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A B S T R A C T

The paper is the numerical counterpart of the experimental investigation on the fluid–structure interaction (FSI)
of a wing with two degrees of freedom (DOF), i.e., pitch and heave. Wood et al. (2020) has provided the
experimental basis by studying the flutter stability of an elastically mounted straight wing (NACA 0012 airfoil) in
a wind tunnel considering the transitional Reynolds number regime. Three different configurations with varying
distances between the fixed elastic axis and the variable center of gravity were considered. Additional free-
oscillation tests in still air were carried out in order to make the mechanical properties of the setup available for
the simulations. The present contribution describes the numerical methodology applied consisting of a parti-
tioned coupled solver combining eddy-resolving large-eddy simulations on the fluid side with a solver for the
governing equations of the translation and rotation of the rigid wing. In order to prove the parameters provided
by the experiment and to determine the pure material damping coefficients not available from the measure-
ments, simulations of 1-DOF free-oscillation tests in still air are carried out and analyzed. For validation purposes
the corresponding 2-DOF free-oscillation tests in still air are assessed and a good agreement with the experi-
mental data is achieved. Finally, the wing exposed to a constant free-stream of varying strength is analyzed
leading to the characterization of complex instantaneous FSI phenomena such as limit-cycle oscillations and
flutter. Under full utilization of the supplementary measurements the predictions are evaluated in detail.
Contrary to the experiments the simulations provide the entire fluid data and unique data for the translatory and
rotatory movement allowing to investigate the causes of the observed phenomena. Both limit-cycle oscillations
and flutter can be reproduced by the coupled FSI predictions.

1. Introduction

Complementary experimental and numerical investigations are of
fundamental importance in order to investigate multi-physics problems.
Combining the advantages of both methods leads to a better under-
standing of complex physical processes such as fluid–structure inter-
actions (FSI). The present study is concerned with measurements and
numerical predictions of the oscillation behavior of an elastically
mounted airfoil in the transitional Reynolds number regime. Typical
technical examples that fall into this Re range are unmanned air ve-
hicles including Micro Air Vehicles (MAV) (Shyy et al., 1999; Mueller,
2001; Lian et al., 2003). Here, specific flow phenomena such as laminar
separation bubbles (LSB) and transition occur in combination with os-
cillations of the structure rendering this a very challenging case
(Breuer, 2018) especially for numerical simulations.

For the transitional Reynolds number regime considered a literature
review on experimental and numerical investigations of oscillating
airfoils was presented in the study by Wood et al. (2020) and will not be
repeated here. The setup experimentally investigated in Wood et al.
(2020) is based on a rigid NACA 0012 airfoil elastically mounted in a
wind tunnel exhibiting two degrees of freedom, i.e., heave and pitch.
Based on this setup, three configurations with the same elastic axis and
a variable center of gravity were taken into account in order to fully
expose the dynamic response of the oscillating system and to discuss its
stability: In case I the position of the center of gravity (c.o.g.) ap-
proximately coincides with the location of the elastic axis (e.a.). In case
II the c.o.g is positioned towards the leading edge and in case III it is
shifted close to the trailing edge. Based on one degree of freedom (1-
DOF) free-oscillation tests in still air, the relevant parameters of each
case (mass, mass moment of inertia, spring stiffness and total damping)
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were determined. Afterwards, the 2-DOF system (heave and pitch) was
investigated in still air and under varying free-stream velocities. For the
transitional regime between = ×Re 9. 66 103 and ×8.77 104, complex
aeroelastic phenomena such as limit-cycle oscillations with small am-
plitudes (denoted SAO) or with large amplitudes (LAO) and classic
airfoil flutter occurred. The three configurations (cases I, II and III)
exhibit different motion patterns strongly depending on Re. However,
as expected from the analytical aeroelastic theory, case II is the most
stable setup preventing flutter up to = ×Re 8. 77 104 and case III the
most unstable one with flutter already detected at = ×Re 3. 39 104.
The associated frequencies and their Strouhal numbers measured by the
high-speed three-dimensional digital-image correlation technique were
associated with either fluid or structure phenomena. However, in spe-
cific cases the origin of the driving mechanism of the airfoil oscillations
could not be attributed based on the experimental measurements. These
shall be investigated in more detail by the numerical predictions pre-
sented in this paper.

