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Stochastic Control: from Gradient Methods and Dynamic

Programming to Statistical Learning

Gilles Pagès1, Olivier Pironneau2

Abstract

In this article the authors wish to contribute to the evaluation of statistical learning for
stochastic control. We will review the well known methods for stochastic control and
compare their numerical performance to those of a neural network. This will be done on
a simple but practical example arising for fishing quotas to preserve the biomass of fish.

Keywords: Stochastic control, Dynamic Programming, Partial Differential Equations,
Statistical Learning.

1. Introduction

Stochastic control of differential systems with random data or modelling errors, is usu-
ally solved by dynamic programming, a technique introduced in the 1950 by Richard
Bellman[1]. Numerically one has to solve a backward in time differential equation possi-
bly coupled with the forward stochastic differential equation (SDE) of the problem. The
method has various discrete implementations (see [3],[14], etc). Calculus of variations
and optimal control is another approach, which, in principle is more expensive because
the backward adjoint Partial Differential Equation (PDE) and the forward Kolmogorov
PDE for the PDF of the process are coupled and must be solved iteratively by a gradient
method.
A third method has been proposed in [2], [5], [4], [6] and others : statistical learning
with neural networks: like off-line/on-line reduction methods, one is ready to pay a high
CPU price in a ”learning” phase so as to solve quickly the problem with new data with
the ”trained network”. The novelty is that a trained neural network can be ported on a
small unit like a smart phone and yet be fast and accurate.
In this article the three classes of methods will be tested on an easy yet practical problem
studied in [8]: the control of a fishing site in Senegal where the fish biomass is threatened
by intensive fishing. In [6] it was shown that parameter identification from a few measures
near time zero could be obtained accurately and fast by statistical learning. Here the
parameters are known but with a level of uncertainty and the objective is to apply optimal
quotas to stabilize the fish biomass at a desired level in this stochastic setting.
The model has two ordinary differential equations (ODE), one for the fish biomass Xt at
time t, and one for the fishing effort which, for us, will be the number of boats at sea Et.
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Quotas are meant to keep the biomass at a constant optimal level. Hence the total
number of fish caught must be lower than the quota Qt. Then each boat is told to keep
their catch below Qt/Et. By construction each boat can’t catch more than qXt, where q
is a constant reflecting the structural limit of the fisherman’s catch yet proportional to
the biomass.
The control problem is solved by minimizing a cost function, the integral over time of
‖Xt −Xd‖2 where Xd is the desired biomass. But quotas, imposed by the regulator, are
unpopular. To avoid too strict quotas, we add to the cost function the integral over time
of −αQt where α is constant; consequently, a small quota will not be optimal because it
gives a larger value to the cost function.
Along the way we found that the solution of the problem is very often ”bang-bang”,
i.e; switching from the structural bound to the quota often. For the regulator, it is also
unpopular; hence in an attempt to avoid such frequent drastic changes we add to the cost
function the integral over time of ‖Q̇t‖2.
As the core of the article is to compare various numerical solution method, the detail of
the modelling has been postponed to Appendix A.
The plan is as follows:
In section one the fishing quota control problem is stated. It is a stochastic control prob-
lem because the data are not known accurately. Existence of solutions and discretization
methods are discussed. We identify 3 classes: deterministic control (no noise), stochastic
state equation but deterministic control (which we call non-dynamic) and fully stochastic
state and control, known as dynamic programming.
In section 2, a Monte-Carlo method is proposed for the non-dynamic case. It is a brute
force Monte-Carlo approach, much more expensive than the Dynamic Programming ap-
proach of section 4, but it has an advantage: it can be ported to a Neural Network for
training and testing avoiding also recurrent networks, inevitably less accurate.
Finally, in the last section PDE methods are investigated, based either on Ito Calculus
or Kolmogorov equations for the probability density function (PDF) of the process.

2. A model problem

To study the evolution of the biomass of a fishing site we consider the following stochastic
optimal control problem

minu∈U J(u) :=

∫ T

0

E
[
(Xt −Xd)

2 − αu(Xt, t) + β|∂tu(Xt, t)|2
]

dt, (1)

with dXt = Xt(r − κXt − ut)dt+XtσdWt, X0 = X0 ≥ 0, (2)

where Wt is a N0,1 Weiner process; Xd, r, κ, σ, um, uM are real constants which depend
on the fishing site considered, and

U = {u ∈ H1(]0, T [) : um ≤ u(Xt, t) ≤ uM , a.e.} (3)

This problem arises for the determination of fishing quotas (see Appendix A for details):
Xt is the fish biomass at time t and utXt is the fishing quota at time t. Occasionally
we will also display a variable proportional to the number of boats at sea, the ”fishing
effort” E(t), modelled by

dEt = (a− utXt − cEt)dt, E0 = E0 given.
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where a is related to the price of fish and c is the operating cost of the fisherman. As
explained in Appendix A, a − utXt is the profit of the fisherman and it decreases when
too many fish are caught because the price of fish collapse.
The control problem aims at keeping a biomass at an desired level Xd at all times, but at
the same time, quotas being unpopular, there is a term to prevent small quotas, −αut and
another to prevent quotas from changing too quickly: β|∂tu|2. Note that (X, t) 7→ u(X, t)
is a deterministic function and {u(Xt, t)}t is a Markov process. Finally, ∂tu(Xt, t) means
∂tu(X, t)|X=Xt .
It is important to notice that one may also consider the case where u is a deterministic
function of t only:

min
u∈U

J(u) :=

∫ T

0

E
[
(Xt −Xd)

2]− αu(t) + β|∂tu(t)|2
]

dt, with (2). (4)

We shall refer to it as the non-dynamic problem by opposition to dynamic programming
where u(Xt, t) is stochastic because of Xt but Markovian. In the non-dynamic case, the
optimal control is the same for all trajectories Xt and in the dynamic case u adapts to
the trajectories. To our surprise the non-dynamic case turns out to be more precise and
more suitable because the day-to-day noise may not be very meaningful.
Occasionally we shall also refer to the deterministic case, i.e. when σ = 0.

