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Abstract

A recent line of work addresses the problem of predicting high-dimensional spa-
tiotemporal phenomena by leveraging specific tools from the differential equations
theory. Following this direction, we propose in this article a novel and general
paradigm for this task based on a resolution method for partial differential equa-
tions: the separation of variables. This inspiration allows to introduce a dynamical
interpretation of spatiotemporal disentanglement. It induces a simple and princi-
pled model based on learning disentangled spatial and temporal representations
of a phenomenon to accurately predict future observations. We experimentally
demonstrate the performance and broad applicability of our method against prior
state-of-the-art models on physical and synthetic video datasets.

1 Introduction

The interest of the machine learning community in physical phenomena has substantially grown for the
last few years (Shi et al., 2015; Long et al., 2018; Greydanus et al., 2019). In particular, an increasing
amount of works studies the challenging problem of modeling the evolution of dynamical systems,
with applications in sensible domains like climate or health science, making the understanding of
physical phenomena a key challenge in machine learning. To this end, the community has successfully
leveraged the formalism of dynamical systems and their associated differential formulation as
powerful tools to specifically design efficient prediction models. In this work, we aim at studying this
prediction problem with a principled and general approach, through the prism of Partial Differential
Equations (PDEs), with a focus on learning spatiotemporal disentangled representations.

Prediction via spatiotemporal disentanglement was first studied in video prediction works, in order to
separate static and dynamic information (Denton & Birodkar, 2017) for prediction and interpretability
purposes. Existing models are particularly complex, involving either adversarial losses or variational
inference. Furthermore, their reliance on Recurrent Neural Networks (RNNs) hinders their ability
to model spatiotemporal phenomena (Yıldız et al., 2019; Ayed et al., 2020; Franceschi et al., 2020).
Our proposition addresses these shortcomings with a simplified and improved model by grounding
spatiotemporal disentanglement in the PDE formalism.

Spatiotemporal phenomena obey physical laws such as the conservation of energy, that lead to describe
the evolution of the system through PDEs. Practical examples include the conservation of energy for
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physical systems (Hamilton, 1835), or the equation describing constant illumination in a scene (Horn
& Schunck, 1981) for videos that has had a longstanding impact in computer vision with optical flow
methods (Finn et al., 2016; Dosovitskiy et al., 2015). We propose to model the evolution of partially
observed spatiotemporal phenomena with unknown dynamics by leveraging a formal method for the
analytical resolution of PDEs: the functional separation of variables (Miller, 1988). Our framework
formulates spatiotemporal disentanglement for prediction as learning a separable solution, where
spatial and dynamic information are represented in separate variables. Besides offering a novel
interpretation of spatiotemporal disentanglement, it confers simplicity and performance compared to
existing methods: disentanglement is achieved through the sole combination of a prediction objective
with regularization penalties and the temporal dynamics is defined by a learned Ordinary Differential
Equation (ODE). We experimentally demonstrate the applicability, disentanglement capacity, and
forecasting performance of the proposed model on various spatiotemporal phenomena involving
standard physical processes and synthetic video datasets against prior state-of-the-art models.

2 Related Work

Our contribution deals with two main directions of research: statiotemporal disentanglement and the
coupling of neural networks and PDEs.

Spatiotemporal disentanglement. Disentangling factors of variations is an essential representation
learning problem (Bengio et al., 2013). Its cardinal formulation for static data has been extensively
studied, with state-of-the-art solutions, studied by Locatello et al. (2019), being essentially based on
Variational Autoencoders (VAEs) (Kingma & Welling, 2014; Rezende et al., 2014). As for sequential
data, several disentanglement notions have been formulated, ranging from distinguishing objects
in a video (Hsieh et al., 2018; van Steenkiste et al., 2018), to separating and modeling multi-scale
dynamics (Hsu et al., 2017; Yingzhen & Mandt, 2018).

We focus in this work on the dissociation of the dynamics and visual aspects for spatiotemporal
data. Even in this case, dissociation can take multiple forms. Examples in the video generation
community include decoupling the foreground and background when generating videos (Vondrick
et al., 2016), constructing structured frame representations (Villegas et al., 2017b; Minderer et al.,
2019; Liu et al., 2019), extracting physical dynamics (Le Guen & Thome, 2020), or latent modeling
of dynamics in a state-space manner (Franceschi et al., 2020). Closer to our work, Denton & Birodkar
(2017), Villegas et al. (2017a) and Hsieh et al. (2018) introduced in their video prediction models
explicit latent disentanglement of static and dynamic information obtained using adversarial losses
(Goodfellow et al., 2014) or VAEs. Disentanglement has also been introduced in more restrictive
models relying on data-specific assumptions (Kosiorek et al., 2018; Jaques et al., 2020), and in video
generation (Tulyakov et al., 2018). We aim in this work at grounding and improving spatiotemporal
disentanglement with more adapted inductive biases, as suggested by Locatello et al. (2019), by
introducing a paradigm leveraging the functional separation of variables resolution method of PDEs.

Spatiotemporal prediction and PDE-based neural network models. An increasing number of
works combining neural networks and differential equations for spatiotemporal forecasting have been
produced for the last few years. Some of them show substantial improvements for the prediction of dy-
namical systems or videos compared to standard RNNs by defining the dynamics using learned ODEs
(Rubanova et al., 2019; Yıldız et al., 2019; Ayed et al., 2020; Le Guen & Thome, 2020), following
Chen et al. (2018), or adapting them to stochastic data (Ryder et al., 2018; Li et al., 2020; Franceschi
et al., 2020). Most PDE-based spatiotemporal models exploit some prior physical knowledge. It can
induce the structure of the prediction function (Brunton et al., 2016; de Avila Belbute-Peres et al.,
2018) or specific cost functions, thereby improving model performances. For instance, de Bézenac
et al. (2018) shape their prediction function with an advection-diffusion mechanism, and Long
et al. (2018, 2019) estimate PDEs and their solutions by learning convolutional filters proven to
approximate differential operators. Greydanus et al. (2019), Chen et al. (2020) and Toth et al. (2020)
introduce non-regression losses by taking advantage of Hamiltonian mechanics (Hamilton, 1835),
while Tompson et al. (2017) and Raissi et al. (2020) combine physically inspired constraints and
structural priors for fluid dynamic prediction. Our work deepens this literature by establishing a
novel link between a resolution method for PDEs and spatiotemporal disentanglement, and thereby
introducing a data-agnostic model leveraging any static information in observed phenomena.
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3 Background: Separation of Variables

Analytically or numerically solving high-dimensional PDEs is a difficult problem (Bungartz & Griebel,
2004). Given a decomposition of the solution, e.g., a simple combination of lower-dimensional
functions, it consists in reducing the PDE to equivalent simpler differential equations, thus simplifying
its resolution.

