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Abstract—Making the right platform choice has always been a
challenge for the HPC users no matter the applications vertical
they are in. The number of references is very large and making
the wrong choice can have adverse effects. Formerly users only
had to choose between, for example, the different processors and
interconnect vendors. Lately, due to the new Intel Skylake proces-
sors the choice has become increasingly difficult as different levels
of performance are available within the same vendor platforms.
To facilitate selection and give possible directions for the real
benchmarked applications we introduce the Kernel Generator,
an open source tool generating assembly kernels to help the
programmer or the benchmarker understand the behavior of
the different micro-architectures. We used our tool to study the
behavior of the current micro-architectures and compare it to the
current synthetic benchmarks which sometimes are not correctly
characterizing a platform nor expose its strengths. The Kernel
Generator facilitates the discovery of the platforms performance
fit. To insure the relevance of our kernel, we are looking at
Ansys Fluent behavior to explain the performance on the different
Intel processors. In this case, we have that 4100 and 6100 Intel
processors families can have equivalent performance on codes not
well vectorized: Fluent being one of them. This demonstrates that
we can use our tool for initial profiling and understanding of the
different platforms.

Keywords: Architecture characterization; vectorization;
FPU

I. INTRODUCTION

Today, the HPC domain is constrained both from the eco-
nomic and the feasibility perspective. Using the correct Super-
computer in place became an important pillar which carefully
needs to be implemented as it involves taking some decisions
like: choice of vendor, the choice of components but also the
total cost of ownership and data center foot print for example.
From the platform perspective we do have some important
choices ahead as Intel released their new Skylake processors
[1], AMD just announced the EPYC processors, but one can
also look at accelerators like GP-GPUs from Nvidia and AMD
[2] Many-core technologies like Intel Knight Landing [3] but
also the latest arrivals into HPC like the FGPAs from Intel
or Xilinx [4]. Not all applications are able to run on all
the different processors or accelerators above. In order to be
able to run on GPUs, KNLs or FPGAs applications either
need to be written from scratch. Applications can be ported
using CUDA (for Nvidia GPUs) or OpenCL (AMD GPUs
and FPGAs). As the effort of application porting is usually
too big, most of today’s applications today are still running

on CPUs only. This does not mean that the choice of CPU
is an easy task and most companies run platform benchmarks
or proof of concepts before purchasing a large scale system.
Benchmarks can be micro-benchmarks like: HPL [5], Stream
[6], HPCC [7] or HPCG [8] or real applications benchmarks.
This exercise is planned very carefully for both the customer
and the vendor. The real problem is that the current synthetic
benchmarks do not always show the strengths of all platforms
thus not even allowing some CPUs to be considered for the
application benchmarking. What we have seen in the past
months with the releases of the new Skylake processors is that
entry level processors like Intel 4110 can perform as good as
a top bin processor like the Intel 6148 for real applications
thus increasing the performance

price of a large scale cluster. To
make this visible and the choice of the CPU more informed
we created a tool called the Kernel Generator able to correctly
assess in which type of applications a processor would best
perform such as for example Computational Fluid Dynamics,
Structure, Life Sciences. Together, with the Kernel Generator,
we use monitoring tools written by our team to understand
what is occurring on processors during runs. This paper is
organized as follows: Section 2 introduces the state of the art.
Section 3 details the Kernel Generator and its functionality.
Section 4 exposes some experimental results using Ansys
Fluent. Finally in Section 5 we conclude and propose future
directions.

II. TECHNOLOGY BACKGROUND AND RELATED
BENCHMARKS

A. Intel technology

Since 2007, Intel has become accustomized to releasing its
processors based on a tick tock model [10]. When a tock
presents a new architecture, a tick represents a shrinking
of this micro-architecture. In 2017, Intel introduced its new
server processor portfolio with its latest architecture, Skylake,
replacing its Broadwell predecessor. For these server-only pro-
cessors, Intel has separated its portfolio into 4 ranges: Bronze
(model 31XX), Silver (model 41xx), Gold (model 51xx and
61xx) and Platinum (model 81xx). On Broadwell, even if
the number of type of processors was bigger, we had easier
choice as only one type of processor was feasible for HPC
(E5-26XXv4). With this new architecture, Intel offers a large
number of processors with great technological differences but



TABLE I: Skylake portfolio: major difference between SKUs

Bronze: 31XX Silver: 41XX Gold: 5100 Gold: 6100 Platinium: 8100
Memory channel and speed 6-ch@2133 Ghz 6-ch@2400 6-ch@2400 6-ch@2666 6-ch@2666
UPI links (Scalability) 2 (2S-2UPI) 2 (2S-2UPI) 2 (4S-2UPI) 3 (2S-3UPI) 3 (8S-3UPI)
UPI bandwidth 9.6 GT/s 9.6 GT/s 10.4 GT/s 10.4 GT/s 10.4 GT/s
HyperThreading [9] NO YES YES YES YES
FMA-512 FPU 1 1 1 2 2

also price differences. Our goal is to understand the differences
between these models and take advantage of them (Table I).