For this purpose, fully coupled multi-physics simulations relying on
eddy-resolving methods are utilized in order to get a deeper insight into
the challenging FSI problem. The numerical simulations benefit from
the following advantages compared to the experiment: First, the three-
dimensional fluid and structure data are simultaneously obtained al-
lowing a direct correlation between particular structural oscillations
and the associated fluid phenomenon such as vortex shedding (De
Nayer et al., 2018). Second, the spatio-temporal resolution in the si-
mulations is considerably higher than in the experiments. Third, not
only velocity components are available but also the pressure distribu-
tion, which is essential to locate vortices and to predict of the fluid
forces acting on the airfoil. In the following, the FSI problem is simu-
lated using a partitioned loose coupling approach for the fluid and
structure problem. The 3D Navier–Stokes equations are solved using the
modern large-eddy simulation (LES) technique to predict the air flow.
The dynamics of heave and pitch of the rigid airfoil are captured by
Newton’s second law. After describing the investigated setup in Section
2, the numerical methodology including the FSI coupling procedure is
outlined in Section 3. All required parameters to solve the equations of
motion for the 2-DOF system (heave and pitch) are determined and
further optimized based on the one degree of freedom (1-DOF) free-
oscillation tests in still air according to Wood et al. (2020). Finally, the
coupled system is validated based on 2-DOFs free-oscillation tests in
still air. The entire parameterization, computational setup and valida-
tion are provided in Section 4. The main part of this paper deals with
the fully coupled simulations of the configurations I and III at several Re
including a detailed comparison with the experimental data in Section
5.

2. Description of the FSI case

An elastically mounted wing with two degrees of freedom (trans-
lation h: heave and rotation : pitch) exposed to a constant free-stream
velocityU and vertical gravity =g g ez is considered as sketched in
Fig. 1. Since the configuration was already described in detail in Wood
et al. (2020), only the most important features are provided here. The
rigid wing is unswept and built up on the basis of a NACA 0012 profile
with the chord length c. It is allowed to rotate around the elastic axis
which is located at a distance of =c c0.417E from the leading edge. The
second degree of freedom is the vertical translation. It is assumed that
the mechanical system can be described for both translation and rota-
tion by a classical spring-mass-damper system. For this purpose, six
mechanical properties are required. These are the mass mw, the mass
moment of inertia I E regarding the elastic axis, the total bending
stiffnesses kh, the total torsional stiffness k , the material damping
parameter bh of the heave motion and the material damping parameter
b of the pitch motion. The corresponding values and their determi-
nation will be given in Section 4.2. The last parameter of interest is the
distance xEG between the elastic axis E and the center of gravity (c.o.g.,

G). A variation of xEG by different mass distributions along the airfoil
chord significantly influences the flutter stability as shown by Wood
et al. (2020). The three cases (I–III) studied will be defined in Section
4.2.

Concerning the fluid flow the temperature of the air is assumed to
be constant ( =T 288 K). The density and dynamic viscosity are set to

= 1.225air kg m−3 and = ×µ 18.27 10air
6 Pa s. Except for the addi-

tional test cases studying the movement of the airfoil in still air (see
Section 4.3) a constant free-stream velocityU is imposed at the inlet as
summarized in Table 1. The Reynolds number is defined by

= U c µRe /air air. For the free-oscillation 1-DOF and 2-DOF cases in
still air U is set to zero.

3. Numerical methodology

In order to simulate the present FSI problem, a numerical metho-
dology based on a partitioned coupling approach is chosen, i.e., the
fluid and the structure are solved separately. The air flow is predicted
by solving the incompressible and isothermal Navier–Stokes equations
by a modern eddy-resolving simulation technique in the Arbitrary
Lagrangian–Eulerian (ALE) frame of reference, whereas the dynamics of
the rigid airfoil is captured by the solution of Newton’s second law for a
rigid body taking the translation and rotation into account.

3.1. Computational fluid dynamics (CFD)

The flow is computed by an enhanced version of the in–house code
FASTEST-3D (Durst and Schäfer, 1996), which is a fully parallelized
finite-volume Navier–Stokes solver. The governing equations are dis-
cretized on a curvilinear, block-structured body-fitted grid with a col-
located variable arrangement. The spatial discretization relies on the
mid-point rule and a linear interpolation of the cell-face variables. The
solver exploits a predictor–corrector scheme (projection method) of
second-order accuracy in space and time. The momentum equations are
advanced in time by an explicit three substeps low-storage Runge–Kutta
scheme (predictor step). The predicted velocities are then updated
during the corrector step based on the solution of a Poisson equation for
the pressure correction also updating the pressure. At the end the ve-
locities fulfill the mass conservation equation with a predefined

Fig. 1. Schematic representation of the investigated FSI case with all relevant
parameters and notations (Wood et al., 2020).

Table 1
Free-stream velocities and Reynolds numbers.

