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The initial hope: distributions and Lie brackets

Affine system
Distribution: module of vector fields
Lie bracket: [f, g](x) := Dg(x) · f(x)−Df(x) · g(x)
involutive distribution: [D,D] ⊂ D

Prototype result [JR1980, HSM1983]

ẋ = f(x) +

m∑
i=1

gi(x)ui, x ∈ Rn

is linearizable by invertible static feedback and coordinate change iff:
D0 := span{g1, . . . , gm} is involutive
Dk := span{Dk−1, [f,Dk−1]} is involutive, i = 1, . . . , n− 2

rankDk−1 = n (controllability)
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Distributions and Lie brackets, the right tools?

Not all flat systems are linearizable by static feedback!

A collection of results (for affine systems ẋ = f(x)+
∑m

i=1 gi(x)ui)
1 input: flat iff linearizable by static feedback [CLM1989]
n− 1 inputs: flat iff controllable [CLM1989]
driftless, 2 inputs, ẋ = g1(x)u1 + g2u2 [MR1994]:

E0 := span{g1, g2}; Ek := span{Ek−1, [Ek−1, Ek−1, ]}, k ≥ 0
flat iff rank Ek = k + 2, i = 0, . . . , n− 2

driftless, general,
∑m

i=1 gi(x)ui [MR1994]:
E0 := span{g1, . . . , gk}; Ek := span{Ek−1, [Ek−1, Ek−1, ]}, k ≥ 0
flat if rank Ek = k +m, i = 0, . . . , n−m

driftless, n− 2 inputs,
∑n−2

i=1 gi(x)ui: flat iff controllable [MR1995]
NSC for systems linearizable by one-fold prolongation [NR2017]:

1-fold prolongation: the simplest endogenous feedback
(not so simple) condition in terms of distributions and Lie brackets
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Beyond distributions and Lie brackets

Sufficient conditions
Sufficient condition for 1-flatness, n− 2 inputs [M1993]
NSC for 1-flatness, 2 inputs and 4 states [P2002]
partial extension to r-flatness, 2 inputs and 4 states [AP2007]
try to find flat output by reduction and elimination [KSS]
NSC for configuration flatness of Lagrangian systems
underactuated by one control (ie, n− 2 inputs) [MR1998]
Several ad hoc methods on many examples

Necessary conditions
the ruled manifold criterion [S1993, R1994]
generalization of the ruled manifold criterion [P2009]

For flatness, affine system codimension 2⇔ general system codim 1
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Back to criterion for static feedback linearizability

For simplicity, ẋ = f(x) + g(x)u with 1 input and 3 states

y = h(x) (tentative flat output)
ẏ = Dh(x) · (f(x) + g(x)u)

= Lfh(x) +�����Lgh(x)u ⇒ Lgh = 0

ÿ = DLfh(x) · (f(x) + g(x)u)

= L2
fh(x) +������

LgLfh(x)u ⇒ LgLfh = 0

ÿ = D2Lfh(x) · (f(x) + g(x)u)

= L3
fh(x) + LgL

2
fh(x)u ⇒ LgL

2
fh 6= 0

Recover criterion by “closing” Lgh = 0 = LgLfh = 0, LgL
2
fh 6= 0

New (higher order) equations by Lie differentiation:
LfLg = 0, LfLgLf = 0, L2

gLf = 0,. . . , LfLgLf = 0, L2
gLf = 0,. . .

