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Abstract
Seabirds, particularly Procellariiformes, are highly mobile organisms with a great ca-
pacity for long dispersal, though simultaneously showing high philopatry, two con-
flicting life-history traits that may lead to contrasted patterns of genetic population 
structure. Landmasses were suggested to explain differentiation patterns observed 
in seabirds, but philopatry, isolation by distance, segregation between breeding and 
nonbreeding zones, and oceanographic conditions (sea surface temperatures) may 
also contribute to differentiation patterns. To our knowledge, no study has simul-
taneously contrasted the multiple factors contributing to the diversification of sea-
bird species, especially in the gray zone of speciation. We conducted a multilocus 
phylogeographic study on a widespread seabird species complex, the little shearwa-
ter complex, showing highly homogeneous morphology, which led to considerable 
taxonomic debate. We sequenced three mitochondrial and six nuclear markers on all 
extant populations from the Atlantic (lherminieri) and Indian Oceans (bailloni), that is, 
five nominal lineages from 13 populations, along with one population from the east-
ern Pacific Ocean (representing the dichrous lineage). We found sharp differentiation 
among populations separated by the African continent with both mitochondrial and 
nuclear markers, while only mitochondrial markers allowed characterizing the five 
nominal lineages. No differentiation could be detected within these five lineages, 
questioning the strong level of philopatry showed by these shearwaters. Finally, we 
propose that Atlantic populations likely originated from the Indian Ocean. Within the 
Atlantic, a stepping-stone process accounts for the current distribution. Based on our 
divergence time estimates, we suggest that the observed pattern of differentiation 
mostly resulted from historical and current variation in sea surface temperatures.
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1  | INTRODUC TION

Population divergence, eventually leading to speciation, is a key 
process in the study of evolutionary and conservation biology (e.g., 
Friesen et al., 2007). Though divergence with gene flow has been 
theorized and observed (reviewed in Pinho & Hey, 2010), the model 
of allopatric speciation predominates by far in the literature (Stroud 
& Losos, 2016; The Marie Curie SPECIATION Network, 2012). In 
this model, a physical barrier to gene flow catalyzes genetic differ-
entiation between populations, through selection and/or genetic 
drift, eventually followed by other pre- or postzygotic barriers 
(Coyne & Orr, 2004). In practice, however, the mechanisms that im-
pede gene flow and promote differentiation are multifactorial and 
still difficult to disentangle (Ravinet et al., 2017; The Marie Curie 
SPECIATION Network, 2012). In particular, geographic barriers 
alone may not explain the differentiation of populations in highly 
dispersive species, for example, marine birds (e.g., Genovart et al., 
2007), birds of prey (e.g., Doyle et al., 2016), mammals (Moussy 
et al., 2013), or plants (Sanz et al., 2014). Seabirds are a case in point: 
Their wide geographic distribution and dispersal ability should the-
oretically maintain high levels of gene flow, yet many seabirds show 
surprisingly strong geographic population structure, a pattern that 
could be attributed, at least partly, to their high degree of philo-
patry (Friesen et al., 2007).

Present or historic landmasses were identified as the most im-
portant barriers to gene flow in seabirds (Friesen, 2015; Friesen 
et al., 2007) though they cannot explain all differentiation patterns, 
and other factors such as philopatry, isolation by distance, or seg-
regation between breeding and nonbreeding zones may play a role. 
However, contrasting these factors simultaneously remains a chal-
lenge. The use of sex-linked markers has proven to be important to 
understand bird phylogeography, as gene flow is expected to vary 
between sexes given stronger male philopatry in seabirds and other 
birds in general (Greenwood, 1980). Sex-specific patterns of diver-
gence are expected, and indeed, mitonuclear discordance has been 
detected in seabirds, with more genetic structure in mitochondrial 
(mt) than in nuclear (nu) DNA (Burg & Croxall, 2001; Deane, 2013; 
Gangloff et al., 2013; Silva et al., 2015; Welch et al., 2012; but see 
Pons et al., 2014). Such discordance was suggested to result from 
incomplete lineage sorting in nuDNA due to a higher effective popu-
lation size than mtDNA (McKay & Zink, 2010), but other mechanisms 
were proposed such as adaptive introgression of mtDNA, demo-
graphic disparities, and sex-biased gene flow (reviewed in Toews & 
Brelsford, 2012).

Shearwaters (order Procellariiformes) are long-lived birds 
showing slow demographic rates, for example, life expectancy up 
to or above 15 years (Warham, 1996). They breed in large colonies 
on remote oceanic islands, are pelagic (González-Solís et al., 2007), 

and are highly philopatric (Brooke, 2004). Geographic structuring 
of populations can be strong (Genovart et al., 2012; Gómez-Díaz 
et al., 2009), and the systematics of some taxa is still highly con-
troversial, especially for the little and Audubon's shearwaters 
Puffinus assimilis–lherminieri species complex (Austin et al., 2004). 
This widespread small-sized, black-and-white shearwater breeds 
from equatorial to subarctic seas (see map in Figure 1). According 
to different authors, the number of nominal species in this com-
plex has varied from 1 to 8, and the number of subspecies from 
0 up to 26 (review in Austin et al., 2004). Recent studies, based 
only on the mitochondrial gene cytb, indicated marked phylogeo-
graphic structure (Austin et al., 2004; Kawakami et al., 2018), with 
one taxon in the North Atlantic (lherminieri), one pantropical taxon 
(Indian and Pacific Oceans; bailloni), and one in the sub-Antarctic 
and Australasia (assimilis). Using this single marker, three distinct 
lineages were recognized in the North Atlantic: lherminieri in 
the Caribbean and off Brazil, baroli in the Azores, Canaries, and 
Madeira, and boydi in Cape Verde (Figure 1). In the North Atlantic, 
lineages are characterized by nonoverlapping breeding and non-
breeding distributions at sea (Ramos et al., 2021) and are thus 
geographically separated. Still, they are morphologically and eco-
logically highly similar (Precheur et al., 2016), a pattern typical of 
the first stages of the speciation process, the so-called gray zone 
(De Queiroz, 2007). Unsurprisingly, their taxonomic ranking has 
been hotly debated, for example, baroli being considered as be-
longing to assimilis (Shirihai et al., 1995), lherminieri (Austin et al., 
2004), or a species of its own (Sangster et al., 2005). Lineages be-
longing to the little and Audubon's shearwater complex are also 
found in the Indian and Pacific Ocean, with lineages breeding in 
the Seychelles (nicolae), Réunion (bailloni) and many islands in 
the Pacific Ocean (dichrous, gunax, etc.). Within the bailloni lin-
eage, breeding populations are characterized by different breed-
ing phenologies on the northern and southern parts of Réunion 
(Bretagnolle & Attié, 1996), potentially impacting genetic struc-
turation (Friesen et al., 2007). Indian Ocean birds were alterna-
tively considered as a P. lherminieri subspecies (Warham, 1990) or 
subspecies of a bailloni pantropical taxon (Austin et al., 2004). The 
exact taxonomic status of these five lineages (lherminieri, boydi, 
baroli, nicolae, and bailloni; Figure 1) is thus largely unresolved. 
Most recent taxonomies consider either two (Onley & Scofield, 
2007) or three different species in the North Atlantic (Flood & 
Fisher, 2019), and bailloni as a single species with two subspecies, 
bailloni and dichrous (Onley & Scofield, 2007), or as two distinct 
species (Howell & Zufelt, 2019).