The Skylake portfolio, divided into 5 groups of SKUs,
categorizes processors their architecture and the available
features. The portfolio ranges from the simplest (Bronze) to
the most powerful (Platinum) processors. Table I presents the
major changes. The Bronze range will be quite difficult to use
for HPC, these processors not having turbo or HyperThreading
[9] and only compatible with the slowest memory (2133
Ghz). As we move up in range new features appear. The
silver range brings TurboBoost [11] and HyperThreading. Our
experience as an HPC vendor shows that the 4100 and the 5100
SKUs from Intel never were considered as serious candidates
for HPC business addressed so far. It represents the lower-
end of the Skylake portfolio and never appeared to be the
right choice for any application. Except a few of them, they
usually offer fewer cores per socket and degraded specs (Intel
QuickPath Interconnect (QPI) links and memory frequency
supported). This is what triggered our consideration for a new
tool correctly assessing the processors for the different HPC
applications.

The main difference between 8100/6100 and 5100/4100
series remains their ability to perform 1 or 2 AVX512 instruc-
tions per cycle. For years, vectorization has been presented by
Intel as the only viable approach to improve the performance
of HPC applications, as the hardware does not improve in
terms of clock speed. Vectorization is not necessarily sufficient
to improve the performance, if all available floating-point units
are not fully leveraged. What’s the benefit of using 512-bit
wide instructions if only one is issued every few cycles? To
overcome the need to provide enough data to the Floating
Point Unit (FPU), this new generation of processors increases
the number of memory channels between the processor and
memory from 4 channels (Broadwell) to 6, which are compat-
ible with different memory speed, from 2133 to 2666 GHz.

B. Related work

To measure and compare computers architectures it is
common to use code called benchmarks. They can be used
as a baseline in the industry as their behavior and their
performance is well known. Benchmarks are also used to
determine the characteristics of an architecture. Although
it can be found in technical manuals, it is common for
achievable performance to be lower. The performance of an
application can then be estimated correctly by comparing
it to practical (Performancemax) rather than theoretical
performance (Performancepeak). There are several types of
benchmarks that have different purposes and can be classified

into three families [12]: benchmarks, kernel-based benchmarks
and micro-benchmarks.

Benchmarks are complete applications that perform differ-
ent types of calculations. In some cases, real applications are
used as reference benchmarks. We could cite some of them
such as BSMBench [13] designed to perform the pattern of
computation used in Lattice Gauge Theory (LGT) field.

Kernel-based benchmarks are usually smaller codes than
benchmarks. A kernel is a function that has been extracted
from a larger application to measure only its performance.
The most used and well known benchmarks are HPL [5] and
Stream [6]. The High Performance Computing Linpack (HPL)
benchmark is used to sort the Top500 [14] which is ranking
the 500 most powerful supercomputers since 1993 [15]. It
is used to measure the maximum Floating Points Operation
per Second (FLOPS) a supercomputer is able to provide by
solving a linear system of equation using LU decomposition.
The second worldwide known benchmark is STREAM that
was originally developed to understand the performance dif-
ferences between two architectures for a weather application.
The main problem with those benchmarks comes from their
artificial code not representing real application. To this end,
other specific benchmarks have been developed to reflect how
real application would perform. On recent HPC architectures,
having a good HPL performance is no longer correlated with
having good performance with real applications, so the HPCG
was introduced [8]. The HPCG benchmark fills the gap by
implementing some micro-benchmarks more representative of
the workload used in the industry as sparse matrix-vector
multiplication or sparse triangular solvers. Some benchmarks
use generators to create benchmarks that cover more cases
using different parameters, data sets or resolution functions.
There are kernel generators available such as BMG [16]
to generate benchmarks with different parameters for the
Travelling Salesman Problem (TSP).

Lastly, the micro-kernel benchmark approach is an extension
of the kernel-based benchmarks that are used to isolate and
measure a specific part of the micro-architecture. For example,
lmbench [12] is a suite of portable benchmarks used to
measure important characteristics of the memory such as band-
width, memory latency and performance of the different cache
levels.We also mention [17], [18] for the characterization
of the different levels of the memory hierarchy. Thanks to
those benchmarks, the collected information can be used to
predict the performance of applications. Also, the recovered
information allows to implement optimizations such as loop
tiling to fit perfectly in the different levels of caches. For
example, computational libraries such as ATLAS [19] and



TABLE II: Skylake performance the HPL Benchmark in GFLOP/s: 8 process per core, HyperThreading off, frequency capped
at 1.5 Ghz)

MKL instructions set Silver: 4110 Gold: 5117 Gold: 6130 Platinium: 8160
STREAM (256) 361 362 362 363
STREAM (512) 297 372 714 716

FFTW [20] generate micro-benchmarks to characterize the
architecture. Dozens of different versions are executed and
measured, to keep only the most efficient version. As the
quality of the micro-benchmarks used is important to properly
characterize the architecture, work has been done to improve
them [21].

