Flatness: an overview Part I: basic concepts

Philippe Martin

MINES ParisTech, PSL Research University, Paris, France

SIAM CT19, Chengdu

Motivation for equivalence, flatness, etc

Historical motivation

- Linearization by (full-state) dynamic deedback
- Input-Output linearization by dynamic feedback

"Intellectual" motivation

- A central concept in mathematics: equivalence under a "group" of transformations
- Equivalent objects are "identical"
- Main (difficult) problem: classify objects and give "normal" forms
- Important (easier?) subproblem: check if an object may be transformed into the "simplest" normal form

Reference: Martin, Murray, Rouchon (1997). Flat systems

Mini-course ECC97, updated as Caltech Technical Report CDS 2003-008 Flat systems, equivalence and trajectory generation

- In control theory, the objects are control systems

$$
\dot{x}=f(x, u)
$$

- "Simplest" systems = chains of integrators

For a sensible equivalence notion, transformations should:

- preserve fundamental system properties (controllability, feedback linearizability, etc)
- be in some sense "realizable"
\Rightarrow importance of transformations consisting of feedbacks and changes of coordinates

What are the interesting notions of equivalence in control theory?

Two central problems in control theory

1. Plan a reference trajectory
= open-loop problem

Find $u_{r}(t)$ such that the solution satisfies $x(0)=p$ and $x(T)=q$

2. Track a reference trajectory
= closed-loop problem

- Two very difficult problems in general!
- Very easy for chains of integrators!

Equivalence for linear systems

$$
\dot{x}=A x+B u
$$

- The transformations

$$
\begin{array}{ll}
u=F x+G v & \text { (invertible linear static feedback) } \\
x=T y & \text { (linear change of coordinates) }
\end{array}
$$

form a group, hence an equivalence relation

- Normal form = Brunovsky form (chains of integrators)
- NSC for being "simple" = controllability

A first generalization to nonlinear systems

$$
\dot{x}=f(x, u)
$$

- The transformations

$$
\begin{aligned}
& u=\alpha(x, v) \\
& x=\phi(y)
\end{aligned}
$$

(invertible nonlinear static feedback)
(nonlinear change of coordinates)
form a group, hence an equivalence relation

- Normal (local, "generic") form = Brunovsky form
- NSC for being "simple" = geometric conditions involving distributions of vector fields and Lie brackets

Next step:

use dynamic feedback

$$
\begin{aligned}
u & =\alpha(x, z, v) \quad \text { (invertible nonlinear dynamic feedback) } \\
\dot{z} & =a(x, z, v) \quad \text { ("extended" nonlinear change of coordinates) } \\
(x, z) & =\phi(y) \quad \text { (ext }
\end{aligned}
$$

Motivation:

some systems are linearizable by dynamic feedback, but not by static feedback

No interesting equivalence relation associated with invertible dynamic feedbacks: fundamental properties may be lost (controllability, feedback linearizability,...)

Not possible to do less than work up to:

(i) integrators \Rightarrow extend f by $\nu \in \mathbb{N}^{m}$ integrators,

$$
f^{\nu}\left\{\begin{array}{cl}
\dot{x} & =f(x, u) \\
u^{(\nu)} & =v
\end{array}\right.
$$

(ii) changes of coordinates $\Rightarrow \dot{x}=f(x, u)$ and $\dot{y}=g(y, u)$ are related when there is an invertible mapping $x=\varphi(y)$ such that

$$
f(\varphi(y), u)=\partial_{y} \varphi(y) \cdot g(y, u)
$$

Definition

The feedback B is endogenous if there is a feedback B^{\prime} such that $\left(f_{B}\right)_{B^{\prime}}$ and f^{ν} are related

Properties preserved by pure integrators and changes of coordinates are preserved by endogenous feedbacks

Characterization of endogenous feedbacks

Theorem

The feedback B is endogenous iff there is a map κ such that

$$
(z, v)=\kappa(x, \bar{\alpha}(x, z, \bar{v}))
$$

More simply, $(z, v)=\kappa(x, \bar{u})$: the feedback is "developing from within"

Sketch of the proof:

decouple the IO system (f_{B}, u), which is invertible by assumption, by dynamic feedback

Typical endogenous feedback:

cascade of integrators and invertible static feedbacks

From endogenous feedback to equivalence

Endogenous feedbacks define an equivalence relation :

- the composition of endogenous feedbacks is endogenous
- the "inverse" of an endogenous feedback is endogenous

Definition

f and g are equivalent if there is an endogenous feedback B such that f_{B} and g^{ν} are related

Interesting equivalence relation:

preserves all the properties preserved by pure integrators and changes of coordinates

