
HAL Id: hal-02910999
https://hal.science/hal-02910999

Submitted on 3 Aug 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Quantitative Evaluation of Multicellular Movements in
Drosophila Embryo

Perrine Paul-Gilloteaux, Sébastien Tosi

To cite this version:
Perrine Paul-Gilloteaux, Sébastien Tosi. Quantitative Evaluation of Multicellular Movements in
Drosophila Embryo. Kota Miura. Bioimage Data Analysis, Wiley-VCH, 2016, 978-3-527-80092-6.
�hal-02910999�

https://hal.science/hal-02910999
https://hal.archives-ouvertes.fr

7
Quantitative Evaluation of Multicellular Movements in
Drosophila Embryo
Perrine Paul-Gilloteaux1

•
2 and Sébastien. Tosf

1 Institut Curie, Centre de Recherche, Paris 75248, France
2Cell and Tissue Imaging Facility, P/CT-IBiSA, CNRS, UMR 144, Paris 75248, France
3/nstitute for Research in Biomedicine (IRB Barcelona), Advanced Digital Microscopy, Parc
Científic de Barcelona, dßa/diri Reixac 1 O, 08028 Barcelona, Spain

7.1
Overview

7.1.1
Aim

In this chapter you will learn to track cell movements within the monolayer
epithelium of a Drosophila embryo. The segmentation of the cells is performed
by an ImageJ macro on microscope time lapses (movies) of the embryo pre­
sented in the maximum intensity projection (step 1). Another macro can option­
ally be used to discard weak cell-cell junctions that are likely to be segmentation
errors (step 2). The tracking is then performed in Matlab from this binary stack
(step 3). Finally, you will learn how to visualize the results of the cell tracking
(step 4): the cell area evolution and the cell tracks.

7.1.2

Introduction

Quantitative information on the relative movement of cells and derived propert­
ies such as the evolution of cell areas and orientation are crucial to understand
the organization of tissue and the fate of different cell subpopulations (Figure 7 .1,
left). The cell-based approach usually offers much information on the processes
during tissue remodeling in comparison to estimating the velocity field per­
formed by particle image velocimetry (PIV) (1,2] alone.
In this chapter, the cell tracking is performed in the apical plane of the tissue,

so that the tissue is modeled as a polygon tiling. This is not just a mere simplifi­
cation, but motivated by the fact that the strongest cell-cell junctions and most

Actin
Cadherin

Myosin

Figure 7.1 Left: ln the apical plane of the tissue, the cell membrane appears as a polygon tiling.
The red arrows point to the ventral (left) and dorsal (right) subregions. Right: Vertex model of
cell shapes. (Figure taken from Ref. [3].)

of the cell internal shaping forces are believed to be exerted in the apical part of
the tissue. For image analyses, the position of the cell vertices is an invaluable ·
input to mechanical models, for example, the vertex model [3]. These models
represent the epithelium as a 2D mechanical system with cells modeled as con­
stant volume elastic polyhedrons sitting below the apical plane (Figure 7.1,
right).

7.1.3
Data Sets

Data sets show the apical tissue of the embryo, which is imaged by a spinning
disk microscope. The cell-cell junctions are labeled by a GFP-E-cadherin con­
struct. Three time lapses of data are provided that show the maximum intensity
projection of different tissue morphologies and dynamics. In this chapter we will
work only on the first time lapse, the other movies can be used in the
assignments.

7.2
Step 1: Cell Segmentation

The cell membrane appears brighter than the cytoplasm and, being the natural
cell barrier, is highly suitable for cell segmentation. We will segment the cells in
each time frame and generate a segmentation mask (binary image) for each

frame. The final result is a binary stack (one image per frame). Here, we focus on
a workflow based on the watershed algorithm, another possible solution is pro­
vided in the appendix.

7.2.1
Workflow

Get Image Files

Open the time lapse "TissueMoviel.tif' in Image].

Preprocessing

The purpose of the preprocessing is to smooth out the images to facilitate the
segmentation. Filter the whole image stack with a Gaussian filter of radius 1.5
pixels: Process> Filters> Gaussian Blur ...

Regional Minima Detection

The cells are segmented by finding internal starting points (ideally a single
point close to the cell center) together with the region covered by the cell utiliz­
ing the watershed algorithm. The watershed can be conceptualized by coding
pixel intensities as height: The cells then appear as basins separated by higher
watershed lines. The starting points are intensity regional minima: a region sur­
rounded by brighter pixels.

To apply the watershed, call Process > Find Maxima ... with the option
"Light Background" ticked (find minima instead of maxima). Choose a good
value for "Noise Tolerance" (minimum relative height of surrounding bright bar­
rier) to get rid of spurious minima and obtain exactly one regional minimum in
most cells. For this, tick the "Preview" option to tune the noise tolerance.

Once you find a working value, choose the option "Segmented Particles" as
output type: This will apply the watershed algorithm from the detected regional
minima. This ImageJ command cannot process a whole stack at once, we will
have to write a macro to generate the complete segmentation stack slice-by-slice.

Exercise 7.1: Writing a Macro to Segment the Cells in the Complete Stack

Record the sequence of operations that you manually performed in the previous
section. Modify the code generated by the macro recorder in order to automati­
cally process all the slices of the time lapse. The result should be a binary stack
showing the segmented cells.

Hint 1: You should start by creating an 8-bit empty stack with the same dimen­
sions as the original stack. Each slice of the original should then be processed by
the previous sequence of operations.

Hint 2: You can select a slice of the active stack with the macro function set­
SliceO. A for-loop can be implemented to wander all the slices. The macro func­
tion nSlices returns the number of slices of the active stack.