2.1. Existence of solution: the deterministic case
In the deterministic case the problem is

min
u∈U
{J(u) =

∫ T

0

|X −Xd]
2 − αu+ β|u̇|2 : Ẋ = X[(r − κX − u), X(0) = X0} (5)

As u is positive 0 ≤ X(t) ≤ XM := X0erT . Then obviously F (X) := rX − κX2 −Xu is
uniformly Lipschitz in X:

|F (X1(t))− F (X2(t))| ≤ |X1(t)−X2(t)|(r − um + 2κXM |, ∀t ∈ [0, T ];

therefore the solution of the ODE exists and is unique. It is also uniformly Lipschitz
continuous in u:

Ẋi = rXi − κX2
i − uiXi, i = 1, 2, ⇒

Ẋ1 − Ẋ2 = (X1 −X2) (r − κ(X1 +X2)− (u1 + u2))− (u1 − u2)(X1 +X2), ⇒
|Ẋ1 − Ẋ2| ≤ |X1 −X2|(r + 2XM + 2uM) + 2XM |u1 − u2|, ⇒
|X1 −X2| ≤ 2|u1 − u2|XM(exp((r + 2XM + 2uM)t)− 1)/(r + 2XM + 2uM) (6)

where the last line is due to the Grönwall lemma. This shows also that u 7→
∫ T

0
|X(t)−

Xd|2dt is continuous in L2(]0, T [).

Proposition 1. Problem (5) has a solution.

Proof: Consider a minimizing sequence: un ∈ U , J(un) → infu∈U J(u). U being non-
empty, bounded and closed and ‖u̇‖2

0 being part of the cost function, there is a subse-
quence with un → u∗ ∈ U weakly in H1(]0, T [) and strongly in L2(]0, T [). By the above

established continuity, Xn → X∗ in L2(]0, T [). Obviously
∫ T

0
αun →

∫ T
0
αu∗ and by the

lower semicontinuity of u→ ‖u̇‖2
0,

J(u∗) ≤ lim inf J(un) = inf
u∈U

J(u).

Therefore u∗ is a minimum and problem (5) has a solution.
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2.2. Existence of solution: the stochastic non-dynamic case
Proposition 2. The solution of of the SDE (2) exists and is positive.

Proof: X → (r − κX − ut)X is locally Lipschitz, uniformly in t since ut ∈ [um, uM ];
hence for every realization Wt(ω) there is a unique strong solution until a blow-up time τ
which is a stopping time for the filtration Fwt = σ(Ws, s ≥ t,Ns). On [0, τ [ we may work
with Yt = logXt, solution (by Itô calculus) of

dYt = (r − σ2

2
− κXt − ut)dt+ σdWt,

⇒ Xt = X0 exp

(
(r − σ2

2
)t−

∫ t

0

(κXs + us)ds+ σWt

)
.

⇒ Xt ≤ X0eSt(um),∀t ∈ (0, τ ], where St(v) := (r − σ2

2
)t− vt+ σWt. (7)

Hence

∫ τ

0

Xsds = +∞ is impossible unless τ = +∞, P a.s. Therefore Xt ∈ R+,∀t and

X0eSt(uM ) exp

(
−κ
∫ t

0

eSs(uM )ds

)
≤ Xt ≤ X0eSt(um). (8)

Theorem 1. Problem (1)(2) has a solution.

Proof: Consider two trajectories corresponding to the same event but different u, denote
δ the difference and ¯ the average; we have

dδXt = [δXt(r − 2κX̄t − ū)− X̄tδu]dt+ σδXtdWt.

By Itô calculus:

(δXt)
2 = 2

∫ t

0

[δXs)
2(r +

σ2

2
− 2κX̄t − ū)− X̄sδu(s)δXs]ds+ 2

∫ t

0

σ(δXs)
2dWs.

Hence

E[(δXt)
2] ≤ 2(r +

σ2

2
− um)

∫ t

0

E[(δXs)
2]−

∫ t

0

δu(s)E[X̄sδXs]ds

≤ 2(r +
σ2

2
− um)

∫ t

0

E[(δXs)
2] +

∫ t

0

δu(s)E[(X̄s)
2]ds. (9)

We have seen earlier that 0 ≤ Xt ≤ X0e
(r− 1

2
σ2)t+σWt , therefore E[(X̄s)

2] ≤ 4e(2r+σ2)sE[X2
0 ],

so much so that by Grönwall’s lemma,

E[(δXt)
2] ≤ 2(r +

σ2

2
− um)

∫ t

0

E[(δXs)
2]ds+ 4e(2r+σ2)TE[X2

0 ]

∫ t

0

(δu(s))2ds;

and by Grönwall’s lemma again,

E[(δXt)
2] ≤ 4e2r+σ2−2um)te(2r+σ2)TE[X2

0 ]

∫ t

0

|δu(s)|ds.

Consequently, for some C ∈ R+ function of r, σ, um, T only,

sup
t∈[0,t]

E[(δXt)
2] ≤ CE[X2

0 ]‖δu‖L1(]0,T [)

The continuity of u→
∫ T

0
E[(Xt −Xd)

2]dt follows and existence is then shown as for the
deterministic case.
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2.3. Existence of solution: the dynamic case
To establish existence by probabilistic methods proved to be rather hard. On the other
hand, the problem can be converted into an equivalent distributed control problem by
using the Kolmogorov equation of the PDF of Xt.
We will show in section 7 that the problem has a solution when the expected value in the
cost function and κ are multiplied by a cutoff function for large X and

U = {u ∈ L2
(
W 1,1(R+)

)
: um ≤ u ≤ uM , ∂tu ∈ L2(Q+), limY→∞ | logX|u(X, t) ≤ ∞.}

2.4. Discretization
Let h = T

M
and tm = mh. For any f , fm denotes an approximation of f(mh).

Define (Euler scheme)

Xm+1 = Xm (1 + h(r − κXm − um) + σδWm) (10)

where δWm = W(m+1)h−Wmh. Note that positivity may not be preserved by this scheme,
but we may use (7):

Xm+1 = Xm exp

(
(r − σ2

2
)h− (κXm + um)h+ σδWm

)
.

Alternatively, to avoid computing exponentials, we may consider the Milstein scheme:

Xm+1 = Xm

(
1 + h(r − κXm − um − σ2

2
) + σδWm +

σ2

2
(δWm)2

)
. (11)

Proposition 3. Let X̄ denote the interpolated Milstein scheme:

X̄t = Xm

(
1 + (t−mh)(r − κXm − um − σ2

2
) + σ(Wt −Wm) +

σ2

2
((Wt −Wm)2

)
.

If σ2 ≤ 1 + h(r − κX̄t − uM), then E[X̄t] ≥ 0.

Proof: The above inequality implies that the discriminant of the second degree polynomial
in δW is negative: σ4 − σ2(1− 2h(r − κXm − um)) ≤ 0.

3. Brute force solution of the non-dynamic control problem by Monte-Carlo

Recall that numerically δWm =
√
hNm

0,1 where Nm
0,1 denotes the numerical realization at

time step m of a normal Gaussian random variable. For each of the 3 previous schemes
there is an ζh such that

Xm+1 = ζh(X
m, um,N0,1), X0 given, (12)

Let {Xm
k }K1 be K realizations of (12); by the law of large numbers :

E[(Xt −Xd)
2]|mh ≈ EK [(Xm −Xd)

2] :=
1

K

K∑
1

(Xm
k −Xd)

2.