Recombination at order 1 using LfLgh− LgLfh = L[f,g]h, etc:
Lgh = 0, L[f,g] = 0, L[g,[f,g]] = 0, L[f,[f,g]] 6= 0!
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Formal integrability [G1967]

Formal integrability:
a system of PDE’s is formally integrable if it has a solution given
by a formal power series (no solution when “too many” equations)
“mild” conditions on the system for a formal solution to be a true
(analytic) solution

Main underlying problem:
as new independent equations may arise by differentiation and
recombination, difficult to “close” the system
a very simple instance: conditions for linearizability by static
feedback (the closure is a system of first-order PDE’s)

Algebraic sufficient condition for formal integrability:
2-acyclicity of some cohomology sequence
computable in theory, far from easy in practice!
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Checking r-flatness: a question of formal integrability

y = h(x, u, . . . , u(r)) is an r-flat output iff

span{dx1, . . . , dxn, du1, . . . , dun, dh(µ)1 , . . . , dh
(µ)
1 }0≤ν≤µ

has dimension m(ν + 1), with ν := n+ rm

This corresponds to the higher order system of PDE’s

dxi ∧ dh ∧ dḣ · · · ∧ dh(ν) = 0, i = 1, . . . , n

duj ∧ dh ∧ dḣ · · · ∧ dh(ν) = 0, i = j, . . . ,m

dh ∧ dḣ · · · ∧ dh(ν) 6= 0,

where dh(µ) := dh
(µ)
1 ∧ · · · ∧ dh

(µ)
m

Is this (big!) system formally integrable?
Does its very special structure yield simplifications?
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Conclusion on checking flatness: much to do!

Open problems:
1 Tractable computable condition for r- flatness?
2 Bound on r for r-flatness, depending on m and n? Bound possibly

growing at least linearly with state dimension:

x
(p)
1 = u1

x
(p)
2 = u2

ẋ3 = u1u2

y := (x2, x3 +
∑p

i=1(−1)ix
(p−i)
1 u

(i−1)
2 ) is a (p− 1)-flat output!

3 Flat = linearizable by (non-endogenous) dynamic feedback?

Even in the absence of a general criterion, a flat output may often
be found by “physical reasoning”
No criterion 6⇒ not interesting (cf Lyapunov functions)
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There are always singularities for nonlinear systems!
Locally: controllability may degenerate
Globally: flatness relations do not hold globally in general

Ingredients to overcome singularities:
reparametrization of time
time-varying (dynamic) linearizing feedback
overparametrization of state
“chart-by-chart” flatness

Well-known example: trailer systems
Singularity (of controllability) when system does not move
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2kπ, the juggling robot [LMR1998]

Robot:
3 actuaded dofs
Pendulum:
2 UNactuated dofs

laboratory

frame

O

Pendulum

g S

motor

motor

motor

θ1

θ2

θ  3

m~̇VC = m~g + ~F (translation)

I~u× ~̈u = lC~u× ~F (rotation)

~̇VS = ~A( ~OS, ~VS , ~F , T ) (robot)

• T = (T1, T2, T3) torque inputs
• ~u pendulum direction (unit vector)
• m, I, lC positive constants
• ~F coupling force

Implicit system (~F must be eliminated)
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2kπ is flat

Flat output given by the center of oscillation H
~OH = ~OC + I

mlC
~u

H is the only point such that ~̇VH − ~g is colinear to the pendulum

~OH(t) known⇒ ~VH(t), ~̇VH(t) known

⇒ ~u(t)//~̇VH − ~g, ~̇u(t), ~̈u(t) known

⇒ ~OS(t), ~OC(t), ~VS(t), ~VC(t) known

⇒ ~F , T known

Problem around intrinsic singularity ~̇VH = ~g:

~u = ±
~̇VH − ~g

‖ ~̇VH − ~g‖
(+ rest down, − rest up)
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Motion planning: crossing the singularity
To go from rest down to rest up,
vertical semi-circle for H:

~OH = χx~ı+ χy~+ χz~k

χx(t) := r cos(α(t/T ))

χy(t) := 0

χz(t) := r sin(α(t/T ))

• T duration of motion
• Reparametrization of time:

s ∈ [0, 1] 7→ t = α(s)

S

Adjust T to have tc < T such that

χ̈x(tc) = χ̈z(tc) + g = 0,

with well-defined tangent around tc

χ̈x(τ + tc) = aτ +O(τ2)
χ̈z(τ + tc) + g = bτ +O(τ2)

a2 + b2 6= 0

On this trajectory, the orientation is
always well-defined by

~u(t) = sign(t− tc)
~̇VH(t)− ~g

‖ ~̇VH(t)− ~g‖
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The tracking feedback law