Case U m s[ ]1 Re

I, III 1.44 ×9.66 103

I, III 2.46 ×1.65 104

I, III 3.56 ×2.39 104

I, III 4.56 ×3.06 104

III 5.06 ×3.39 104

I 5.37 ×3.60 104
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accuracy (Breuer et al., 2012). Since the Reynolds number of the pre-
sent case (based on the chord of the airfoil) varies in the range

× ×9.66 10 Re 3.60 103 4, the flow is in the transitional regime.
Therefore, turbulence is taken into account by the large-eddy simula-
tion (LES) technique (Breuer, 2002), i.e., the large scales of the turbu-
lent flow field are resolved directly, whereas the small scales are
modeled by a subgrid-scale (SGS) model. In the simulations presented
below the standard Smagorinsky SGS model (Smagorinsky, 1963) with
a well established constant =C 0.1S and van-Driest damping near solid
walls is applied. In order to justify this choice, additional simulations
based on the dynamic variant of the Smagorinsky model suggested by
Germano et al. (1991) and Lilly (1992) were carried out. Only marginal
differences between the predictions with the fixed and the dynamic
version of the Smagorinsky model were detected. The reason for this
minor influence of the subgrid-scale model is attributed to the low
Reynolds numbers considered, where turbulence partially plays a role
solely in the wake of the airfoil.

For FSI applications the semi-implicit predictor–corrector scheme
was extended to a partitioned coupling scheme which considers the
specific needs of LES and FSI, i.e., high temporal resolution and strong
stability at high fluid-to-structure density ratios (Breuer et al., 2012). In
this context the temporally varying domain is taken into account by the
Arbitrary Lagrangian–Eulerian formulation. In the present FSI case the
oscillating airfoil will undergo significant translational movements and
particularly large rotations. For instance, the flutter instability in case III
is simulated up to a heave of > ±z c/ 0.5max and a pitch of

> ± °60max . Therefore, in order to adapt the fluid mesh to the new
position of the airfoil, the hybrid adaption method recently proposed by
Sen et al. (2017) and especially developed for FSI problems relying on
LES is applied. It is based on a combination of an inverse distance
weighting (IDW) interpolation for the block boundaries of the block-
structured grid and a three-dimensional transfinite interpolation (TFI)
for the inner mesh. Taking the moving nodes of the FSI interface into
account, this hybrid technique delivers a deformed grid of high quality
as will be shown below: The orthogonality and aspect ratio of the
control volumes near the movable airfoil remain nearly unchanged,
which is essential for LES. Note that the present case of the flow around
a rigid object could also be simulated based on a grid which is moved
and/or rotated as a whole. Nevertheless, this option was not taken into
account here, since this case also serves as a further validation study for
the developed FSI-LES simulation methodology targeting flexible
structures.

In the last decade this solver was intensively enhanced, tested and
validated relying on complementary experimental and numerical pure
CFD or FSI applications (Breuer et al., 2012; Kalmbach and Breuer,
2013; De Nayer et al., 2014; De Nayer and Breuer, 2014; Wood et al.,
2016; De Nayer et al., 2018; De Nayer et al., 2018; Apostolatos et al.,
2019).

3.2. Computational structure dynamics (CSD)

In the present FSI application the airfoil is considered as a rigid body
(see Fig. 1), i.e., it does not suffer any deformations. Therefore, the
response of the structure to the fluid occurs only in form of displace-
ments of the entire structure. In order to solve the dynamics of the
airfoil experiencing fluid forces and moments, a solver describing the
movement of the rigid body is applied. For this purpose, Newton’s
second law is solved in the Cartesian basis =R x y z( , , )0 for the trans-
lational =X X X X( , , )1 2 3 and rotational = ( , , )1 2 3 motions, re-
spectively. Leroyer and Visonneau (2005) wrote these equations in the
form of a coupled system for the general case considering a moving
deformable body. The equations for the translational motion are
written at the center of gravity denoted c.o.g. or G by Wood et al.
(2020), whereas the equations for the rotation are written at the elastic
axis (e.a. or E). Based on the notations used in Wood et al. (2020) the

coupled system reads:
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with the inertial source term:
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and the source terms induced by a body deformation or a rigid rotation:

= + × + × ×S m a G R v G R EG[ ( , ) 2 ( , ) ( )],R w 1 1

** (3)

= × +S EP a P R dV v P R EP dV
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** (4)

mw and Iij
E are the mass and the mass moment of inertia regarding the

elastic axis E. The triplet x y z( , , )EG EG EG contains the components of the
vector from the elastic axis to the center of gravity G. bt i, and br i, are the
material damping coefficients for the translational and rotational mo-
tion. kt i, and kr i, represent the translational and rotational stiffness. FCFD
describes the fluid forces and MCFD denotes the moments regarding the
elastic axis E. s is the density of the structure. v P R( , )1 and a P R( , )1
represent the velocity and the acceleration vectors of a material point P
of the airfoil in R1, which is a local Cartesian coordinate system (CCS)
attached to the airfoil on the elastic axis. V is the structural volume
considered.