Problem (1) is approximated by

min
um≤um≤uM

JK := h

M−2∑
0

[
EK [(Xm+1 −Xd)

2]− αum +
β

h2
|um+1 − um|2]

]
, with (12). (13)

Note that {um} need not be Markovian; it may depend also on Xp, p > m.
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3.1. Solution with a gradient method

Gradient methods update {um}M−1
1 by um ← um − µGm, where µ, the step size, is an

appropriate scalar and Gm = ∂umJK . Let Xm
k be computed by (10); let us differentiate

this equation and multiply it by an adjoint variable Pm
k and sum:

M−2∑
m=0

[
−Pmk δXm+1

k + Pmk (δXm
k (1 + h(r − κXm

k − um) + σδWm
k )−Xm

k h(κδXm
k + δum))

]
= 0.

As δX0 = 0, if we let PM−1 = PM−2 = 0, and define

vmk = 1 + h(r − 2κXm
k − um) + σdWm

k , then

−
M−2∑

0

hPm
k X

m
k δu

m =
M−2∑

1

(Pm−1
k δXm

k − Pm
k δX

mvmk ) =
M−2∑

1

δXm
k (Pm−1

k − Pm
k v

m
k ).(14)

Let us define Pm
k by

Pm−1
k = Pm

k v
m
k − 2(Xm

k −Xm
d ), m = M − 2,M − 3, .., 1. Then

M−1∑
m=1

δEK [(Xm −Xd)
2] =

2

K

K∑
k=1

M−1∑
m=1

(Xm
k −Xd)δX

m
k

= − 1

K

K∑
k=1

M−1∑
m=1

(Pm−1
k − Pm

k v
m
k )δXm

k =
1

K

K∑
k=1

M−2∑
m=0

Pm
k X

m
k δu

m
k . (15)

So the discrete gradient is

Gm =
1

K

K∑
1

Pm
k X

m
k − α− 2

β

h2
(um+1 − 2um + um−1).

3.2. Implementation and examples

We use the L-BFGS-B function of the Python library minimize. It is an accelerated
projected gradient method for problems with box constraints. We took 50 time steps and
chose to solve a deterministic case with

σ = 0, K = 1, Xd = 1, κ = 1.2, X0 = 0.9, c = 1, a = 1, um = 0.5, uM = 1. (16)

The computer program is in file fishingQuotaBruteforce.py. The results with α =
β = 0 are shown on the left in figure 1 with a saturation of the constraints u = um when
m < 7; but the solution is not bang-bang everywhere and u = 0.8 gives Xm+1 = Xm.
On the right in figure 1 the results are shown for α = 0.01, β = 0.001. On figure 2
a stochastic case of (13) is solved with the same parameters (16) except σ = 0.3. The
results are shown for K = 1, 10, 100, 10000 Monte-Carlo samples.
Note that the brute force solution for K >> 1 is quite close to the noiseless solution of
figure 1-b.
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Figure 1: Solution of (1) discretized by (13), versus m, in the deterministic case (σ = 0,K = 1) with
β = 0 (left), and β = 0.001 (right).The blue curve is the control u; the biomass Xt is in ochre and the
fishing effort in green.

Figure 2: Solution of (13) in the stochastic case with σ = 0.3: convergence of the Monte-Carlo approxi-
mation . Left to right, up first: K=1, K=10, K=100,K=1000, K=10000. Already the results are fairly
converged at K=100. In the last figure the optimal control is computed with K=100 and used to solve
(2) with a new random noise, thereby showing that the solution is still acceptable.
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4. Solution of the non-dynamic control problem by statistical learning

To reduce the CPU cost of solving

minu∈U J(u) :=

∫ T

0

[
1

K

K∑
0

(Xk(t)−Xd)
2 − αu(t) + β(∂tu(t))2]dt (17)

with dXk = Xk(t)((r − κXk(t)− u(t))dt+ σdWk(t), X(0) = X0, (18)

we shall train a neural network with input parameters [X0, r, κ] and output an optimal
{um}M−1

1 for these parameters, computed by the brute force method above. There is
no need to vary the parameter Xd because we can always return to the case Xd = 1 by
scaling.
To build a training set we use a large number of synthetic solutions obtained with the
brute force method of the previous section. However as noise is known not to affect
neural network we use a low value K = 100 to generate 10000 solutions (it takes about
90 minutes on an intel core i7 machine). It works as follows:

• Choose [X0, r, κ] uniformly random in [X0
m, X

0
M ]× [rm, rM ]× [κm, κM ].

• Generate K ·M normal gaussian random values for dWt.

• Compute a discrete optimal solution {um}M−1
1 of (17) with K=100 by the L-BFGS-

B Python module.

• Then train a neural network [X0, r, κ] → {um}M−1
1 with these 10000 synthetic

solutions.

• Finally check the precision by using the network’s answer {um}M−1
1 to a new set

of values for [X0, r, κ] and compare with the brute force solution corresponding to
these parameters .

For an introduction to Statistical Learning with Neural Networks see [12]. We have used
Keras (see [10]) to generate a 4-layer Neural Network (see figure 3). The input layer
has 3 inputs; the two hidden layers have 50 neurons each and the output layer has M
nodes. All layers use the ReLU activation. The two hidden layers are separated by a
batch-normalisation.

4.1. A numerical test

We have taken 50 time steps and K=100 for the brute force part. The following param-
eters are used:

T = 2, α = 0.01, β = 0.001, σ = 0.3, Xd = 1, um = 0.5, uM = 1

For the Neural Network training we have used 10000 samples in batches of 32 and a
maximum of 2000 epochs. The input parameters are

r = np.random.uniform(1.9,2.2)

kappa = np.random.uniform(1,1.3)

X0=np.random.uniform(0.7,1.3)
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Figure 3: The Neural Network has 3 inputs, two hidden layers each with 50 neurons (10 shown here)
and separated by batch-normalisation and an output layer with M output (M=15 shown here) . Right:
typical convergence curve of the loss function during the training phase.