III. KERNEL GENERATOR

Today, disruptive architectures are released every month in
the HPC domain and it becomes hard to exactly understand
what performance they are able to provide. In this paper we are
presenting an Open Source C++ tool, called Kernel Generator.
This tool can be downloaded on our Github repository [22].
It is used to generate assembly kernel to finely characterize
some part of the processors architecture and more precisely
the Arithmetic Logic Unit (ALU) which is in charge of the
execution of floating point units. The Kernel Generator is
a tool used to finely describe the behavior of the Floating
Point Units (FPU) of the processor and answers questions
like: How does the processor behave when running vectorized
instructions? How the frequency is changing running AVX-
512 on all the processors cores? Indeed, FPU is a crucial
component of the processor as most of HPC applications are
executing intensive compute on floating point data.

A. Basic concept: assembly kernel

The Kernel Generator allows a user to finely benchmark
the arithmetic logical unit by generating an assembly loop
with different instructions type and precision. Instructions can
be scalar or SSE, AVX2, AVX512, and by self monitoring its
loop, the micro-benchmark generated will print some relevant
information such as the number of instructions that can be
executed by cycle (IPC), the frequency and the number of
GFLOP/s. In generating an assembly kernel our tool accepts
several options:

• --width {64, 128, 256, 512}: set instruction’s
width. Multiple types can be mixed.

• --operation {a,m,f}: Type of operations gener-
ated: addition (a), multiplication (m) or Fused Multiply
Add (f) (can be mixed)

• --precision {single, double}: set instruc-
tion’s precision.

• --dependency {true, false}: Is an instruction
dependent on the result of the previous one?

• --loopsize N: set the number of samples executed
• --unroll N: unroll the kernel generated
For example, the generator can be used as follows to create

a kernel composed of 4 AVX2 (256-bits wide) single precision
instructions: two additions and two multiplications:

1 ./kg -P single -W 256 -O aamm

This generates the kernel shown in Listing 1. The code
template is stored in a file. The generator copies it and
sets some parameters such as NB LOOP. It also inserts the
appropriate floating point instruction (line 5 to 8). We measure
its performance by surrounding it with two calls to the rdtsc
[23] assembly instruction [24]. Finally, we also surround the
kernel by two calls to the system function gettimeofday.
To maximize the accuracy of our measure, we actually run
this whole code several times and do the average at the end.
Listing 1 shows the code generated by the previous command.

1 for (i = 0; i < NB_lOOP; i++) {
2 timeStart = mygettime();
3 cycleInStart = rdtsc();
4 __asm__ ("myBench: "
5 "vaddss % % xmm0, %%xmm1, %%xmm2;"
6 "vaddss % % xmm0, %%xmm1, %%xmm3;"
7 "vmulss % % xmm0, %%xmm1, %%xmm4;"
8 "vmulss % % xmm0, %%xmm1, %%xmm5;"
9 "sub $0x1, %%eax;"

10 "jnz myBench;" :
11 "=r"(instructions_executed) : "a"(NB_lOOP_IN))

;
12 cycleInEnd = rdtsc();
13 timeEnd = mygettime();
14 cycle_total += (cycleInEnd - cycleInStart);
15 time_total += timeEnd - timeStart;
16 }

Listing 1: Generated code with the previous command

1 INSTRUCTIONS SUMMARY
2 NB_INSTRUCTIONS Time FREQ Giga_inst/s IPC
3 32000000000 7.71 2.1 4.15 2
4 FLOP SUMMARY
5 PRECISION FLOP/cycle FLOP/second
6 Single 1.98 4.14e+09
7 Double 0 0

Listing 2: Summary of the kernel generator: instructions
and FLOP

B. Iteration measurement validation

Our monitoring code is measuring the number of cycles
used to execute the assembly code the user wants to profile,
and the two instructions used to control the loop iterations.
As shown in Listing 1, both rdtsc instructions are executed
around the loop, one just before the label declaration (line
3) and the second one is executed after the two instructions
needed for the loop, sub and jnz (line 12). The following
experience shows that to calculate the number of Instructions
per Cycle (IPC) those two instructions should not be taken into
account. We have been using a specific executable to measure
the actual clock speed a processor would adopt when running



some code (Listing 3).Such a loop can be performed every
cycle by Xeon processors since SandyBridge. To be sure of
that, we monitored it with the command perf stat ./kg
and that is measuring an IPC of 1.

