Gilles Pagès

Olivier Pironneau

Stochastic Control: from Gradient Methods and Dynamic Programming to Statistical Learning

Keywords: Stochastic control, Dynamic Programming, Partial Differential Equations, Statistical Learning

In this article the authors wish to contribute to the validation of supervised learning for stochastic control. We review the popular methods for stochastic control and compare their numerical performance to those of a neural network. This will be done on a simple but practical example: optimal fishing quotas to preserve the biomass of a fishing site.

Introduction

Stochastic control of differential systems with random data or modelling errors, is usually solved by Dynamic Programming, a technique introduced in the 1950 by Richard Bellman [START_REF] Bellman | Dynamic Programming[END_REF]. Numerically one has to solve a backward in time differential equation possibly coupled with the forward stochastic differential equation (SDE) of the problem. The method has various discrete implementations (see [START_REF] Pagès | An Optimal Markovian Quantization Algorithm For Multi-Dimensional Stochastic Control Problems[END_REF], [START_REF] Lauriere | Dynamic Programming for mean-field type control[END_REF], etc). Calculus of variations and optimal control is another approach, which, in principle is more expensive because the backward adjoint Partial Differential Equation (PDE) and the forward Kolmogorov PDE for the PDF of the process are coupled and must be solved iteratively by a gradient method. A third method has been proposed several years ago (see [START_REF] Balakrishnan | Adaptive-critic-based neural networks for aircraft optimal control[END_REF], [START_REF] Kamalapurkar | Reinforcement Learning for Optimal Feedback Control[END_REF], [START_REF] Bertsekas | Reinforced Learning and Optimal Control[END_REF], [START_REF] Auger | Parameter Identification by Statistical Learning of a Stochastic Dynamical System Modelling a Fishery with Price Variation[END_REF] and others) : Supervised Learning with Neural Networks: like off-line/on-line reduction methods, one is ready to pay a high CPU price in a "training" phase so as to solve quickly the problem with new data with the "trained network". The novelty is that a trained neural network can be ported on a small unit like a smart phone and yet be fast and accurate. In this article the three classes of methods will be tested on an easy yet practical problem studied in [START_REF] Brochier | Can overexploited fisheries recover by self-organization? Reallocation of the fishing effort as an emergent form of governance[END_REF]: the control of a fishing site in Senegal where the fish biomass is threatened by intensive fishing. In [START_REF] Auger | Parameter Identification by Statistical Learning of a Stochastic Dynamical System Modelling a Fishery with Price Variation[END_REF] it was shown that parameter identification from a few measurements near time zero could be obtained accurately and fast by supervised learning. Here the parameters are known but with some uncertainty and the objective is to apply optimal quotas to stabilize the fish biomass at a desired level in this stochastic setting. The model has two ordinary differential equations (ODE), one for the fish biomass X t at time t, and one for the fishing effort which, for us, will be the number of boats at sea E t . 1 gilles.pages@sorbonne-universite.fr, LPMA, Sorbonne Université, Paris, France 2 olivier.pironneau@sorbonne-universite.fr , LJLL, Sorbonne Université, Paris, France.

Quotas are meant to keep the biomass at a constant desired level X d . Hence the total number of fish caught must be lower than the quota Q t . By construction each boat can't catch more than qX t , where q is a constant reflecting the "structural limit" of the fisherman's catch yet proportional to the biomass. Nevertheless each boat is told to keep their catch below Q t /E t . The control problem is solved by minimizing a criteria, the integral over time of X t -X d 2 . But quotas, imposed by the regulator, are unpopular. To avoid too strict quotas, we add to the criteria the integral over time of -αQ t where α is constant and positive; consequently, a small quota will not be optimal because it gives a larger value to the criteria than a big quota. Along the way we found that the solution of the problem is very often "bang-bang", i.e; switching from the structural limit to the quota often. For the regulator, rapidly changing quotas may be also dangerously unpopular; hence in an attempt to avoid such frequent drastic changes we add to the criteria the integral over time of β Qt 2 where β is a positive constant. More details on the modelling of the problem can be found in Appendix A.

The plan of the paper is as follows: In section 1, the control problem is stated. It is a stochastic control problem because the data are not known accurately. Existence of solutions and discretization methods are discussed. We identify 3 formulations:

1. Deterministic control where the state is the solution of an ODE. 2. Non-dynamic control, i.e. an SDE for the state equation but a deterministic control function of time only. 3. A fully stochastic state and control, usual to Dynamic Programming.

In section 2, a Monte-Carlo method is proposed for the non-dynamic case. It is a brute force Monte-Carlo approach, much more expensive than the Dynamic Programming approach of section 4, but it has an advantage: it can be ported to a Neural Network for training and testing. We have used the standard multilayered Recurrent Neural Networks of Keras [START_REF] Chollet | Deep learning with Python[END_REF] (RNN, see figure 3); LSTM is also available in Keras, but as there are no repeating patterns in the solution of a SDE with brownian noise, it is not clear that a Long-Short-Term-Memory feedback architecture would improve the (already good) performance of RNN. Finally, in the last section PDE methods are investigated, based either on Ito Calculus or Kolmogorov equations for the probability density function (PDF) of the process.

A model problem

To study the evolution of the biomass of a fishing site we consider the following stochastic optimal control problem

min u∈U J(u) := T 0 E (X t -X d) 2 -αu(X t , t) + β|∂ t u(X t , t)| 2 dt, (1)
with dX t = X t (r -κX t -u t)dt + X t σdW t , X 0 = X 0 ≥ 0, (2)
where W t is a N 0,1 Weiner process; X d , r, κ, σ, u m , u M are real constants which depend on the fishing site considered, and

U = {u ∈ H 1 (]0, T [) : u m ≤ u(X t , t) ≤ u M , a.e.} (3)
This problem arises for the determination of fishing quotas (see Appendix A for details): X t is the fish biomass at time t and u t X t is the fishing quota at time t. Occasionally we will also display a variable proportional to the number of boats at sea, the "fishing effort" E(t), modelled by

dE t = (a -u t X t -cE t)dt, E 0 = E 0 given.
where a is related to the price of fish and c is the operating cost of the fisherman. As explained in Appendix A, a -u t X t is the profit of the fisherman and it decreases when too many fish are caught because the price of fish collapse.