Figure 4: On each of the 6 plots X and u are shown: True discrete solution in green for X and red
for u. NN solution in blue for XNN and ochre for uNN . The plots correspond to the following values
of the parameters: r = 2.0228569911704177, κ = 1.0203759108766386, X0 = 1.1122268356898797, r =
2.0688190264082973, κ = 1.2641632371604865, X0 = 0.7852264857858362, r = 1.9151933649036637, κ =
1.0141074063562392, X0 = 0.8299957532445648, r = 2.0738603520220655, κ = 1.187620910330912, X0 =
1.1344043926097065, r = 2.0463252714459936, κ = 1.122409869546898, X0 = 0.7116598707629698, r =
1.9002636936181148, κ = 1.189933237216782, X0 = 0.7550552945829774.
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Finally for the fishing effort equation, a = c = 1.
The computer program is written in Python and is in the file fishingQuotaIA4.py. The
learning phase produced the following precision on each of the time steps :

Test loss: 0.03751661651

Average relative error |1-u_NN/u| for the 49 time steps =

[0.03185646 0.03954296 0.04612997 0.03440035 0.03665108 0.04323719 0.03549499 0.04364510

0.04247633 0.03737225 0.03448902 0.03950258 0.04441193 0.04149515 0.03366303 0.04054435

0.03978632 0.04160346 0.0404573 0.03319214 0.03800414 0.03229879 0.04076255 0.03475258

0.03333832 0.03761944 0.04427279 0.03837532 0.03909892 0.03384874 0.03707403 0.03838878

0.03682566 0.03278314 0.03412819 0.02993927 0.03138862 0.02646729 0.02687729 0.02550817

0.02197918 0.01949890 0.02680004 0.02290738 0.01801939 0.01872908 0.01909837 0.01497874

0.01907834]

Notice that the error is about the same at all time steps.
In figure 4 the performance of the trained Neural Network performance on 6 new cases
are shown. Each case corresponds to a set of parameters [r, κ,X0] and a new realization
of the random noise. The “exact” control u is computed by the brute force method with
K = 100 and compared with the solution uNN given by the neural network (values at
the 50 time steps).
In all cases except case 4 the control uNN given by the network is close to the “exact”
one. But even in case 4, XNN computed by (10) with uNN is close to X computed with
u “exact”.

5. Bellman’s Stochastic Dynamic Programming for the dynamic problem

Consider the value function

V (t,X) = minu∈U

∫ T

t

E
[
(Xτ −Xd)

2 − αu+ β|∂tu|2
]

dτ :

dXτ = Xτdτ(r − κXτ − uτ ) + σXτdWτ , X(t) = X} (19)

Let [0, T ] = ∪M1 [(m−1)h,mh]. Let ζh(X, u
m, z) denote one iterate of a numerical scheme

(10)(11) for the SDE starting at X, for instance with (10)

ζh(X, u, z) = X +X(r − κX − u)h+Xσz
√
h, z being the realization of a N0,1 r.v.

Let vM(X) = 0 and

vm(X) = min
u∈U

∫ (m+1)h

mh

E
[
|ζh(X, u, z)−Xd|2 − αu+ β|∂tu|2

]
dτ + E[vm+1(ζh(X, u, z)]

≈ min
u∈U

{
hE
[
|ζh(X, u, z)−Xd|2

]
− αhu+

β

h
|um+1(X)− u|2 + E[vm+1(ζh(X, u, z)]

}
. (20)

Evidently

E
[
|ζh(X, u, z)−Xd|2

]
= [X −Xd + hX(r − κX − u)|2 + hX2σ2.

To compute E[vm+1(ζh(X, u, z)] we use a quadrature formula with Q points {zq}Q1 and

weight {ωq}Q1 :

E[vm+1(ζh(X, u, z)] ≈
Q∑
q=1

ωqv
m+1(ζh(X, u, zq)

10



Finally at every time step and every Xj = j L/J, j = 1..J , with L >> 1, the result is
minimized with respect to u ∈ U by a dichotomy. In this fashion {um(Xj)}Jj=1 is obtained
and a piecewise linear interpolation is constructed to prepare for the next time step um−1.
With the same parameters as above except β = 0.1, L = 3, J = 50 and M = 50, the
results of figures 5, 6 have been obtained. Once {um(X)}M−1

0 is known, for any realization

0
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Figure 5: Solution of the dynamic programming
equation: u(x, t).
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Figure 6: Solution of the dynamic programming
equation: V (x, t).

of the fishing model we use it as follows:

Xm+1 = Xm + hXm(r − κXm − um(Xm)) +Xmσ
√
hNm

0,1, X0 = X0.

Two such simulations are shown on figure 7,8. The results are not as good as before,
meaning that the dynamic setting gives a poor solution to the control of the fishing site.
These results should be compared with those of Appendix B which deals with a very

Figure 7: Simulation of the fishing model with a
quota function computed by Dynamic Program-
ming and X0 = 0.8.

Figure 8: Simulation of the fishing model with a
quota function computed by Dynamic Program-
ming and X0 = 1.2.

similar problem for which there is a polynomial in logX solution when α = 0.
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6. Solution with the Hamilton-Jacobi-Bellman partial differential equations

The Dynamic Programming equations can be written as a deterministic set of PDE: the
Hamilton-Jacobi-Bellman (HJB) equations.
To this end we consider the same value function defined in (19)

Proposition 4. The value function verifies V (·, T ) = 0 and

0 = inf
u∈U
{(X −Xd)

2 − αu+ β|∂tu|2 + ∂tV + (r − κX − u)X∂XV +
σ2X2

2
∂XXV }. (21)

Proof
The proof given below is heuristic and non standard but it gives a link with the previous
section. For the standard argument see for instance [9]. We return to (20) above:

vm(X) = min
u∈U

∫ (m+1)h

mh

E
[
|ζh(X, u, z)−Xd|2 − αu+ β|∂tu|2

]
dτ + E[vm+1(ζh(X, u, z)]

≈ min
u∈U

[
E
[
|X −Xd|2

]
− αu+

β

h2
|um+1(X)− u|2

]
h+ E[vm+1(ζh(X, u, z)] (22)

As uM plays no role in the discretization we assume that uM = uM−1. Hence when
m = M − 1 the minimization reduces to

vM−1 = hmin
u∈U
{E
[
|X −Xd|2

]
− αu} = h(|X −Xd|2 − αum)

and the minimizer is uM−1 = um. When m < M − 1 a similar argument gives,

vm(X) ≈ min
u∈U

{(
|X −Xd|2 − αu+

β

h2
|um+1(X)− u|2

)
h+ E[vm+1(ζh(X, u, z)]

}
.(23)

With a Taylor expansion, let us approximate vm+1(X + h) ≈
∑qM

q=0 v
(q)m+1

(X)h
q

q!
. For

clarity denote λ = r − κX − u, so

E[vm+1(ζh(X, u, z))] = vm+1(X) + E[

qM∑
0

v(q)m+1
)(X)(X

√
h)q(σz + λ

√
h)q] ≈ vm+1(X)

+Xv′
m+1

λh+
X2

2
v′′

m+1
(λ2h+ σ2)h+

X3

6
λσ2v(3)m+1

h2 +
X4

24
σ4v(4)m+1

h2 + o(h2)