3.1 Simple Case Study

Let us introduce the idea through a standard application of this technique, with proofs in Appendix A.1,
on the one-dimensional heat diffusion problem (Fourier, 1822), e.g., a bar of length L, whose
temperature at time t and position x is denoted by u(x, t) and satisfies:

∂u

∂t
= c2

∂2u

∂x2
, u(0, t) = u(L, t) = 0, u(x, 0) = f(x). (1)

Suppose that a solution u is product-separable, i.e., it can be decomposed as: u(x, t) = u1(x) · u2(t).
Combined with Equation (1), it leads to c2u′′1(x)/u1(x) = u′2(t)/u2(t). The left and right hand sides
of this equation are respectively independent from t and x, thus both sides are constant, and solving
both resulting ODEs gives solutions of the form, with µ ∈ R and n ∈ N:

u(x, t) = µ sin

(
nπ

L
x

)
× exp

(
−
(
cnπ

L

)2

t

)
. (2)

The superposition principle and the unicity of solutions under smoothness constraints allow then to
build the set of solutions of Equation (1) with linear combinations of separable solutions (Le Dret &
Lucquin, 2016). Besides this simple example, separation of variables can be more elaborate.

3.2 Functional Separation of Variables

The functional separation of variables (Miller, 1988) generalizes this method. Let u be a function
obeying a given arbitrary PDE. The functional variable separation method amounts to finding a
parameterization z, a functional U , an entangling function ξ, and representations φ and ψ such that:

z = ξ
(
φ(x), ψ(t)

)
, u(x, t) = U(z). (3)

Trivial choices ξ = u and identity function as U , φ and ψ ensure the validity of this reformulation.
Finding suitable φ, ψ, U , and ξ with regards to the initial PDE can facilitate its resolution by inducing
separate simpler PDEs on φ, ψ, and U . General results on the existence of separable solutions
have indeed been proven (Miller, 1983), even though their unicity highly depends on the initial
problem and the choice of functional separation (Polyanin, 2020). Functional separation of variables
finds applications in various physics fields, such as reaction-diffusion with non-linear sources or
convection-diffusion (Polyanin, 2019; Polyanin & Zhurov, 2020), Hamiltonian physics (Benenti,
1997), or even general relativity (Kalnins et al., 1992).

As an example, consider a refinement of Equation (1) on u along with the change of variable v :

∂u

∂t
+ c

∂u

∂x
= χ

∂2u

∂x2
, v(x, t) = u(x, t)e−αxe−βt. (4)

A proper choice of constants α and β makes v satisfy Equation (1)’s PDE, which is solvable via
separation of variables; see Appendix A.2 for details. Non-linear generalizations of Equations (1)
and (4) also find solutions using the functional separation of variables, with for instance:

∂u

∂t
= ν(u)

∂2u

∂x2
+Q(x, u)

∂u

∂x
+ f(x, u), (5)

for which Jia et al. (2008) exhibit conditions for the existence of solutions to this equation decomposed
as follows:

z = φ(x) + ψ(t), u(x, t) = U(z). (6)

The functional decomposition of Equation (3) generalizes the separability defined in Section 3.1, as
addition and product separability are recoverable by setting, respectively, U = id and U = exp.

We see reparameterizations such as Equation (6) as changes of coordinates inducing a natural
spatiotemporal disentanglement, and introduce in the following a relaxation of this general method.
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4 Proposed Method

We propose to model spatiotemporal phenomena using the functional variable separation formalism.
We first describe our notations and then derive a principled model and constraints from this method.

4.1 Problem Formulation Through Separation of Variables

We consider a distribution P of observed spatio-temporal trajectories and corresponding observation
samples v = (vt0 , vt0+∆t, . . . , vt1), with vt ∈ V ⊆ Rm and t1 = t0 + ν∆t. Each sequence v ∼ P
corresponds to an observation of a dynamical phenomenon, assumed to be described by a hidden
functional uv (also denoted by u for the sake of simplicity) of space coordinates x ∈ X ⊆ Rs and time
t that characterizes the trajectories. More precisely, uv describes an unobserved continuous dynamics
and v corresponds to instantaneous discrete spatial measurements associated to this dynamics.
Therefore, we consider that vt results from a time-independent function ζ of the mapping uv(·, t).
For example, v might consist in temperatures measured at some points of the sea surface, while uv
would be the circulation ocean model. v provides a partial information about uv and is a function
(e.g. projection) of the full dynamics. We seek to learn a model which, when conditioned on prior
observations, can predict future observations.

To this end, we posit that the state u of each observed trajectory v is driven by a hidden common
PDE, shared among all trajectories; we discuss this assumption in details in Appendix C.1. Learning
such PDE and its solutions would then allow to model observed trajectories v. We propose to do so
by relying on the functional separation of variables of Equation (3), in order to leverage a potential
separability of the hidden PDE. Therefore, analogously to Equation (3), we propose to formulate the
problem as learning observation-constrained φ, ψ and U , as well as ξ and ζ, such that:

z = ξ
(
φ(x), ψ(t)

)
, u(x, t) = U(z), vt = ζ

(
u(·, t)

)
, (7)

with φ and ψ allowing to disentangle the prediction problem. As with the formalism of the functional
separation of variables, this amounts to learning a spatial ODE on φ, a temporal ODE on ψ, and a
PDE on U , as well as their respective solutions.

4.2 Fundamental Limits and Relaxation

However, directly learning u is a restrictive choice, as it depends on the system coordinates. In-
deed, learning explicit PDE solutions taking as input space and time coordinates, like Sirignano &
Spiliopoulos (2018) and Raissi (2018), has major drawbacks: it requires to deal with the spatial
coordinate system and to have prior knowledge about the involved PDEs, which may be unknown for
complex data such as in climate modeling. We choose not to make such strong assumptions in order
to maintain the generality of the proposed approach.

We overcome these issues by, instead, encoding the unknown spatial coordinate system in a spatial
representation, and thus implicitly learn u by directly modeling sequences of observations thanks to
representation learning. Indeed, Equation (7) induces that these spatial coordinates, hence the explicit
resolution of PDEs on u or U , can be ignored, as it amounts to learning φ, ψ and D such that:

vt = (ζ ◦ U ◦ ξ)
(
φ(·), ψ(t)

)
= D

(
φ, ψ(t)

)
. (8)

In order to manipulate functionals φ and ψ in practice, we respectively introduce learnable time-
invariant and time-dependent representations of φ and ψ, denoted by S and T , such that:

φ ≡ S ∈ S ⊆ Rd, ψ ≡ T : t 7→ Tt ∈ T ⊆ Rp, (9)

where the dependence of ψ ≡ T on time t will be modeled using a temporal ODE following the
separation of variables, and the function φ, and consequently its spatial ODE, are encoded into a
vectorial representation S. Besides their separation of variables basis, the purpose of S and T is to
capture spatial and motion information of the data. For instance, S could encode static information
such as objects appearance, while T typically contains motion variables.