The control problem aims at keeping a biomass at a desired level X d at all times, but at the same time, quotas being unpopular, there is a term to prevent small quotas, -αu t and another to prevent quotas from changing too quickly: β|∂ t u| 2 . Note that (X, t) → u(X, t) is a deterministic function and {u(X t , t)} t is a Markov process. Finally,

∂ t u(X t , t) means ∂ t u(X, t)| X=Xt .
It is important to notice that one may also consider the case where u is a deterministic function of t only:

min u∈U J(u) := T 0 E (X t -X d) 2] -αu(t) + β|∂ t u(t)| 2 dt, with (2). (4)
We shall refer to it as the non-dynamic problem by opposition to Dynamic Programming where u(X t , t) is stochastic because of X t but Markovian. In the non-dynamic case, the optimal control is the same for all trajectories X t and in the dynamic case u adapts to the trajectories. To our surprise the non-dynamic case turns out to be more precise and more suitable because the day-to-day noise may not be very meaningful.

Occasionally we shall also refer to the deterministic case, i.e. when σ = 0.

Existence of solution: the deterministic case

In the deterministic case the problem is

min u∈U {J(u) = T 0 |X -X d] 2 -αu + β| u| 2 : Ẋ = X[(r -κX -u), X(0) = X 0 } (5)
As u is positive 0 ≤ X(t) ≤ X M := X 0 e rT . Then obviously F (X) := rX -κX 2 -Xu is uniformly Lipschitz in X:

|F (X 1 (t)) -F (X 2 (t))| ≤ |X 1 (t) -X 2 (t)|(r -u m + 2κX M |, ∀t ∈ [0, T];
therefore the solution of the ODE exists and is unique. It is also uniformly Lipschitz continuous in u:

Ẋi = rX i -κX 2 i -u i X i , i = 1, 2, ⇒ Ẋ1 -Ẋ2 = (X 1 -X 2) (r -κ(X 1 + X 2) -(u 1 + u 2)) -(u 1 -u 2)(X 1 + X 2), ⇒ | Ẋ1 -Ẋ2 | ≤ |X 1 -X 2 |(r + 2X M + 2u M) + 2X M |u 1 -u 2 |, ⇒ |X 1 -X 2 | ≤ 2|u 1 -u 2 |X M (exp((r + 2X M + 2u M)t) -1)/(r + 2X M + 2u M) (6)
where the last line is due to the Grönwall lemma. This shows also that u Proof: Consider a minimizing sequence: u n ∈ U, J(u n) → inf u∈U J(u). U being nonempty, bounded and closed and u 2 0 being part of the criteria, there is a subsequence with u n → u * ∈ U weakly in H 1 (]0, T [) and strongly in L 2 (]0, T [). By the above established continuity, X n → X * in L 2 (]0, T [). Obviously T 0 αu n → T 0 αu * and by the lower semicontinuity of u → u 2 0 ,

→ T 0 |X(t) - X d | 2 dt is continuous in L 2 (]0, T [).
J(u *) ≤ lim inf J(u n) = inf u∈U J(u).
Therefore u * is a minimum and problem (5) has a solution. X s ds = +∞ is impossible unless τ = +∞, P a.s. Therefore X t ∈ R + , ∀t and

X 0 e St(u M) exp -κ t 0 e Ss(u M) ds ≤ X t ≤ X 0 e St(um) . (8)
Theorem 1. Problem (1)(2) has a solution.

Proof: Consider two trajectories corresponding to the same event but different u, denote δ the difference and ¯the average; we have

dδX t = [δX t (r -2κ Xt -ū) -Xt δu]dt + σδX t dW t .
By Itô calculus:

(δX t) 2 = 2 t 0 [δX s) 2 (r + σ 2 2 -2κ Xt -ū) -Xs δu(s)δX s]ds + 2 t 0 σ(δX s) 2 dW s . Hence E[(δX t) 2] ≤ 2(r + σ 2 2 -u m) t 0 E[(δX s) 2] - t 0 δu(s)E[Xs δX s]ds ≤ 2(r + σ 2 2 -u m) t 0 E[(δX s) 2] + t 0 δu(s)E[(Xs) 2]ds. (9)
We have seen earlier that 0 ≤ X t ≤ X 0 e (r-1 2 σ 2)t+σWt , therefore E[(Xs) 2] ≤ 4e (2r+σ 2)s E[X 2 0], so much so that by Grönwall's lemma,

E[(δX t) 2] ≤ 2(r + σ 2 2 -u m) t 0 E[(δX s) 2]ds + 4e (2r+σ 2)T E[X 2 0] t 0 (δu(s)) 2 ds;
and by Grönwall's lemma again,

E[(δX t) 2] ≤ 4e 2r+σ 2 -2um)t e (2r+σ 2)T E[X 2 0] t 0 |δu(s)|ds.
Consequently, for some

C ∈ R + function of r, σ, u m , T only, sup t∈[0,t] E[(δX t) 2] ≤ CE[X 2 0] δu L 1 (]0,T [) The continuity of u → T 0 E[(X t -X d) 2
]dt follows and existence is then shown as for the deterministic case.

Existence of solution: the dynamic case

To establish existence by probabilistic methods proved to be rather hard. On the other hand, the problem can be converted into an equivalent distributed control problem by using the Kolmogorov equation of the PDF of X t . We will show in section 7 that the problem has a solution when the expected value in the criteria and κ are multiplied by a cutoff function for large X and

U = {u ∈ L 2 W 1,1 (R +) : u m ≤ u ≤ u M , ∂ t u ∈ L 2 (Q +), lim Y →∞ | log X|u(X, t) ≤ ∞.} 2.4. Discretization Let h = T
M and t m = mh. For any f , f m denotes an approximation of f (mh). Define (Euler scheme)

X m+1 = X m (1 + h(r -κX m -u m) + σδW m) (10
)
where δW m = W (m+1)h -W mh . Note that positivity may not be preserved by this scheme, but we may use [START_REF] Kamalapurkar | Reinforcement Learning for Optimal Feedback Control[END_REF]:

X m+1 = X m exp (r - σ 2 2)h -(κX m + u m)h + σδW m .
Alternatively, to avoid computing exponentials, we may consider the Milstein scheme:

X m+1 = X m 1 + h(r -κX m -u m - σ 2 2) + σδW m + σ 2 2 (δW m) 2 . (11
)
Proposition 3. Let X denote the solution of the continuous Milstein scheme given by