E[vm+1(ζh(X, u, z))] ≈ vm+1(X) +Xv′
m+1

(r − κX − u)h+
X2

2
v′′

m+1
σ2h+ o(h)

Let us use it in (23). Then u must solve

min

{
−αu+

β

h2
(u2 − 2uum+1)− uXv′m+1

}
, ⇒ u = um+1 +

h2

2β
(α +Xv′

m+1
) (24)

but comply also with the box constraints, i.e.

um = min

{
uM ,max

{
um, u

m+1 +
h2

2β
(α +Xv′

m+1
)

}}
, and

vm ≈ vm+1 + h

(
Xv′

m+1
(r − κX − um) +

X2σ2

2
v′′

m+1
+ |X −Xd|2 − αum

+
β

h2
|um+1 − um|2

)
. (25)

As this corresponds to an explicit discretization of a parabolic PDE, h will have to be
extremely small: h = O(δX2, where δX is the spatial discretization increment.

12



6.1. Numerical Results

We have implemented the method using FreeFEM++ [13] with a slight change in (25): the

term X2σ2

2
v

′′m+1
is changed to X2σ2

2
v

′′m
so as to increase stability.

Numerical results shown on figure 19, 10 are obtained with the program in file
pagesbellmanstoch.edp and the following parameters:

r = 2, κ = 1.2, σ = 0.3, Xd = 1, α = 0.01, β = 0.1, um = 0.5, uM = 1.

The computational domain is X ∈ (0, 3) divided in 400 intervals, t ∈ (0, 2), discretized
with 40 time steps.
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Figure 9: Solution of the dynamic programming
equation: side view.
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X

t
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Figure 10: Solution of the dynamic programming
equation: front view.

Once {um(X)}M−1
0 is known, for any realization of the fishing model we use it as follows:

Xm+1 = Xm + hXm(r − κXm − um(Xm)) +Xmσ
√
hNm

0,1, X0 = X0.

Two such simulations are shown on figure 11,12.

6.2. Analysis when β = 0

Proposition 5. When β = 0 the solution is always bang-bang.

Proof: With U = {u ∈ [um, uM ]} and um > 0, X being positive, the optimal control
u∗ must be such that if there are 0 < t1, t2 < T such that for all t ∈ (t1, t2), u(X, t) is
constant then

1. u∗ = um when X∂XV + α < 0, leading to ∂tu
∗ = 0 and

∂tV + (r − κX − um)X∂XV +
σ2X2

2
∂XXV = αum − (X −Xd)

2

2. u∗ = uM when X∂XV + α > 0 , leading to ∂tu
∗ = 0 and

∂tV + (r − κX − uM)X∂XV +
σ2X2

2
∂XXV = αuM − (X −Xd)

2
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Figure 11: Simulation of the fishing model with
a quota function computed by Dynamic Program-
ming and X0 = 0.8.
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Figure 12: Simulation of the fishing model with
a quota function computed by Dynamic Program-
ming and X0 = 1.2.

3. Otherwise when um < u∗(X, t) < uM , we must have V (T ) = 0 and

0 = (X −Xd)
2 + ∂tV + (r − κX)X∂XV +

σ2X2

2
∂XXV, X∂XV + α = 0

The third option being impossible, the solution of the problem is bang-bang.

6.3. Discretization

One way to find u∗ when it is neither um nor uM is to discretize in time and solve

inf
um
g(um) := {−αum +

β

h2
|um − um+1|2 − umX∂XV }

The stationary point is at

−α +
2β

h2
(um−1 − um)−X∂XV m−1 = 0, i.e. ūm−1 = um +

h2

2β
(α +X∂XV

m−1).

So we have to compare g(um), g(ūm) and g(uM) and choose the smallest. The end result
is very similar to the previous section.
Two simulations are done with β = 0 and shown on figure 13,14. The control is indeed
bang-bang.

7. Solution with the Kolmogorov equation

The Kolmogorov equation for the probability density ρ(X, t) of {Xt}T0 is:

∂tρ+ ∂X [(r − κX − u)Xρ]− ∂XX [
X2σ2

2
ρ] = 0, ρ(X, 0) = ρ0(X), ∀X ∈ R+. (26)

The optimal control problem (1) is:

min
u∈U

J(u) :=

∫
Q+

[
(X −Xd)

2 − αu(X, t) + β|∂tu(X, t)|2
]
ρ(X, t)dXdt : with (26). (27)

14
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Figure 13: Simulation of the fishing model with a
quota function computed by HJB when β = 0 and
X0 = 0.8.
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Figure 14: Simulation of the fishing model with a
quota function computed by HJB when β = 0 and
X0 = 1.2.

Integration is done on Q+ := R+×]0, T [. The conditions for having equivalence between
the stochastic control written as (1) and (27) are detailed in [11]. To avoid using weighted
Sobolev spaces we make a change variable y = logX, set v = r − σ2

2
− κey − u(ey, t) so

that dYt = vdt+ σdWt and then study the existence of a PDF for Yt given by

∂tρ+ ∂Y (vρ)− ∂Y Y [
σ2

2
ρ] = 0, ρ(Y, 0) = ρ0(Y ), ∀Y ∈ R, ∀t ∈]0, T [. (28)

The PDE is understood in the sense that for all ρ̂ ∈ H1(R),∫
R

[
ρ̂∂tρ− vρ∂Y ρ̂+

σ2

2
∂Y ρ∂Y ρ̂

]
= 0, a.e. t ∈]0, T [; ρ(Y, 0) = ρ0(Y ), ∀Y ∈ R. (29)

Note that v can be changed to v − L, L ∈ R by changing ρ to ρe−Lt. Hence when
limY→∞ u = u∞ 6= 0 we can take L = r − σ2

2
− u∞ and assume that limY→∞ v = 0.

Proposition 6. If v ∈ W 1,1
loc (R), v/(1 + |y|) ∈ L1(R)∩L∞(R), ∂yv ∈ L∞(R) then Yt has

a PDF, ρ ∈ L∞ (L2(R) ∩ L∞(R)) ∩ L2 (H1(R)) , given by (28).

Consequently, for the problem to make sense, (r − κX − u) needs to be multiplied by a
regular cutoff function, tending to zero fast enough when X → +∞. We shall henceforth
assume that κ is a function of X which is zero when X > XM , for some XM .