4.3 Parameterization of the Functional Variable Separation

S and Tt0 , because of their dependence on v in Equation (9), are inferred from an observation history,
or conditioning frames, Vτ (t0), where Vτ (t) = (vt, vt+∆t, . . . , vt+τ∆t), using respectively encoder
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Figure 1: Computational graph of the proposed model. ES and ET take contiguous observations
as input; time invariance is enforced on S; the evolution of Tt is modeled with an ODE and is
constrained to coincide with ET ; Tt0 is regularized; forecasting equates to decoding from S and Tt.

networks ES and ET . We parameterize D of Equation (8) as a neural network that acts on both S
and Tt, and outputs the estimated observation v̂t = D(S, Tt). Unless specified otherwise, S and Tt
are fed concatenated into D, which then learns the parameterization ξ of their combination.

4.4 Temporal ODE on ψ ≡ T

We model the evolution of Tt, thereby the dynamics of our system, with a first-order ODE:

∂Tt
∂t

= f(Tt) ⇔ Tt = Tt0 +

∫ t

t0

f(Tt′) dt′ (10)

This is in accordance with the separation of variables method that induces an ODE on ψ. Note that
the first-order ODE assumption can be taken without loss of generality since any ODE is equivalent
to a higher-dimensional first-order ODE. Therefore, since Tt is multi-dimensional, it can model
complex interactions between system variables. Following Chen et al. (2018), f is implemented
by a neural network and Equation (10) is solved with an ODE resolution scheme. Suppose initial
ODE conditions S and Tt0 have been computed with ES and ET . This leads to the following simple
forecasting scheme, enforced by the corresponding regression loss:

v̂t = D

(
S, Tt0 +

∫ t

t0

f(Tt′) dt′

)
, Lpred =

1

ν + 1

ν∑
i=0

1

m
‖v̂t0+i∆t − vt0+i∆t‖22, (11)

where ν + 1 is the number of observations, and the m is the dimension of the observed variables v.

Equation (11) ensures that the evolution of T is coherent with the observations; we now should
enforce its consistency with ET . Indeed, the dynamics of Tt is modeled by Equation (10), while
only its initial condition Tt1 is computed with ET . However, there is no guaranty that Tt, computed
via integration, matches ET

(
Vτ (t)

)
at any other time t, while they should in principle coincide.

We introduce the following autoencoding constraint aiming at mitigating their potential divergence,
thereby stabilizing the evolution of T :

LAE =
1

m

∥∥∥∥D(S,ET (Vτ (t0 + i∆t)
))
− vt

∥∥∥∥2

2

, i ∼ U
(
J0, ν − τK

)
. (12)

4.5 Spatial ODE on φ ≡ S

As indicated hereinabove, the spatial ODE on φ is assumed to be encoded into S. Nonetheless,
since S is inferred from an observation history, the time independence property on S is de facto
relaxed; thus, we need to explicitly enforce it. Unlike Denton & Birodkar (2017) who penalize the
squared difference between two contents representation taken at random times, we adopt a simpler
PDE-motivated approach. Time independence implies:

∂ES
(
Vτ (t)

)
∂t

= 0. (13)
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However, computing this derivative in practice is complex and costly; see Appendix B for more details.
Moreover, observation histories may not convey identical spatial information (for example, when an
object conceals another for the whole history period); thus, directly minimizing this derivative may
hinder performances. Therefore, we relax this constraint thanks to a lower bound on the integral of
temporal derivatives of ES obtained with Cauchy-Schwarz inequality:∫ t1−τ∆t

t0

∥∥∥∥∥∂ES
(
Vτ (t)

)
∂t

∥∥∥∥∥
2

2

dt ≥

∥∥∥∥∥
∫ t1−τ∆t

t0

∂ES
(
Vτ (t)

)
∂t

dt

∥∥∥∥∥
2

2

. (14)

Thus, we only minimize the evolution of ES
(
Vτ (t)

)
between two distant time steps by penalizing

the right-hand side of Equation (14), where d is the dimension of S:

LSreg =
1

d

∥∥∥ES(Vτ (t0)
)
− ES

(
Vτ (t1 − τ)

)∥∥∥2

2
. (15)

4.6 Spatiotemporal Disentanglement

Abstracting the spatial ODE into a generic representation S leads, without additional constraints, to an
underconstrained problem where spatiotemporal disentanglement cannot be guaranteed. Indeed, ES
can be set to zero without breaking any prior constraint, because static information is not prevented
to be encoded into T . Accordingly, information in S and T needs to be segmented.

Thanks to the design of our model, it suffices to ensure that S and T and disentangled at initial time
t0 for them be to be disentangled at all t. Indeed, the mutual information between two variables
is preserved by invertible transformations. Equation (10) is an ODE and f , as a neural network,
is Lipschitz-continuous, so Tt 7→ Tt′ is invertible. Therefore, disentanglement between S and Tt,
characterized by a low mutual information between both variables, is preserved through time; see
Appendix C for a detailed discussion. We thus only constrain the information quantity in Tt0 by using
a Gaussian prior to encourage it to contain only necessary dynamic information:

LTreg =
1

p
‖Tt0‖

2
2 =

1

p

∥∥∥ET (Vτ (t0)
)∥∥∥2

2
. (16)

4.7 Loss Function

The global loss to be minimized is a linear combination of Equations (11), (12), (15) and (16), as
illustrated in Figure 1:

L(v) = Ev∼P
[
λpredLpred + λAE · LAE + λSreg · LSreg + λTreg · LTreg

]
. (17)

In the following, we conventionally set ∆t = 1. Note that the presented approach could be generalized
to irregularly sampled observation times thanks to the dedicated literature (Rubanova et al., 2019),
but this is out of the scope of this paper.

5 Experiments

We describe in this section the main experimental results of our model on three physical datasets
and a synthetic video prediction dataset, briefly presented in this section and in more details in
Appendix D.2 We demonstrate the relevance of our model with ablation studies, and its performance
by comparing it with more complex state-of-the-art models. We refer to Appendix F for more
experiments and prediction examples, and to Appendix E for training details.

5.1 Physical Datasets: Wave Equation and Sea Surface Temperature

We first investigate two toy dynamical systems and a real-world dataset in order to show the advantage
of PDE-driven spatiotemporal disentanglement for forecasting.

We first lean on the wave equation, occurring for example in acoustic or electromagnetism, with
source term like Saha et al. (2020), to produce the toy dataset WaveEq consisting in 64 × 64

2Code is available at https://github.com/JeremDona/spatiotemporal_variable_separation.
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Table 1: Forecast mean squared errors on WaveEq-100, WaveEq, and SST for our model and PKnl
with respect to indicated prediction horizons. Bold scores indicate the best performing method.

Models
WaveEq-100 WaveEq SST

t+ 40 t+ 40 t+ 6 t+ 10

PKnl — — 1.28 2.03
Ours 1.52× 10−5 4.78× 10−5 1.17 1.79
Ours (without S) 1.56× 10−4 1.99× 10−4 1.60 2.38

Table 2: PSNR and SSIM scores of DrNet, DDPAE and our model on the Moving MNIST dataset
for prediction and content swap tasks. Bold scores indicate the best performing method.