Xt = X m 1 + (t -mh) r -κX m -u m -σ 2 2 + σ(W t -W m) + σ 2 2 (W t -W m) 2 .
Assume X0 = X 0 > 0. Then on the event

A h = X m < 1 2κh + r-κX m -u M κ , m = 0, . . . , M -1 the (Xt) t∈[0,T] almost surely has positive paths.
Proof. We proceed by induction. Starting from 11, we want the discriminant of the second degree polynomial equation in W t -W m to be negative, namely after obvious simplifications (since σX m = 0)

1 -2 1 + r -κX m -u m -σ 2 2 > 0 or, equivalently X m < 1 2κh + r-κX m -u M κ .
It iso clear that P(A h) ↑ 1 as h → 0 (very fast indeed). For more details on the positivity preserving property of the Milstein scheme, see [START_REF] Pagès | Numerical Probability: An Introduction with Applications to Finance[END_REF]Chapter7.5].

Brute force solution of the non-dynamic control problem by Monte-Carlo

Recall that numerically δW m = √ hN m 0,1 where N m 0,1 denotes the numerical realization at time step m of a normal Gaussian random variable. For each of the 3 previous schemes there is an ζ h such that

X m+1 = ζ h (X m , u m , N 0,1), X 0 given, (12)
Let {X m k } K 1 be K realizations of [START_REF] Chollet | Deep learning with Python[END_REF]; by the law of large numbers :

E[(X t -X d) 2] |mh ≈ E K [(X m -X d) 2] := 1 K K 1 (X m k -X d) 2 .
Problem (1) is approximated by min

um≤u m ≤u M J K := h M -2 0 E K [(X m+1 -X d) 2] -αu m + β h 2 |u m+1 -u m | 2]
, with [START_REF] Chollet | Deep learning with Python[END_REF]. [START_REF] Bris | Existence and uniqueness of solutions to Fokker-Planck type equations with irregular coefficients[END_REF] Note that {u m } need not be Markovian; it may depend also on X p , p > m.

Solution with a gradient method

Gradient methods update {u m } M -1 1 by u m ← u m -µG m , where µ, the step size, is an appropriate scalar and G m = ∂ u m J K . Let X m k be computed by [START_REF] Brochier | Can overexploited fisheries recover by self-organization? Reallocation of the fishing effort as an emergent form of governance[END_REF]; let us differentiate this equation and multiply it by an adjoint variable P m k and sum:

M -2 m=0 -P m k δX m+1 k + P m k (δX m k (1 + h(r -κX m k -u m) + σδW m k) -X m k h(κδX m k + δu m)) = 0.
As δX 0 = 0, if we let P M -1 = P M -2 = 0, and define

v m k = 1 + h(r -2κX m k -u m) + σdW m k , then - M -2 0 hP m k X m k δu m = M -2 1 (P m-1 k δX m k -P m k δX m v m k) = M -2 1 δX m k (P m-1 k -P m k v m k).(14
)
Let us define P m k by

P m-1 k = P m k v m k -2(X m k -X d), m = M -2, M -3, .., 1. Then M -1 m=1 δE K [(X m -X d) 2] = 2 K K k=1 M -1 m=1 (X m k -X d)δX m k = - 1 K K k=1 M -1 m=1 (P m-1 k -P m k v m k)δX m k = 1 K K k=1 M -2 m=0 P m k X m k δu m k . (15
)
So the discrete gradient is

G m = 1 K K 1 P m k X m k -α -2 β h 2 (u m+1 -2u m + u m-1).

Implementation and examples

We use the L-BFGS-B function of the Python library minimize. It is an accelerated projected gradient method for problems with box constraints. We took 50 time steps and chose to solve a deterministic case with

σ = 0, K = 1, X d = 1, κ = 1.2, X 0 = 0.9, c = 1, a = 1, u m = 0.5, u M = 1. (16
)
The computer program is in file fishingQuotaBruteforce.py. The results with α = β = 0 are shown on the left in figure 1 with a saturation of the constraints u = u m when m < 7; but the solution is not bang-bang everywhere and u = 0.8 gives X m+1 = X m = X d , P m = 0. On the right in figure 1 the results are shown for α = 0.01, β = 0.001. On figure 2 a stochastic case of (13) is solved with the same parameters (16) except σ = 0.

Solution of the non-dynamic control problem by supervised learning

To reduce the CPU cost of solving

min u∈U J(u) := T 0 [1 K K 0 (X k (t) -X d) 2 -αu(t) + β(∂ t u(t)) 2]dt (17) with dX k = X k (t)((r -κX k (t) -u(t))dt + σdW k (t), X(0) = X 0 , (18)
we shall train a neural network with input parameters [X 0 , r, κ] and output an optimal {u m } M -1

1
for these parameters, computed by the brute force method above. There is no need to vary the parameter X d because we can always return to the case X d = 1 by scaling. To build a training set we use a large number of synthetic solutions obtained with the brute force method of the previous section. However as noise is known not to affect neural network we use a low value K = 100 to generate 10000 solutions (it takes about 90 minutes on an intel core i7 machine). It works as follows:

• Choose [X 0 , r, κ] uniformly random in [X 0 m , X 0 M] × [r m , r M] × [κ m , κ M].
• Generate K • M normal gaussian random values for dW t .

• Compute a discrete optimal solution {u m } M -1 1 of (17) with K=100 by the L-BFGS-B Python module.

• Then train a neural network [X 0 , r, κ] → {u m } M -1 1 with these 10000 synthetic solutions.

• Finally check the precision by using the network's answer {u m } M -1

1
to a new set of values for [X 0 , r, κ] and compare with the brute force solution corresponding to these parameters .

For an introduction to Statistical Learning with Neural Networks see [START_REF] Goodfellow | Deep Learning[END_REF]. We have used Keras (see [START_REF] Chollet | Deep learning with Python[END_REF]) to generate a 4-layer Neural Network (see figure 3). The input layer has 3 inputs; the two hidden layers have 50 neurons each and the output layer has M nodes. All layers use the ReLU activation. The two hidden layers are separated by a batch-normalisation. Notice that the error is about the same at all time steps. In figure 4 the performance of the trained Neural Network performance on 6 new cases are shown. Each case corresponds to a set of parameters [r, κ, X 0] and a new realization of the random noise. The "exact" control u is computed by the brute force method with K = 100 and compared with the solution u N N given by the neural network (values at the 50 time steps). In all cases except case 4 the control u N N given by the network is close to the "exact" one. But even in case 4, X N N computed by [START_REF] Brochier | Can overexploited fisheries recover by self-organization? Reallocation of the fishing effort as an emergent form of governance[END_REF] with u N N is close to X computed with u "exact".