Theorem 2. Given Xd, σ, α, β,K, T,R in R+, vm, vM , K in R and ρ0 ∈ [0, 1] with∫
R ρ

0 = 1, let Q = R×]0, T [ and QR =]−R,R[×]0, T [ and,

V = {v : vm ≤ v ≤ vM , ‖∂tv‖L2(Q) ≤ K}

and consider

min
v∈V

J(v) :=

∫
QR

[
(eY −Xd)

2 + αv(Y, t) + β|∂tv(Y, t)|2
]
ρ(Y, t)dY dt : with (30)

∂tρ+ ∂Y (vρ)− ∂Y Y [
σ2

2
ρ] = 0, ρ(Y, 0) = ρ0(Y ), ∀Y ∈ R, ∀t ∈]0, T [. (31)

Problem (30) has a solution.
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Proof: Note first that J ≥ αvm. Note also that when uM is large enough so that

v = 0 ∈ V , the solution of the PDE is ρ̃(Y, t) = (4π)−
1
2

∫
R e
−X2

4t ρ0(X − Y )dX. As∫ R
−R ρ̃(Y, t)e2Y is finite and V is non empty the infimum is finite. Multiplying the PDE

by ρ and integrating over R leads to∫
R
[∂t|ρ2|+ σ2|∂Y u|2] ≤ 2

∫
R

|v|ρ∂Y ρ ≤ 2‖v‖∞‖ρ‖L2(R)‖∂Y ρ‖L2(R), a.e. t ∈]0, T [

Consequently, and because ‖v‖∞ ≤ vM , ρ is bounded in L2 (H1(R))∩L∞ (L2(R))∩L2(Q)
and ∂tρ is bounded in L2 (H−1(R)). Consequently ρ is compact in L2(Q) when v varies
in V . From the maximum principle we also know that 0 ≤ ρn ≤ 1 in Q and that∫
R ρ(Y, t)dY = 1 a.e.

Now let us take a minimizing sequence {vn}n∈N for (30). Then ρn is bounded in L2 (H2(R))∩
L∞ (L2(R))∩W 1,2 (H−1(R)) and compact in L2(QR). It follows from above that there is a
v such that, for a subsequence, vn → v inL∞-weak-star and weakly in L2(Q) and a ρ such
that ρn → ρ strongly in L2(Q). Hence

∫
R vnρn∂Y ρ̂ →

∫
R vρ∂Y ρ̂ for any ρ̂ ∈ L2 (H1(R))

and consequently ρ solves the PDE with v .
As ρn ∈ [0, 1] and by Fatou’s lemma,

∫
QR

(eY −Xd)
2 ≥ lim inf

∫
QR

(eY −Xd)
2ρn ≥

∫
Q(eY −

Xd)
2ρ.

By the weak convergence of vn and the strong convergence of ρn,
∫
QR

αvnρn →
∫
QR

αvρ.
To analyze the last term in the cost function we write it as

β

∫
QR

|∂tvn|2ρn = β

∫
QR

|∂tvn|2ρ+ β

∫
QR

|∂tvn|2(ρn − ρ).

By the lower semi-continuity of semi-norms, limn→∞
∫
QR
|∂tvn|2ρ ≥

∫
QR
|∂tv|2ρ. Finally

the last term above is bounded by β‖(∂tvn)2‖L2(QR)‖ρn−ρ‖L2(QR) ≤ βK‖ρn−ρ‖L2(QR) →
0. Consequently, the cost function in (30) is l.s.c.

Remark 1. If
∫ +

R X2ρ0(X)dX <∞, it may be possible to let R→∞ in the proof above.

7.1. Computation of gradients

Consider the variational form of the Kolmogorov equation: find ρ ∈ L2(0, T, V ) such
that, for all ρ̂ ∈ V ,∫

R+

(
ρ̂∂tρ− (r − κX − u)Xρ∂X ρ̂+

σ2

2
∂X(X2ρ)∂X ρ̂

)
= 0, ρ(0) given. (32)

Calculus of variations leads to δρ(0) = 0 and∫
R+

(
ρ̂∂tδρ− (r − κX − u)Xδρ∂X ρ̂+

σ2

2
∂X(X2δρ)∂X ρ̂

)
= −

∫
R+

ρX∂X ρ̂δu. (33)

Define the adjoint p′ by p′(T ) = 0 and, for all p̂ ∈ V :∫
R+

(
p̂∂tp

′ + p̂(r − κX − u)X∂Xp
′ −σ

2

2
∂X(X2p̂)∂Xp

′

+p̂1Ω[(X −Xd)
2 − αu+ β|∂tu|2]

)
= 0. (34)
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Add (33) and (34) with ρ̂ = p′ and p̂ = δρ. It gives∫
R+

∂t(p
′δρ) +

∫
Ω

[(X −Xd)
2 − αu+ β|∂tu|2]δρ =

∫
R+

ρX∂Xp
′δu.

As p′(T ) = 0 and δρ(0) = 0, an integration in time gives∫
Ω×]0,T [

[(X −Xd)
2 − αu+ β|∂tu|2]δρ = −

∫
Q+

ρX∂Xp
′δu.

Finally, from (27),

δJ = < graduJ, δu >=

∫
Ω×[0,T ]

[(
(X −Xd)

2 − αu+ β|∂tu|2
)
δρ− αρδu+ 2ρ∂tu∂tδu

]
.

= −
∫
Q+

ρX∂Xp
′δu+

∫
Ω×]0,T [

ρ[−αδu+ 2∂tu∂tδu] (35)

7.2. Results

A steepest descent algorithm with fixed step size and projected gradient on the box
constraints is

v = uk − µgraduJk, uk+1 = max{um,min{uM , v}}. (36)

Note that we have assumed that ∂tu(0) = ∂tu(T ) = 0. The same parameters as above
have been used except that the computational domain is (0, 5) instead of (0, 3). The
PDF of X0 is a Gaussian curve with σ0 = 0.2. The computer program is in the file
GPOP2dxt.edp. After 100 iterations J is a fifth of its initial value. Figure 15 shows the
surfaces u,P and ρ versus X, t. Note that (X, t) 7→ u(X, t) is either 0.5 or 1, implying
that all controls u(Xt, t) will be bang-bang. Figures 16 and 17 show two applications,
one with X0 = 0.8 and the other with X0 = 1.2. The method achieves a reasonable
stabilization of the fish biomass, but the quotas vary rapidly, as if the β -term wasn’t
playing its regularizing role.