Hint 3: To transfer the resulting segmentation mask to the empty image stack,
you can use copy/paste option. At each iteration, ensure to process the correct
slice of the original stack and copy it to the corresponding slice of the empty
stack. The output stack should look as shown in Figure 7.2.

Use the macro you just wrote to process the first movie (a possible solution is
provided in "Step1SampleCodeLoop.ijm"}. To check the results of the segmenta­
tion, you can use Image > Color > Merge Channels to overlay the original stack
(in gray) and the cell boundaries (e.g., in green) as shown in Figure 7.3.

Warning: To merge two images, they should have the same bit depth. If neces­
sary, convert the original image to 8 bit.

As you can observe, it is quite likely that you do not get a perfect segmenta­
tion; some "false" cell junctions are sometimes created when several regional
minima are detected in the same cell (inhomogeneous intensity inside the cell).
This is often referred to as "oversegmentation" and can be mitigated by a proper
preprocessing (filtering, background subtraction, etc.). ln the next exercise we will
implement a simple manual correction. Step 2 implements an algorithm to auto­
matically discard weak junctions by measuring their mean intensity.

Note: Undersegmentation is the opposite phenomenon, it takes place when a
, single minimum is detected inside two neighbor cells (e.g., breach or weak cell
junction). This is usually trickier to correct for; however, if cells can be assumed
convex, then splitting lines can be drawn between concavities, for instance, by
applying Process > Binary > Watershed.

Figure 7.2 Output of the macro.

Figure 7.3 Channel merging of original stack {grayscale) and segmentation {green). Some
"false" cell junctions have been created, due to the presence of several regional minima in the
same cell.

Exercise 7.2: Understanding an Existing Macro

The lmageJ macro "Step 1 CellSegment.ijm" performs all the steps previously
described and also enables the manual correction of the segmentation mask. Try
it out and read the code!

The last section of the macro implements the manual correction. Try to under­
stand how this user interaction is written and how the cell merging is imple­
mented. Refer to the macro language documentation if you do not understand
some macro functions.

Error detection and manual inspection/correction are fundamental steps of any
automatic analysis. Perform a thorough manual correction of the first frame of the
movie and save the binary stack to file as it will be used in steps 2 and 3.

Note: lmageJ segmentation masks by default are LUT inverted images so that
the objects appear as black over a white background. When writing a macro, it is
always a good idea to force this default behavior at initialization from Process >
Binary> Options The options should appear as shown in Figure 7.4.

7.2.2

Summary of Tools Used

• selectimage (ID): Activates the image with the specified ID (a negative
number). If ID is greater than zero, it activates the IDth image listed in the
Window menu. The ID can also be an image title (a string).

Iterations (1-1 00): r
Count (1-8): P,
l Black background
r Pad edges when eroding

EDM output: I Overwrite _::J

~ Cancel f - Help I
Figure 7 .4 IJ default binary options.

• Gaussian Blur [Process> Filters > Gaussian Blur]: Smoothes out an
image by performing convolution with a 2D Gaussian kernel of user-defined
sigma. This helps reducing noise and disparities in the image, but smears out
object edges and details.

• Find Maxima [Process> Find Maxima]: The command Find Maxima iden­
tifies regional maxima: A regional maximum is the highest intensity pixel that
is surrounded by a closed valley of lower intensity pixels. The noise tolerance
defines the minimal intensity difference between the regional maximum and
the highest intensity of its surrounding valley.

• Copy/Paste [Edit> Copy], [Edit> Paste]: The default behavior is to copy
all the intensity values of the pixels inside a ROI to another (active) image. The
command Edit> Paste control allows you to change the way the image is
copied (e.g., the background can be transparently superimposed).

• Merge Channels [Image> Color> Merge Channels ...]: Merging different
channels allows you to simultaneously visualize them in the same hyperstack.
It is possible to keep the original LUT of each channel when merging them.

The following are the useful macro functions:

• nSlices: Returns the number of slices/frames in the active stack.
• setSlice(): Change the position of active stack slice slider.

7.3
Step 2: Removal of Weak Segments (Optional)

We observed that oversegmentation can occur when several regional minima are
detected in a nonhomogeneous cell. This situation can be revised since the

intensity along a "false" cell junction is likely to be weaker than for a "valid" cell
junction. We are now going to measure the mean intensity along each cell junc­
tion in the original image and remove all cell junctions with mean intensity
below an empirical value.

7.3.1
Workßow

The first task consists in detecting the cell junctions. To do so, we will first use
the ImageJ command Plugins > Skeleton > Skeletonize (2D/3D) to
enforce that the cell junctions are represented by a single pixel wide line.
Note: Ensure to invert the segmentation mask before skeletonization since

now the objects of interest are not the cells but the cell junctions! Also note that
skeletonize (2D/3D) interprets a stack as a 3D image: You should again process
slice-by-slice (for loop).
Next call Plugins >Skeleton> Analyze Skeleton (2D/3D) on each skele­

ton image to code cell junctions and vertices {Figure 7.5} with a different inten­
sity. The cell junctions are now easy to segment from the output of Analyze
Skeleton (2D/3D): They are connected particles with a gray value equal to 127.
In the last step of the macro, the detected cell junctions will be wandered

(loop) for each image slice and classified as "valid" or "weak" based on their
mean intensity in the original image.

Figure 7.5 Overlay of the original image and the analyzed skeleton. The cell junctions appear
in orange {gray level 127), the cell vertices in purple {gray level 70), and the end points in blue
{gray level 30, invisible in this image).