Bellman's Stochastic Dynamic Programming for the dynamic problem

Consider the value function

V (t, X) = min u∈U T t E (X τ -X d) 2 -αu + β|∂ t u| 2 dτ : dX τ = X τ dτ (r -κX τ -u τ) + σX τ dW τ , X(t) = X} (19) Let [0, T] = ∪ M 1 [(m-1)h, mh]. Let ζ h (X, u m , z
) denote one iterate of a numerical scheme [START_REF] Brochier | Can overexploited fisheries recover by self-organization? Reallocation of the fishing effort as an emergent form of governance[END_REF] [START_REF] Yong | Stochastic Controls Hamiltonian Systems and HJB Equations Application of Mathematics series[END_REF] for the SDE starting at X, for instance with [START_REF] Brochier | Can overexploited fisheries recover by self-organization? Reallocation of the fishing effort as an emergent form of governance[END_REF]

ζ h (X, u, z) = X + X(r -κX -u)h + Xσz √ h, z being the realization of a N 0,1 r.v. Let v M (X) = 0 and v m (X) = min u∈U (m+1)h mh E |ζ h (X, u, z) -X d | 2 -αu + β|∂ t u| 2 dτ + E[v m+1 (ζ h (X, u, z)] ≈ min u∈U hE |ζ h (X, u, z) -X d | 2 -αhu + β h |u m+1 (X) -u| 2 + E[v m+1 (ζ h (X, u, z)] . (20) Evidently E |ζ h (X, u, z) -X d | 2 = [X -X d + hX(r -κX -u)| 2 + hX 2 σ 2 .
To compute E[v m+1 (ζ h (X; u; z))], we use a quadrature formula with Q points {z q } Q 1 and weights {w q } Q 1 based on optimal quantization of the normal distribution N (0, 1) (see [START_REF] Pagès | Optimal quadratic quantization for numerics: the Gaussian case[END_REF] or [4, Chapter 5] and the website www.quantize.maths-fi.com for download of grids) so that

E[v m+1 (η h (X; u; z))] ≈ Q q=1 w q v m+1 (ζ h (X, u, z q)
Finally at every time step and every X j = j L/J, j = 1..J, with L >> 1, the result is minimized with respect to u ∈ U by a dichotomy. In this fashion {u m (X j)} J j=1 is obtained and a piecewise linear interpolation is constructed to prepare for the next time step u m-1 . With the same parameters as above except β = 0.1, L = 3, J = 50 and M = 50, the results of figures 5, 6 have been obtained. Once {u m (X)} M -1 0 is known, for any realization of the fishing model we use it as follows:

X m+1 = X m + hX m (r -κX m -u m (X m)) + X m σ √ hN m 0,1 , X 0 = X 0 .
Two such simulations are shown on figure 7,8. The results are not as good as before, meaning that the dynamic setting gives a poor solution to the control of the fishing site. These results should be compared with those of Appendix B which deals with a very similar problem for which there is a polynomial in log X solution when α = 0.

Solution with the Hamilton-Jacobi-Bellman partial differential equations

The Dynamic Programming equations can be written as a deterministic set of PDE: the Hamilton-Jacobi-Bellman (HJB) equations.

To this end we consider the same value function defined in (19)

Proposition 4. The value function verifies V (•, T) = 0 and

0 = inf u∈U {(X -X d) 2 -αu + β|∂ t u| 2 + ∂ t V + (r -κX -u)X∂ X V + σ 2 X 2 2 ∂ XX V }. (21
)

Proof

The proof given below is heuristic and non standard but it gives a link with the previous section. For the standard argument see for instance [START_REF] Yong | Stochastic Controls Hamiltonian Systems and HJB Equations Application of Mathematics series[END_REF]. We return to (20) above:

v m (X) = min u∈U (m+1)h mh E |ζ h (X, u, z) -X d | 2 -αu + β|∂ t u| 2 dτ + E[v m+1 (ζ h (X, u, z)] ≈ min u∈U E |X -X d | 2 -αu + β h 2 |u m+1 (X) -u| 2 h + E[v m+1 (ζ h (X, u, z)] (22)
As u M plays no role in the discretization we assume that u M = u M -1 . Hence when m = M -1 the minimization reduces to

v M -1 = h min u∈U {E |X -X d | 2 -αu} = h(|X -X d | 2 -αu m)
and the minimizer is

u M -1 = u m . When m < M -1 a similar argument gives, v m (X) ≈ min u∈U |X -X d | 2 -αu + β h 2 |u m+1 (X) -u| 2 h + E[v m+1 (ζ h (X, u, z)] . (23
)
With a Taylor expansion, let us approximate v m+1 (X + h) ≈ q M q=0 v (q) m+1 (X) h q q! . For clarity denote λ = r -κX -u, so

E[v m+1 (ζ h (X, u, z))] = v m+1 (X) + E[q M 0 v (q) m+1)(X)(X √ h) q (σz + λ √ h) q] ≈ v m+1 (X) +Xv m+1 λh + X 2 2 v m+1 (λ 2 h + σ 2)h + X 3 6 λσ 2 v (3) m+1 h 2 + X 4 24 σ 4 v (4) m+1 h 2 + o(h 2) E[v m+1 (ζ h (X, u, z))] ≈ v m+1 (X) + Xv m+1 (r -κX -u)h + X 2 2 v m+1 σ 2 h + o(h)
Let us use it in (23). Then u must solve

min -αu + β h 2 (u 2 -2uu m+1) -uXv m+1 , ⇒ u = u m+1 + h 2 2β (α + Xv m+1) (24)
but comply also with the box constraints, i.e.

u m = min u M , max u m , u m+1 + h 2 2β (α + Xv m+1) , and
v m ≈ v m+1 + h Xv m+1 (r -κX -u m) + X 2 σ 2 2 v m+1 + |X -X d | 2 -αu m + β h 2 |u m+1 -u m | 2 . (25
)
As this corresponds to an explicit discretization of a parabolic PDE, h will have to be extremely small: h = O(δX 2 , where δX is the spatial discretization increment.