Models
Pred. (t+ 10) Pred. (t+ 95) Swap (t+ 10) Swap (t+ 95)

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

DrNet 14.94 0.6596 12.91 0.5379 14.12 0.6206 12.80 0.5306
DDPAE 21.17 0.8814 13.56 0.6446 18.44 0.8256 13.25 0.6378
Ours 21.74 0.9094 17.22 0.7867 18.30 0.8343 16.21 0.7600
Ours (without S) Failed: underflow after a few iterations
Ours (λAE = 0) 21.51 0.9065 15.17 0.7054 18.01 0.8274 14.52 0.6884
Ours (λSreg = 0) 15.69 0.6670 13.77 0.6770 13.76 0.5392 13.56 0.6631
Ours (λTreg = 0) 15.06 0.7030 13.96 0.7218 14.64 0.6907 13.92 0.7208

normalized images of the physical process. We additionally build the WaveEq-100 dataset by
extracting 100 pixels, chosen uniformly at random and shared among sequences, from WaveEq
frames; this experimental setting can be thought of as measurements from sensors partially observing
the phenomenon. In both cases, τ = 4 and ν = 24. Our model is also tested on the real-world dataset
SST, derived from the data assimilation engine NEMO (Madec, 2008) and introduced by de Bézenac
et al. (2018), consisting in 64 × 64 frames showing the evolution of the sea surface temperature.
Modeling its evolution is particularly challenging as its dynamic is highly non-linear, chaotic, and
involves several unobserved quantities (e.g., forcing terms). In this case, τ = 3 and ν = 9.

Figure 2: Example of predictions of
compared models on SST.

We compare our model on these three datasets to a version
of this model with S removed and integrated into T , thus
also removing LSreg and LTreg. We additionally include PKnl
(de Bézenac et al., 2018), a model specifically designed for
SST, in the comparison. Results are compiled in Table 1 for
different forecast horizons, and an example of prediction is
depicted in Figure 2.

On these three datasets, our model produces more accurate
long-term prediction with S than without it. This indicates
that learning an invariant component facilitates training and
improves generalization on physical datasets. The influence
of S can be observed on Figure 2 (swap row) where the S of
a given sequence is replaced by another one extracted from
another sequence, changing the aspect of the prediction. We
provide in Appendix F further samples showing the influence
of S in the prediction. Even though there is no evidence
of separability in SST, our algorithm trained with a time-
invariant component takes advantage of this feature on both
tested forecast horizons. Indeed, it outperforms PKnl despite the data-specific structure of the latter,
whereas removing the static component decreases performances below PKnl.

5.2 A Synthetic Video Dataset: Moving MNIST

We also assess the prediction and disentanglement performances of our model on the Moving MNIST
dataset (Srivastava et al., 2015) involving MNIST digits (LeCun et al., 1998) bouncing over 64× 64
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Figure 3: Example of predictions of compared models on Moving MNIST.

frame borders, with τ = 4 and ν = 14. We perform a full ablation study of our model, and compare
it to DrNet (Denton & Birodkar, 2017) and DDPAE (Hsieh et al., 2018), which are state-of-the-art
spatiotemporal disentangled prediction methods on Moving MNIST leveraging no restrictive data-
specific priors. Note that DrNet and DDPAE use powerful machine learning techniques, with the
former based on adversarial losses and the latter on complex VAEs.

Results reported in Table 2 and illustrated in Figure 3 correspond to two tasks: prediction and
disentanglement, at both short and long-term horizons. Disentanglement is evaluated via content
swapping, which consists in replacing the content representation of a sequence by the one of another
sequence, which should result for a perfectly disentangled model in swapping digits of both sequences.
This is done by taking advantage of the synthetic nature of this dataset that allows us to implement
the ground truth content swap and compare it to the generated swaps of the model. Performances
are assessed by comparing to the ground truth using standard metrics (Denton & Fergus, 2018) Peak
Signal-to-Noise Ratio (PSNR, higher is better) and Structured Similarity (SSIM, higher is better).

Both qualitative and quantitative results show the advantage of our model against all baselines, despite
its simplicity compared to DrNet and DDPAE. DDPAE produces accurate predictions on a short
horizon but does not extrapolate well to long-term digits movements, with altered shapes of digits.
DrNet fails to even generate sharp digits. Because the content variable is fixed all along the forecast,
this shows that both baselines have difficulties separating content and motion. Our model instead
presents consistent samples at t+ 95, even in the content swap setting, showing that it better separates
motion from content than prior methods. Accordingly, our model significantly outperforms both of
these baselines in terms of prediction and disentanglement, especially at a long-term horizon.

Ablation studies confirm that this advantage is due to the constraints inspired by the separation of
variables. Indeed, the model fails to train correctly without S due to numerical instabilities, and
removing any non-forecasting constraint of the training loss substantially reduces performances. In
particular, the invariance loss on the static component and the regularization of initial condition Tt0
are essential, as their absence hinders both prediction and disentanglement. Removing the auto-
encoding constraints affects the prediction accuracy in a minor measure, still allowing state-of-the art
performances compared to other baselines. This observation shows that it suffices to implement an
`2 constraint on the first time step of the sequence only to enforce disentanglement, as described in
Section 4.6. Nonetheless, the auto-encoding constraint significantly strengthens our performances at
a long-term horizon, confirming its benefits to the stabilization of dynamics.

6 Conclusion

We introduce a novel method for spatiotemporal prediction inspired by the separation of variables
PDE resolution technique, involving only time invariance and regression constraints. This inspiration
induces simple constraints ensuring the separation of spatial and temporal information. We experi-
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mentally demonstrate the benefits of the proposed model, which, despite its simplicity, outperforms
prior state-of-the-art methods on physical and synthetic video datasets. We believe that this work,
which provides a dynamical interpretation of spatiotemporal disentanglement and implements it
in a simple method, could serve as the basis of more complex models further leveraging the PDE
formalism. Another direction for future work could be extending the model with more involved tools
such as VAEs to improve its performances, or adapt it to the prediction of natural stochastic videos
(Denton & Fergus, 2018).

Broader Impact

Our work introduces a spatiotemporal disentanglement method for forecasting. Besides theoretical
motivations, our method was designed in order to improve interpretability in machine learning
prediction systems. Indeed, when using deep neural networks as predictive algorithms, exploring
latent representations and evaluating their impact on the output is challenging, due to the complex
geometry of the latent space. We believe that our work is a step forward in this direction. Moreover,
our method provides a framework to automatically learn invariance in physical systems. The modeling
of physical systems using neural networks gains momentum in the machine learning community
and has potential applications in climatology and evaluation of climate change, as soon as the work
results from the cooperation of experts form both fields.

However, the choice of studied datasets to learn spatiotemporal disentanglement should be carefully
considered under its potential consequences. Even though our experiments only consider synthetic
and physical data, separating motion from content in videos could lead to potential manipulations
made possible by such disentanglement, with for instance deepfakes (Citron & Chesney, 2018),
raising the broader question of the threats of machine learning technologies to privacy and society.
While new advances emerge for their detection (Dolhansky et al., 2019; Güera & Delp, 2018), only
little information on their implementation in mass media platforms is available, further increasing the
responsibility of the experimenter in his choice of disentanglement studies.
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A Proofs

A.1 Resolution of the Heat Equation

In this section, we succinctly detail a proof for the existence and uniqueness for the solution to the
two-dimensional heat equation. It allows to show that product-separable solutions build the entire
solution space for this problem, highlighting our interest into the research of separable solutions.