1 __asm__ ("myBench: "
2 "sub $0x1, %%eax;"
3 "jnz myBench;"

Listing 3: Measure the impact of jzn and sub

We believe, the branch instruction (jnz) does not affect
the time execution as the branch predictor is very efficient
and specially for those kind of simple loop [25]. So the only
instructions that’s spending cycles in this loop is the sub.
To measure its impact on a more realistic kernel, we have
generated the kernel shown in Listing 4 by using the following
command:

1 /kg -P double -W 512 -O ffff

Then we have manually added subtraction instructions on
%%ebx to measure their impact.

1 "myBench: "
2 "vfmadd231pd %%zmm0, %%zmm1, %%zmm2; "
3 "vfmadd231pd %%zmm0, %%zmm1, %%zmm3; "
4 "vfmadd231pd %%zmm0, %%zmm1, %%zmm4; "
5 "vfmadd231pd %%zmm0, %%zmm1, %%zmm5; "
6 "sub $0x1, %%ebx;" //fake substraction
7 "sub $0x1, %%ebx;" //fake substraction
8 "sub $0x1, %%ebx;" //fake substraction
9 "sub $0x1, %%eax;"

10 "jnz myBench;"

Listing 4: Measure the impact of a sub instruction

We used an Intel 4110 processor that we know is able to
execute one 512-bits FMA instruction per cycle and it was only
after adding 3 fake additions that the performance deteriorated.
From this experience we conclude that one sub instruction has
no impact on kernel performance (if its not the only instruction
in the loop). We have shown that even if the FMA-512 FPU
is used by an AVX-512 instruction, then the processor is able
to perform up to 4 subtractions on registers in one cycle as we
have measured an IPC equal to one by using perf stat.
We assume those two instructions do not affect the result so
we exclude them from the calculation of the IPC. Moreover,
to reduce any potential noise caused by these two instructions,
we have added an option to unroll the assembly instructions
several times inside the loop. Thus the proportion of both
instructions is reduced.

C. Frequency validation

The faster a processor runs, the more power it requires.
For this reason, Intel has adopted different frequency level for
their processors to gain performance when needed and limit
the power consumption when not. The instruction rdtsc is
used to read the hardware counter corresponding to the number
of ticks since the last reset of the processor [23] The frequency
of those ticks is independent from the actual clock frequency
and this frequency correspond to the Rated Base Frequency
on Intel processor. If the processor frequencies were to vary,

measurements made using rdtsc would be wrong. This is
why the processor frequency must be set before the execution
of the micro-benchmark. In case of a fixed frequency different
from the Rated Base Frequency, we have implemented a
verification that will then calculate this frequency, and adjust
all results measured by rdtsc.

1) Measuring the Base Frequency: We have developed a
code to measure the base frequency. It uses the sleep function
which wait a certain number of micro-seconds. And also the
rdtsc instructions that returns the number of cycles spent
based on the base frequency. Finally we can calculate the
frequency with the ratio cycleSpent/timeSpent as shown on
Listing 5

1 timeStart = mygettime();
2 cycleInStart = rdtsc();
3 usleep(10000);
4 cycleInEnd = rdtsc();
5 timeEnd = mygettime();
6 cycleSpent = (cycleInEnd - cycleInStart);
7 freq_Base = cycleSpent / (timeEnd - timeStart);

Listing 5: Code used to measure the base frequency of the
processor

2) Measuring the current frequency: On any modern pro-
cessor, a sub instruction on a register can be executed every
cycle. Listing 6 showns a loop that will take 800000000
iterations. Knowing that what is inside the loop is supposed to
run with an IPC of 1, this loop should be executed in 80000000
cycles.

1 cycleInStart = rdtsc();
2 __asm__ ("aloop: "
3 "sub $0x1,%%eax;"
4 "sub $0x1,%%eax;"
5 "sub $0x1,%%eax;"
6 "sub $0x1,%%eax;"
7 "jnz aloop" : : "a" (80000000UL)
8 );
9 cycleInEnd = rdtsc();

10 cycleSpent = (cycleInEnd - cycleInStart);

Listing 6: Measuring the current frequency by subtracting
1 from a register

We can calculate the number of instructions executed by
cycle as follows 80000000/cycleSpent, and with this result
we can conclude:

• IPC == 1: The processor is running at its based fre-
quency.

• IPC < 1: The processor is running at a lower frequency
than his based frequency (capping).

• IPC > 1: The processor is running at a higher frequency
than his based frequency (Turbo).