Numerical Results

We have implemented the method using FreeFEM++ [START_REF] Hecht | New development in FreeFem++[END_REF] with a slight change in (25): the term

X 2 σ 2 2 v m+1 is changed to X 2 σ 2 2 v
m so as to increase stability.

Numerical results shown on figure 9, 10 are obtained with the program in file pagesbellmanstoch.edp and the following parameters:

r = 2, κ = 1.2, σ = 0.3, X d = 1, α = 0.01, β = 0.1, u m = 0.5, u M = 1.
The computational domain is X ∈ (0, 3) divided in 400 intervals, t ∈ (0, 2), discretized with 40 time steps. Once {u m (X)} M -1 0 is known, for any realization of the fishing model we use it as follows:

X m+1 = X m + hX m (r -κX m -u m (X m)) + X m σ √ hN m 0,1 , X 0 = X 0 .
Two such simulations are shown on figure 11,20. Proof: With U = {u ∈ [u m , u M]} and u m > 0, X being positive, the optimal control u * must be such that if there are 0 < t 1 , t 2 < T such that for all t ∈ (t 1 , t 2), u(X, t) is constant then 1. u * = u m when X∂ X V + α < 0, leading to ∂ t u * = 0 and

0 0.5 1 1.5 2 0.5 1 1.5 time u(X t , t), X t X t with quota quota u t X t without quota
∂ t V + (r -κX -u m)X∂ X V + σ 2 X 2 2 ∂ XX V = αu m -(X -X d) 2 2. u * = u M when X∂ X V + α > 0 , leading to ∂ t u * = 0 and ∂ t V + (r -κX -u M)X∂ X V + σ 2 X 2 2 ∂ XX V = αu M -(X -X d) 2 3. Otherwise when u m < u * (X, t) < u M , we must have V (T) = 0 and 0 = (X -X d) 2 -αu * + ∂ t V + (r -κX)X∂ X V + σ 2 X 2 2 ∂ XX V, X∂ X V + α = 0
The third option being impossible, the solution of the problem is bang-bang.

Remark 1. Note that this HJB dynamic solution is different from the non-dynamic solution of figure 1 6.3. Discretization One way to find u * when it is neither u m nor u M is to discretize in time and solve

inf u m g(u m) := {-αu m + β h 2 |u m -u m+1 | 2 -u m X∂ X V }
The stationary point is at

-α + 2β h 2 (u m-1 -u m) -X∂ X V m-1 = 0, i.e. ūm-1 = u m + h 2 2β (α + X∂ X V m-1
).

So we have to compare g(u m), g(ū m) and g(u M) and choose the smallest. The end result is very similar to the previous section. Two simulations are done with β = 0 and shown on figure 13,14. The control is indeed bang-bang. 0 0.5 1 1.5 2 0.5

X t with quota quota u t X t without quota

X t with quota quota u t X t without quota

Solution with the Kolmogorov equation

The Kolmogorov equation for the probability density ρ(X, t) of {X t } T 0 is:

∂ t ρ + ∂ X [(r -κX -u)Xρ] -∂ XX [X 2 σ 2 2 ρ] = 0, ρ(X, 0) = ρ 0 (X), ∀X ∈ R + . (26)
The optimal control problem (1) is:

min u∈U J(u) := Q + (X -X d) 2 -αu(X, t) + β|∂ t u(X, t)| 2 ρ(X, t)dXdt : with (26). (27
)
Integration is done on Q + := R + ×]0, T [. The conditions for having equivalence between the stochastic control written as (1) and (27) are detailed in [START_REF] Bris | Existence and uniqueness of solutions to Fokker-Planck type equations with irregular coefficients[END_REF]. To avoid using weighted Sobolev spaces we make a change variable y = log X, set v = r -σ 2 2 -κe y -u(e y , t) so that dY t = vdt + σdW t and then study the existence of a PDF for Y t given by

∂ t ρ + ∂ Y (vρ) -∂ Y Y [σ 2 2 ρ] = 0, ρ(Y, 0) = ρ 0 (Y), ∀Y ∈ R, ∀t ∈]0, T [. (28
)
To analyze the last term in the criteria we write it as

β Q R |∂ t v n | 2 ρ n = β Q R |∂ t v n | 2 ρ + β Q R |∂ t v n | 2 (ρ n -ρ).
By the lower semi-continuity of semi-norms,

lim n→∞ Q R |∂ t v n | 2 ρ ≥ Q R |∂ t v| 2 ρ. Finally the last term above is bounded by β (∂ t v n) 2 L 2 (Q R) ρ n -ρ L 2 (Q R) ≤ βK ρ n -ρ L 2 (Q R) → 0. Consequently, the criteria in (30) is l.s.c. Remark 2. If + R X 2 ρ 0 (X)dX < ∞, it
may be possible to let R → ∞ in the proof above.

Computation of gradients

Consider the variational form of the Kolmogorov equation: find ρ ∈ L 2 (0, T, V) such that, for all ρ ∈ V ,

R + ρ∂ t ρ -(r -κX -u)Xρ∂ X ρ + σ 2 2 ∂ X (X 2 ρ)∂ X ρ = 0, ρ(0) given. (32
)
Calculus of variations leads to δρ(0) = 0 and

R + ρ∂ t δρ -(r -κX -u)Xδρ∂ X ρ + σ 2 2 ∂ X (X 2 δρ)∂ X ρ = - R + ρX∂ X ρδu. (33)
Define the adjoint p by p (T) = 0 and, for all p ∈ V :

R + p∂ t p + p(r -κX -u)X∂ X p - σ 2 2 ∂ X (X 2 p)∂ X p +p1 Ω [(X -X d) 2 -αu + β|∂ t u| 2] = 0. (34)
Add (33) and (34) with ρ = p and p = δρ. It gives

R + ∂ t (p δρ) + Ω [(X -X d) 2 -αu + β|∂ t u| 2]δρ = R + ρX∂ X p δu.
As p (T) = 0 and δρ(0) = 0, an integration in time gives