Here, we consider these five lineages, covering Atlantic and 
the Indo-Pacific branches of the Puffinus assimilis–lherminieri com-
plex. We sampled birds from all but one known breeding localities 
in the North Atlantic (four Caribbean breeding sites for lherminieri, 
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two main breeding sites in Cape Verde for boydi, and one breeding 
site in Azores, Madeira, Selvagens, and Canary Islands for baroli) 
and in the northern Indian Ocean (northern and southern popu-
lations of bailloni in Réunion and Seychelles for nicolae; Figure 1); 
we also included three dichrous individuals from the Pacific Ocean 
as to test whether the colonization of Atlantic breeding sites was 
the result of Indian Ocean bird colonizer or Western Pacific birds 
passing through the Isthmus of Panama. Only a single lherminieri 
breeding locality was unsampled, on Fernando de Noronha archi-
pelago, off Brazil (Olmos & Silva Silva, 2010; Figure 1). We an-
alyzed three mitochondrial and six nuclear markers to delineate 
genetic units within the species complex, investigated patterns 
of genetic differentiation and divergence among populations 
(i.e., breeding grounds), and discussed implications for their un-
resolved taxonomy. As conflicting phylogeographic patterns be-
tween mitochondrial and nuclear markers (hereon referred to as 
mitonuclear discordance; Toews & Brelsford, 2012) were system-
atically found in petrels so far (references above), we inferred 
population structure among females and males independently to 
test for sex-biased dispersal using nuDNA. We expect females to 
be less structured than males since males are presumably more 
philopatric (Greenwood, 1980). We then used multispecies co-
alescent inference and an ABC framework to investigate evo-
lutionary scenarios of breeding site colonization over the last 
million years. With our inferences, we attempted to disentangle 
contrasted processes shaping evolutionary history and the con-
temporary population structure of this complex, such as landmass 
presence, isolation by distance, oceanographic conditions (sea 
surface temperature), and past climatic oscillations, as the latter 
has been shown to influence the present-day species distributions 
(e.g., Hewitt, 2004).

2  | MATERIAL S AND METHODS

2.1 | Sampling, extraction, and PCR amplification of 
gDNA

A total of 276 birds (all adults, i.e., having already dispersed) span-
ning the entire known breeding distribution of Puffinus assimilis–
lherminieri complex in the Atlantic (with the exception of Fernando 
de Noronha as stated above), as well as three populations of inter-
est for bailloni and nicolae in the Indian Ocean, were included in our 
study (metadata in Supplementary Material S1). Three individuals 
from the Pacific Ocean (taxon dichrous, by far the most widespread 
lineage in the Pacific (Onley & Scofield, 2007; Figure 1) were also 
included. Individuals were sexed using PCR amplification (with the 
2250F and 2781R primers; Fridolfsson & Ellegren, 1999).

Total genomic DNA was extracted from blood samples (except 
for the Bahamas population, for which samples were derived from 
toepads collected on dead birds) using NucleoSpin® Tissue XS Kit 
(Macherey & Nagel, Düren, Germany). Samples were incubated 
overnight in 4 mg of Proteinase K. Purified genomic DNA was eluted 
twice in 50 µl of TE buffer preheated at 70℃. DNA concentration 
was measured using Nanodrop spectrophotometry. Three mito-
chondrial markers (cox1, cytb, and the mitochondrial control region, 
CR) and six nuclear markers (beta-fibrinogen exon 6 through 8, βfib; 
cold shock domain-containing E1 intron 5, csde; interferon regula-
tory factor 2 intron 2, irf2; PAX-interacting protein 1 intron 20, pax; 
recombination-activating protein 1, rag1; and tropomyosin 1 alpha 
exon 7, tpm) were targeted (primer sequences, PCR profile, and con-
ditions: Supplementary Material S2). These markers were previously 
shown to be polymorphic within and among petrel species (Gangloff 
et al., 2013; Silva et al., 2011).

F I G U R E  1   Distribution of the breeding sites for the Puffinus lherminieri colonies sampled for this study, with the exception of Fernando 
de Noronha, which represents the only breeding colony from North Atlantic that was not sampled here. Numbers represent breeding 
localities that were sampled for this study (color codes identical across figures)
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2.2 | Quality control of genetic data

While checking chromatograms, we found several cases of dou-
ble peaks in the sequences of cox1, cytb, and CR (Supplementary 
Material S3). Bird blood contains relatively few mitochondria, and it 
is therefore likely to amplify nuclear copies of mitochondrial mark-
ers or “numts” (Sorenson & Quinn, 1998). Such nuclear copies may 
diverge from the original mitochondrial genes since they are noncod-
ing, which result in double peaks on the chromatograms. To check 
this scenario and avoid such copies, we digested nuclear DNA with 
the Exonuclease V (ExoV; NEB-M0345S) and sequenced again the 
mitochondrial markers for all individuals showing double peaks for 
cox1, plus 5 individuals showing no double peaks randomly cho-
sen, using a protocol modified from Jayaprakash et al., 2015 (see 
Supplementary Material S3). Before running analyses, we checked 
that coding sequences contained no stop codon or indel. Some 
analyses required phased data (e.g., *BEAST analysis), so the ga-
metic phase of nuclear markers was determined probabilistically 
using PHASE 2.1 (Stephens et al., 2001) implemented in DNAsp 
v.5.10.01 (Librado & Rozas, 2009). Additional GenBank sequences 
(Supplementary Material S1) were aligned to our sequences using 
MAFFT v 7.187 (Katoh et al., 2002).

2.3 | Population diversity, 
differentiation, and divergence

For each population, we calculated haplotype frequencies, inter-
haplotype distances, haplotype diversity, and nucleotide diversity 
(π), per marker, using DNAsp v.5.10.01 (Librado & Rozas, 2009) 
and Genetix v4.05.2 (Belkhir et al., 1996). We evaluated signals for 
departures from neutrality or demographic changes by estimating 
Tajima's D (Tajima, 1989) and Fu's Fs (Fu, 1997) for each locus, with 
Arlequin v.3.1 (Excoffier et al., 2005). Differentiation among popula-
tions was estimated by performing AMOVAs and calculating pair-
wise FST and ΦST and the population average pairwise differences 
DXY, using Arlequin (concatenated mitochondrial markers and con-
catenated nuclear markers). For AMOVAs, samples were stratified 
into five groups, corresponding to the five nominal lineages (lher-
minieri, boydi, and baroli in the Atlantic, and nicolae and bailloni in 
the Indian Ocean) and populations (i.e., sampling localities; Figure 1) 
within these groups. The matrix of genetic distances among all pairs 
of haplotypes was computed using the K2P model of nucleotide sub-
stitution for concatenated mitochondrial markers, and TN93 for con-
catenated nuclear markers, as determined using jModelTest2. We 
performed a Mantel test to measure the level of correlation among 
genetic distances (concatenated mitochondrial markers and concat-
enated nuclear markers) and geographic distances (Smouse et al., 
1986). Geographic distance was calculated as the shortest distance 
between two populations without crossing land. Statistical signifi-
cance (AMOVAs, pairwise FST, and Mantel tests) was estimated using 
1000 permutations. To visualize relationships among lineages, we 
inferred NeighborNet networks using SplitsTree v 4.14.2 (Huson & 