, Exercise 7 .3: Modifying an Existing Macro

For this exercise, we provide a fully functional macro:
"Step2Weak.JunctionRemoval.ijm": The original movie and the segmentation

mask generated in step 1 both must be opened and respectively named "Tissue­
Movie 1.tif' and ªParticlesStack.tif' before launching the macro.

All the operations are by default performed in batch mode (no apparent win­
dows) so that the intermediary steps are not shown. To better understand the
sequence of operations, perform the following tasks:

• Comment the lines that are enabling and disabling batch mode:
setBatchMode(true) and setBatchMode("exit and displayj

• The segmented cell junctions are first added to the ROI manager before their
intensity is measured. Add a pause (waitForUser) in the loop over the junctions,
just after the ROI selection.

• Change the value of the variable Junctionîhr and observe the effect (you can,
for instance, use very low and very high values), try to optimize this value.

To compare the results before and after correction, you can again use Image>
Color > Merge Channels to create a hyperstack with three channels: original
image and masks before and after correction (Figure 7.6).

Save the corrected binary mask to file.

c:113 z:201101; 364x329 pixels; 8-bit (inverting LUT); 35MB

Figure 7.6 An example slice after cell segmentation correction. Removed junctions appear in
green and kept junctions in yellow (red + green).

Exercise 7.4: Making the Macro More Generic

lt is not very convenient to have the image names and weak segment threshold
hard-coded in the macro. Display a dialog box at the beginning of the macro
with three UI elements: two drop-down menus (one for the original movie and
another for the binary mask} and one numerical field ijunction threshold}. Drop­
down menu can be added with the command Dialog.addChoice and numerical
field with the command Dialog.addNumber.

To fill the names of all opened images in the drop-down menus, you will have
to first write a small loop over all the opened images to retrieve their titles and
store them to an array of strings that will be passed as argument to Dialog.
addChoice.

Hint Even if this is usually not advised, it is possible to select an image by pass­
ing positive numerical values to the function selectlmage, these indexes run from
O to nlmages-1 and correspond to the order of creation/opening of the images.

A solution to this exercise is the macro:
HStep2WeakJunctionRemoval_dialog.ijm."

Exercise 7.5: Advanced -Automated Threshold Selection

Try to automate the selection of the threshold used to discard the weak cell junc­
tions (the solution is not provided).

Hint: The average intensities of the "valid" junctions can be assumed quite uni­
form. So a good strategy is to select the threshold as a fraction of the overall
median of junction intensities (as long as "valid" junctions are in majority).

7.32
Summary of Tools Used

• addtvumbertlabel.default): Adds a numeric field to the dialog, using the speci­
fied label and default value.

• add.Choicetlabel.item): Adds a pop-up menu to the dialog, where items is a
string array containing the menu items.

• Skeletonize - Plugins >Skeleton> Skeletonize (2D/3D): It extracts the
medial axis of each connected particle of a binary mask, this medial axis is also
known as skeleton (points lying at exactly the same distance from two edges of
a connected particle in the segmentation mask). Skeletonization is a morpho­
logical operation based on iterative erosions (see section on Morphology in
Module 1). The command also provides an extensive report of the skeleton
branch statistics and can optionally prune the shortest branches.

• AnalyzeSkeleton - Plugins >Skeleton> AnalyzeSkeleton (2D/3D): This
command introduced in Ref. [4] is part of the Fiji distribution. From a skeleton
(graph-like binary image), it identifies the vertices (crossing of junctions) based

on the number of neighbors of each pixel. The junctions are coded with gray
level 127, the vertices with gray level 70, and the end points with gray level 30.

• waitForUser: The command waitForUser("Message") interrupts the macro
until the user presses the "OK'' button. Interaction with ImageJ such as calls
to internal commands or image selection/ edition is possible. This behavior is
different from the result as you invoke showMessage("message"); in this case,
no interaction with ImageJ is allowed: ImageJ is "frozen" until the user presses
"OK" (pressing "Cancel" interrupts the macro).

7.4
Step 3: Cell Tracking

In this section, we are going to track the cells in Matlab. The input of the script
is the binary stack from step 1 (or step 2) and the output is a label mask with
each cell filled by a unique gray level throughout the whole stack.

7.4.1

Introduction to Tracking

Most particle trackers such as ImageJ Particle Tracker 2D/3D and TrackMate
are built for spot-like particles: The particle linking is performed over a list of
detected spots. The linking can be straightforward, for example, linking a spot to
the closest spot in the next frame, or more advanced as described in Refs [5,6].
These trackers are not adapted to nonspot-like (or ellipsoid) objects such as

the cells of a tissue. A possible solution is to create a binary stack made of
detected object centroids from a segmentation mask and to process this stack
with the tracker. This is left as an exercise in the assignments.
Another strategy is to make use of the overlap between the particles in two

consecutive frames. This will be illustrated in the following.

Exercise 7 .6: Analyzing Connected Particles with Matlab

First we review a simple Matlab script importing a binary image stack, analyzing

I·.. 3D connected particles, and exporting the resulting label mask stack to file.
Open the Matlab script ustep3ConnectedParticles3D.m." Before launching the

script, set the variable BaseFolder to the folder where you saved the stack "Dum­
myStack.tif." The script exports the label mask stack to a file 'Labeledüummy­
Stack.tif' to the same folder. After launching the script, open the original stack I ::~~~• exported stack in lmageJ and go through the code to understand how it

Hint: The function bwconncomp allows analyzing connected particles in a n­
dimensional image (here a 3D image). See Figure 7.7 for an illustration in two
dimension.