Ω×]0,T [[(X -X d) 2 -αu + β|∂ t u| 2]δρ = - Q + ρX∂ X p δu.
Finally, from (27),

δJ = < grad u J, δu >= Ω×[0,T] (X -X d) 2 -αu + β|∂ t u| 2 δρ -αρδu + 2ρ∂ t u∂ t δu . = - Q + ρX∂ X p δu + Ω×]0,T [ρ[-αδu + 2∂ t u∂ t δu] (35)

Results

A steepest descent algorithm with fixed step size and projected gradient on the box constraints is

v = u k -µgrad u J k , u k+1 = max{u m , min{u M , v}}. (36)
Note that we have assumed that ∂ t u(0) = ∂ t u(T) = 0. The same parameters as above have been used except that the computational domain is (0, 5) instead of (0, 3). The PDF of X 0 is a Gaussian curve with σ 0 = 0.2. The computer program is in the file GPOP2dxt.edp. After 100 iterations J is a fifth of its initial value. Figure 15 shows the surfaces u,P and ρ versus X, t. Note that (X, t) → u(X, t) is either 0.5 or 1, implying that all controls u(X t , t) will be bang-bang. Figures 16 and17 show two applications, one with X 0 = 0.8 and the other with X 0 = 1.2. The method achieves a reasonable stabilization of the fish biomass, but the quotas vary rapidly, as if the β -term wasn't playing its regularizing role. Note that (X, t) → u(X, t) is either 0.5 or 1, implying that all controls u(X t , t) will be bang-bang. There is a vertical scale factor of 0.5 applied.

Solution by Itô calculus

In computational finance Itô calculus is preferred over the Kolmogorov setting, primarily because the initial condition for the PDF could be singular. Consider again Problem [START_REF] Bellman | Dynamic Programming[END_REF]. Itô calculus applied to

j t = T t E (X τ -X d) 2 + β(∂ t u) 2 -αu dτ
as a function of X t gives:

d t j = ∂ t jdt + E[∂ X jdX] + 1 2 E[∂ XX jdXdX] = dt ∂ t j + ∂ X j(r -κX -u)X + X 2 σ 2 2 ∂ XX j = -dt[(X -X d) 2 + β(∂ t u) 2 -αu] (37)
This formulation is dual to the Kolmogorov calculus presented above. Let us compute j as the solution at τ = 0 and X = X 0 of the PDE, backward in time and initiated by j(X, T) = 0, ∀X ∈ R + , τ ∈]0, T [:

∂ t j + (r -κX -u)X∂ X j + X 2 σ 2 2 ∂ XX j = -[(X -X d) 2 + β(∂ t u) 2 -αu] (38)
The optimal control problem (1) is now min u∈U R j(X, 0)ρ 0 (X)dX : subject to (38)

where ρ 0 (X) is the PDF of X 0 . We have to restrict X < X M for the right hand side of the PDE to be in L 2 (R).

On Ω := (0, X M) the variational formulation of the PDE consists in finding j in a weighted Sobolev space:

j ∈ V := {g ∈ L 2 (Ω) : X∂ X g ∈ L 2 (Ω)}, j(•, T) = 0, Ω (∂ t j + (r -κX -u)X∂ X j) ĵ - Ω σ 2 2 ∂ X (X 2 ĵ)∂ X j + σ 2 2 X M j(X M) ĵ(X M) = - Ω [(X -X d) 2 + β(∂ t u) 2 -αu] ĵ, ∀ ĵ ∈ V. (40)

Gradient computation

The gradient of j with respect to u results from the following calculus:

Ω×]0,T [grad u jδu := Ω ρ 0 δj(X 0 , 0) subject to Ω (∂ t δj + (r -κX -u)X∂ X δj) ĵ - Ω σ 2 2 ∂ X (X 2 ĵ)∂ X δj + σ 2 2 X M δj(X M) ĵ(X M) = Ω ĵ[(X∂ X j + α)δu -2β∂ t u∂ t δu], ∀ ĵ ∈ V. (41)
Define p by

Ω (p∂ t p -(p(r -κX -u)X∂ X p) + Ω σ 2 2 ∂ X (X 2 p)∂ X p - σ 2 2 X M p(X M)p(X M) = 0, p(0) = ρ 0 (42)
Then adding (42) to (41) with p = δj and ĵ = p and remembering that δj(X, T) = 0, leads to

Ω (p∂ t δj + δj∂ t p) = Ω×]0,T [[p(X∂ X j + α)δu -2β∂ t u∂ t δu] (43)
On the other hand

- Ω ρ 0 δj(X, 0) = Ω δj(X, T)p(T) - Ω δj(X, 0)p(0) = Ω×]0,T [∂ t (pδj) (44) Consequently Ω×]0,T [grad u jδu = Ω ρ 0 δj(X 0 , 0) = - Ω×]0,T [[p(X∂ X j + α)δu -2β∂ t u∂ t δu]
Hence this method is a minor variation of the method with the Kolmogorov equation: ρ and p have similar equations and p and j too.

Limit with vanishing volatility

We have seen earlier that the optimal solution of the non-dynamic control is very close to the solution of the deterministic control problem.

We explore here the convergence of the PDE method to the deterministic case by letting σ tend to zero. For clarity we take α = β = 0. Consider again (39). Let Y (X, τ) be the solution of

Ẏ (τ) = (r -κY (τ) -u(Y (τ), τ)) Y (τ), Y (t) = X; (45)
then

∂ t j + (r -κX -u)X∂ X j = d dτ ρ(Y (τ, X), τ)| τ =t . (46)
Hence (38) is rewritten as

d dτ j(Y (τ, X), τ)| τ =t = - σ 2 2 ∂ XX (X 2 ρ) -(X -X d) 2 .
Consequently, when σ → 0, j becomes equal to j, the integral of -(X -X d) 2 on the streamline (45) which passes through X 0 at t = 0:

j(Y (T), T) -j(Y (0), 0) = -j(X 0 , 0) = - Y (T) Y (0) (X(s) -X d) 2 i.e. j(0) = T 0 (X(t) -X d) 2 dt : Ẋ = (r -κX -u)X, X(0) = X 0 . (47)
This analysis shows that HJB becomes numerically singular when σ is too small.

Concluding discussion

Let us compare the 3 classes of methods:

1. Non-dynamic control (NDC) solved by Monte-Carlo. 2. Dynamic Programming in a stochasting setting (DP).

Dynamic Programming solved with Partial Differential equations (HJB).