The coupled system of Leroyer and Visonneau (2005) is now sim-
plified for the current problem. A rigid airfoil is assumed, whose local
CCS (R1) is fixed on the elastic axis. Neither the c.o.g. G nor the material
point P change their position with reference to the body-fixed CCS R1,
when the rigid body is deflected. Therefore, the velocity vector v and
the acceleration vector a in Eqs. (3) and (4) are zero and the terms
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tagged with ** vanish. Moreover, due to its perpendicular axes, the non-
diagonal moments of inertia vanish. Consequently, the terms in Eq. (2)
marked with * are zero. Moreover, the setup has only 2-DOF, i.e.,
translation in the X3-direction and rotation around the X2-axis. Hence 1
and 3 are irrelevant and the inertial source term SI vanishes com-
pletely. Introducing the notations = =X z,3 2 , = =b b k k,t h t h, 3 , 3
and =I IE E

22 , the coupled system is simplified as follow:

+ + =

+ + =

m z b z k z x m F S

I b k x m z M

¨ ¨ ,

¨ ¨ .

w h h EG w R

E
EG w

***

CFD, 3 , 3

***

CFD, 2
(5)

The term *** is the so-called “static moment” often used in the literature
but somehow misleading. In the present case it is the product of the
mass mw and the horizontal distance of the elastic axis E and the center
of gravity G. In case that E coincides with G, the static moment dis-
appears.

It is interesting to remark that this coupled system slightly differs
from the classic system typically used for 2-DOF flutter investigations
provided for example by Fung (2008): The translational equation of
motion in vertical direction of a two-degrees-of-freedom airfoil section
includes the additional term SR, 3 not appearing in Fung’s equations. In
the present case, the term SR, 3 reads:

=S m z t( ).R w EG, 3
2 (6)

A possible explanation why this term was neglected in Fung (2008) and
others is the fact that the vertical distance zEG between E and G remains
small for small angles of rotation. Nevertheless, in the present study the
full system including SR, 3 is taken into account for the sake of com-
pleteness and correctness.

In order to avoid singularities during the computation of the rota-
tion, the Euler angles are replaced by quaternions as used in Leroyer and
Visonneau (2005).

Note that in the present partitioned approach the time-step size is
the same for the fluid and structure solvers. To get the solution of the
motion at the new time-step +n 1, the coupled system in Eq. (5) is
solved sequentially, since the time-step used by LES is very small. The
terms S ¨ and S z̈ are moved to the right-hand side and taken from the
previous time-step n:

+ + = + +
+ + = +

+ + + +

+ + + +

m z b z k z F x m z m
I b k M x m z
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¨ ¨ .

w
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w
n

EG
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w
n

E n n n n
EG
n

w
n

1 1 1
CFD, 3

1 2

1 1 1
CFD, 2

1 (7)

The temporal discretization of the system of Eqs. (7) is implemented by
using the standard Newmark method of second-order accuracy in time
(Newmark, 1959) (Newmark parameters set to = 0.25 and = 0.5).

3.3. Coupling procedure

Since the present numerical methodology relies on a standard par-
titioned approach (Breuer et al., 2012), the fluid forces and moments
acting on the rigid body have to be transferred to the solver describing
the movement of the rigid body. The fluid forces computed at the center
of each cell face of the FSI interface are composed of the fluid pressure
and the shear forces on the wall element. The resulting fluid force
acting on the airfoil FCFD and the corresponding moment MCFD are
transferred to the structure solver. Note that MCFD is computed with
reference to the elastic axis E. In the other direction, from the structure
solver to the fluid solver, the structural displacement of the surface of
the airfoil representing the FSI interface obtained by the superposition
of translation and rotation around E is directly imposed at each fluid
mesh nodes of the FSI interface. These displacements at the FSI inter-
face between fluid and structure are the starting point of the hybrid grid
adaption technique transferring the movement of the interface to the
inner CFD grid as explained above.

As previously mentioned the coupling scheme is standard, i.e., one
or several FSI sub-iterations can be afforded, leading to a loose or strong
FSI coupling, respectively. Since in the current application the ratio of
the structure density to the fluid density is larger than 100, the added-
mass effect (i.e., the additional inertia added to a moving body un-
dergoing a relative velocity in a fluid) is negligible (Causin et al., 2005;
Farhat et al., 2006). A loose coupling FSI scheme is sufficient and de-
livers quasi exact results (error below 0.2% on the extrema) in com-
parison to the results obtained by a strong coupling FSI scheme. The
latter works without any underrelaxation of the forces/moments or the
displacement, and applies a first-order estimation of the displacement
at the beginning of each time-step. Since the loose coupling scheme
saves a huge amount of CPU-time, it is preferred here.