Bryant, 2006), with different dataset combinations: all markers inde-
pendently, concatenated mitochondrial markers, concatenated nu-
clear markers. Finally, we performed a species delimitation analysis 
with ASAP (Assemble Species by Automatic Partitioning; Puillandre 
et al., 2020) using the K2P model of nucleotide substitution. ASAP 
was run on the concatenated cox1-cytb sequences (1351 bp, 143 se-
quences). Including the CR led to excess variation in the dataset and 
resulted in a spurious delimitation of 89  species. Also, the signal-
poor nuclear sequences were not used for this analysis.

2.4 | Estimation of sex-biased dispersal using 
nuclear markers

To detect sex-biased dispersal using concatenated nuclear markers, 
we separated sequences from females and males into two sepa-
rate datasets, excluding three populations (lherminieri from Saint 
Barthélemy, and baroli from Funchal and Selvagem) represented by 
fewer than five individuals from each sex. Sex-biased dispersal was 
tested at both intra- and interlineage scales. We calculated average 
pairwise relatedness for each sex, within each population, using the 
triadic likelihood estimator (Wang, 2007) implemented in Coancestry 
(Wang, 2011). To test whether the difference in mean relatedness 
between males and females of each population was significant, we 
used the test of difference between sex by bootstrapping samples 
1000 times and recalculating difference in means between sexes 
for each bootstrap. Observed and simulated differences were then 
compared, and if the observed difference fell outside of the 95% 
confidence interval, we considered it to be significant.

If females disperse more than males, females sampled from 
a single population will be a mixture of residents and immigrants. 
The female sample will therefore deviate from the Hardy–Weinberg 
equilibrium and show a deficit of heterozygotes (Wahlund effect). 
FIS calculated for the female sample is thus expected to be larger 
than the male FIS (Goudet et al., 2002). We estimated FIS separately 
for females and males for all tested populations, and evaluated its 
significance using 1000 permutations with Genetix. Conversely, we 
expect FST (Goudet et al., 2002) to be higher in philopatric males 
than in females. We calculated FST for each pair of populations within 
the two datasets, with Arlequin.

2.5 | Phylogeographic scenarios

Reciprocal monophyly was inferred using gene trees, using all mark-
ers as separate partitions. These trees were used to evaluate the de-
gree of divergence among lineages using MrBayes v. 3.2.6 (Ronquist 
et al., 2012; Supplementary Material S4). To reconstruct the sce-
nario of divergence among the different lineages, we used species 
trees, inferred using two different methods. We first ran an analysis 
with *BEAST v 2.2.0 (Bouckaert et al., 2014) using the three mito-
chondrial markers. We choose to link time-trees for the three mi-
tochondrial markers, since they are on the same plasmid, where no 



14964  |     TORRES et al.

recombination is expected at the timescale considered in this study. 
However, the three markers have a different composition and dif-
ferent evolutionary rates, so we did not link the molecular clock and 
evolution models. We tested the hypothesis of molecular clock with 
the Clock Test using ML implemented in MEGA v7.0.20 (Kumar et al., 
2016). This hypothesis was rejected (p-value <.0005). We there-
fore used, for each marker, an uncorrelated lognormal relaxed clock 
model. The clock rate was fixed to 0.00553 ± 0.00115 substitution 
per site per million year for cox1 and 0.00631  ±  0.0035 for cytb 
(rates inferred for Procellariiformes by Nabholz et al., 2016). The 
rate for the control region was estimated by the model as no rate is 
published for Procellariiformes. Existing rates for other birds could 
not be used either because they belong to groups that are too dis-
tant (e.g., Moas, Baker et al., 2005, or Peafowls, Kimball et al., 1997), 
and the control region is highly variable among groups (Ruokonen & 
Kvist, 2002). Published rates for the CR were, however, set in *BEAST 
as priors and did not affect the results (data not shown). We used 
for each marker a model consistent with the result of jModelTest2, 
and a Yule process species tree prior with a continuous population 
size model. As for the MrBayes analysis, we ran each MCMC chain 
with 50  *  106  generations, sampled every 1000  generations, the 
first 25% of generations were discarded as burn-in. We inspected 
the stationarity of the chains using Tracer (Rambaut et al., 2018). 
To test whether the colonization of the Atlantic could result from 
birds of the Pacific passing through the Isthmus of Panama, individu-
als from the central Pacific (Marquesas archipelago, taxon dichrous) 
were added to the *BEAST inference. This taxon can be considered 
as the best representative taxon for the central Pacific, as it is the 
most widespread and numerous, since polynesiae is considered syno-
nym to dichrous (Austin et al., 2004), while bannermani is best rec-
ognized as a species on its own (Kawakami et al., 2018). The taxon 
gunax (from Vanuatu) has never been sequenced, and actually, the 
location(s) of its breeding colony(ies) is(are) unknown. Three dichrous 
cytb sequences retrieved from GenBank (AY219949-AY219951) 
and three individuals from our own collection were used. We ran a 
second *BEAST analysis by adding all the nuclear markers indepen-
dently to the three mitochondrial markers, using the same MCMC 
parameters. Clock rate priors were set to 0.019 substitutions per site 
per million year for βfib and 0.013 substitution per site per million 
year for rag1, since these rates were estimated for birds (Groth & 
Barrowclough, 1999; Prychitko & Moore, 1997). The clock rate for 
nuclear markers was estimated by the model as no rate has been 
produced for petrels. In this latter case, we kept only the individuals 
for which we had sequences for all markers.

We also used a coalescent-based ABC approach to explore the 
best demographic scenario describing the dataset of all mitochon-
drial markers, and combined mitochondrial and nuclear markers 
(Supplementary Material S5) using the program DIYABC v. 2.1.0 
(Cornuet et al., 2014). ABC methods consist in the simulation of 
datasets similar to the real dataset in terms of population and marker 
sizes. First, in the Indian Ocean, we tested whether the three pop-
ulations emerged simultaneously in a radiation event or in two dis-
joint events by comparing the posterior probability of these three 

scenarios, and in the case of the latter, which population was an-
cestral to the two others and which one of the two remaining pop-
ulations was ancestral to the other. This hierarchical strategy was 
applied to each lineage independently, then to the three Atlantic 
lineages, and finally considering the five lineages together (see 
Supplementary Material S5 for a description of all tested scenarios). 
For each possible scenario, 106 pseudo-observed datasets were sim-
ulated, with the same ploidy and number of loci per population as 
observed in the real dataset. We fixed uniform priors for popula-
tion sizes, times of size variation and divergence, and mutation and 
admixture rate priors (see Supplementary Material S4 for details), 
from which we simulated the datasets. Summary statistics were cal-
culated from the simulated datasets and compared with the same 
statistics obtained from the real dataset. The Euclidean distance was 
calculated between the statistics obtained for each normalized sim-
ulated dataset and those for the observed dataset (Beaumont et al., 
2002). Posterior probability of each scenario was then calculated 
using a logistic regression on summary statistics produced by the 1% 
of the simulated datasets closest to the real dataset. To reduce the 
dimensionality of the data, a linear discriminant analysis was prelim-
inarily applied to the summary statistics (Estoup et al., 2012). The 
scenario with the highest posterior probability value with a nonover-
lapping 95% confidence interval (95% CI) was selected.