NDC is a mathematical oddity because it does not take into account the necessity of a Markovian solution forbidding an attempt to use the current noise level to predict the next step (feedback); but from the practical point of view it is certainly the best solution for the fishing site regulator, especially when it is coupled with Supervised Learning. After all, provided that the model fits the reality, a Markovian solution is not needed. By reinitializing the data every so often at {T k } J 0 and solving J control problem on smaller time intervals [T j-1 , T j], on could borrow from Model Predictive Control (see [START_REF] Boyd | Linear Controller Design -Limits of Performance[END_REF]). Yet, it can be seen on figure 4 that the precision is hardly better at early times than at later times. On this fishing site control problem DP and HJB are different implementations of the same approach. All four implementations gave disappointing results, probably because the parameter chosen gave a solution close to a bang-bang saturation of constraints and not far from the elementary but intuitive strategy which consists in taking u t = u m when X t > X d and u M otherwise. Another possible reason is that penalization of |∂ t u| works for NDC but doesn't for DP and HJB. A penalization of |∂ X u| is probably needed as well. HJB with PDEs is the most taxing method numerically and DP is much faster and also capable of generating approximate solution which do not saturate the constraints as much. NDC requires brute force Monte-Carlo, which is also very expensive, yet with neural network training for NDC outperform traditional HJB and DP methods. This problem belongs to a class for which the user cannot measure precisely the random errors in the data and the model; the number of boats at sea and the quantity of fish caught everyday may just reflect the roughness of the model rather than the stochasticity of the measurements; nevertheless this point needs to be investigated further and in the mean time the non-dynamic control problem makes sense and gives better results. Furthermore, when coupled with a neural network the optimization process is very fast, once the learning phase is done. Finally, porting the trained network to a hand held device is also a major advantage.

Reformulation

To prevent fish extinction a constraint is set on the total catch min(qX(t), Q(t))E(t)). Optimization will then define Q(t). It is expected that Q(t) < qX(t) otherwise the policy of quota is irrelevant in the sense that the fisherman is given a maximum allowed catch which is greater than what he could possibly catch. So let us add a constraint Q(t) ≤ Q M so that min(qX(t), Q(t)) = Q(t). Denote u(t) = E(t)Q(t)/X(t). As said before it is not feasible too impose to small a quota, so finally U = {u m ≤ u(t) ≤ u M }. where u M is less than qE(t) at all time.

12.1. More constraints on quotas Small quotas are unpopular. To avoid them we may use penalty and add to the criteria -T 0 αu(t). More over, it will be unpopular if u(t) = u m one day and u(t) = u M the next day, so to avoid too many changes we may add to the criteria a term like β| du dt | 2 . An optimal policy is a solution of min Q∈Q J(u) :=

Figure 1 shows the solution with the same parameters as for figure 18. There are differences because it is a different set of constraints. The policy given to each fisherman is Q(t) for the full system and u(t)X(t)/E(t) for the reduced system.

Proposition 1 .

 1 Problem (5) has a solution.

Figure 1 :

 1 Figure 1: Solution of (1) discretized by[START_REF] Bris | Existence and uniqueness of solutions to Fokker-Planck type equations with irregular coefficients[END_REF], versus m, in the deterministic case (σ = 0, K = 1) with β = 0 (left), and β = 0.001 (right).The blue curve is the control u; the biomass X t is in ochre and the fishing effort in green.

 3. The results are shown for K = 1, 10, 100, 10000 Monte-Carlo samples. Note that the brute force solution for K >> 1 is quite close to the noiseless solution of figure 1-b.

Figure 2 :

 2 Figure 2: Solution of (13) in the stochastic case with σ = 0.3: convergence of the Monte-Carlo approximation . Left to right, up first: K=1, K=10, K=100,K=1000, K=10000. Already the results are fairly converged at K=100. In the last figure the optimal control is computed with K=100 and used to solve[START_REF] Balakrishnan | Adaptive-critic-based neural networks for aircraft optimal control[END_REF] with a new random noise, thereby showing that the solution is still acceptable.

Figure 3 :

 3 Figure 3: The Neural Network has 3 inputs, two hidden layers each with 50 neurons (10 shown here) and separated by batch-normalisation and an output layer with M output (M=15 shown here) . Right: typical convergence curve of the loss function during the training phase.

4. 1 . 3)

 13 A numerical testWe have taken 50 time steps and K=100 for the brute force part. The following parameters are used:T = 2, α = 0.01, β = 0.001, σ = 0.3, X d = 1, u m = 0.5, u M = 1For the Neural Network training we have used 10000 samples in batches of 32 and a maximum of 2000 epochs. The input parameters are r = np.random.uniform(1.9,2.2) kappa = np.random.uniform(1,1.3) X0=np.random.uniform(0.7,1.Finally for the fishing effort equation, a = c = 1. The computer program is written in Python and is in the file fishingQuotaIA4.py. The learning phase produced the following precision on each of the time steps :Test loss: 0.03751661651 Average relative error |1-u_NN/u| for the 49 time steps = [0.03185646 0.03954296 0.04612997 0.03440035 0.03665108 0.04323719 0.03549499 0.04364510 0.04247633 0.03737225 0.03448902 0.03950258 0.04441193 0.04149515 0.03366303 0.04054435 0.03978632 0.04160346 0.0404573 0.03319214 0.03800414 0.03229879 0.04076255 0.03475258 0.03333832 0.03761944 0.04427279 0.03837532 0.03909892 0.03384874 0.03707403 0.03838878

Figure 4 :

 4 Figure 4: On each of the 6 plots X and u are shown: True discrete solution in green for X and red for u. NN solution in blue for X N N and ochre for u N N . The plots correspond to the following values of the parameters: r = 2.0228569911704177, κ = 1.0203759108766386, X 0 = 1.1122268356898797, r = 2.0688190264082973, κ = 1.2641632371604865, X 0 = 0.7852264857858362, r = 1.9151933649036637, κ = 1.0141074063562392, X 0 = 0.8299957532445648, r = 2.0738603520220655, κ = 1.187620910330912, X 0 = 1.1344043926097065, r = 2.0463252714459936, κ = 1.122409869546898, X 0 = 0.7116598707629698, r = 1.9002636936181148, κ = 1.189933237216782, X 0 = 0.7550552945829774.