Existence through separation of variables. Consider the heat equation problem:

∂u

∂t
= c2

∂2u

∂x2
, u(0, t) = u(L, t) = 0, u(x, 0) = f(x). (18)

Assuming product separability of u with u(x, t) = u1(x)u2(t) in Equation (18) gives:

c2
u′′1(x)

u1(x)
=
u′2(t)

u2(t)
. (19)

Both sides being independent of each other variables, they are equal to a constant denoted by−α. If α
is negative, solving the right side of Equation (19) results to non-physical solutions with exponentially
increasing temperatures, and imposing border condition of Equation (18) makes this solution collapse
to the null trivial solution. Therefore, we consider that α > 0.

Both sides of Equation (19) being equal to a constant leads to a second-order ODE on u1 and a
first-order ODE on u2, giving the solution shapes, with constants A, B and D:{

u1(x) = A× cos
(√
αx
)

+B sin
(√
αx
)

u2(t) = D × e−αt×c
2 . (20)

Link with initial and boundary conditions Now we link the above equation to the boundary
conditions of the problem. Because our separation is multiplicative, we can omit D for non-trivial
solutions and set it with loss of generality to 1 (as it only scales the values of A and B).

u(0, t) = u(L, t) = 0 and ∀t > 0, u1(t) 6= 0 gives:

A = 0, B × e−αt×c
2

sin
(√
αL
)

= 0, (21)

which means that, for non-trivial solution (i.e, B 6= 0), we have for a given n ∈ N:
√
α = nπ/L. We

can finally express our solution to the heat equation without initial conditions as:

u(x, t) = B sin

(
nπ

L
x

)
× exp

(
−
(
cnπ

L

)2

t

)
. (22)

Considering the superposition principle, because the initial problem is homogeneous, all linear
combinations of Equation (22) are solutions of the heat equation without initial conditions. Therefore,
any following function is a solutions of the heat equation without initial conditions.

u(x, t) =

+∞∑
n=0

Bn sin

(
nπ

L
x

)
× exp

(
−
(
cnπ

L

)2

t

)
. (23)

Finally, considering the initial condition u(x, 0) = f(x), a Fourier decomposition of f allows to set
all coefficients Bn, showing that, for any initial condition f , there exists a solution to Equation (18)
of the form of Equation (23).

Uniqueness We present here elements of proof for establishing the uniqueness of the solutions of
Equation (18) that belong to C2

(
[0, 1]× R+

)
. Detailed and rigorous proofs are given by Le Dret &

Lucquin (2016).

The key element consists in establishing the so-called Maximum Principle which states that, consid-
ering a sufficiently smooth solution, the minimum value of the solution is reached on the boundary of
the space and time domains.
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For null border condition (as we have here), this means that the norm of the solution u is given by
the norm of f (because of the initial condition). Finally, let us consider two smooth solutions of
Equation (18) U1 and U2. Then, their difference v = U1 − U2 follows the heat equation with null
border and initial conditions (i.e, v(x, 0) = 0). Because v is as regular as U1 and U2, it satisfies
the previous fact about the norm of the solutions, i.e, the norm of v equals the norm of its initial
condition: ‖v‖ = 0. Therefore, v is null and so is U1 = U2, showing the unicity of the solutions.

Finally, this show that solutions of the form of Equation (23) shape the whole set of smooth solutions
of Equation (18).

A.2 Heat Equation with Advection Term (Equation (4))

We give here details for the existence of product-separable solutions to Equation (4):

∂u

∂t
+ c

∂u

∂x
= χ

∂2u

∂x2
, for− 1 < x < 1 and t < T, c > 0. (24)

Let α, β ∈ R; consider the following change of variables for u:

u(x, t) = v(x, t)eαx+βt. (25)

The partial derivatives from Equation (4) can be rewritten as functions of the new variable v:

∂u

∂t
=
∂v

∂t
eαx+βt + v × βeαx+βt (26)

∂u

∂x
=
∂v

∂v
eαx+βt + αveαx+βt (27)

∂2u

∂x2
=
∂2v

∂x2
× eαx+βt + 2α× ∂v

∂x
eαx+βt + α2veαx+βt (28)

Using these expressions in Equation (4) and dividing it by eαx+βt leads to:

∂v

∂t
+
(
β + cα− α2χ

)
v + (c− 2αχ)

∂v

∂x
= ν

∂2v

∂x2
. (29)

α and β, being dummy parameters, cen be set such that:

β + cα− α2χ = 0

c− 2αχ = 0

We then retrieve the standard two-dimensional heat equation of Equation (18) given by:

∂v

∂t
= χ

∂2v

∂x2
, (30)

which is known to have product-separable solutions as explained in the previous section. This more
generally shows all solutions of Equation (4) can be retrieved from solutions to Equation (18).

B Accessing Time Derivatives of S

While explicitly constraining the time derivative of ES
(
Vτ (t)

)
seems more intuitive than imposing

time invariance as explained in Section 4.5, it is a difficult matter in practice. Indeed, ES does not
take as input neither the time coordinate t nor spatial coordinates x, y as done by Raissi (2018)
and Sirignano & Spiliopoulos (2018), which allows the authors to directly estimate the networks
derivative thanks to automatic differentiation. In our case, ES rather takes as input observations.

As discussed in Section 4, a possible but costly solution to impose time invariance would be to
discretize the left hand side of Equation (14), so that the following quantity would be minimized:

LSfirst order =
1

ν − τ

ν−τ∑
i=1

∥∥∥∥ES(Vτ (t0 + i∆t)
)
− ES

(
Vτ
(
t0 + (i− 1)∆t

))∥∥∥∥2

2

. (31)
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Another alternative is the loss introduced by Denton & Birodkar (2017) that instead minimized the
difference between spatial representations taken at two random steps i and j uniformly sampled in
J0, ν − τK:

LSrandom =

∥∥∥∥ES(Vτ (ti)
)
− ES

(
Vτ
(
tj
))∥∥∥∥2

2

. (32)

However, both alternatives hinder performances, as analyzed in Appendix F, since they implement an
overly strong constraint, as explained in Section 4.5.

Another workaround would be to model explicitly the evolution of ES
(
Vτ (t)

)
with respect to time

thanks to an integrator and a regression loss, similarly to T . It would give access to an estimate of the
evolution of ES

(
Vτ (t)

)
through time, enabling a direct control of the left hand side of Equation (14).

This estimate could be loose and take into account the variation of spatial information due to potential
hidden spatial features in the observations, allowing to relax the overly strong penalizing constraint.