3  | RESULTS

3.1 | Patterns of genetic diversity, numts, and the 
presence of a duplicated region

We obtained an average of 192 sequences per marker (length range 
307–1323 bp; Table 1). Mitochondrial data exhibited 148 polymor-
phic sites yielding 150  haplotypes, while nuclear data exhibited a 
total of 111 variable sites and 150 alleles (see Table 1 for summary 
of polymorphic sites, haplotypes, and diversities per marker). For 
mitochondrial markers, the greatest haplotype and nucleotide diver-
sity were observed for the CR (Table 1). For nuclear markers, βfib 
presented the highest number of segregating sites and nucleotide 
diversity. Mitochondrial markers were more variable than nuclear 
markers in terms of nucleotide diversity (Table 1).

None of the coding markers (cox1, cytb, and pax) presented any 
insertion, deletion, nonsense, or stop codon following translation 
(see Supplementary Material S1). Double peaks on Sanger chro-
matograms were, however, detected for each of the three mtDNA 
markers. While all double peaks at cox1 were removed by the exonu-
clease treatment, 60 CR sequences (33%) still showed double peaks 
at 73 positions, as well as 37 positions for 22 individuals (10%) for 
cytb. Double peaks were not specific to any population or sex and 
were not linked to the position of the individuals in the sequenc-
ing plate (see Supplementary Material S3). Only 12 (5%) individuals 
showed double peaks both at CR and at cytb, so the presence of dou-
ble peaks seemed unlinked between the two markers. Replicating 
DNA extractions, PCR, and sequencing confirmed these results, 
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making laboratory contamination unlikely. Contamination in the field 
was also unlikely since new sampling supplies were used for every 
sample. Given that only 10% of the cytb sequences presented such 
ambiguities (which may be due to heteroplasmy; Torres et al., 2018), 
we removed such sequences for further analyses. However, for the 
CR, since a third of the total sequences were involved, we kept all 
CR data in further analyses, considering two haplotype phases for 
MrBayes and *BEAST analyses (although we recognize that these 
data are in violation of the assumption that sequences to be phased 
are under Hardy–Weinberg equilibrium; see discussion below).

3.2 | Population structure and sex-biased dispersal

Mitochondrial and nuclear results from Fu's Fs indicated no de-
viation from neutrality (Supplementary Material S7). However, 
for Tajima's D tests, three localities displayed significant negative 
Tajima's D for all mitochondrial and nuclear markers: South Reunion 
(Indian Ocean; see map in Figure 1), Saint Barthélemy (W Atlantic), 
and Raso (E Atlantic). In addition, three localities presented signifi-
cant negative Tajima's D at mitochondrial loci only (Selvagem and 
Funchal, E Atlantic; South Reunion) and two at nuclear loci only (Vila, 
E Atlantic; North Reunion). Patterns of population structure at seven 
out of 13 localities might therefore be influenced by selection and/or 
recent demographic changes, in addition to neutral processes.

Gene trees and phylogenetic inference with *BEAST and 
MrBayes& revealed a hierarchical structure composed of two well-
supported (posterior probabilities PP ≥ 0.95) reciprocally monophy-
letic clades corresponding to the two oceans, within which individuals 
from the five lineages further clustered into monophyletic subclades 
(Figure 2b,c and S7). All except one of these subclades (East Atlantic 
boydi) were supported in *BEAST (PP  ≥  0.95) using all concate-
nated markers. For both mtDNA markers, and all markers concat-
enated, the central Pacific dichrous lineage was nested within the 
bailloni/nicolae clade, although node supports for dichrous position 

within Indian Ocean clade were weak (PP ranging between 0.27 and 
0.73). Assignment to an ocean basin based on nuclear haplotype 
networks was, however, discordant from the mitochondrial data 
for 33 individuals, for at least one nuclear locus (Figure 3b and S8): 
15 Atlantic individuals fell closely to the Indian nuclear phylogroup, 
and 18 Indian Ocean individuals clustered within the Atlantic group. 
All of these 33 individuals showed the mitochondrial signature ex-
pected based on their geographic sampling location. Interestingly, 
a baroli individual showed one haplotype phase clustering with the 
baroli phylogroup (mother), while the other haplotype phase (father) 
clustered with the nicolae phylogroup for four nuclear markers (the 
two remaining could not be assigned to any particular lineages). This 
individual might be the result of hybridization, although further anal-
yses based on additional markers would be necessary to detect more 
robustly hybridization among lineages. The ambiguous assignment 
of the other individuals might be due to introgression or incomplete 
lineage sorting (see below).

In parallel, we used an AMOVA framework with the five nominal 
lineages now defined a priori, to examine how genetic variants parti-
tioned among and within these taxonomic units. Most of the genetic 
variance was due to interlineage differentiation (88.5% and 58.4% 
for mitochondrial and nuclear markers, respectively). The variance 
among sampling localities within lineages accounted for 0.5–4.1%, 
while variance within sampling localities represented 11.0–37.5%. 
Pairwise FST showed consistently higher values among than within 
lineages for both marker types, with mostly nonsignificant values 
within each lineage (Table 2a). Moreover, 24 nuclear FST values were 
found nonsignificant versus 10 mitochondrial ΦST values (Table 2a). 
Population average pairwise differences led to similar results, with 
high structuration for the five nominal lineages (Supplementary 
Material S7).

Genetic distance increased clearly with geographic distance 
(Figure 4a), but Mantel tests were performed only between pairs 
within the same ocean (given that each oceanic taxon is likely differ-
ent species). Tests confirmed that genetic and geographic distances 

Marker N L S h/a hd π

cox1 225 (212, 10, 3) 577 18 12 0.843 0.01301

cytb 230 (205, 3, 22) 877 50 48 0.951 0.01394

CR 181 307 80 98 0.993 0.07497

tpm 184 427 2 3 – 0.00011

irf2 182 542 6 6 – 0.00048

csde 223 542 15 13 – 0.0006

pax 255 (227, 28) 515 9 10 – 0.00159

rag1 162 1323 29 65 – 0.00337

βfib 92 1067 50 53 – 0.0083

Note: N is the number of sequences obtained (with numbers in parentheses referring to the 
sequences obtained from this study, obtained from previous studies and downloaded from 
GenBank); L is the length of the sequences in bp; S is the number of polymorphic segregating sites; 
h/a: h is the number of corresponding haplotypes for mitochondrial markers, and a is the number of 
alleles for nuclear markers; hd is the haplotype diversity; and π is the nucleotide diversity. Due to 
the presence of ambiguities in the sequence for CR, two haplotype phases were considered here.