8. Solution by Itô calculus

In computational finance Itô calculus is preferred over the Kolmogorov setting, primarily
because the initial condition for the PDF could be singular.
Consider again Problem (1). Itô calculus applied to

jt =

∫ T

t

E
[
(Xτ −Xd)

2 + β(∂tu)2 − αu
]

dτ

as a function of Xt gives:

dtj = ∂tjdt+ E[∂XjdX] +
1

2
E[∂XXjdXdX]

17



Figure 15: From left to right: optimal ρ,p′,u. Horizontal axis is X ∈]0, XM [, vertical is t ∈ [0, T ] with
XM = 5, T = 2, Xd = 1, um = 0.5, uM = 1. Note that (X, t) 7→ u(X, t) is either 0.5 or 1, implying that
all controls u(Xt, t) will be bang-bang.
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Figure 16: Optimal biomass and quota function
computed by Optimal Control and compared with
the solution with u = uM when X0 = 0.8.
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Figure 17: Optimal biomass and quota function
computed by Optimal Control and compared with
the solution with u = uM when X0 = 1.2.

= dt

(
∂tj + ∂Xj(r − κX − u)X +

X2σ2

2
∂XXj

)
= −dt[(X −Xd)

2 + β(∂tu)2 − αu]

(37)

This formulation is dual to the Kolmogorov calculus presented above.
Let us compute j as the solution at τ = 0 and X = X0 of the PDE, backward in time
and initiated by j(X,T ) = 0, ∀X ∈ R+, τ ∈]0, T [:

∂tj + (r − κX − u)X∂Xj +
X2σ2

2
∂XXj = −[(X −Xd)

2 + β(∂tu)2 − αu] (38)

The optimal control problem (1) is now

min
u∈U

∫
R
j(X, 0)ρ0(X)dX : subject to (38) (39)

where ρ0(X) is the PDF of X0. We have to restrict X < XM for the right hand side of
the PDE to be in L2(R).
On Ω := (0, XM) the variational formulation of the PDE consists in finding j in a weighted
Sobolev space:

j ∈ V := {g ∈ L2(Ω) : X∂Xg ∈ L2(Ω)}, j(·, T ) = 0,∫
Ω

(∂tj + (r − κX − u)X∂Xj) ĵ −
∫

Ω

σ2

2
∂X(X2ĵ)∂Xj +

σ2

2
XMj(XM)ĵ(XM)

= −
∫

Ω

[(X −Xd)
2 + β(∂tu)2 − αu]ĵ, ∀ĵ ∈ V. (40)

8.1. Gradient computation

The gradient of j with respect to u results from the following calculus:∫
Ω×]0,T [

gradujδu :=

∫
Ω

ρ0δj(X0, 0) subject to
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∫
Ω

(∂tδj + (r − κX − u)X∂Xδj) ĵ −
∫

Ω

σ2

2
∂X(X2ĵ)∂Xδj

+
σ2

2
XMδj(XM)ĵ(XM) =

∫
Ω

ĵ[(X∂Xj + α)δu− 2β∂tu∂tδu], ∀ĵ ∈ V. (41)

Define p by∫
Ω

(p̂∂tp− (p(r − κX − u)X∂X p̂) +

∫
Ω

σ2

2
∂X(X2p)∂X p̂−

σ2

2
XM p̂(XM)p(XM) = 0,

p(0) = ρ0 (42)

Then adding (42) to (41) with p̂ = δj and ĵ = p and remembering that δj(X,T ) = 0,
leads to ∫

Ω

(p∂tδj + δj∂tp) =

∫
Ω×]0,T [

[p(X∂Xj + α)δu− 2β∂tu∂tδu] (43)

On the other hand

−
∫

Ω

ρ0δj(X, 0) =

∫
Ω

δj(X,T )p(T )−
∫

Ω

δj(X, 0)p(0) =

∫
Ω×]0,T [

∂t(pδj) (44)

Consequently∫
Ω×]0,T [

gradujδu =

∫
Ω

ρ0δj(X0, 0) = −
∫

Ω×]0,T [

[p(X∂Xj + α)δu− 2β∂tu∂tδu]

Hence this method is a minor variation of the method with the Kolmogorov equation: ρ
and p have similar equations and p′ and j too.

9. Limit with vanishing volatility

We have seen earlier that the optimal solution of the non-dynamic control is very close
to the solution of the deterministic control problem.
We explore here the convergence of the PDE method to the deterministic case by letting
σ tend to zero. For clarity we take α = β = 0.
Consider again (39). Let Y (X, τ) be the solution of

Ẏ (τ) = (r − κY (τ)− u(Y (τ), τ))Y (τ), Y (t) = X; (45)

then

∂tj + (r − κX − u)X∂Xj =
d

dτ
ρ(Y (τ,X), τ)|τ=t. (46)

Hence (38) is rewritten as

d

dτ
j(Y (τ,X), τ)|τ=t = −σ

2

2
∂XX(X2ρ)− (X −Xd)

2.

Consequently, when σ → 0, j becomes equal to j̃, the integral of −(X − Xd)
2 on the

streamline (45) which passes through X0 at t = 0:

j̃(Y (T ), T )− j̃(Y (0), 0) = −j(X0, 0) = −
∫ Y (T )

Y (0)

(X(s)−Xd)
2

i.e. j̃(0) =

∫ T

0

(X(t)−Xd)
2dt : Ẋ = (r − κX − u)X, X(0) = X0. (47)
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10. Concluding discussion

Let us compare the 3 classes of methods:

1. Non-dynamic control (NDC)

2. Dynamic Programming (DP)

3. Dynamic control solved with Partial Differential equations (HJB).

NDC is a mathematical oddity because it does not take into account the necessity of a
Markovian solution and it does not attempt to use the current noise level to predict the
next step, but from the practical point of view it is certainly the best solution for the
fishing site regulator, especially when it is coupled with Statistical Learning. After all,
provided that the model fits the reality, a Markovian solution is not needed.
Note that there is large literature on Model Predictive Control (see [7]) to use the current
state to predict the next step without using dynamic programming. Here it can be seen
on figure 4 that the precision is hardly better at early times than at later times; hence
breaking the control interval ]0, T [ into smaller intervals (Tj, Tj+1) to use the current state
as initial condition, is easy to do but probably not worth the effort.
On this fishery problem DP and HJB are different implementations of the same approach.
All four implementations gave disappointing results, probably because the parameter
chosen gave a solution close to a bang-bang saturation of constraints and not far from the
elementary but intuitive strategy which takes ut = um when Xt > Xd and uM otherwise.
But it was said earlier that this is not feasible as it would be unpopular to change too
often from a constraining quota to a loose one. HJB with PDEs is the most taxing method
numerically and DP is much faster and also capable of generating approximate solution
which do not saturate the constraints as much. But still! brute force Monte-Carlo with
neural network training for NDC outperform traditional HJB and DP methods.
This problem belongs to a class for which the user cannot measure precisely the random
errors in the data and the model; the number of boats at sea and the quantity of fish
caught everyday may just reflect the roughness of the model rather than the stochasticity
of the measures; nevertheless this point needs to be investigated further and in the mean
time the non-dynamic control problem makes sense and gives better results. Furthermore,
when coupled with a neural network the optimization process is very fast, once the
learning phase is done.
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APPENDIX A