4. Numerical setup of the system

4.1. CFD

Starting with the CFD setup, the computational domain for the fluid
illustrated in Fig. 2a is characterized by the symmetric NACA 0012
airfoil exhibiting a chord length =c 0.1 m located at its center. The inlet
as well as outlet are highlighted in blue and green, respectively. At the
inlet a constant free-stream velocity U is assumed, which is sufficient
here since the experimentally determined turbulence intensity is low Tu

<(Tu 0.5%) (Wood et al., 2020). At the outlet a convective outflow
boundary condition is prescribed with the convection velocity set toU .
Symmetry boundary conditions are applied at the top and bottom, re-
spectively. Furthermore, in spanwise direction periodic boundary con-
ditions are applied. This choice and the associated specification of the
extent of the flow domain is justified by previous investigations of

Fig. 2. CFD setup.
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similar flow cases, c.f. Breuer (2018) and the references cited therein.
Following the work of Almutari (2011) the wake length is specified as

=w c5 , the semi-cylinder’s radius is =r c7.2 and the spanwise length is
=l c0.25c .
The C-type mesh used in the simulations is shown in Fig. 2(b)–(c). It

consists of 16 blocks with a total of 1,394,400 control volumes (CVs)
and 1,507,188 nodes. 60 CVs are equidistantly distributed in spanwise
direction. The distance between the first cell center and the wall in
wall-normal direction is about ×6.1 10 m5 and the stretching factor of
the geometrical series applied in wall-normal direction is =q 1.09s .
With this setup the dimensionless wall distance at the smallest Reynolds
number of = ×Re 9.66 103 is smaller than one. It increases continuously
with increasing Reynolds number. Since the dimensionless wall dis-
tance remains in the range of +y0 5 at the Reynolds numbers
considered, the viscous sublayer can be resolved and thus no-slip con-
ditions are used.

As mentioned before the mesh is adapted by the hybrid IDW-TFI
remeshing technique. An illustration of the method is presented in
Fig. 3. The block boundaries (blue lines in Fig. 3b) are adjusted by the
IDW method, whereas the inner grid points of each block (red lines) are
adapted by the highly efficient TFI algorithm. In order to control the
deformation of the grid, one set of parameters is required: A kind of
stiffness for the grid deformation near the fixed outer boundary and the
moving inner surface of the airfoil ( fixed and moving) (Sen et al., 2017).
Here, fixed is set to 1 and moving to 10 4. A deformed mesh for the
extreme case of a rotation by 45 degrees is exemplary depicted in

Fig. 3c with its associated skew quality metric (Fig. 3d) defined in
Knupp (2003). It is obvious that the deformation of the grid is pushed
away from the rigid structure and that the mesh near the moving
boundaries translates and rotates as a block with the airfoil. Values of
fskew close to unity denote a very high orthogonality of the grid. Thus,
the high grid quality regarding the grid point distribution and the or-
thogonality is maintained in the direct vicinity and the intermediate
region around the airfoil. Note that the movement of the airfoil en-
countered during the investigations on airfoil oscillations are typically
much more moderate. Hence, the example should solely demonstrate
the capabilities of the grid adaption technique applied.

4.2. CSD

Wood et al. (2020) investigated three different configurations for
the present setup:

• Case I: G approximately coincides with E, implying m x 0w EG and
S 0R, 3

I . Moreover, the two equations of motion (7) are uncoupled;
• Case II: G is located upstream of E, leading to a negative static
moment <m x 0w EG and S 0R, 3

II ;
• Case III: G is placed downstream of E, generating a positive static
moment >m x 0w EG and S 0R, 3

III .

In order to correctly describe the dynamics of the present elastically
mounted airfoil, the parameters m b k I, , ,w h h

E , b and k of the system

Fig. 3. Illustration of the hybrid IDW-TFI mesh adaption (Sen et al., 2017) for the present computational domain. In the vicinity of the airfoil fskew is close to the
optimum.
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(7) have to be set. Furthermore, the position of the center of gravity G
has to be determined. Table 2 summarizes these parameters determined
by Wood et al. (2020) based on their experimental data.