3) Adjusting rdtsc results: In our experimentation, we use
an external script to lock the frequency of processor to be
sure it will run at this specific frequency. We locked the
frequency of the Intel Xeon E5-2690v4 at 2.00 Ghz. This
processor has a base frequency equal to 2.60GHz. Our code
presented in the previous section measures an IPC for the
Listing 6’s code of 0.768. This means that it is actually running



at 76.8% of its base frequency, or 2.00Ghz. Thats experiment
is here to validate our methodology based on rdtsc, but
also to validate before any experimentation that the frequency
is correctly set. User can choose to activate the frequency
check by using the option –frequency true. Then the Kernel
Generator will execute this code, to check the value of the
current frequency and adjust the results given by rdtsc.
It will multiply or divide the original value by the ratio
BasedFreq/MeasuredFreq.

D. Validation of the Kernel Generator results

As we are working on very fine, critical measurements,
such as counting the number of cycles, we had to verify
the results provided by the Kernel Generator. To do this, we
used 3 different ways: first we used an internal tool called
mygflops. Then we developed a self-check option directly
in the tool and finally we simply monitored the execution by
using perf.

1) Validation with mygflop: The first way we used to
control the correctness of our tool was one of our internal
script based on hardware counters, which allows us to count
and sort the floating point instructions that are executed. The
Listing 7 is showing the results given by mygflops tool
that allows us to validate two values: we can validate that
the micro-benchmark generated really executes only 32-bits
wide instructions and that the throughput of the program is
effectively 4.15 GFlop/s (see Listing 2).

1 ++ Single-p: 4.155284 GFlop/s -- 100.0%
2 100.0% scalar 32-bit inst (100.0% )
3 0.0% packed 128-bit inst ( 0.0% )
4 0.0% packed 256-bit inst ( 0.0% )
5 0.0% packed 512-bit inst ( 0.0% )
6

7 ++ Double-p: 0.000004 GFlop/s -- 0.0%
8 100.0% scalar 64-bit inst ( 0.0% )
9 0.0% packed 128-bit inst ( 0.0% )

10 0.0% packed 256-bit inst ( 0.0% )
11 0.0% packed 512-bit inst ( 0.0% )

Listing 7: Validation of the type of instructions executed
with mygflops

2) Self validation: Next, we have added an option that
checks within the kernel that the correct number of operations
have effectively been executed. Processors having become very
sophisticated, they execute a useless code and can skip it. For
example, to check the number of additions that have been
done, we initialize the two registers used by those instructions
as source, with the value one, and perform an addition in other
registers. At the end, we do a reduction on those registers
to count exactly the number of operation that have been
executed. And this number should correspond to the Number
Of Iterations * Number Of Additions.

3) Perf validation: The last way we use to validate
our measurements is to use the perf command as follows:
perf stats ./micro-benchmark, the ouput of this
command is shown in the Listing 8.

1 2,008,852,256 cycles # 2.099 GHz

2 6,010,024,733 instructions # 2.99 insn per cycle

Listing 8: Output of the perf command used to validate
the frequency and the IPC

With this output, one user could check if the frequency was
correctly set before the experiment (2.10 Ghz which is the
base frequency of a Skylake 4110). By looking at the IPC
measured, perf finds an IPC of 3 instead of 2. As mentioned
above we considered that both instructions jnz and sub had
no impact on the execution of the loop. Here we check it, in
this loop 6 instructions are executed (2 add, 2mul, 1 sub and
1 jnz). Since 2 add and 2 mul can be executed every cycle,
the processor executes those 6 instructions in 2 cycles, i. e. an
IPC of 3.

E. Experimental work on Broadwell

We performed experimental tests on Broadwell processors
during the development of Kernel Generator. We have run a
simple test: generate a kernel containing only multiplications
(Listing 9), on a Broadwell e5-2690v4 processor. The kernel
was generated with the following command:

./kg -P double -W 64 -O mmmmm

The expected result, IPC of 2, being well displayed by our
tool (Listing 10).
1 for (i = 0; i < NB_lOOP; i++) {
2 timeStart = mygettime();
3 cycleInStart = rdtsc();
4 __asm__ (""
5 "myBench:"
6 "vmulsd %%xmm0, %%xmm1, %%xmm2; "
7 "vmulsd %%xmm0, %%xmm1, %%xmm3; "
8 "vmulsd %%xmm0, %%xmm1, %%xmm4; "
9 "vmulsd %%xmm0, %%xmm1, %%xmm5; "

10 "vmulsd %%xmm0, %%xmm1, %%xmm6; "
11 "sub $0x1, %%eax;"
12 "jnz myBench;" :: "a" (NB_lOOP_IN));
13 cycleInEnd = rdtsc();
14 timeEnd = mygettime();
15 cycle_total += (cycleInEnd - cycleInStart);
16 time_total += timeEnd - timeStart;
17 }

Listing 9: Generated micro-benchmark

1 NB_INSTRUCTIONS Time FREQ Giga_inst/s IPC
2 40000000000 7.71 2.1 4.15 2

Listing 10: The Broadwell architecture is able to execute
2 scalar multiplications per cycle

Then, we checked the correctness of the tool with addition
instructions.