1801 7 Quantitative Evaluation of Multicellular Movements in Drosophila Embryo

1 1 o o l o l .1 1 1 o o
1 l J' o o o o o 1. .1 l o o

o 1 1 o o o l 1 j) .. o
1 o o o 0 o o o o l, .1 o
1 l o o ¡) o .1 l o o :1 1 o
o 1 o o l, 1 1 1 o o ,t ¡ o

o o o o o 1 1 l o o o 1 ,1 o
o o o o l, 1 1 1 1 o o 1 o
l o 1 t 1 1 1 1 1 o o o o

l o 1 1 1 ,. 1 1 1 o o o o o
l o • i 1... il, '1. l o o o I, o

o o o o o la 1 :1 1 1 1 1
o o o o o 1 1 1 1 l :i 1 1 o

o l l o 1 .1 l o o o o t o
o I) o o o o o o o o o o

Figure 7.7 Illustration of 2D connected particles in a 2D mask; in 3D the same principle holds
but each voxel has 26 neighbors instead of 8.

Exercise 7.7: Tracking Cells with Matlab

The tñck we will use is to interpret the binary stack we generated in step 1 as a
3D stack with time being the third dimension: The cells-overlapping from frame
to frame are now connected in three dimension (see Figure 7.8} !

ln the remainder of the text, the word particle label refers to the label of a 2D
connected particle (cell) in a given time frame (can be different for the same cell
in two different frames). The word object label refers to the unique label of the
cell along time (considered as a 3D object).

Exercise 7.7.1: Understanding the Matlab Script

Open the Matlab script "Step3TissueCelITrackv1 0_simple_incomplete.m." For
now, do not launch the script but read the code and the functional block dia­
gram provided in Figure 7.9. Try to associate each block with a section of the
program.

Notes:
The loop that runs the code for each object is not included yet, do not try to

find the associated code. Also, an operation to run the code for each frame is
missing at this point (next exercise}.

Image stack importation and exportation are very similar to the previous
example.

The particles touching the edges are discarded to avoid tracking incomplete
cells.

The separation between the cells has to be thick enough to avoid any merging
of neighboring cells (in 3D}, the cell junctions are enlarged by binary dilation
(disk element of radius BoundDilate}.

To close the top and bottom of the 3D particles, an empty image is added at
the beginning and at the end of the movie: The binary stack passed to bwconn­
comp holds two slices more than the original stack.

Figure 7.8 The cell overlap in time is apparent from orthogonal views when the movie is
viewed as a 3D stack (Image> Stacks> Orthogonal Views).

The 3D object label mask (Objlbl) is created by writing the labels slice-by-slice
(second loop). lt can also be created by the Matlab function labelmatrix as in the
previous script. This is just to illustrate an alternative method.

The cell junctions are eroded back to their initial width at the end.

Exercise 7.7.2: Finding the Missing Operation

Before launching the script, set Basefolder to the folder where the input file
(binary mask) is located. The variable fname holds the name of segmentation
mask saved in step 1 (or step 2). After launching the script, inspect the exported
results Tracking-objl-1 O.tif in lmageJ. You will notice that the script is not work­

, ing since an operation is missing: Identify it and add it to the code.
Hint: The missing operation can be performed by a single line of code. A solu­

• tion to the exercise is given in

For each frame

Read image from frame kf --> A
Dilate cell junctions

Invert image
Discard particles touching edges

Find 2D connected particles
-->CC

Draw centroids of connected
particles

--> PartCentroids

Find 3D connected particles
--> Objlbl

For each object

Count number of centroids in each
frame

Discard object from Objlbl

Figure 7.9 Worktlow of the cell tracker (Algorithm 1 - TissueCellTrackv10).

"Step3TissueCel1Trackv1 O_simple.m."
To better visualize the exported stack in lmageJ, you can apply the LUT Ran­

dom.lut provided in the code folder. To do this, you first have to copy the LUT
into the subfolder Juts of lmageJ installation folder and call Help > Refresh
Menus.

Note: The script also exports a stack holding the centroids of the 2D particles
found in each frame. lt will be used during the assignments to track the cell
centroids.

This simple algorithm suffers from a severe limitation: Dividing or transiently
merging cells (undetected cell junctions) are assigned the same label. ln the next
section, we will implement a procedure to detect these situations and automati­

li cally discard the problematic cells.

Exercise 7.7.3: Discarding Erroneous Objects

You can now open the script ªStep3TissueCel1Trackv1 0.m." This algorithm is
described by the block diagram in Figure 7.9. ln the second part, a loop is per­
formed over each 3D object and the number of 2D particles (centroids) inside
the object is computed for each frame. If more than one centroid is found in at
least one frame, then the object is discarded in all frames (label set to O). Of

J
course, this is not ideal, but following the same idea one could detect events of

•. : merge and division and split the 30 object in frames where merge and division
occur (set label to O) before recomputing the 30 connected objects.

7.5
Step 4: Feature Extraction

In this section, we will plot the evolution of the cell area against time (i.e., the
recorded frame) as well as track the position of the centroids of sorne of the
cells. The input of all the scripts of this section is the label mask that we have
computed (and saved to file) in step 3.

Exercise 7.8: Plotting Cell Area Evolution

Open the Matlab script "Step4PlotCellAreaExercise.m" and check that the base
folder and file name are correctly set in the script preamble.

The script only displays the area evolution for a subset of cells of the label
mask. The variable displaylbl is a vector taking the indices of the user-defined
cells from which the information is to be extracted (ensure that these indices do
not exceed the maximum value of the label mask!). The script is incomplete: ln
the loop over all the time frames, you should add the missing code to compute
the areas of the cells of interest and store them in the variable Area(cellindex,
frame).