It is important to note that the damping coefficients bh
tot1 DOF, and

b tot1 DOF, and the associated damping ratios Dh
tot1 DOF,

=b D k m( 2 )h
tot

h
tot

h w
1 DOF, 1 DOF, and D tot1 DOF, =b( tot1 DOF,

D k I2 )tot E1 DOF, of Wood et al. (2020) cannot be directly used for the
parameterization of the structure. Indeed, since the experiments were
not carried out in vacuum, these values include the structural damping,
but also the damping induced by the surrounding air. The structure
solver only requires the coefficients of the material damping in each
degree of freedom. In order to determine these values, a series of 1-DOF
free-oscillation simulations in still air is conducted for the vertical
translation and the rotation around the y-axis. The numerical results are
then compared with the experimental signals and the damping coeffi-
cients are systematically reduced until the decay of the motion

Table 2
Main parameters of all three configurations of the experimental setup (Wood et al., 2020).

Parameter Symbol Unit Case I Case II Case III

Distance between c.o.g. and e.a. x c/EG – ≈0 0.022 + 0.059
Mass moment of inertia based on f 1 DOF I E kg m2 ×1.399 10 4 ×1.73 10 4 ×1.73 10 4

Mass of dynamic system mw kg 0.33521 0.33521 0.33521
Bending stiffness kh N/m 698 698 698
Torsional stiffness k Nm/rad 0.3832 0.3832 0.3832
Total translational damping in still air bh

tot1 DOF, Ns/m ×9.72 10 2 8.57 × 10 2 16.28 × 10 2

Total rotational damping in still air b tot1 DOF, Nm/s ×3.70 10 5 ×3.94 10 5 ×4.54 10 5

Total translational damping ratio in still air Dh
tot1 DOF, – ×3.18 10 3 ×2.80 10 3 ×5.32 10 3

Total rotational damping ratio in still air D tot1 DOF, – ×2.53 10 3 ×2.42 10 3 ×2.79 10 3

Table 3
Numerically predicted material damping ratios for all three cases.

Parameter Symbol Unit Value

Translational material damping ratio Dh
1 DOF – ×2.30 10 3

Rotational material damping ratio D1 DOF – ×1.15 10 3

Fig. 4. Decay of motion (heave): Time evolution of the vertical displacement at the monitoring point Pw of numerical 1-DOF free-oscillation tests in still air compared
with the experiments of Wood et al. (2020).
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Fig. 5. Decay of motion (pitch): Time evolution of the vertical displacement at the monitoring point Pw of numerical 1-DOF free-oscillation tests in still air compared
with the experiments of Wood et al. (2020).

Table 4
Predicted and measured heave and pitch frequencies with their relative error in case of the 1-DOF free-oscillation cases.

Parameter Symbol Unit Case I Case II Case III

x 0EG <x 0EG >x 0EG

Heave frequency sim. fh
1-DOF, sim, exp. values Hz 7.21 7.21 7.21

fh
1-DOF, sim, updated values 7.25 7.25 7.25

exp. fh
1 DOF,exp 7.26 7.26 7.26

Relative error fh % 0.14 0.14 0.14

Pitch frequency sim. f 1-DOF, sim, exp. values Hz 8.28 7.45 7.45

f 1-DOF, sim, updated values 8.33 7.50 7.50

exp. f 1-DOF, exp 8.33 7.49 7.49

Relative error f % 0.00 0.13 0.13

Table 5
Updated main parameters.

Parameter Symbol Unit Case I Case II Case III

x 0EG <x 0EG >x 0EG

Distance between c.o.g. and e.a. x c/EG – 0.006 −0.010 +0.059
Mass moment of inertia based on f 1 DOF I E kg m2 ×1.381 10 4 ×1.708 10 4 ×1.708 10 4

Bending stiffness kh N/m 705 705 705
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coincides with the measurements. The outcome of this procedure is
summarized in Table 3 providing the material damping ratios de-
termined for the computational setup. Note that a unique set of
damping ratios is chosen for cases I to III, since the spring system is the
same for all three configurations (see explanations below). Moreover,
the position of the center of gravity G does not play a role for these 1-
DOF free-oscillation simulations. Therefore, the experimental values of
xEG are applied in these simulations.