Two-level design using singular perturbations
1 Low-level: high-gain loops with compensation of gyroscopic

effects transform the robot into a “fast" velocity actuator

ε~̇VS = ~V− ~VS +O(ε) (ε is “small")

2 High-level: a 2-step tracking controller takes care of the “slow”
pendulum with input ~V:
2a a global dynamic feedback transforms the system into a

“non-holonomic 3D-car” rolling without sliding on R3

(over-parametrization of state)
2b a time-varying dynamic “linearizing feedback” allows the crossing of

the singularity

This is not only theory!
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Flatness and PDEs

Flatness of PDEs with boundary control?
Generalization of parametrization to infinite dimension?
Issues with convergence
Motion planning with initial conditions in what space?
Several notions of controllability (exact controllability may be
impossible, except between “prepared” states)

Fairly general theory for 1D linear parabolic PDEs
Approach somehow generalizes to PDEs with order in time <
order in space
Some generalizations to nonlinear PDEs
Some generalizations to 2D (linear) PDEs
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A typical example

1-D piecewise constant heat equation (e.g. composite material)

θt(x, t) =

{
a0
ρ0
θxx(x, t), 0 < x < X

a1
ρ1
θxx(x, t), X < x < 1

α0θ(0, t) + β0a0θx(0, t) = 0

α1θ(1, t) + β1a1θx(1, t) = u(t)

θ(X−, t) = θ(X+, t)

a0θx(X
−, t) = a1θx(X

+, t)

X location of interface; a0, a1, ρ0, ρ1, α0, α1, β0, β1 constants > 0

Main result: null controllability
Given final time T > 0 and initial state θ(·, 0) := θ0 ∈ L2(0, 1) find
(explicit and smooth) control t ∈ [0, T ] 7→ u(t) such that θ(·, T ) = 0

Ph. Martin Flatness: an overview (part II: new trends) SIAM CT19 19 / 27



Interlude: Gevrey functions

Definition (Gevrey function of one variable)
y ∈ C∞(I,R) is in Gs(I,R) if there exists M,R > 0 such that∣∣y(i)(t)∣∣ ≤M i!s

Ri
for all t ∈ I and i ≥ 0

“Gevrey step function” φs(t), s = 1 + 1
k > 1:

1 if t ≤ 0

0 if t ≥ 1

e−(1−t)
−k

e−(1−t)−k + e−t−k if t ∈ (0, 1)
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Special case of general null controllability result
1-D parabolic system with fairly irregular coefficients

ρθt − (aθx)x − bθx − cθ = 0, (x, t) ∈ (0, 1)× (0, T )

α0θ(0, t) + β0(aθx)(0, t) = 0

α1θ(1, t) + β1(aθx)(1, t) = u(t)

with a, b, c, ρ functions on (0, 1) such that:
a(x) > 0 and ρ(x) > 0 for almost all x ∈ (0, 1)

∃K ≥ 0 such that c(x) ≤ Kρ(x) for almost all x ∈ (0, 1)

1
a ,

b
a , c, ρ ∈ L

1(0, 1); a1−
1
p ρ ∈ Lp(0, 1) for some p ∈ (1,∞]

Theorem
Let θ0 ∈ L1

ρ(0, 1), T > 0 and s ∈ (1, 2− 1
p). Then:

there exists a control u ∈ Gs
(
[0, T ],R

)
steering the system from

the initial state θ0 to the final state θ(·, T ) = 0

θ, aθx ∈ Gs
(
[ε, T ],W 1,1(0, 1)

)
for all ε ∈ (0, T )
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The system is “flat”

Parametrization by “flat output” y(t) := β0θ(0, t)− α0

(
aθx
)
(0, t)

