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Motivation for equivalence, flatness, etc

Historical motivation

@ Linearization by (full-state) dynamic deedback
@ Input-Output linearization by dynamic feedback

“Intellectual” motivation

@ A central concept in mathematics: equivalence under a “group” of
transformations

@ Equivalent objects are “identical”
@ Main (difficult) problem: classify objects and give “normal” forms

@ Important (easier?) subproblem: check if an object may be
transformed into the “simplest” normal form

Reference: Martin, Murray, Rouchon (1997). Flat systems

Mini-course ECC97, updated as Caltech Technical Report CDS
2003-008 Flat systems, equivalence and trajectory generation
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@ In control theory, the objects are control systems

@ “Simplest” systems = chains of integrators

For a sensible equivalence notion, transformations should:
@ preserve fundamental system properties (controllability, feedback
linearizability, etc)
@ be in some sense “realizable”
= importance of transformations consisting of feedbacks and changes
of coordinates

What are the interesting notions of equivalence in control theory? ]
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Two central problems in control theory

1. Plan a reference trajectory 2. Track a reference trajectory
= open-loop problem = closed-loop problem
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Find ,(t) such that the solution Compute v = u, + Au such that
satisfies 2(0) = p and z(T) = ¢ the error Az := x —z, — 0

@ Two very difficult problems in general!
@ Very easy for chains of integrators!
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Equivalence for linear systems

= Az + Bu J
@ The transformations
u=Fz+ Gu (invertible linear static feedback)
x=Ty (linear change of coordinates)

form a group, hence an equivalence relation
@ Normal form = Brunovsky form (chains of integrators)
@ NSC for being “simple” = controllability
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A first generalization to nonlinear systems

@ The transformations
= a(z,v) (invertible nonlinear static feedback)
x = ¢(y) (nonlinear change of coordinates)

form a group, hence an equivalence relation
@ Normal (local, “generic”) form = Brunovsky form

@ NSC for being “simple” = geometric conditions involving
distributions of vector fields and Lie brackets

Ph. Martin Flatness: an overview (part |: basic concepts) SIAM CT19 6/17



Next step:

use dynamic feedback

u = «a(x,z,v) (invertible nonlinear dynamic feedback)
a
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(x,2) = o(y) (“extended” nonlinear change of coordinates)

some systems are linearizable by dynamic feedback, but not by static
feedback

No interesting equivalence relation associated with invertible dynamic
feedbacks: fundamental properties may be lost (controllability,
feedback linearizability,. . .)

\
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Not possible to do less than work up to:

() integrators = extend f by v € N™ integrators,

f,,{ & = flz,u)

W =

(i) changes of coordinates = & = f(x,u) and y = ¢(y, u) are related
when there is an invertible mapping = = ¢(y) such that

F(e(),u) = dyp(y) - g(y, w)

Definition
The feedback B is endogenous if there is a feedback B’ such that
(fB)p and f* are related

Properties preserved by pure integrators and changes of coordinates
are preserved by endogenous feedbacks

v
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Characterization of endogenous feedbacks

The feedback B is endogenous iff there is a map  such that
(z,v) = k(z,a(x, z,0))
More simply, (z,v) = k(z,u): the feedback is “developing from within”

Sketch of the proof:

decouple the 10 system (fz, u), which is invertible by assumption, by
dynamic feedback

Typical endogenous feedback:
cascade of integrators and invertible static feedbacks
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From endogenous feedback to equivalence
Endogenous feedbacks define an equivalence relation :

@ the composition of endogenous feedbacks is endogenous
@ the “inverse” of an endogenous feedback is endogenous

f and g are equivalent if there is an endogenous feedback B such that
fB and ¢” are related

Interesting equivalence relation:

preserves all the properties preserved by pure integrators and
changes of coordinates

N

Endogenous: “minimal” property for interesting notion of equivalence
by feedback

V.
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An important special case: flatness

Definition (Flat system)

f is flatif it is equivalent to a trivial system
(= f is linearizable by endogenous feedback)

linearizable by invertible static feedback

¢

flat = linearizable by endogenous feedback
b 7
linearizable by invertible dynamic feedback

¢

controllable

v
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Equivalence, step 1: getting rid of feedback

& = f(x,u) andy = g(y,v) are equivalent iff there are 4 maps

r = oy,v)  y = Y0
u = ay,v) v = fB(z,)

which are reciprocal

z = p(¥(z,7),B(z,a)) y = ¥(ply,0),a(y,v))
u = a(P(z,q),B(z,7) v = B(p(y,0),aly,v))

and “exchange" solutions

flp(y,9),a(y,0) = 8yp(y,7) - gy, v) + Oep(y, D) - U
9(¥(z,m),B(x,7) = Ou(x,q)- f(z,u) + Ogtp(x,q) - u

4

Equivalence = 1 — 1 correspondence between solutions ]
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Corollary (“usual” definition of flatness)
z = f(x,u) is flat iff there is a map y = h(x,u) such that

y = h(x,w) is called aflat (or linearizing) output

Flatness = 1 — 1 correspondence between solutions (m(t) u(t)) of the
system and arbitrary functions y(t) = (y1(t), ..., ym(t))

Flat output = generalization of the “Brunovsky output" of a controllable
linear system
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Equivalence, step 2: getting rid of state dimension

Replace © = f(z,u) with the “infinite” vector field

T = f(x,u)
o= ul
ol = o2

The infinite vector fields F' and G are equivalent if there is a “smooth"
invertible mapping ¢ = ¥(¢) such that

Ve, G(2(8)) = 0cL(E) - F(€)

v

Equivalence = 1 — 1 correspondence between solutions J
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Equivalence, step 3: getting rid of control theory

System: underdetermined set of differential equations (no state/input)

Definition

o
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F(§) =0and G(¢) = 0 are equivalent if there are maps £ = ®(¢) and

¢ = ¥(£) which are “reciprocal”,

E=20T(E) (¢=To®((),

and “exchange” solutions

Ve, F(€) =0
¢

F =
VG, GO =0 = F(o(

V.

Not new! Transformations reversible “without integrals” (Hilbert, 1912) J
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Example: the planar VTOL aircraft

—u1 sin 0 + eus cos
Z = wujcosf +cugsinh — 1

6 = uy
e uy thrust, us roll moment

e (z, z) center of mass
e 6 roll angle

u1kp,

e (2 + 1)sin @ + ¢; cosf = 0

Flat output = center of oscillation
(y1,2) := (z —esinb, 2 + e cos §)

Flatness relations:
(1 —z)? + (2 —2)2 =¢
(1 —2)(G2+1) = (y2 — 2)j1 =0
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Conclusion

Two easy problems for flat systems:

@ motion planning
@ trajectory tracking

Many systems in control engineering are flat! )
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