In Figs. 4 and 5 the simulated vertical displacements of the mon-
itoring point Pw of Wood et al. (2020) are compared with the experi-
mental data for each case and each degree of freedom. The monitoring
point Pw is located on the surface of the airfoil in a distance of c0.7 from
the leading edge (see Fig. 1). In order to compute the vertical dis-
placement at Pw, the heave zE and the pitch angle are combined by the
following trigonometric relation = + ×z z 2.8524EPw

10 sin (0.1254 )2 . For these simulations the parameters determined
by Wood et al. (2020) (see Table 2) and the newly determined material
damping ratios summarized in Table 3 are used in a first step. Con-
sidering the decay of the displacement zPw of the heave and pitch, a
quasi perfect fit is reached for case I and II with these parameters. In
case III a close accordance is achieved for the pitch, but discrepancies
are observed in the decay of the heave. A much stronger damping oc-
curs in the experiment than in the simulation. This issue was already
mentioned in Wood et al. (2020). While the total damping ratios of the
pitch motions of the three cases were found to be similar with maximal
deviations of about 10%, the values of the heave motion behave dif-
ferently. For case I and II again comparable damping ratios were de-
termined. However, for case III the total damping ratio of the heave
motion was about two times larger than in the other two configurations
The first idea was to attribute the increase of the total damping ratio to
an increased damping by the surrounding fluid. This possibility was
investigated in the present simulations and could be excluded. Since the
experiment (Wood et al., 2020) was reproducible and thus an error can
be excluded, presently no final explanation can be provided. One option
is that due to larger spring deformations in this case, some elastic dis-
sipation occurs. Nevertheless, a unique set of damping ratios is applied
in the simulations explaining the deviations observed.

Comparing the frequencies of the predicted displacements zPw with
the experimental data, a good agreement is found in all cases for both
DOF. However, small deviations still exist (see Table 4). The predicted
heave frequency is slightly too low, whereas the opposite is true for the
pitch frequency. To reduce this error, the bending stiffness kh and the

Fig. 6. Decay of motion of the coupled system: Time evolution of the vertical displacement at the monitoring point Pw of 2-DOF free-oscillation numerical tests in still
air compared with the experiments of Wood et al. (2020).

Table 6
Initial vertical force Fz and moment My

E for the numerical 2-DOF free-oscillation
tests in still air.

Parameter Symbol Unit Case I Case II Case III

x 0EG <x 0EG >x 0EG

Initial vertical
force

Fz N ×7.15 10 1 ×3.00 10 1 ×1.00 10 2

Initial vertical
moment

My
E Nm ×9.00 10 3 ×1.00 10 3 ×2.50 10 2
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mass moment of inertia I E are selected to be slightly adjusted. Indeed,
in the system of equations describing the motion the experimental va-
lues of the mass mw and the torsional stiffness k are considered to be
exact, since the mass can be easily determined and the stiffness is
provided by the manufacturer. Thus, the bending stiffness kh and the
mass moment of inertia I E are obvious parameters to be adjusted to
achieve a better match of the frequencies. The values are optimized to
reduce the error below 0.5 %. The corresponding values found by this
procedure are summarized in Table 5. The bending stiffness k is
marginally increased by about 1% and the mass moment of inertia I E is
decreased by about 1.3 %. The vertical displacements at Pw predicted
with this slightly adjusted set of parameters are also shown in Figs. 4
and 5 for each case. Obviously the agreement between the predicted
results and the experimental data is further enhanced. Consequently,
for both the validation study in Section 4.3 and the main results in
Section 5 these improved parameters are applied.

4.3. Validation based on 2-DOF free-oscillation tests in still air

In order to validate the numerical setup, particularly the material
damping coefficients evaluated in Section 4.2, a series of 2-DOF free-
oscillation tests in still air is carried out for each case. As before, the
predicted vertical displacements are compared with the experimental
data at the same monitoring point Pw in Fig. 6. For each case the vertical
displacement contains the superposition of the oscillation associated
with the heave and the oscillation associated with the pitch. Since their
frequencies fh

2 DOF and f 2 DOF are not equal mathematically, the su-
perposition of both quasi-periodic signals produces constructive and
destructive interferences with a resulting frequency called the “beat
frequency” =f f fhbeat

2 DOF 2 DOF 2 DOF . Physically, an energy exchange
between heave and pitch occurs in time. Contrary to the frequencies,
the amplitude of these beats depends on the initial conditions. Since
separated data of the initial heave and pitch are not available from the
one-point measurements, a perfect fit regarding the beat amplitude is
difficult to obtain. Note that for an initial excitation at the trailing edge
in case II, the additional mass placed at the leading edge implies more
initial heave than pitch. For a similar excitation the contrary is valid for
case III. To generate the initial heave and pitch in the numerical 2-DOF
free-oscillation tests in still air, a constant vertical force Fz and a con-
stant moment My

E are applied during a short time interval of
= ×T 4 10 3 s at the begin of the simulation. Afterwards, the system is

left on its own. The values are summarized in Table 6.
The characteristic decay of motion and the associated beat fre-

quency depend directly on the distance xEG. Since this distance was
roughly determined in the experiment (see Table 2), it needs to be
adjusted by the try-and-error method to get a good fit with the

experimental signals.
First, case I with x 0EG is discussed. Based on the material

damping ratios (Table 3), the updated parameters in Table 5 and the
initial conditions in Table 6, a good agreement between the predicted
and the measured displacements is achieved as visible in Fig. 6a. A
distance of =x c/ 0.006EG is found to be an appropriate choice to de-
scribe the characteristic decay of motion of the 2-DOF simulation in still
air. In order to determine the heave and pitch eigenfrequencies, power
spectral densities (PSD) of the numerical results are evaluated and
compared with the PSD of the experimental signal. The relative errors
obtained on the heave, pitch and beat frequencies summarized in
Table 7 are low and a very good agreement is achieved.