./kg -P double -W 64 -O aaaaa

And we obtained the following results:
1 NB_INSTRUCTIONS Time FREQ Giga_inst/s IPC
2 40000000000 14.43 2.1 2.71 1

Listing 11: Broadwell experiment: only one scalar
additions per cycle



We first thought that a mistake was done as it is known that
Broadwell processor can fetch and execute two instructions
per cycle. In fact it is a specific behaviour of the micro-
architecture which has already been found before here. Even
if Broadwell processors are not being requested anymore,
we needed to expose how simple it is for an HPC user to
characterize his processor and find interesting behaviors of
the micro-architecture.

F. Describe Silver and Gold SKUs

To understand how the Skylake architecture is behaving,
we have generated several micro-benchmark with the Kernel
Generator. This section presents some relevant results on Silver
and Gold.

1) Addition latency: : To avoid any dependency between
instructions, the tool is generating them with different destina-
tion registers (3rd arguments of the assembly instructions), this
can be controlled by an option if one wants to have dependent
instructions. We used the --dependency option to generate
instructions that are using as source, the result of the previous
instruction. By running the following command we can find
the latency of an instruction:

./kg -O a --dependency true

1 "myBench: "
2 "vaddsd %%xmm0, %%xmm2, %%xmm2; "
3 "sub $0x1, %%eax;"
4 "jnz myBench;"

Listing 12: Code used to measure the addition instruction
latency

1 NB_INSTRUCTIONS Time FREQ Giga_inst/s IPC
2 1000000000 1.49 2.72 0.672 0.25

Listing 13: Result of a kernel generated with the
dependency option

The Listing 13 shows that a Skylake processor is able to
execute the kernel with a CPI (cycle per instruction) of 4
cycles. Such instruction uses, as source, the result of its
previous executions, 4 cycles represent the latency for an
addition, which is validated by Intel documentation [26].

2) FMA-512 FPU for AVX512 instruction: : In the 4110
processor documentation [27], Intel indicates that it has only
one FMA-512 unit. We also know that to be able to run AVX-
512 instructions, processors run at their AVX Base frequency,
which is lower than the Base Frequency. This of drop depends
on two things: the number of cores actually running those
instructions, and the size of the instructions. In order to get
rid of any frequency drop, we measured this frequency, and
we used it to cap the processor (1.60 Ghz for the 4110). As
the frequency is not changing, our tool can find and adjust
the results if it is launched with the –frequency option (see
subsubsection III-C3).

./kg -P double -W 512 -O ffffffff -F true

Fig. 1: Graphic view of the kernel run generated with an
intern tool based on mygflops

1 -- CHECK FREQUENCY --
2 + Base frequency is 2.10Ghz
3 + Current frequency is 1.60Ghz
4 + /!\ The frequency seems to be capped: -24.0%
5 -- RESULTS --
6 NB_INSTRUCTIONS Time FREQ Giga_inst/s IPC
7 1000000000 5.04 1.60 1.59 1.00

Listing 14: Generation of AVX-512 FMA micro-kernel

We monitored the run with an internal tool that is based on
mygflops is showing the evolution of the flops during the
run:

Figure 1 shows that the processor is executing only 512-
bits wide instructions with a throughput of 25 GFlop/s. As
the processor is running at 1.6 Ghz, we calculate how many
flop it is doing per cycle 25

1.6 ≈ 16FLOP
cycle . As the instructions

are running on double precision values, an AVX512 instruction
can process 8 elements and as an FMA is a fused instruction,
every cycle it executes 2 operations. So, theoretically an FMA-
512 can execute 16 FLOP/cycle, which matches to the results
we have measured.

3) Using the Kernel Generator to understand HPL results:
If we look at the results of the HPL benchmark compiled
with AVX-256 instructions (Table III), we can see an abnor-
mal behavior. Indeed, the two SKUs Silver and Gold obtain
rigorously the same results while the second one has 1 FMA-
512 more than the first one. With the Kernel Generator, it has
been easy to generate a kernel composed of AVX2 instructions
and benchmark both processors.

./kg -P double -W 256 -O ffffffff -F true

1 "myBench: "
2 "vfmadd231pd %%ymm0, %%ymm1, %%ymm2; "
3 "vfmadd231pd %%ymm0, %%ymm1, %%ymm3; "
4 "vfmadd231pd %%ymm0, %%ymm1, %%ymm4; "
5 "vfmadd231pd %%ymm0, %%ymm1, %%ymm5; "
6 "vfmadd231pd %%ymm0, %%ymm1, %%ymm6; "
7 "sub $0x1, %%eax;"
8 "jnz myBench;"

Listing 15: Generated AVX2 Kernel

The results of those runs are shown in Table II. And a
graphic view from mygflop is shown Figure 2. This test
allowed us to discover a major functionality of the Skylake