TA B L E  1   Summary statistics of 
polymorphisms for the nine markers used 
in this study
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were strongly correlated to each other, both for mtDNA and for nu-
clear markers when analyzing pairs of populations within an oceanic 
basin (r = 0.88 and 0.70, n = 45, p < .005 for mtDNA and nuDNA, re-
spectively; Figure 4a,b). Between breeding sites and within lineages, 
isolation by distance could not be reliably tested as the number of 
populations was too low, but visually it seemed that there was no 
relation between geographic and genetic distances (Figure 4).

The ASAP species delimitation analysis (cox1 and cytb con-
catenated) supported four groups, based on the best asap-score 
(asap-score = 5, p-val = 2.3e−1, W-statistic = 3.7e−6, threshold dis-
tance  =  0.005847). The lineages herminieri, boydi, and baroli were 
each considered as a separate species, while bailloni and nicolae were 
clustered as a single species.

The overall sex ratio was unbiased (120 females, 107  males; 
Pearson's Chi² with Yates' continuity correction, p  =  .42); 49 indi-
viduals could not be sexed successfully and were therefore excluded 
from sex-biased dispersal analyses. Indian Ocean populations (nico-
lae and bailloni) showed stronger female dispersion as indicated by 
significantly stronger deficit of heterozygotes and a significantly 
lower average relatedness in females (Table 3). Conversely, in bar-
oli, FIS was significantly higher for males and they were less related 
to each other than females, suggestive of male-biased dispersal. 
Finally, an ambiguous pattern was found for both lherminieri (males 
had stronger deficit of heterozygotes and were significantly more 
related to each other than females) and boydi (female FIS was sig-
nificantly higher than male FIS, though females were more related to 

F I G U R E  2   Gene trees and scenario of breeding site colonization. (a) Gene tree obtained by Bayesian inference for all markers, node bars 
correspond to the 95% confidence interval of the estimated divergence times. The scale corresponds to time before present in Million years 
(My). (b) Species tree obtained using *BEAST for all mitochondrial markers with dichrous haplotypes in yellow. (c) Species tree obtained 
using *BEAST for all mitochondrial and nuclear markers with dichrous sequences in yellow. In (b and c), only individuals sequenced for all 
mitochondrial markers and all markers respectively are shown. Only the posterior values >0.90 are shown
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each other than for males at one sampling locality). In addition, pop-
ulation structure within lineages, as measured with FST, was similar 
between sexes, but between oceans, a larger range of FST values was 
observed for males with higher maximum values, suggesting that 
males were more structured at least for some pairs of populations 

(e.g., lherminieri vs. Indian Ocean lineages; Table 2b). Overall males 
seemed more structured than females between oceans, suggesting 
that females disperse farther, but genetic signal for sex-biased dis-
persal varied geographically: female-biased in the Indian Ocean, and 
male-biased or inconclusive in the Atlantic Ocean.

F I G U R E  3   NeighborNet networks obtained using mitochondrial markers (a) and nuclear markers (b). The scale bars indicate the sequence 
divergence (number of substitutions per site) represented by the length of a branch

TA B L E  2   Population differentiation, according to the types of genetic markers and sex

Note: (a) Pairwise ΦST values for mitochondrial markers (below diagonal) and FST for nuclear markers (above diagonal).
Border indicates the separation between intra and inter lineage comparisons. Triple band indicates the separation between intra- and interocean 
comparisons. *p < .05; ***p < .001.
(b) Pairwise FST for nuclear markers for females (below diagonal) and males (above diagonal).

(b) lherminieri lherminieri lherminieri boydi boydi baroli baroli bailloni bailloni nicolae

Allencay Longcay Martinique Raso Cima Mclara Vila North Reunion South Reunion Seychelles

lherminieri Allencay - 0 0.33* 0.55*** 0.49*** 0.5*** 0.47*** 0.81*** 0.83*** 0.8**
lherminieri Longcay 0 - 0 0.47*** 0.4** 0.42*** 0.43*** 0.81*** 0.83*** 0.78***
lherminieri Martinique 0.45** 0.38* - 0.2* 0.35** 0.42** 0.41*** 0.71*** 0.77*** 0.7**

boydi Raso 0.6*** 0.48*** 0.24* - 0 0 0.29* 0.81*** 0.84*** 0.78**
boydi Cima 0.49*** 0.34*** 0.19* 0 - 0 0 0.77* 0.82*** 0.75*
baroli Mclara 0.67*** 0.56*** 0.52** 0.34** 0 - 0 0.76*** 0.81*** 0.74**
baroli Vila 0.71*** 0.61*** 0.69** 0.44** 0 0 - 0.77*** 0.79*** 0.7**

bailloni North Reunion 0.8*** 0.77*** 0.86*** 0.9*** 0.81*** 0.92*** 0.94*** - 0 0.6*

bailloni South Reunion 0.69*** 0.64*** 0.65*** 0.75*** 0.69*** 0.73*** 0.77*** 0.3* - 0.53***

nicolae Seychelles 0.78*** 0.75*** 0.8*** 0.85*** 0.73*** 0.86*** 0.89*** 0.67*** 0.31*** -

lherminieri lherminieri lherminieri lherminieri boydi boydi baroli baroli baroli baroli bailloni bailloni nicolae

Allencay Longcay Martinique
St

Barthélémy
Raso Cima Funchal Mclara Selvagem Vila

North
Reunion

South
Reunion

Seychelles

lherminieri Allencay - 0 0.18* -0.09 0.47*** 0.25*** 0.45* 0.5*** 0.46*** 0.47*** 0.69*** 0.68*** 0.41***
lherminieri Longcay 0.08* - 0.11 -0.12 0.42*** 0.19*** 0.45*** 0.44*** 0.39*** 0.41*** 0.69*** 0.65*** 0.37***

lherminieri Martinique 0 0.22*** - -0.24 0.16* -0.11 0.38* 0.39*** 0.42*** 0.43*** 0.78*** 0.65*** 0.61***

lherminieri St
Barthélémy

0.19* 0.35*** -0.13 - -0.28 -0.21 -0.11 -0.07 -0.43 -0.48 0.52*** 0.71*** 0.39*

boydi Raso 0.81*** 0.83*** 0.82*** 0.77*** - -0.11 -0.02 0.29*** 0.37* 0.35*** 0.79*** 0.77*** 0.52***
boydi Cima 0.76*** 0.78*** 0.74*** 0.71*** 0.01 - -0.22 0.15* 0.15* 0.11* 0.66*** 0.7*** 0.42***
baroli Funchal 0.81*** 0.84*** 0.85*** 0.72*** 0.7*** 0.56*** - -0.04 -0.48 -0.3 0.78*** 0.77*** 0.51*
baroli Mclara 0.78*** 0.81*** 0.82*** 0.73*** 0.67*** 0.61*** 0.08 - 0.33*** 0.06 0.76*** 0.75*** 0.48***
baroli Selvagem 0.8*** 0.83*** 0.83*** 0.73*** 0.64*** 0.53*** 0.36 0.10 - 0.14* 0.68*** 0.69*** 0.39*
baroli Vila 0.85*** 0.86*** 0.84*** 0.81*** 0.69*** 0.65*** 0.06 -0.04 0.03 - 0.75*** 0.73*** 0.47***