Endogenous: "minimal" property for interesting notion of equivalence by feedback

An important special case: flatness

Definition (Flat system)

f is flat if it is equivalent to a trivial system
($=f$ is linearizable by endogenous feedback)
linearizable by invertible static feedback

flat $=$ linearizable by endogenous feedback

linearizable by invertible dynamic feedback
$\Downarrow \nVdash$

controllable

Equivalence, step 1: getting rid of feedback

Theorem

$\dot{x}=f(x, u)$ and $\dot{y}=g(y, v)$ are equivalent iff there are 4 maps

$$
\begin{array}{ll}
x=\varphi(y, \bar{v}) & y=\psi(x, \bar{u}) \\
u=\alpha(y, \bar{v}) & v=\beta(x, \bar{u})
\end{array}
$$

which are reciprocal

$$
\begin{array}{ll}
x=\varphi(\psi(x, \bar{u}), \bar{\beta}(x, \bar{u})) & y=\psi(\varphi(y, \bar{v}), \bar{\alpha}(y, \bar{v})) \\
u=\alpha(\psi(x, \bar{u}), \bar{\beta}(x, \bar{u})) & v=\beta(\varphi(y, \bar{v}), \bar{\alpha}(y, \bar{v}))
\end{array}
$$

and "exchange" solutions

$$
\begin{aligned}
f(\varphi(y, \bar{v}), \alpha(y, \bar{v})) & =\partial_{y} \varphi(y, \bar{v}) \cdot g(y, v)+\partial_{\bar{v}} \varphi(y, \bar{v}) \cdot \dot{\bar{v}} \\
g(\psi(x, \bar{u}), \bar{\beta}(x, \bar{u})) & =\partial_{x} \psi(x, \bar{u}) \cdot f(x, u)+\partial_{\bar{u}} \psi(x, \bar{u}) \cdot \overline{\bar{u}}
\end{aligned}
$$

Equivalence $=1-1$ correspondence between solutions

Corollary ("usual" definition of flatness)

$\dot{x}=f(x, u)$ is flat iff there is a map $y=h(x, \bar{u})$ such that

$$
\begin{aligned}
& x=\varphi(\bar{y}) \\
& u=\alpha(\bar{y})
\end{aligned}
$$

$y=h(x, \bar{u})$ is called a flat (or linearizing) output

Flatness = 1-1 correspondence between solutions $(x(t), u(t))$ of the system and arbitrary functions $y(t)=\left(y_{1}(t), \ldots, y_{m}(t)\right)$

Flat output = generalization of the "Brunovsky output" of a controllable linear system

Equivalence, step 2: getting rid of state dimension

Replace $\dot{x}=f(x, u)$ with the "infinite" vector field

$$
\begin{aligned}
\dot{x} & =f(x, u) \\
\dot{u} & =u^{1} \\
\dot{u}^{1} & =u^{2}
\end{aligned}
$$

$$
\text { i.e., } \quad \xi:=\left(x, u, u^{1}, \ldots\right) \mapsto F(\xi):=\left(f(x, u), u^{1}, u^{2}, \ldots\right)
$$

Definition

The infinite vector fields F and G are equivalent if there is a "smooth" invertible mapping $\xi=\Psi(\zeta)$ such that

$$
\forall \xi, \quad G(\Psi(\xi))=\partial_{\xi} \Psi(\xi) \cdot F(\xi)
$$

Equivalence $=1-1$ correspondence between solutions

Equivalence, step 3: getting rid of control theory

System: underdetermined set of differential equations (no state/input)

$$
F(\bar{\xi})=0
$$

Definition

$F(\bar{\xi})=0$ and $G(\bar{\zeta})=0$ are equivalent if there are maps $\xi=\Phi(\bar{\zeta})$ and $\zeta=\Psi(\bar{\xi})$ which are "reciprocal",

$$
\xi=\Phi \circ \bar{\Psi}(\bar{\xi}) \quad \zeta=\Psi \circ \bar{\Phi}(\bar{\zeta})
$$

and "exchange" solutions

$$
\begin{array}{lll}
\forall \xi, F(\bar{\xi})=0 & \Rightarrow & G(\bar{\Psi}(\bar{\xi}))=0 \\
\forall \zeta, G(\bar{\zeta})=0 & \Rightarrow & F(\bar{\Phi}(\bar{\zeta}))=0
\end{array}
$$

Not new! Transformations reversible "without integrals" (Hilbert, 1912)

Example: the planar VTOL aircraft

$\ddot{x}=-u_{1} \sin \theta+\varepsilon u_{2} \cos \theta$
$\ddot{z}=u_{1} \cos \theta+\varepsilon u_{2} \sin \theta-1$
$\ddot{\theta}=u_{2}$

- u_{1} thrust, u_{2} roll moment
- (x, z) center of mass
- θ roll angle

Flat output = center of oscillation

$$
\left(y_{1}, y_{2}\right):=(x-\varepsilon \sin \theta, z+\varepsilon \cos \theta)
$$

Flatness relations:

$$
\begin{aligned}
\left(y_{1}-x\right)^{2}+\left(y_{2}-z\right)^{2} & =\varepsilon^{2} \\
\left(y_{1}-x\right)\left(\ddot{y}_{2}+1\right)-\left(y_{2}-z\right) \ddot{y}_{1} & =0 \\
\left(\ddot{y}_{2}+1\right) \sin \theta+\ddot{y}_{1} \cos \theta & =0
\end{aligned}
$$

Conclusion

Two easy problems for flat systems:

- motion planning
- trajectory tracking

Many systems in control engineering are flat!