11. A model with fishing quota

Let X(t) be the fish biomass at time t, E(t) the fishing effort – interpreted as the number
of boats at sea – and Q(t) is the fishing capacity per boat. In [8] Q(t) = qX(t),with the
catchability q constant, meaning that the more fish there is the more fishermen will catch
them.
In this study a quota Q(t), given to each fisherman, is imposed on the maximum weight of
fish caught on a day t ; hence the total amount of fish caught on a day is min(qX(t), Q(t))E(t).
The modified model is an equation for X(t) which says that the biomass changes due to
the natural growth/decay rate r, the long time limit κ′ of X and the depletion due to
fishing:

dX

dt
(t) = X(t)(r − κ′X(t))−min(qX(t), Q(t))E(t). Biomass dynamics. (48)

Let F (t) = min(qX(t), Q(t)). The fishing effort is driven by the profit pF minus the
operating cost of a boat c, where p being the price of fish.

1

E

dE

dt
= pF − c. Fishing effort driven by profit, (49)

The price is driven by the difference between the demand D(p) and the resource FE:

Φ
dp

dt
= D(p)− FE with the demand D(p) =

a′

1 + γp
(50)

where Φ is the inverse time scale at which the fish market price adjusts. When Φ << 1,
(50) may be approximated by

D(p) = FE ⇒ pFE =
a′

γ
− FE

γ
.

With a = a′/γ and κ = κ′γ, the whole system is :

dX

dt
= X(r − κ

γ
X)−min(qX(t), Q(t))E,

dE

dt
= a−min(qX(t), Q(t))

E

γ
− cE, (51)

Now notice that by changing the initial conditions X0 → X0/γ we may take γ = 1.

Remark 2. Finally with t̃ = tq, Q̃ = Q/q and (r̃, κ̃”, ã, c̃) = (r, κ, a, c)/q the above
system is identical but now q = 1.

Remark 3. The ODE system is of the form Ẏ (t) = ψ(Y (t)), t ∈]0, T [, ψ : R2 → R2.
Global existence of solution on [0, T ] is not known because ψ is only locally Lipschitz and
not sublinear for large E,X.

A numerical simulation with and without optimal quota is shown on figure 18 with the
following parameters (see file fishingQuota0.py and for the definition of α and β, see
below):

r = 2, κ = 1.2, a = 1, c = 1, T = 2,M = 50, Xd = 1, q = 1.5
X0 = 0.9, E0 = 2, α = 0.01, β = 0.001, um = 0.5, uM = 1.5 (52)

Notice that q is big enough so that min(qX(t), Q(t)) = Q(t), ∀t.
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Figure 18: Left: Quota (blue) and fishing effort (ochre). No quota means that Q(t) = 1 for all t. Right:
biomass with (blue) and without quota (ochre).

12. Reformulation

To prevent fish extinction a constraint is set on the total catch min(qX(t), Q(t))E(t)).
Optimization will then define Q(t). It is expected that Q(t) < qX(t) otherwise the policy
of quota is irrelevant in the sense that the fisherman is a maximum allowed catch which
is greater than what he could possibly catch.
So let us add a constraint Q(t) ≤ QM so that min(qX(t), Q(t)) = Q(t). Denote u(t) =
E(t)Q(t)/X(t). Then we need u(t) ≤ qE(t) and the problem becomes

min
Q′∈Q′

{J̄ :=

∫ T

0

(X(t)−Xd(t))
2dt :

dX

dt
= X (r − κ′X − u(t)) , X(0) = X0} (53)

Here the optimization is performed without computing E; then E is computed with the
optimal u by solving

dE

dt
= a− cE − uX, E(0) = E0.

As said before it is not feasible to impose to small a quota, so finally U = {um ≤ u(t) ≤
uM}. where uM is less than qE(t) at all time.

12.1. More constraints on quotas

Small quotas are unpopular. To avoid them we may use penalty and add to the mini-
mization −

∫ T
0
αu(t).

More over, it will be unpopular if u(t) = um one day and u(t) = uM the next day, so to
avoid too many changes we may add to the minimization a term like β|du

dt
|2.

An optimal policy is a solution of

minQ∈Q J(u) :=

∫ T

0

[
|X −Xd|2 − αu+ β|du

dt
|2
]

: subject to

dX

dt
= X (r − κ′X − u(t)) , X(0) = X0. (54)

Figure 1 shows the solution with the same parameters as for figure 18 There are differ-
ences because it is a different set of constraints. The policy given to each fisherman is
Q(t) for the full system and u(t)X(t)/E(t) for the reduced system.
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APPENDIX B

13. An analytical solution for a similar problem

It was said earlier that Yt = logXt could be used to simplify the problem. As the goal is
to reach Xt ∼ Xd, if we change it to Yt ∼ Yd, then the problem is

min
u∈U
{
∫ T

0

E[(Yt − Yd)2 − αu+ β|∂tu|2 with dYt = vtdt+ σdWt, vt = r − σ2

2
− κeYt − u}.

⇒ 0 = inf
u∈U
{∂tV + v∂Y V +

σ2

2
∂Y Y V + (Y − Yd)2 − αu+ β|∂tu|2} (55)

If the constraints are not active, the equation for the optimality of u is

∂Y V + α + 2β∂ttu = 0

When α = 0 there is a polynomial solution to this system: V = aY 2 +bY +c, v = KY +k
where a, b, c,K, k are functions of time with a(T ) = b(T ) = c(T ) = K̈(T ) = K̇(T ) =
k̈(T ) = k̇(T ) = 0. By identification for all Y it is found that (Xd = 1 ⇒ Yd = 0):

ȧ+ 2aK + βK̇2 + 1 = 0, ḃ+Kb+ 2ak + 2βK̇k̇ = 0,
ċ+ kb+ σ2a+ βk̇2 = 0, βK̈ + a = 0, 2βk̈ + b = 0, (56)

One must also check that ut = r − σ2

2
− κXt −K(t) logXt − k(t) is in U .

A solution procedure is to use the next to last equation in the first one and the last one
into the second one:

−
...
K − 2KK̈ + K̇2 + 1

β
= 0, K̈(T ) = K̇(T ) = K(T ) = 0

−
...
k −Kk̈ + K̇k̇ − K̈k = 0, k̈(T ) = k̇(T ) = k(T ) = 0 ⇒ k(t) = 0 ∀t. (57)
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Figure 19: Solution of the dynamic programming
equation: side view.
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Figure 20: Optimal biomass and quota function
computed by Optimal Control and compared with
the solution with u = uM when X0 = 0.8.
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