bailloni North
Reunion

0.93*** 0.93*** 0.89*** 0.91*** 0.87*** 0.84*** 0.89*** 0.85*** 0.88*** 0.89*** - -0.05 0.05

bailloni South
Reunion

0.93*** 0.94*** 0.9*** 0.92*** 0.89*** 0.87*** 0.91*** 0.88*** 0.88*** 0.91*** -0.16 - -0.13

nicolae Seychelles 0.93*** 0.93*** 0.9*** 0.91*** 0.89*** 0.87*** 0.91*** 0.89*** 0.9*** 0.92*** 0.76*** 0.79*** -

(a)
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3.3 | Reconstructing scenario of breeding site 
colonization

A split between ancestral Atlantic and Indian populations (Figures 2 
and 5) occurring 1.76 My ago (95% CI range 0.99–2.60) was inferred 
based on all 9 gene trees (approximately 2.71 My ago (1.17–4.72) 
using only mitochondrial markers). West and east Atlantic ances-
tral populations split around 1.38  My ago (0.78–2.04), baroli and 
boydi split at approximately 0.85 My ago (0.44–1.32), and nicolae 
and bailloni split at 0.70 My ago (0.33–1.13). The *BEAST analysis 
based on all nine markers showed the same topology, though, with 
generally lower divergence times and higher confidence intervals 
(Supplementary Material S8). ABC analyses also supported a similar 
scenario of ancestral population divergence: Best retained topolo-
gies using mtDNA markers and all nine markers suggested, start-
ing from oldest to newest splits, nicolae and boydi diverged from 
a common ancestor (Figure 5, Supplementary Material S5). Then, 
lherminieri diverged from boydi, and baroli diverged from boydi. 
Finally, bailloni diverged from nicolae (Figure 5, Supplementary 
Material S4). Our phylogenetic trees placed the Central Pacific 
taxon dichrous within the Indian clade, thus supporting the puta-
tive scenario of Atlantic lineages diversifying from Indian Ocean 
rather than from Pacific ancestors (Figure 2b,c). Within lherminieri, 
ABC analyses suggested a northerly stepping-stone colonization 
process, from Martinique to the Bahamas (Supplementary Material 
S5). Similarly, the most likely scenario of population divergence 
within baroli was colonization from the Canaries to the more north-
erly Azores.

4  | DISCUSSION

4.1 | Mitonuclear discordance and sex-biased 
dispersal

At the interlineage scale, we observed more genetic structure at 
mitochondrial than at nuclear loci. This dissimilarity has been ob-
served for numerous Procellariiformes species (Gangloff et al., 2013; 
Silva et al., 2015; Welch et al., 2012) and other organisms (Toews & 
Brelsford, 2012; for a review). One likely explanation is a difference 
in the pace of molecular evolution between mitochondrial and nu-
clear markers, with the latter having a slower substitution rate than 
the former, and the former being more polymorphic at the intraspe-
cific scale (see Brown, 1985), at least in birds (Helm-Bychowski, 
1984; Mindel et al., 1996). However, we did observe high levels of 
intralineage diversity for some nuclear loci such as βfib (see also 
Gangloff et al., 2013; Silva et al., 2015), and therefore, the difference 
of structuration cannot be solely attributed to a difference of marker 
variability. We therefore suspect that incomplete lineage sorting and 
retention of ancestral polymorphisms at nuclear loci also contribute. 
Indeed, effective population size of mitochondrial DNA is four times 
smaller than that of nuclear DNA due to uniparental inheritance and 
haploid genome. Lineage sorting will therefore be faster in mtDNA 
than in nuDNA (Funk & Omland, 2003). Incomplete lineage sorting 
is actually thought to be the main cause of mitonuclear discordance 
when associated with a pattern of loss of geographic differentiation 
on nuclear markers (McKay & Zink, 2010; Toews & Brelsford, 2012). 
Mitonuclear discordance, when diagnostic of mitonuclear genetic 

F I G U R E  4   Correlation between genetic and geographic distance. Relationships between genetic (FST/(1 − FST)) and geographic distances. 
Genetic distances were calculated for all concatenated mitochondrial markers (a) and all concatenated nuclear markers (b). Geographic 
distances were calculated as the shortest distances between pairs of populations without crossing land. Black squares: pairs of populations 
from Atlantic and Indian Oceans. Light squares: pairs of population between lherminieri and baroli-boydi (crossed), boydi and baroli (in blue), 
and bailloni and nicolae (in red). Colored circles include only pairs of populations belonging to the same lineage
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incompatibilities, may have a major role in population differentiation 
(Burton & Barreto, 2012; Hill, 2016, 2017, 2018; Ottenburghs, 2018; 
Winker, 2021). We also found patterns suggestive of introgression in 
nuclear markers (e.g., one baroli baring both baroli and nicolae alleles 
at four nuclear markers). Introgressive hybridization has been docu-
mented in shearwaters (Ferrer Obiol et al., 2021; Genovart et al., 
2007; Gómez-Díaz et al., 2009), other Procellariiformes (Brown 
et al., 2010), and other seabirds (Gay et al., 2009; Morris-Pocock 
et al., 2011; Pons et al., 2014). The likelihood of Indian Ocean petrels 
visiting breeding Atlantic Petrels is also supported by recent track-
ing of Pterodroma arminjoniana breeding on Round Island (Mauritius), 
which showed that one individual (of mixed ancestry) foraged around 
South Trinidad Is, off Brazil, and even in the northern Atlantic (Booth 
Jones et al., 2017), although flight capacities of Pterodroma are far 
higher than Puffinus. Introgression can also blur phylogeographic 
signals by mixing alleles from distinct populations and is considered 
as the second main cause of mitonuclear discordance (McKay & 
Zink, 2010). Incomplete lineage sorting and introgression are, how-
ever, difficult to distinguish, and additional unlinked markers would 
be required to disentangle these phenomena. Finally, as the mito-
chondrial markers represent only the female evolutionary history, 
sex-biased dispersal favoring females may alternatively explain why 
the population structure inferred based on nuclear markers conflicts 
with female-inherited mtDNA markers (see Petit & Excoffier, 2009). 
These authors suggested that the markers associated with the most 
dispersing sex should better delimitate species, as they will show 
stronger intraspecific gene flow from colonizing lineages, reducing 
the effects of genetic drift and lowering the probability of fixating 
introgressed alleles. We found that dispersal was indeed stronger in 
females in some populations, particularly in the larger and the puta-
tively ancestral lineage, nicolae. Sex-biased dispersal was, however, 
more uncertain for lherminieri and boydi, while for baroli, dispersal 
was inferred to be male-biased. The sample size for baroli was theo-
retically large enough to robustly detect a bias in FST, FIs, and related-
ness (Goudet et al., 2002). Sex-biased dispersal may therefore have 
further contributed to the observed mitonuclear discordance, but 
only in some lineages.

