier expansion of initial state 6,

HHO — Z Cnén
n>0

Explicit expression for the e,, , numerics for the \,,, ¢,

L2(0,1) -

The solution of the system starting from 60 with u( ) :=0is then

E C?’L TL

n>0

V.
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Summary: null controllability ( + regularity)

Letfy € L*(0,1), T > 7 > 0, s € (1,2). There is a function
Y € G*([0,T],R) such that the control

0 ifo<t<r
ut) =9 3" (a1gi(1) + Pulagh) (1) YO (t) ifr <t<T
>0
steers the system from 6, at time 0 to 0 at time T. Moreover
@ uc GS([O,T],R)
@ 0,ab, € G*((0,T), WhH(0,1))

The construction of Y hence of u is explicit )
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Conclusion on flatness for PDEs

Null controllability in 1-D using flatness:
@ explicit formula for the control
@ “straightforward” implementation

@ very regular control

Still much to do!
@ Fairly general theory for 1D linear parabolic PDEs

@ Approach somehow generalizes to PDEs with order in time <
order in space

@ Some generalizations to nonlinear PDEs
@ Some generalizations to 2D (linear) PDEs

@ There are results, with completely different methods, for some
PDEs with order in time = order in space

| A

Ph. Martin Flatness: an overview (part Il: new trends) SIAM CT19 27/27



	Checking flatness: a difficult problem
	Motion planning and tracking with singularities
	Flatness and PDEs