Hint: Inside the loop over the time frames, you should write a loop over all the
labels stored in displaylbl, compute the areas of each cell, and store this area to
the matrix Area(for the correct cell, for the correct frame index). A way to com­
pute the area of a cell at a given frame is to count how many pixels are set to the
label of this cell in that particular frame.

I The solution to the exercise is provided in ªStep4PlotCellArea.m."

Exercise 7.9: Plotting Cell Centroid Tracks

4 Try now to retrieve the centroids of the cells in each frame with regionprops il (Obj,'Centroid'). Store theses positions to two arrays: X(frame} and Y(frame}
~ and plot the tracks to a 20 map. The solution to the exercise can be found in
.l'i "Step4PlotCellAreaTrack.m."

7.5.1

Complete Track Plotting

A program plotting all the cell tracks (with start and end points labeled) and
overlaying them to the first frame of the label mask is provided in "Step4Cell­
TrackPlotter.m." The workflow of the program is described below and a possible
output is illustrated in Figure 7.10 (without the label mask overlay).

First we define a minimal track length MinimalLengthoITrajectory to discard
short tracks that are often erroneous.
In order to get the total number of objects, we find the last label index nbmax­

cell (pixel with maximum value in the object label stack).
Then we create a vector of Matlab structures called cells. The vector is

indexed by the object label. Each element of this structure array gathers two
features of a given cell: the list of time frames where it is present and the list of
its centroid positions in these frames. The structure is filled by the results
returned by the Matlab function regionprops. Other features can be easily added
to the structure array.

Finally, we plot the cell centroids for each time frame by sequential calls to
plot. Only the tracks of length above MinimalLengthoITrajectory are plotted and
the graphics are directed to the same canvas by calling hold on. The tracks are
additionally decorated to mark their start and end points.

350

2501-

200

150

100

50

50 100 150 200 250 300 350

Figure 7.10 Example of cell tracks plotted for movie 1. Each blue line represents a cell
trajectory, the first point of the trajectory is a red circle and the last point a green circle.

7.6
Assignments

If you intend to use the other two movies, you will notice that they suffer from a
strong lateral drift; it is hence important to first register them, for instance, by
applying Plugins > Registration > StackReg before the segmentation. This
will allow a more efficient tracking in step 3.

• Tracking of cell centroids: In step 3 we generated a stack holding the cell cen­
troids extracted from the segmentation mask. We can use this centroids stack
as input to a spot-like particle tracking algorithm. In light microscopy, an infi­
nitely small particle would never appear as a single isolated point but rather as
a Gaussian-like shape (the point spread function of the microscope). This can
easily be simulated by performing a 2D Gaussian blurring (radius around 1
pixel) of the centroid stack.
After this filtering process, the centroid stack with Plugins > Mosaic >

Particle Tracker or Plugins >Tracking> TrackMate. You should set
the particle size to the minimum setting and prefer DoG (Difference of Gaus­
sian) to LoG (Laplacian of Gaussian) detector in TrackMate.

• PIV analysis: To complement the analysis, we will now apply PN to the same
movies. The PN is a procedure to estimate the velocity field of a time lapse at
discrete positions and for each time frame. The PN will be computed by
ImageJ with Analyze> Optic flow> PIV Analysis. This function generates
two images: The image U codes the X component of the velocity field, while
the image V codes its Y component. We will export these two images to file,
import them in Matlab, and visualize the velocity field (vector field) with the
function quiver. To test this workflow, follow these steps:
1) Create a two-frame movie by duplicating an image with Image > Dupli­

cate ... and slightly shift the second frame. Save this stack as "twoframes.tif."
2) Call Image} Analyze > Optic Flow> PIV analysis on the stack. The

displacements are represented as a color-coded image and they are also
provided as two images (one for each speed component).

3) Spatially average the U and V components by applying Process > Smooth.
4) Save the filtered images U and V as text files with File > Save As > Text.

When saving an image as text file, the values of the pixels are sequentially
written as text (strings) separated by spaces. The values are written line-by­
line with a return carriage at the end of each line.

5) Launch the following Matlab script ("XAssignVisPivMatlab.m"):

1 % Folder where "U.txt" and "V.txt" are saved
2 Basefolder = ' ... \';

3
4 % Load the text files and copy the values to the

matrices u and v
5 u= load([Basefolder,'U.txt']);

6 v = load([Basefolder,'V.txt'));
7
8 % Load first frame of the time-lapse
9 imagetissue imread([Basefolder,'twoframes.tif'] ,1);

10
11 % Display the vector field overlaid on the first

frame of the time-lapse
12 imshow(imagetissue, [));
13 hold on;
14 quiver(v,u);

code/XAssign VisPivMatlab.m

The ImageJ macro "XAssignPIVCompute.ijm" performs the previous work­
flow. The script "XAssign VisuOutputPN.m" is an advanced version of the pre­
vious Matlab script to visualize the vector field in Matlab. The output should
look as in Figure 7.11.

• Overlap-based cell tracking: The tracking algorithm based on 3D connectivity
is simple, but the results are not fully satisfactory as dividing and merging cells
are discarded from the label mask. The algorithm proposed in this section will
correctly track most of the cells up to a division/ merging.
Here the cell linking is performed iteratively and by processing pairs of con­

secutive time frames. The tracking starts from the first frame and proceeds
through the time lapse, it is extremely important to check that the segmenta­
tion mask is valid in the first frame.

-
... • - .. ' ►

..,,
'). •

•
ti' .. •

" • "- •
" "' •
- -,

• , "' t .,,,.
.... 4 ~. a.._.