4.2 | Sequencing artifacts due to mtDNA 
duplication and uncertainties about molecular 
clock rates

We found a duplicated region comprising two copies of the CR 
in our study (Torres et al., 2018), yielding the presence of double 
peaks on chromatograms. The mitochondrial genome of several 
Procellariiformes presents tandem repeats (Abbott et al., 2005; 
Lounsberry et al., 2015). By treating gDNA with an exonuclease 
(which effectively removed all linear DNA), we did not observe tri-
ple or quadruple peaks on chromatograms and thus hypothesized 
that only two copies of the CR sequences were amplified by PCR. 
Therefore, we considered two haplotype phases for all CR se-
quences, assuming that removing all CR sequences would have led TA
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to a loss of information and of statistical power in the analyses. To 
check the robustness of this approach, however, we replicated all 
our analyses using two other data subsets: one in which all ambigu-
ous CR sequences were removed, and another one from which all CR 
sequences were removed. Removing all CR sequences led to a strong 
loss of information, an increase in the estimated differentiation, 
and a decrease in the estimated divergence times (Supplementary 
Material S6). Removing only the ambiguous sequences led to estima-
tions close to the estimations of the complete dataset. This suggests 
that the noise caused by the multiple copies of CR was swamped by 
the signal contained in that marker and so our analyses using all the 
individuals are not significantly biased by these sequences.

Another major issue concerns the choice of a molecular clock 
rate for dating the splitting events. We found a clear hierarchical 
structuration of populations in the Atlantic and Indo-Pacific Oceans, 
which diverged around 1.76–2.71  My ago either using all markers 
or only mtDNA markers, respectively. In contrast, using the same 
taxa (but fewer specimens and only cytb), Austin et al. (2004) dated 
this split at 3.2–3.8 My, and rather suggested that the closure of the 
Isthmus of Panama erected a barrier to gene flow between Indo-
Pacific and Atlantic populations. This difference in divergence times 
might be due to taxon sampling, gene sampling, or the calibration of 
the molecular clock (0.631%/My here, vs. 0.9%/My in Austin et al). 
Actually, using the same value as Austin et al, and only sequences 
from cytb, we found a divergence time of 2.2–3.8  My, thus very 
close to Austin et al. Many substitution rates for both Mt DNA mark-
ers were proposed for petrels, ranging from 0.19%/My (Pacheco 
et al., 2011) to 1.544%/My (Pereira & Baker, 2006) for cox1, and 
from 0.18%/My (Pacheco et al., 2011) to 0.88–0.92%/My (Nunn & 
Stanley, 1998; the latter rate was used by Austin et al), 1.022%/My 
(Pereira & Baker, 2006), and 1.89%/My (Weir & Schluter, 2008) for 
cytb. Using the lowest substitution rates (Pacheco et al., 2011) re-
sulted in a divergence time between Atlantic and Indo-Pacific lin-
eages around 12.8 My ago (Supplementary Material S10), an unlikely 
value given the presence of an ocean between the Americas before 
the Isthmus of Panama erected, despite the fact that Puffinus is dat-
ing back to the Oligocene (Henderson & Gill, 2010). Here, we used 
the substitution rates that were estimated in Nabholz et al. (2016), 

as the most recent review. There are two further arguments against 
Austin et al. (2004) scenario: First, the closure of the Isthmus of 
Panama has been actually dated at 2.8 My ago (O'Dea et al., 2016), 
thus later than Austin et al's scenario; and second, we found that the 
pacific taxon, dichrous, was not ancestral to the Atlantic taxon, but 
branched within the Indian Ocean clade.

4.3 | Inferring key drivers of diversification in the 
small shearwaters

Our inferred date for the split between Indian and Atlantic line-
ages suggests that gene exchanges between Indian and Atlantic 
birds were possible even after the closure of the Isthmus of Panama 
(2.8  Mya; O'Dea et al., 2016). Since African continent is an insur-
mountable barrier for Procellariiformes (Silva et al., 2015), we sug-
gest that this happened through individuals flying off South Africa. 
These shearwaters are tropical or subtropical species (at least cur-
rently): Off South Africa, until 1 My ago, sea surface temperatures 
(SST) were approximately 2℃ higher than today (Bell et al., 2015), 
suggesting that migration between Atlantic and Indian Oceans may 
have remained possible. Since this latter period, a strong decrease 
in SST occurred in both oceans (Bell et al., 2015), and gene flow be-
tween Indian and Atlantic Oceans may thus have ceased as the Indo/
Atlantic colonization corridor implied traversing colder waters. This 
agrees with our estimated time of divergence (1.76 My ago). Once 
the Atlantic birds were isolated from Indo-Pacific populations, dif-
ferentiation started to occur among Atlantic lineages 1.38–1.90 My 
ago (respectively for the 9  markers or only the mtDNA markers). 
This period also corresponds to a further decrease in the SST in the 
Atlantic (Bell et al., 2015), a southward shift of the subtropical front 
and warmer waters in the Southern Ocean (Maiorano et al., 2009), 
and sea ice development in the North extending southward from 
the Arctic to the current Great lakes in the United States (Webb & 
Bartlein, 1992). Cold temperatures, preventing the colonization of 
potential northern breeding sites such as the Azores, may have pro-
moted the colonization of shearwaters over the eastern and western 
sides of the Atlantic (Figure 5). Divergence of baroli from boydi would 

F I G U R E  5   Scenario of colonization 
inferred based on DIYABC. Branch colors 
correspond to ancestral populations, 
dates to mean divergence times of trees 
in My inferred by *BEAST analyses. Each 
bifurcation corresponds to a divergence–
colonization event. The analysis excludes 
the population of Funchal, due to low 
sample size (4 individuals)

1.76 [0.99-2.60]

0.70 [0.33-1.13]

0.85 [0.44-1.32]

1.38 [0.78-2.04]
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have occurred around 0.85–1.26 My ago, a period that corresponds 
to a stabilization of the SST at the current level in the North Atlantic. 
The ice melt may then have allowed northward colonization on both 
sides of the Atlantic, from Cape Verde to the Canaries, Madeira, 
and the Azores, and from the lesser Antilles to the Bahamas and 
Bermuda. Similar timing of divergence has been suggested between 
Calonectris edwardsii (Cape Verde) and C. diomedea (North Atlantic 
and Mediterranean) 0.7–0.9 My ago (Gómez-Díaz et al., 2006) and 
Puffinus olsoni (Canaries) and Puffinus puffinus (North Atlantic) 0.2–
1.0 My (Ramirez et al., 2010). In the Indian Ocean, a reversed pat-
tern of southward colonization occurred, shearwaters colonizing 
from Seychelles (partly continental in origin, Seychelles separated 
from India about 64 Mya; Plummer & Belle, 1995) to Réunion 0.70–
1.01  My ago, precisely at the time strong volcanic activity ended 
on Réunion (Gillot & Nativel, 1989). Mauritius was probably colo-
nized long before (Mauritius age: 8  My; McDougall & Chamalaun, 
1969), then Rodrigues and Réunion (both about the same age, 2 My; 
McDougall, 1971), but shearwaters are now extinct on Mauritius and 
Rodrigues, following human colonization since the 17th century, so 
no sample is available. The southward movement in Indian Ocean 
was likely related to availability of volcanic islands that eventually 
emerged in a southward direction.