To investigate this possibility, we propose to model the evolution of ES
(
Vτ (t)

)
using a residual

network, denoted by RS . Indeed, residual networks have been shown to implement ODE resolution
schemes (Lu et al., 2017), thus assimilating their residual blocks to the true time derivatives of the
system. Then, the regularisation loss on S, previously denoted LSreg is replaced by two components.
The first component is a regression loss ensuring that our residual network RS accurately models the
evolution of S:

LSODE =

∥∥∥∥RS(ES(Vτ (t0)
))
− ES

(
Vτ (t1 − τ∆t)

)∥∥∥∥2

2

. (33)

The second component is the regularisation of the residuals. We propose to minimize the `2-norm of
the residuals as a proxy to minimise the true time derivative of ES

(
Vτ (t)

)
. If rS,1, . . . , rS,lS are the

residual blocks of RS , we define the regularization implementing the left hand side of Equation (14)
as:

LSresblock =

lS∑
h=1

∥∥∥∥(rS,h ◦ (id + rS,h−1

)
◦ . . . ◦

(
id + rS,1

))(
ES
(
Vτ (t0)

))∥∥∥∥2

2

. (34)

We show in Appendix F that this workaround is a viable alternative, as using such constraint leads to
results that are numerically similar to the originally proposed method. Yet, even though it achieves
slightly better results, this alternative is computationally less efficient than our method, and requires
one more hyperparameter to tune (the coefficient in front of LSODE), making its use more complex.
Therefore, it is an interesting option to study that also provides state-of-the-art results.

C Of Spatiotemporal Disentanglement

C.1 Modeling Spatiotemporal Phenomena with Differential Equations

Besides their increasing popularity to model spatiotemporal phenomena (see Section 2), the ability
of residual networks to facilitate learning (Haber & Ruthotto, 2017) along with the success of their
continuous counterpart (Chen et al., 2018) motivates our choice. Indeed, learning ODEs or discrete
approximations as residual networks has become standard for a variety of tasks such as classification,
inpainting, and generative models. Consequently, their application to forecasting physical processes
and videos is only a natural extension of its already broad applicability discussed in Section 2.
Furthermore, they present interesting properties, as detailed below.

C.2 Separation of Variables Preserves the Mutual Information of S and T through Time

C.2.1 Invertible Flow of an ODE

We first highlight that the general ODE Equation (10) admits, according to the Cauchy–Lipschitz
theorem, exactly one solution for a given initial condition, since f is implemented with a standard
neural network (see Appendix E), making it Lipschitz-continuous. Consequently, the flow of this
ODE, denoted by Φt and defined as:

Φ:R× Rp → Rp

(t0, Tt0) 7→ Φt(Tt0) = Tt0+t
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is a bijection for all t. Indeed, let Tt0 be fixed and t0, t1 be two timesteps; thanks to the existence
and unicity of the solution to the ODE with this initial condition: Φt0+t1 = Φt0 ◦ Φt1 = Φt1 ◦ Φt0 .
Therefore, Φt is a bijection and Φ−1

t = Φ−t. Moreover, the flow is differentiable if f is continuously
differentiable as well, which is not a restrictive assumption if it is implemented by a neural network
with differentiable activation functions.

C.2.2 Preservation of Mutual Information by Invertible Mappings

A proof of the following result is given by Kraskov et al. (2004). We indicate below the major steps
of the proof. Let X and Y be two random variables with marginal density µX , µY . Let F be a
diffeomorphism acting on Y , Y ′ = F (Y ). If JF is the determinant of the Jacobian of F , we have:

µ′
(
x, y′

)
= µ(x, y)JF

(
y′
)
.

Then, expressing the mutual information I in integral form, with the change of variables y′ = F (y)
(F being a diffeomorphism), results in:

I
(
X,Y ′

)
=

∫∫
x,y′

µ′
(
x, y′

)
log

µ′
(
x, y′

)
µX(x)× µY ′(y′)

dxdy′

=

∫∫
x,y

µ(x, y) log
µ(x, y)

µX(x)× µY (y)
dx dy

I
(
X,Y ′

)
= I(X,Y ).

C.3 Ensuring Disentanglement at any Time

As noted by Chen et al. (2016) and Achille & Soatto (2018), mutual information I is a key metric
to evaluate disentanglement. We show that our model logically conserves the mutual information
between S and T through time thanks to the flow of the learned ODE on T . Indeed, with the result of
mutual information presevation by diffeomorphisms, and Φt being a diffeomorphism as demonstrated
above, we have, for all t and t′:

I(S, Tt) = I
(
X,Φt′−t(Tt)

)
= I(S, Tt′). (35)

Hence, if S and Tt are disentangled, then so are S and Tt′ .

The flow Φt being dicretized in practice, its invertibility can no longer be guaranteed in general.
Some numerical schemes (Chen et al., 2020) or residual networks with Lipschitz-constrained residual
blocks (Behrmann et al., 2019) provide sufficient conditions to concretely reach this invertibility. In
our case, we did not observe the need to enforce invertibility. We can also leverage the data processing
inequality to show that, for any t ≥ t0:

I(S, Tt0) ≥ I(S, Tt), (36)

since Tt is always a deterministic function of Tt0 . Since we constrain the very first T value Tt0 (i.e.,
we do not need to go back in time), there is no imperative need to enforce the invertibility of Φt
in practice: the inequality also implies that, if S and Tt0 are disentangled, then so are S and Tt for
t ≥ t0. Nevertheless, should the need to disentangle for t < t0 appear, the aforementioned mutual
information conservation properties could allow, with further practical work to ensure the effective
invertibility of Φt, to still regularize Tt0 only. This is, however, out of the scope of this paper.

D Datasets

D.1 WaveEq and WaveEq-100

These datasets are based on the two-dimensional wave equation on a functional w(x, y, t):

∂2w

∂t2
= c2∇2w + f(x, y, t), (37)

where∇2 is the Laplacian operator, c denotes the wave celerity, and f is an arbitrary time-dependent
source term. It has several application in physics, modeling a wide range of phenomena ranging from
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mechanical oscillations to electromagnetism. Note that the homogeneous equation, where f = 0,
admits product-separable solutions.

We build the WaveEq dataset by solving Equation (37) for t ∈ [0, 0.298] and x, y ∈ [0, 63]. Sequences
are generated using c drawn uniformly at random in [300, 400] for each sequence to imitate the
propagation of acoustic waves, with initial and Neumann boundary conditions:

w(x, y, 0) = w(0, 0, t) = w(32, 32, t) = 0, (38)

and, following Saha et al. (2020), we make use of the following source term:

f(x, y, t) =

{
f0e−

t
T0 if (x, y) ∈ B

(
(32, 32), 5

)
0 otherwise

, (39)

with T0 = 0.05 and f0 ∼ U
(
[1, 30]

)
. The source term is taken non-null in a circular central zone

only in order to avoid numerical differentiation problems in the case of a punctual source.

We generate 300 sequences of 64× 64 frames of length 150 from this setting by assimilating pixel
(i, j) ∈ J0, 63K× J0, 63K to a point (x, y) ∈ [0, 63]× [0, 63] and selecting a frame per time interval
of size 0.002. This discretization is used to solve Equation (37) as its spatial derivatives are estimated
thanks to finite differences; once computed, they are used in an ODE numerical solver to solve
Equation (37) on t. Spatial derivatives are estimated with finite differences of order 5, and the ODE
solver is the fourth-order Runge-Kutta method with the 3/8 rule (Kutta, 1901; Hairer et al., 1993)
and step size 0.001. The data are finally normalized following a min-max [0, 1] scaling per sequence.