• - ' 1 r ·,
/ • .. ' .. • ...

Figure 7.11 Example result of the PIV analysis. The first frame is green and the second frame is
red. The displacements between first and second frames are indicated by green arrows.

For each frame

Read image for frame kf -> A
Invert image

Discard particles touching edges

J,

Analyze connected particles in A -> Partlbl PartLbl -> Objlbl Count number of particles -> Npart >-First frame?➔
Compute particle areas -> AreaPart Npart -> Nobj

I For each particle in the current frame r- •
i Compute area of all overlapping

i
objects

from previous frame -> PartObjArea

' ---±
Erase Objlbl

i

I For each particle in the current frame .. ; '
!

Assign the label of the object
with largest overlap -> Objlbl ¡

I
i

1 I
I

Detect particles not assigned
to any object label

-> NewPart I
-> Nnewpart

I For each appearing particle •
Fill NewPart in Objlbl with index Nobj

Nobj +1 -> Nobj

------- I .. ' ¡
Export Objlbl I

!

-- ---·- ~- ------------ - . ·-- - --------- I
Figure 7.12 Workflow of the cell tracker (Algorithm 2 - TissueCelITrackv20).

Open the script "XAssignTissueCellTrackv20.m" and launch it after setting
BaseFolder. A block diagram of the script is provided in Figure 7.12.
The object label mask (ObjLbl) is now built recursively: In the first frame,

the 2D connected particles (PartLbl) are copied to the object label (ObjLbl) of
the first frame. Particles here means connected objects in one frame, i.e candidate
cells to be assigned to an object (i.e tracked cell). The 2D particles are then

/-----,
~ l1J0 _.,,, 2
Objlbl (t-1)

ij' \ I,,.,,,,., ··--·~··--~·-,.,_ ... , .. ,\

(u _esv './ ¡
'

)
Partlbl {t) "-.. ._,, ,,,,

oß~ ~ OvlMap (t)

() 0 ®
Objlbl (t}

Figure 7.13 Steps involved to build the object overlap between the particles at timet and
label mask Objlbl at time t from the object the objects at time t-1. The numbers represent
label mask at time t-1 and the particle label the labels of the objects.
mask at time t. OvlMap{t) represents the

analyzed in the next frame t (PartLbl t) and their overlap with the object(s) in
frame t-1 (ObjLbl t-1) are computed Each particle is then assigned the most
likely object label from the previous frame (maximum overlap), this label is
written to the object label mask of the current frame (ObjLbl t). The pro­
cess is then iterated until the last frame of the movie.
The label masks are illustrated for a simple case in Figure 7.13. It can be

clearly understood that if there is no overlap between the same cell in two
consecutive frames (large drift or fast movement), the linking will fail. Two
other problems arise if the largest overlap does not take place between the
correct pair of cells or if two cells get transiently merged.
Try to modify the script "XAssignTissueCellTrackv20.m" so that a particle is

assigned the label of the object with largest overlap only if this overlap is larger
than a user-defined area threshold (e.g., 70% of the area of the particle). The
solution to the exercise is found in "XAssignTissueCellTrackv20_solution.m."

Solutions to the Exercises

Exercise 7 .1

1 li Initialization
2 NoiseTol = 5;
3 run{"Options ... ", "iterations=l count=l edm=Overwrite");
4
5 li Filter input image
6 run {"Duplicate ... ", "title=Filtered duplicate");
7 run{"Gaussian Blur ... 11, "sigma=l.5 stack");
8
9 li Create empty stack of same size as active image

10 newimage{"ParticlesStack", 118-bit Black", getWidth{),
getHeight{), nSlices);

11 run { 11 Invert LUT 11) ;
12
13 I I Main loop
14 for{i=l;i<=nSlices;i++)
15
16 selectimage{"Filtered");
17 setSlice{i);
18 run("Find Maxima ... 11, "noise="+d2s (NoiseTol, 2) +"

output=[Segmented Particles] light");
19 rename{"Particles");
20 run ('lCopy");
21 selectimage{"ParticlesStack");
22 setSlice{i);
23 run {"Paste");
24 selectlmage {"Particles");
25 close {);
26
27 run {"Select None") ;

"code/SteplSampleCodeLoop.ijm"

Exerci~e 7.2.3: The Code Should Be Opened from the Provided Material
("Step 1 CellSegment.ijm" and "Step2WeakJuctionRemoval.ijm'1

Exercise 7 .4

1 //Parameters
2 if(nimages<2)exit("At least two images should be opned!");
3 ImageNames = newArray(nimages);
4 for (i=0; i < nimages; i++)
5 {
6 selectimage(i+l);
7 ImageNames[i] = getTitle();

8
9 Dialog.create("Select Images"};

10 Dialog.addChoice("Original Movie", ImageNames, ImageNames(0]};
11 Dialog. addChoice ("Binary Mask", ImageNames, ImageNames [l]) ;
12 Dialog.addNumber("Threshold", 50);
13 Dialog.show{);
14 OriginalMovie = Dialog.getChoice();
15 SegmentedCells = Dialog.getChoice(};
16 JunctionThr = Dialog.getNumber();
17
18 // Initialization
19 run("Options ... ", "iterations=l count=l edm=Overwrite

do=Nothing");
20 run("Set Measurements ... ", " mean redirect="+OriginalMovie+"

decimal=2");
21 setBatchMode(true);
22 newimage("CorrectedMask", "8-bit Black", getWidth(},

getHeight(), nSlices);
23
24 // Main loop over th.e slices
25 for(s=l;s<=nSlices;s++)
26
27
28
29 // Set current slice in all stacks
30 selectimage("CorrectedMask");
31 setSlice(s);
32 selectimage(OriginalMovie};
33 setSlice(s);
34 selectimage(SegmentedCells);
35 setSlice(s);
36
37 // Skeletonize and identify junctions I vertices
38 run {"Duplicate ... ", "title=Copy") ;
39 run("Invert", "slice");
40 CopyID = getimageID();
41 run("Skeletonize (2D/3D) 11);