Dispersal limitation has been suggested as a speciation mech-
anism in seabirds. However, isolation by distance within each lin-
eage was not detected here, since Mantel tests showed a strong 
correlation between geographic and genetic distances only among 
lineages, that is, at large scale. Therefore, distance alone could not 
be a factor of population divergence at this smaller scale. Rather, 
we argue that sea temperature could be the most important factor 
of divergence in our case, even at this scale. Seabirds indeed de-
pend on both sea and the islands where they breed; thus, SST has 
strong impacts on their phenology, breeding, survival, and abun-
dance (Sydeman et al., 2012). Even foraging ecology, which strongly 
depends on SST, may be an important process shaping divergence 
among lineages, as segregation of foraging areas among populations 
is an important factor of differentiation among seabirds (Friesen, 
2015; Friesen et al., 2007), shearwaters (Genovart et al., 2007; 
Gómez-Díaz et al., 2006), petrels (Gangloff et al., 2013; Welch et al., 
2012), storm-petrels (Deane, 2013; Smith et al., 2007), and alba-
trosses (Alderman et al., 2005; Burg & Croxall, 2001). Assessment 
of nonbreeding and breeding distributions at sea of the little shear-
waters complex revealed that all three Atlantic taxa show rather 
separated foraging and wintering areas (Ramos et al., 2021), and 
further suggest that boydi rather than lherminieri was ancestral in 
the North Atlantic. Indeed, boydi is more flexible in its foraging eco-
logical niche, suggesting ancestral behavior (Zajková et al., 2017; 
see map in Ramos et al., 2021). In addition, over the last My, SST 
oscillations gradually increased in amplitude with up to five degree 
difference in range (Bell et al., 2015; Herbert et al., 2011), influenc-
ing marine productivity (Martínez-Garcia et al., 2009), prey species 
diversity (Yasuhara & Cronin, 2008), atmospheric circulation (Chang 
et al., 2000), and sea level (e.g., in Atlantic Nascimento et al., 2011; 
Zazo et al., 2010). It is likely that these oscillations also contributed 

to divergence in the North Atlantic, and we suggest that significant 
Tajima's D tests found in almost half of the populations studied rep-
resent traces of past bottlenecks and population expansions as it 
has already been shown in other taxa (Ramakrishnan et al., 2005; 
Weber et al., 2004; Zhu et al., 2006). Small black-and-white shear-
waters have shown a very recent radiation speciation event, with 
not less than 13  species radiating in just 1.46  million years since 
P.  puffinus, P.  assimilis, and P.  newelli clades are either embedded 
in lherminieri or bailloni clades. All these species are rather coastal 
shearwaters (compared with more pelagic species such as the larger 
shearwaters), and such high rate or speciation may be the result 
of the high climatic oscillation that occurred over the last 2 million 
years, which may have favored high rates of colonization and ex-
tinction on coastal islands.

Our study reveals, in a marine taxon, high levels of genetic dif-
ferentiation, both between and within oceans, governed mainly by 
oceanographic parameters, SST in particular. Other marine organ-
isms, however, may not show high interocean structure (e.g., pe-
lagic fishes Díaz-Jaimes et al., 2010; Ely et al., 2005), nor intraocean 
structure (Nomura et al., 2014; Taguchi et al., 2015). But gene flow 
among marine mammals is influenced by SST, driving structuration 
between ocean basins and among breeding areas (Alexander et al., 
2016; Fontaine et al., 2014; Jackson et al., 2014; Richard et al., 2018; 
Viricel & Rosel, 2014), as do sea turtles (Dutton et al., 1999). Finally, 
organisms with a pelagic larval phase show globally low structur-
ation (Kelly & Palumbi, 2010), but when detected, structuration is 
often linked to sea temperature (Benestan et al., 2015; Teske et al., 
2005, 2018). Therefore, SST appears as a generic driver of diversi-
fication in many marine organisms, not only seabirds, though pat-
terns of structuration are generally weaker (Bowen et al., 2016). 
We suggest that the reason for this discrepancy lies in the fact that 
seabirds are central place foragers; that is, they still depend on ter-
restrial habitats for breeding, the latter being impacted for instance 
by glaciations. They are therefore highly sensitive to any latitudinal 
change of SST in comparison with island distribution, which acts as 
a constraint since an optimal area in regard to SST may lack any is-
land for breeding. We may thus expect marine organisms with low 
dispersal abilities to show patterns of structuration and divergence 
similar to the patterns found on shearwaters. Interestingly, timing 
of population divergence between Atlantic and Indian Ocean lin-
eages and within the Atlantic in the seahorse Hippocampus “kuda 
complex” (Floeter et al., 2007) fits to our estimates. This species has 
no planktonic larval duration (Lourie et al., 2005), and long disper-
sal events are considered rare and implying a few individuals (Teske 
et al., 2005). Moreover, Cape Agulhas is known to be a phylogeo-
graphic break among several coastal species, due to the difference 
in currents and sea temperatures between the two oceans (review 
in Teske et al., 2011).

In this small shearwater complex, geographic barriers and/or 
isolation by distance may have been a major driver of differentia-
tion at large scale (typically, between oceans), while SST has been 
a more important driver at smaller scale (within oceans). However, 
since these seabirds depend on the geographic distribution of 
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their breeding islands and because they are relatively “poor” fly-
ers, island distribution becomes a major constraint resulting in 
the present geographic structure, promoting local adaptation to 
small-scale ecological constraints and reducing gene flow. Strict 
marine organisms can disperse far more or alternatively are un-
constrained by island distribution, and thus show much less geo-
graphic structure within taxa. The terrestrial organisms tend 
to disperse far less, and isolation by distance tends to be a main 
driver of population differentiation (Meirmans, 2012; Vekemans & 
Hardy, 2004). Indeed, terrestrial organisms, such as lizards or birds 
in Macaronesia (Almalki et al., 2017; Brehm et al., 2003), geckos in 
Cape Verde (Arnold et al., 2008), or birds in America (Patel et al., 
2011), have revealed strong splits between islands with no shared 
haplotypes for the same mitochondrial markers. Therefore, petrels 
and shearwaters present an interesting case study where diversi-
fication processes rely more (or at least equally) on ecological fac-
tors, in particular sea surface temperature, rather than distance or 
continental barriers, in contrast to either “true” marine organisms 
or terrestrial organisms.
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