TABLE III: Xeon Gold and Silver results for AVX2 instruc-
tions

Silver: 4110 Gold: 6130
IPC 2 2
GFLOP/s 2.38e+10 2.37e+10

Fig. 2: Xeon Gold and Silver obtains equivalent results when
running AVX2 instructions

architecture. The FMA-512 FPU of the Intel 4100 processor
able to fuse two 256-bits instructions to fit the FMA-512 unit
and to execute two 256-bits instructions per cycle. However,
the 6100 processor is not able to perform this, and does not
therefore take advantage of having two 512-bits FPUs [28].
This discovery is in fact an opportunity, as a large majority
of HPC applications do not use AVX512, they could have
similar performance on both architectures which are far from
having similar prices. To complete this analysis we wrote a
script using a batch scheduler, Slurm, to execute kernels on
all our Skylake processor. With few lines of code, we were
able to execute and to compare the performance of scalar and
vectorized instructions between Skylake SKUs. Figure 3 is
showing the results for double precision instructions.

4) FMA-512 FPU benchmark: : We then used the generator
to create kernels with mixed instructions of different sizes. For
example, we have generated a kernel with AVX-512 and AVX2
instructions mixed as shown in Listing 16.

Fig. 3: Performance overview of a processor core depending
on the instruction width. (double precision)

TABLE IV: Skylake portfolio: FPU micro-benchmark with
different instruction width combination

Instructions mix 4110 (1) 5117 (1) 6130 (2) 8160 (2)
128 and Scalar 2 2 2 2
256 and Scalar 2 2 2 2
256 and 128 2 2 2 2
512 and Scalar 1 1 2 2
512 and 128 1 1 2 2
512 and 256 1 1 2 2

1 "myBench: "
2 "vfmadd231pd %%zmm0, %%zmm1, %%zmm2; "
3 "vfmadd231pd %%ymm0, %%ymm1, %%ymm3; "
4 "vfmadd231pd %%zmm0, %%zmm1, %%zmm4; "
5 "vfmadd231pd %%ymm0, %%ymm1, %%ymm5; "
6 "vfmadd231pd %%zmm0, %%zmm1, %%zmm6; "
7 "vfmadd231pd %%ymm0, %%ymm1, %%ymm7; "
8 "sub $0x1, %%eax;"
9 "jnz myBench;"

Listing 16: Kernel with mixed AVX-512 and AVX2
instructions

In the same way we have carried out other tests by mixing
the different types of instructions so the results are presented
in Table IV. It shows how many instructions can be retired
every cycle depending on their width. From these numbers,
we can conclude that an FMA-512 FPU can retire the follow-
ing combinations of floating point instructions every cycle,
assuming no dependency between registers:

• Any single 512-bit wide instruction
• Two 256-bit wide instructions
• Two 128-bit wide instructions
• Two scalar instructions
• Any combination of 2 instructions providing the aggre-

gated width does not exceed 512 bits.

IV. REAL CASE: FLUENT, A CFD APPLICATION

There are a lot of processors released within the Skylake
architecture and finally this year AMD released its new
Epyc processor as well. To find the best platform for ones
application, one would have to benchmark all of them. On
the one hand, benchmarking all available processors would
be time consuming as some applications take several hours
to execute. On the other hand, as we have shown in our
experiments, targeting only high end processors may lead
to missing some opportunities with cheaper processors and
equivalent performance could be missed. In this section we
are investigating a methodology using the kernel generator to
help users in their choice of platforms. To conduct our study,
we placed ourselves in a real situation by studying Fluent [29],
an application widely used by our customers, particularly in
Formula 1. As we want to make fair comparisons of processors
from different ranges, we blocked the processor frequency at
2.1 Ghz, which is the highest frequency common to the 6
processors studied. In the same way, as some processors have
less cores than others, we used the maximum number of cores
common to the processors which is 8 cores per processor.



A. Run the application only once

We developed the Kernel Generator to help us in our search
for efficient architectures for certain applications. To speed
up this research, we wanted to drastically reduce the number
of benchmarks to be executed as they can last several hours
before their results are released. To do this, we will only run
Fluent once, with Ansys public use-case, sedan4m [30] and
monitor it with mygflops to get its computational profile.
Listing 17 shows the profile collected.
1 ++ Single-p: 10.298097 GFlop/s -- 97.2%
2 91.8% scalar 32-bit inst (94.9% )
3 8.2% packed 128-bit inst ( 2.1% )
4 0.0% packed 256-bit inst ( 0.0% )
5 0.0% packed 512-bit inst ( 0.0% )
6

7 ++ Double-p: 0.292344 GFlop/s -- 2.8%
8 100.0% scalar 64-bit inst ( 2.9% )
9 0.0% packed 128-bit inst ( 0.0% )

10 0.0% packed 256-bit inst ( 0.0% )
11 0.0% packed 512-bit inst ( 0.0% )

Listing 17: Monitoring of Fluent with mygflop using
sedan4m case

If the profile is simple (only one type of instructions), then it
can refer to the table we have done previously (see Figure 3).
Then one would be able to estimate the performance of the
code on processors which have already been analyzed with
the Kernel Generator but also predict the performance of a
processor not available.