θ(t, x) =
∑
i≥0

gi(x)y
(i)(t)

u(t) =
∑
i≥0

(
α1gi(1) + β1(ag

′
i)(1)

)
y(i)(t)

with the generating functions gi solutions of
(ag′0)

′ = 0, (ag′i)
′ = ρgi−1

α0g0(0) + β0(ag
′
0)(0) = 0, α0gi(0) + β0(ag

′
i)(0) = 0

β0g0(0)− α0(ag
′
0)(0) = 1, β0gi(0)− α0(ag

′
i)(0) = 0

Proposition (regularity of parametrization)
Assume y ∈ Gs(I,R), s ∈ (0, 2). Then:

u ∈ Gs(I,R), s ∈ (0, 2)

θ, aθx ∈ Gs
(
I,W 1,1(0, 1)

)
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Construct control with two-step procedure

First step (specific of PDE, not based on flatness)
Find a “regular” trajectory t ∈ (0, T ] 7→ θ−(·, t) starting from the initial
condition θ0. Choose control on [0, τ ], τ < T as

u(t) := α1θ
−(1, t) + β1(aθ

−
x )(1, t)

Second step: use flatness to connect θ−(·, τ) to 0

u(t) :=
∑
i≥0

(
α1gi(1) + β1(ag

′
i)(1)

)
︸ ︷︷ ︸

flat parametrization of input

Y (i)(t), τ ≤ t ≤ T

Y (t) := φs

( t− τ
T − τ

)(
β0θ
−(0, t)− α0

(
aθ−x

)
(0, t)︸ ︷︷ ︸

trace of θ− on flat output

)
φs “Gevrey step”, s ∈ (1, 2)

φs, hence y and u are in Gs
(
[τ, T ],R

)
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First step: null control on [0, τ ] (“smoothing effect”)
Sturm-Liouville problem corresponding to system with u(t) := 0

∃ orthonormal basis en of L2(0, 1) and sequence λn > 0 solution of

−(ae′n)′ = λnρen

α0en(0) + β0(ae
′
n)(0) = 0

α1en(1) + β1(ae
′
n)(1) = 0

⇒ Fourier expansion of initial state θ0∥∥∥θ0 −∑
n≥0

cnen

∥∥∥
L2(0,1)

= 0

Explicit expression for the en , numerics for the λn, cn

The solution of the system starting from θ0 with u(t) := 0 is then

θ−(x, t) :=
∑
n≥0

cne
−λnten(x)
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Summary: null controllability ( + regularity)

Theorem
Let θ0 ∈ L2(0, 1), T > τ > 0, s ∈ (1, 2). There is a function
Y ∈ Gs

(
[0, T ],R

)
such that the control

u(t) :=

0 if 0 ≤ t ≤ τ∑
i≥0

(
α1gi(1) + β1(ag

′
i)(1)

)
Y (i)(t) if τ < t ≤ T

steers the system from θ0 at time 0 to 0 at time T . Moreover
u ∈ Gs

(
[0, T ],R

)
θ, aθx ∈ Gs

(
(0, T ],W 1,1(0, 1)

)
The construction of Y hence of u is explicit
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Simulation: θ0 = step, τ = 0.05, T = 0.35, s = 1.65

Truncated expansions: n = 60, i = 130

Ph. Martin Flatness: an overview (part II: new trends) SIAM CT19 26 / 27



Conclusion on flatness for PDEs

Null controllability in 1-D using flatness:
explicit formula for the control
“straightforward” implementation
very regular control

Still much to do!
Fairly general theory for 1D linear parabolic PDEs
Approach somehow generalizes to PDEs with order in time <
order in space
Some generalizations to nonlinear PDEs
Some generalizations to 2D (linear) PDEs
There are results, with completely different methods, for some
PDEs with order in time = order in space

Ph. Martin Flatness: an overview (part II: new trends) SIAM CT19 27 / 27


	Checking flatness: a difficult problem
	Motion planning and tracking with singularities
	Flatness and PDEs