42
43 run("Analyze Skeleton (2D/3D)", "prune=none prune");
44 AnalyzedSkeletonID = getimageID();
45
46 // Add all junctions to ROI manager and measure mean

intensity in original stack
47 setThreshold(l00, 255);
48 // Threshold junctions: vertices value: 70, junctions value: 127
49 run ("Analyze Particles ... 11, "size=0-Infinity circularity=0. 00-

1. 00 show=Nothing display clear add");
50 roiManager("Show None");

51
52 li Select non null pixels in the skeleton--> mask
53 selectimage(AnalyzedSkeletonID};
54 setThreshold{l, 255);
55 run{"Convert to Mask", "method=Default background=Dark

black");
56 run {"Invert LUT") ;
57 resetThreshold();
58
59 li Erase the weak junctions
60 N = roiManager{"count");
61 for (i=0;i<N;i++)
62
63 if(getResult("Mean",i)<JunctionThr)
64 {
65 roiManager("Select", i);
66 run("Set ... 11, "value=0 slice");
67
68
69
70 li Copy to CorrectedMask
71 run ("Select All"} ;
72 run ("Copy"} ;
73 selectimage("CorrectedMask"};
74 run ("Paste");
75
76 li Cleanup
77 selectimage(AnalyzedSkeletonID);
78 run{"Close");
79 selectimage(CopyID);
80 run ("Close");
81
82
83 I I Exit
84 selectimage("CorrectedMask");
85 run{"Invert", "stack");
86 run ("Invert LUT") ;
87 run ("Select None") ;
88 setBatchMode("exit & display");
89 run{"Set Measurements ... ", " mean redirect=None decimal=2");

"code/Step2WeakJunctionRemoval_dialog.ijm"

Exercise 7.6

1 BaseFolder = ' ... \';
2 fname = strcat{BaseFolder,'DummyStack.tif');
3 expfname = strcat(BaseFolder,'LabeledDummyStack.tif');

4
5 % Gather ParticleStack image info
6 info= imfinfo(fname);
7 num_images = numel(info);
8 Height= info(l) .Height;
9 Width= info{l) .Width;

10
11 % Initialize buffer image
12 DummyStack = zeros(Height,Width,num_images);
13
14 % Read images (loop over frames)
15 for kf = l:num_images
16 DummyStack(:, :,kf) = imread(fname, kf, 'Info', info);
17 end
18
19 % Find connected particles (3D)
20 CC= bwconncomp(DummyStack};
21
22 % Generate label mask
23 L = labelmatrix{CC);
24
25 % Erase output file (if exists)
26 if exist(expfname, 'file')
27 delete(expfname);
28 end
29
30 for kf = l:num_images
31 imwrite {uintl6 (L (:,: ,kf)), expfname, 'WriteMode', 'append',

'Compression' ,'none');
32 end

"code/Step3ConnecteclParticles3D.m"

Exercise 7 .7

1 %% Initialization
2 clear all;
3 close all;
4 BaseFolder = ' ... \';
5 fname = strcat(BaseFolder,'ParticlesStack.tif'); %

Segmentation mask
6 expfnameobj = strcat(BaseFolder,'Tracking-objl-10.tif'); %

Object labels
7 expfnamepartcentroids = strcat{BaseFolder,'Tracking­

Centroids-v-10.tif'); % Centroid stack
8
9 %% Parameters

10 startframe = l;

11 BoundDilate = 5;
12
13 %% Gather ParticleStack image info
14 info = imfinfo (fname);
15 num_images = numel(info);
16 Height= info(l) .Height;
17 Width= info(l) .Width;
18
19 %% Create image buffers with same size of the original image

(+ 2slices)
20 ImageCopy = zeros(Height,Wid,th,num_images+2);
21 ObjLbl = zeros(Height,Width,num_images+2);
22 PartCentroids = uint8(zeros(Height,Width,num_images+2));
23
24 %% Loop over image frames (2D processing)
25 for kf = 1:num_images
26 disp(kf);
27
28 % Import mask for this frame
29 A imread(fname, kf, 'Info', info);
30
31 % Dilate cell junctions
32 A imdilate(A, strel('disk' ,BoundDilate));
33
34 % Process mask and analyze connected particles (2D)
35 A 255-A; % Mask coming from ImageJ (inverted LUT)
36 A= imclearborder(A); % Remove objects touching the image

borders
37
38 % Store current frame to ObjLbl
39 ImageCopy(:, :,kf+l) = A;
40
41 % Find connected particles in current frame and compute

their centroids
42 CC= bwconncomp(A);
43 centroids= regionprops(CC,'centroid');
44
45 % Draw centroids of connected particles
46 for 1 = l:length(centroids)
47 centroidl = centroids(l) .Centroid;
48 PartCentroids(round(centroidl(2)),round(centroidl(l)),

kf+l) = l;
49 end
50
51 end
52
53 %% Analyze connected particles (3D) to identify objects and

fill label mask

54 objList = bwconncomp(ImageCopy);