The dataset is then split into training (240 sequences) and testing (60 sequences) sets. Sequences
sampled during training are random chuncks of length ν + 1 = 25, including τ + 1 = 5 conditioning
frames, of full-size training sequences. Sequences used during testing are all possible chunks of
length τ + 1 + 40 = 45 from full-size testing sequences.

Finally, WaveEq-100 is created from WaveEq by selecting 100 pixels uniformly at random. The
extracted pixels are selected before training and are fixed for both training and test. Therefore train
and test sequences for WaveEq-100 consist of vector of size 100 extracted from WaveEq frames.
Training and testing sequences are chosen to be the same as those of WaveEq.

D.2 Sea Surface Temperature

SST is composed of sea surface temperatures of the Atlantic ocean generated using E.U. Copernicus
Marine Service Information thanks to the state-of-the-art simulation engine NEMO. The use of a
so-called reanalysis procedure implies that these data accurately represent the actual temperature
measures. For more information, we refer to the complete description of the data by de Bézenac et al.
(2018). The data history of this engine is available online.3 Unfortunately, due to recent maintenance,
data history is limited to the last three years; prior histories should be manually requested.

The dataset uses daily temperature acquisitions from Thursday 28th December, 2006 to Wednesday
5th April, 2017 of a 481× 781 zone, from which 29 zones of size 64× 64 zones are extracted. We
follow the same setting as de Bézenac et al. (2018) by training all models with τ +1 = 4 conditioning
steps and ν − τ = 6 steps to predict, and evaluating them on only zones 17 to 20. These zones are
particularly interesting since they are the places where cold waters meet warm waters, inducing more
pronounced motion.

We normalize the data in the same manner as de Bézenac et al. (2018). Each daily acquisition
of a zone is first normalized using the mean and standard deviation of measured temperatures
in this zone computed for all days with the same date of the year from the available data (daily
history climatological normalization). Each zone is then normalized so the mean and variance over all
acquisitions correspond to those of a standard Gaussian distribution. These normalized data are finally
fed to the model; MSE scores reported in Table 1 are computed once the performed normalization of
the data and model prediction is reverted to the original temperature measurement space, in order to
compute physically meaningful scores.

3https://resources.marine.copernicus.eu/?option=com_csw&view=details&product_id=
GLOBAL_ANALYSIS_FORECAST_PHY_001_024.
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Training sequences correspond to randomly selected chunks of length ν = 10 in the first 2987
acquisitions (corresponding to 80% of total acquisitions), and testing sequences to all possible chunks
of length ν = 10 in the remaining 747 acquisitions.

D.3 Moving MNIST

This dataset involves two MNIST digits (LeCun et al., 1998) of size 28×28 that linearly move within
64× 64 frames and deterministically bounce against frame borders following reflection laws. We
use the modified version of the dataset proposed by Franceschi et al. (2020) instead of the original
one (Srivastava et al., 2015). We train all models in the same setting as Denton & Birodkar (2017),
with τ + 1 = 5 conditioning frames and ν − τ = 10 frames to predict, and test them to predict either
10 or 95 frames ahead. Training data consist in trajectories of digits from the MNIST training set,
randomly generated on the fly during training. Test data are produced by computing a trajectory for
each digit of the MNIST testing set, and randomly pairwise combining them, thus producing 5000
sequences.

To evaluate disentanglement with content swapping, we report PSNR and SSIM metrics between
the swapped sequence produced by our model and a ground truth. However, having two digits in
the image, there is an ambiguity as to in which order target digits should be swapped in the ground
truth. To account for this ambiguity and thanks to the synthetic nature of the dataset, we instead build
two ground truth sequences for both possible digit swap permutations, and report the lowest metric
between the generated sequence and both ground truths (i.e., we choose the closest ground truth to
compare to with respect to the considered metric).

E Training Details

Along with the code, we provide here sufficient details in order to replicate our results.

E.1 Reproduction of PKnl, DrNet and DDPAE

PKnl. We retrained PKnl (de Bézenac et al., 2018) on SST using their official implementation and
the same hyperparameters they indicate.

DrNet. We trained DrNet (Denton & Birodkar, 2017) on our version of Moving MNIST using
the same hyperparameters originally used for the alternative version of the dataset on which it was
originally trained (with digits of different colors). To this end, we reimplemented the official Lua
implementation into a Python code in order to train it with a more recent infrastucture.

DDPAE. We trained DDPAE (Hsieh et al., 2018) on our version of Moving MNIST using the
official implementation and the same hyperparameters they used for the original version of Moving
MNIST.

E.2 Model Specifications

E.2.1 Implementation

We used Python 3.8.1 and PyTorch 1.4.0 (Paszke et al., 2019) to implement our model. Each model
was trained on an Nvidia GPU with CUDA 10.1. Training is done with mixed-precision training
(Micikevicius et al., 2018) thanks to the Apex library.4

E.2.2 Architecture

Combination of S and T . As explained in Section 4, the default choice of combination of S and
T as decoder inputs is the concatenation of both vectorial variables: it is generic, and allows the
decoder to learn an appropriate combination function ζ as in Equation (7).

Nonetheless, further knowledge of the studied dataset can help to narrow the choices of combination
functions. Indeed, we choose to multiply S and T before giving them as input to the decoder for

4https://github.com/nvidia/apex.
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both datasets WaveEq and WaveEq-100, given the knowledge of the existence of product-separable
solutions to the homogeneous version of equation (i.e., without source). This shows that it is possible
to change the combination function of S and T , and that existing combination functions in the PDE
literature could be leveraged for other datasets.

Encoders ES and ET , and decoder D. For WaveEq, the encoder and decoder outputs are consid-
ered to be vectors; images are thus reshaped before encoding and after encoding to 64× 64 frames.
The encoder is a MultiLayer Perceptrons (MLP) with two hidden layers of size 1200 and internal
ReLU activation functions. The decoder is an MLP with three hidden layers of size 1200, internal
ReLU activation functions, and a final sigmoid activation function for the decoder. The encoder and
decoder used for WaveEq-100 are similar to those used for WaveEq, but with two hidden layers each,
of respective sizes 2400 and 150.

We used for SST a VGG16 architecture (Simonyan & Zisserman, 2015), mirrored between the
encoder and the decoder, complemented with skip connections integrated into S (Ronneberger et al.,
2015) from all internal layers of the encoder to corresponding decoder layers, also leveraged by
de Bézenac et al. (2018) in their PKnl model. For Moving MNIST, the encoder and its mirrored
decoder are shaped with the DCGAN discriminator and generator architecture (Radford et al., 2016),
with an additional sigmoid activation after the very last layer of the decoder; this encoder and decoder
DCGAN architecture is also used by DrNet and DDPAE. We highlight that we leveraged in both SST
and Moving MNIST architectural choices that are also used in compared baselines, enabling fair
comparisons.