B. Kernel Generator

If the profile of the application is made of a mix of
instructions type or with different precisions, one will have
to generate a micro-benchmark using the Kernel Generator
which is equivalent, in terms of calculation operations, to the
profile previously gathered. By using the different parameters
available, the user will be able to generate a kernel that fits
the original application (precision, width, dependency). In our
case, we have generated a kernel composed of single precision
instructions (scalar, and 128-bit wide) and double precision
instructions (scalar). Listing 18 shows the profile of the kernel
measured on the same processor (Xeon Platinium 8150).

1 ++ Single-p: 49.5707 GFlop/s -- 97.1%
2 91.2% scalar 32-bit inst (94.7% )
3 8.8% packed 128-bit inst ( 2.3% )
4 0.0% packed 256-bit inst ( 0.0% )
5 0.0% packed 512-bit inst ( 0.0% )
6

7 ++ Double-p: 1.45494 GFlop/s -- 2.9%
8 100.0% scalar 64-bit inst ( 3.0% )
9 0.0% packed 128-bit inst ( 0.0% )

10 0.0% packed 256-bit inst ( 0.0% )
11 0.0% packed 512-bit inst ( 0.0% )

Listing 18: Generating a kernel with the same profile as
fluent’s use case

Since the code is artificial and does not make any memory
access, it is much more powerful than the fluent code (51
GFlop/s for the kernel counter 10.6 for Fluent). As the purpose
of this study is to compare different processor’s core we

TABLE V: Benchmark of Skylake processors with a kernel
behaving like Fluent

4110 5117 6148 6150 6130 8160

GFLOP/s (SP) 2.09 2.06 2.01 2.02 2.09 2.04
GFLOP/s (DP) 68.31 68.29 68.35 68.71 68.15 68.79
IPC 2 2 2 2 2 2

TABLE VI: Benchmark of Skylake processors on processors
selected with the Kernel Generator

Xeon 6150 (ref) Xeon 4110 Xeon 5117

Total Solve Time (s) 57.32 58.20 57.43
GFLOP/s 10.63 10.54 10.65

will only focus our measure on the FPU efficiency and what
is important in this evaluation is that the proportion of the
different instructions be respected.

C. Micro-benchmark every processors

As the micro-benchmark does not last long, it is now really
fast to benchmark different processors and one will be able
to execute it on all the potential processors. Table V shows
the results of the kernel’s execution on processors at our
disposition. From these results we can conclude that fluent
should have the same performance on all processors and even
on the entry-level ones as the 4110 assuming that the stalls of
the two processors will be equivalent.

D. Run the application on selected processors

By using the Kernel Generator as a filter, a user can
accelerate his study of the multitude of available processors.
Finally, to confirm those results, he would only have to execute
the application on the processors selected. If for example we
had, for economic reasons, a preference for the 4110 and 5117
we would only have to execute the real application on these
two processors. Table VI shows the results of those execution
that correspond to the previsions we made with the Kernel
Generator.

V. CONCLUSION AND FUTURE WORK

Building and planning for an HPC cluster has become
a very interesting but in the same time a very difficult
exercise due the large amount of choices available at the
different levels of components. Benchmarking and properly
understanding the performance delivered by the different
processors, powering those clusters implies large efforts and a
lot of time. In most cases, due to the lack of time not all the
viable options are properly investigated and some very good
possibilities may be easily missed. To tackle that problem, we
have introduced in this paper a micro-benchmark candidate
that allows its users to quickly understand the capabilities
of the chosen processors. We know very well that a real
HPC applications performance is dependent not only on the
processor but also on the memory bandwidth, interconnect
and so on. In this context, we state that our tool can be used
as an initial assessment exercise by simulating the correct



instructions kernel which the real applications are executing.
In doing so, we could start the application benchmarking on
a solid list of processors candidates that our tool recommends.

Future work. Until now we have targeted our tool to
applications which are mainly used in manufacturing like
Computation Fluid Dynamics or Structures. We are planning to
investigate other types of applications from different industry
and vertical and research. The Kernel Generator has only
been used for Intel processors, but once AMD and ARM64
processors are available in our lab, we would extend the use
to include those new platforms as well. We would also expand
the tool to allow users to dynamically decide on the mix and
type of the instructions generated eventually via a graphical
interface. Finally, the dependency between instructions can be
more complex than the currently implemented configuration.
Future developments could a allow the user to more accurately
describe the dependencies.
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