Figure 5 :

 5 Figure 5: Solution of the Dynamic Programming equation: u(x, t).

Figure 6 :

 6 Figure 6: Solution of the Dynamic Programming equation: V (x, t).

Figure 7 :

 7 Figure 7: Simulation of the fishing model with a quota function computed by Dynamic Programming and X 0 = 0.8.

Figure 8 :

 8 Figure 8: Simulation of the fishing model with a quota function computed by Dynamic Programming and X 0 = 1.2.

Figure 9 :Figure 10 :

 910 Figure 9: Solution of the Dynamic Programming equation: side view.

Figure 11 :

 11 Figure 11: Simulation of the fishing model with a quota function computed by Dynamic Programming and X 0 = 0.8.

Figure 12 :

 12 Figure 12: Simulation of the fishing model with a quota function computed by Dynamic Programming and X 0 = 1.2.

6. 2 .

 2 Analysis when β = 0 Proposition 5. When β = 0, the solution is always bang-bang.

Figure 13 :

 13 Figure 13: Simulation of the fishing model with a quota function computed by HJB when β = 0 and X 0 = 0.8.

Figure 14 :

 14 Figure 14: Simulation of the fishing model with a quota function computed by HJB when β = 0 and X 0 = 1.2.

Figure 15 :

 15 Figure 15: From left to right: optimal ρ,p ,u. Horizontal axis is X∈]0, X M [, vertical is t ∈ [0, T] with X M = 5, T = 2, X d = 1, u m = 0.5, u M = 1.Note that (X, t) → u(X, t) is either 0.5 or 1, implying that all controls u(X t , t) will be bang-bang. There is a vertical scale factor of 0.5 applied.

Figure 16 :

 16 Figure 16: Optimal biomass and quota function computed by Optimal Control and compared with the solution with u = u M when X 0 = 0.8.

Figure 17 :

 17 Figure 17: Optimal biomass and quota function computed by Optimal Control and compared with the solution with u = u M when X 0 = 1.2.

Figure 18 :

 18 Figure 18: Left: Quota (blue) and fishing effort (ochre). No quota means that Q(t) = 1 for all t. Right: biomass with (blue) and without quota (ochre).

 Then we need u(t) ≤ qE(t) and the problem becomesmin t) -X d (t)) 2 dt : dX dt = X (r -κ X -u(t)) , X(0) = X 0 } (53)In the paper, the optimization is performed without computing E; then E is computed with the optimal u by solving dE dt = a -cE -uX, E(0) = E 0 .

T 0 |X -X d | 2 -

 02 αu + β| du dt | 2 : subject to dX dt = X (r -κ X -u(t)) , X(0) = X 0 .

Acknowledgements

Our sincere gratitude goes to François Murat for his help to minimize the hypotheses necessary for the existence of a solution to the Kolmogorov distributed control problem. The computer programs in Python and FreeFEM++ can be obtained by email from olivier.pironneau@sorbonne-university.fr.

The PDE is understood in the sense that for all ρ ∈ H 1 (R),

Note that v can be changed to v -L, L ∈ R by changing ρ to ρe -Lt . Hence when lim Y →∞ u = u ∞ = 0 we can take L = r -σ 2 2 -u ∞ and assume that lim Y →∞ v = 0.

, given by (28).

Consequently, for the problem to make sense, (r -κX -u) needs to be multiplied by a regular cutoff function, tending to zero fast enough when X → +∞. We shall henceforth assume that κ is a function of X which is zero when X > X M , for some X M .

and consider

Problem (30) has a solution.

Proof: Note first that J ≥ αv m . Note also that when u M is large enough so that

is finite and V is non empty the infimum is finite. Multiplying the PDE by ρ and integrating over R leads to

From the maximum principle we also know that 0 ≤ ρ n ≤ 1 in Q and that R ρ(Y, t)dY = 1 a.e. Now let us take a minimizing sequence {v n } n∈N for (30). Then

It follows from above that there is a v such that, for a subsequence, v n → v inL ∞ -weak-star and weakly in L 2 (Q) and a ρ such that

By the weak convergence of v n and the strong convergence of

APPENDIX A 11. A model with fishing quota

Let X(t) be the fish biomass at time t, E(t) the fishing effort -interpreted as the number of boats at sea -and Q(t) is the fishing capacity per boat. In [START_REF] Brochier | Can overexploited fisheries recover by self-organization? Reallocation of the fishing effort as an emergent form of governance[END_REF] Q(t) = qX(t),with the catchability q constant, meaning that the more fish there is the more fishermen will catch them. In this study a quota Q(t), given to each fisherman, is imposed on the maximum weight of fish caught on a day t ; hence the total amount of fish caught on a day is min(qX(t), Q(t))E(t). The modified model is an equation for X(t) which says that the biomass changes due to the natural growth/decay rate r, the long time limit κ of X and the depletion due to fishing:

Biomass dynamics. (48)

Let F (t) = min(qX(t), Q(t)). The fishing effort is driven by the profit pF minus the operating cost of a boat c, where p being the price of fish.

Fishing effort driven by profit,

The price is driven by the difference between the demand D(p) and the resource F E:

where Φ is the inverse time scale at which the fish market price adjusts. When Φ << 1, (50) may be approximated by

With a = a /γ and κ = κ γ, the whole system is :

Now notice that by changing the initial conditions X 0 → X 0 /γ we may take γ = 1.

Remark 3. Finally with t = tq, Q = Q/q and (r, κ", ã, c) = (r, κ, a, c)/q the above system is identical but now q = 1.

Remark 4. The ODE system is of the form

Global existence of solution on [0, T] is not known because ψ is only locally Lipschitz and not sublinear for large E, X.

A numerical simulation with and without optimal quota is shown on figure 18 with the following parameters (see file fishingQuota0.py and for the definition of α and β, see below):

Notice that q is big enough so that min(qX(t), Q(t)) = Q(t), ∀t. Notice also that without quota the biomass tends to zero, in this case.

APPENDIX B

13. An analytical solution for a similar problem

It was said earlier that Y t = log X t could be used to simplify the problem. As the goal is to reach

If the constraints are not active, the equation for the optimality of u is

When α = 0 there is a polynomial solution to this system: V = aY 2 +bY +c, v = KY +k where a, b, c, K, k are functions of time with a(T

One must also check that u