Encoders ES and ET taking as input multiple observations, we combine them by either concatenating
them for the vectorial observations of WaveEq-100, or grouping them on the color channel dimensions
for the other datasets where observations are frames. Each encoder and decoder was initialized from
a normal distribution with standard deviation 0.02.

ODE solver. Following the recent line of work assimilating residual networks (He et al., 2016)
with ODE solvers (Lu et al., 2017; Chen et al., 2018), we use a residual network as an integrator
for Equation (10). This residual network is composed of a given number K of residual blocks, each
block i ∈ J1,KK implementing the application id + gi, where gi is an MLP with a two hidden layers
of size H and internal ReLU activation functions. The parameter values for each dataset are:

• WaveEq and WaveEq-100: K = 3 and H = 512;
• SST: K = 5 and H = 1024;
• Moving MNIST: K = 1 and H = 512.

Each MLP is orthogonally initialized with the following gain for each dataset:

• WaveEq, WaveEq-100 and SST: 0.71;
• Moving MNIST: 1.41.

Latent variable sizes. S and T have the following vectorial dimensions for each dataset:

• WaveEq and WaveEq-100: 32;
• SST: 256;
• Moving MNIST: respectively, 128 and 20.

Note that, in order to perform fair comparisons, the size of T for baselines without static component
S is chosen to be the sum of the vectorial sizes of S and T in the full model. The skip connections of
S for SST cannot, however, be integrated into T , as its evolution is only modeled in the latent, and it
is out of the scope of this paper to leverage low-level dynamics.

E.3 Optimization

Optimization is performed using the Adam optimizer (Kingma & Ba, 2015) with initial learning
rate 4× 10−4 for WaveEq, WaveEq-100 and Moving MNIST and 2× 10−4 for SST, and with decay
rates β1 = 0.9 and β2 = 0.99.
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Loss function. Chosen coefficients values of λpred, λAE, λSreg, and λTreg are the following:

• λpred = 45;

• λAE = 10 for SST and Moving MNIST, and 1 for WaveEq and WaveEq-100;

• λSreg = 45 for WaveEq, WaveEq-100 and Moving MNIST, and 1500 for SST;

• λTreg = 1
2p× 10−3, where p is the dimension of T .

The batch size is chosen to be 128 for WaveEq, WaveEq-100 and Moving MNIST, and 100 for SST.

Training length. The number of training epochs for each dataset is:

• WaveEq and WaveEq-100: 250 epochs;

• SST: 200 epochs for the full model, and 75 epochs for the model without S (the latter
tending to overfit for higher number of epochs);

• Moving MNIST: 800 epochs, with an epoch corresponding to 200 000 trajectories (the
dataset being infinite), with the learning rate successively divided by 2 at epochs 300, 400,
500, 600, and 700.

These correspond to the following appoximate training times of an Nvidia Titan V GPU:

• WaveEq and WaveEq-100: two hours;

• SST: a day;

• Moving MNIST: two days and a half.

E.4 Prediction Offset for SST

Using the formalism of our work, our algorithm trains to reconstruct v = (vt0 , ..., vt1) from condi-
tioning frames Vτ (t0). Therefore, it first learns to reconstruct Vτ .

However, the evolution of SST data is chaotic and predicting above an horizon of 6 with coherent
and sharp estimations is challenging. Therefore, for the SST dataset only, we chose to supervise the
prediction from t = t0 + (τ + 1)∆t, i.e, our algorithm trains to forecast vt0+(τ+1)∆t, . . . , vt1 from
Vτ (t0). It simply consists in making the temporal representation ET

(
Vτ (t0)

)
match the observation

vt0+(τ+1)∆t instead of vt0 . This index offset does not change our interpretation of spatiotemporal
disentanglement through separation of variables.

F Additional Results and Samples

F.1 Additional Results on Moving MNIST

We compare results on the Moving MNIST dataset in Table 3 for the several variants to impose time
invariance as detailed in Appendix B.

We can conclude from Table 3 that our proposed method to enforce time invariance for minimizing
the time derivative is significantly more efficient than directly minimizing the left hand side of
Equation (14) (LSfirst order). Indeed, our method provides more consistent long-term forecasts than
those produced usingLSfirst order. Furthermore, it performs better in both long and short-term forecasts
than the LSrandom proposed by Denton & Birodkar (2017). Finally, compared to both LSfirst order

and LSrandom, our method to impose time invariance strengthens the disentanglement ability of our
algorithm providing better results in the swap experiment at t+ 95. These results confirm the analysis
of Appendix B.

Finally, modeling the evolution of the spatial content and minimizing the `2-norm of the residuals is
a competitive alternative compared to our approach in both prediction and disentanglement, but is
more complex and computationally heavier as its execution time is increased by about 20%.
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Table 3: PSNR and SSIM scores of DrNet, DDPAE and our model on the Moving MNIST dataset
for prediction and content swap tasks. The first part of the table reports results of Table 2, and the
second half report additional results for alternative invariance losses. Bold scores indicate the best
performing method in each part of the table.

Models
Pred. (t+ 10) Pred. (t+ 95) Swap (t+ 10) Swap (t+ 95)

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

DrNet 14.94 0.6596 12.91 0.5379 14.12 0.6206 12.80 0.5306
DDPAE 21.17 0.8814 13.56 0.6446 18.44 0.8256 13.25 0.6378
Ours 21.74 0.9094 17.22 0.7867 18.30 0.8343 16.21 0.7600
Ours (without S) Failed: underflow after a few iterations
Ours (λAE = 0) 21.51 0.9065 15.17 0.7054 18.01 0.8274 14.52 0.6884
Ours (λS

reg = 0) 15.69 0.6670 13.77 0.6770 13.76 0.5392 13.56 0.6631
Ours (λT

reg = 0) 15.06 0.7030 13.96 0.7218 14.64 0.6907 13.92 0.7208

Ours (LS
resblock,LS

ODE) 21.76 0.9080 17.89 0.8130 18.30 0.8327 16.68 0.7793
Ours LS

first order 21.49 0.9054 15.80 0.7411 17.96 0.8242 15.11 0.7225
Ours LS

random 21.67 0.9071 16.56 0.7648 18.39 0.8351 15.74 0.7432

Figure 4: Example of predictions of our model on WaveEq.

F.2 Additional Samples

F.2.1 WaveEq

We provide in Figure 4 a sample for the WaveEq dataset, highlighting the long-term consistency in
the forecasts of our algorithm.

We also show in Figure 5 the effect in forecasting of changing the spatial code S from the one of
another sequence.

F.2.2 SST

We provide an additional sample for SST in Figure 6.

F.2.3 Moving MNIST

We provide two additional samples for Moving MNIST in Figures 7 and 8.

Figure 5: Evolution of the scaled difference between the forecast of a sequence and the same forecast
with a spatial code coming from another sequence for the WaveEq dataset.
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Figure 6: Example of predictions of compared models on SST.

Figure 7: Example of predictions of compared models on Moving MNIST.

Figure 8: Example of predictions of compared models on Moving MNIST.
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