55 Nobj = objList.NumObjects;
56 for label= 1:Nobj
57 ObjLbl(objList.PixelidxList{label})
58 end
59
60 %% Images post-processing and exportation
61
62 % Erase output file (if exists)
63 if exist(expfnameobj, 'file')
64 delete(expfnameobj);
65 end
66
67 % Erode the cell junctions and export the object label mask
68 for frame=2:num_images+l
69 ObjLbl2D = imdilate(ObjLbl(:, :,frame),strel('disk',

label;

BoundDilate));
70 imwrite(uint16(ObjLbl2D), expfnameobj, 'WriteMode',

'append', 'Compression' ,'none');
71 end
72
73 % Erase centroid stack file (if exists)
74 if exist(expfnamepartcentroids, 'file')
75 delete(expfnamepartcentroids);
76 end
77
78 % Export the centroid stack
79 for frame= 2:num_images+l
80 imwrite(uint8(PartCentroids(:, :,frame)),

expfnamepartcentroids, 'WriteMode', 'append',
'Compression' ,'none');

81 end

"code/Step3TissueCellTrackvl0_simple.m"

Exercise 7 .8

1
2
3
4
5
6

clear all;
close all;
start frame
displayLbl
BaseFolder

1;
[54 57] ;
I • ••\I j

fname = strcat(BaseFolder,'Tracking-objl-10.tif'); %
Exported stack (object)

7
8 %%%% Read the object label mask (same label

cell over time)%%%%%%%
9 info = imfinfo (fname};

same

10 num_imagcs = numel(info);
11 endframe = num_images;
12
13 % get information from last frame
14 A= imread(fname, endframe, 'Info', info);
15
16 % Find highest label: total number of cells
17 nbmaxcell = max(max(A));
18
19 % Initialize arrays
20 Area= nan(nbmaxcell,endframe);
21
22 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
23
24 for kf = startframe:endframe
25 A= imread(fname, kf, 'Info', info);
26 for Lbl=displayLbl
27 Obj = (A==Lbl);
28 Area(Lbl,kf) = sum(sum(Obj));
29 end
30 end
31 plot(startframe:endframe,Area(displayLbl, :));

"code/Step4PlotCellArea.m"

Exercise 7.9

1 clear all;
2
3
4
5
6

close all;
startframe
displayLbl

1;
[54 57];

BaseFolder ' ... \';
fname = strcat(BaseFolder,'Tracking-objl-10.tif');

Exported stack (object)
%

7
8 %%%% Read the object label mask (same label

cell over time)%%%%%%%
9 info= imfinfo(fname);

10 num_images = numel(info);
11 endframe = num_images;
12
13 % get information from last frame
14 A= imread(fname, endframe, 'Info', info);
15
16 % Find highest label: total number of cells
17 nbmaxcell = max (max (A));
18
19 % Initialize arrays

same

20 Area= nan(nbmaxcell,endframe);
21 X nan(nbmaxcell,endframe);
22 Y= nan{nbmaxcell,endframe);
23

25
26 for kf = startframe:endframe
27 A= imread{fname, kf, 'Info', info);
28 for Lbl=displayLbl
29 Obj= (A==Lbl);
30 Area{Lbl,kf) = sum{sum{Obj)};
31 stats= regionprops(Obj,'Centroid');
32 stats= cat(l,stats.Centroid);
33 if(~isempty(stats))
34 X(Lbl,kf) stats(l,1);
35 Y(Lbl,kf) = stats{l,2);
36 end
37 end
38 end
39 plot(startframe:endframe,Area(displayLbl, :));
40 figure;
41 plot(X{displayLbl, :) .' ,Y{displayLbl, :) .');

"code/Step4PlotCellAreaTrack.m"

7.7
Appendix

In the alternative workflow "XAssignMacroSegmentationalternative.ijm," the
cells are segmented by video inverting the fluorescence signal so that they appear
as bright on a dark background. A step of background subtraction facilitates
thresholding and then a binary watershed is applied with an intent to split the
merged cells.

Acknowledgment

We thank Annalisa Letiza (IBMB-CSIC) for sharing the spinning disk movies.
Sébastien Tosi collaborated with her to design the automated tissue analysis
tools that she used in her own research.

References

1 Desprat, N., Supatto, W., Pouille, P.A.,
Beaurepaire, E., and Farge, E. (2008) Tissue
deformation modulates twist expression to
determine anterior midgut differentiation in

Drosophila embryos. Dev. Cell, 15 (3),
470-477.

2 Petitjean, L., Reffay, M., Grasland­
Mongrain, E., Poujade, M., Ladoux, B.,

Buguin, A., and Siberzan, P. (2010) Velocity
fields in a collectively migrating epithelium.
Biophys. J., 98 (9), 1790-1800.

3 Farhadifar, R., Röper, J.C., Aiuluy, B., Eaton,
S., and Jüllicher, F. (2007) The influence of
cell mechanics, cell-cell interactions, and
proliferation on epithelial packing. Curr.
Biol., 17 (24), 2095-2104.

4 Arganda-Carreras, l., Fernandez-Gonzalez,
R., Munoz-Barrutia, A., and Ortiz-De­
Solorzano., C. (2010) 3D reconstruction of
histological sections: Application to

mammary gland tissue. Microsc. Res. Tech.,
73 (11), 1019-1029.

S Jaqaman, K., Loerke, D., Mettlen, M.,
Kuwata, H., Grinstein, S., Schmid, S.L., and
Danuser, G. (2008) Robust single-particle
tracking in live-cell time-lapse sequences.
Nat. Methods, 5 (8), 695-702.

6 Sbalzarini, I.F .. and Koumoutsakos, P.
(2005) Feature point tracking and trajectory
analysis for video imaging in cell biology. f.
Struct. Biol., 151 (2), 182-195.