Note that additional simulations were carried out for the same setup
but with only slightly different initial conditions for the heave and pitch
in order to cope with the problem of the unknown initial conditions in
the experiment. The results (not shown here) demonstrate that neither
the envelope of the obtained signal nor the frequencies (heave, pitch
and beat) change. However, the initial conditions obviously influence
the positions of the maxima and minima within this envelope. That
explains the deviations observed in Fig. 6a. Of course, the same un-
certainty applies to the other two cases.

In case II the distance xEG needs to be decreased in comparison with the
experimental value to obtain an acceptable fit (see Table 5). Indeed for case
II, both heave and pitch frequencies are close together, which implies a low
beat frequency. Therefore, small errors of the eigenfrequencies lead to a
large error of the beat frequency and to a visual mismatch of the decay of
motion (see Fig. A16). To achieve a better fit for case II, the distance xEG is
reduced by 55% (from =x c/ 0.022EG to 0.01). This shift appears large,
but the displacement of G is in fact only 1.2 mm. Applying the updated xEG
and the updated values in Table 5, the predicted heave and pitch fre-
quencies and the resulting beat frequency fit very well to the experimental
data as shown in Table 7. Furthermore, the decay of motion is correctly
simulated as visible in Fig. 6b.

Concerning case III no change in the experimentally determined
value of xEG is needed. In this case both heave and pitch frequencies are
farther apart, resulting in a higher beat frequency, i.e., a fast transfer of
modal energy between both DOF. With the updated values in Table 5
both simulated eigenfrequencies and the beat frequency match well
with the measurements. An acceptable fit of the decay of motion is also
found in Fig. 6c.

Since an overall good agreement for the decay of motion and for the
heave and pitch frequencies on the 2-DOF test in still air is obtained for
cases I, II and III, the computational setup is now validated. Thus, it can
be used within the coupled simulations to investigate instantaneous
phenomena such as flutter expected for certain free-stream velocities.

Table 7
Predicted and measured heave and pitch frequencies with their relative errors in case of the 2-DOF free-oscillation cases.

Parameter Symbol Unit Case I Case II Case III

x 0EG <x 0EG >x 0EG

Heave frequency sim. fh
2-DOF, sim, updated values Hz 7.25 7.21 6.49

exp. fh
2 DOF,exp 7.31 7.22 6.55

Relative error fh % 0.82 0.14 0.92

pitch frequency sim. f 2-DOF, sim, Updated values Hz 8.33 7.59 8.48

exp. f 2 DOF,exp 8.38 7.53 8.51

Relative error f % 0.60 0.80 0.35

Beat frequency sim. fbeat
2-DOF, sim, updated values Hz 1.08 0.38 1.99

exp. fbeat
2 DOF,exp 1.07 0.31 1.96

Relative error f beat % 0.93 18 1.5
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5. Results and discussion

After the validation study carried out for the 2-DOF free-oscillation
tests in still air, the investigations of main interest are discussed in this
section. Thus, the focus is now on the free-oscillation test case with 2-
DOF under varying wind loads in the range between a damped char-
acteristic up to the situation, where either limit-cycle oscillations or
even flutter appear. For this purpose, the dynamic behavior of two
configurations (case I and III) are taken into account. Since in the ex-
periments (Wood et al., 2020) an increased flutter stability was found
for case II and the free-stream velocity has to be more than doubled to
end up with a LAO, this setup is not studied numerically. For the two
other cases the results are analyzed and compared with the experi-
mental data by Wood et al. (2020). The discussion starts with case Iwith

a quasi-zero static moment (x 0EG ).

5.1. Case I: x 0EG

5.1.1. Small-amplitude oscillations
In the experiment (Wood et al., 2020) a very fast decay of the

motion was observed after the initial excitation at the first two Rey-
nolds numbers considered, i.e., Re = ×9.66 103 and ×1.65 104. Thus,
they were interpreted as stable configurations without limit-cycle os-
cillations or flutter. Indeed, this is only half of the truth since margin-
ally small oscillations with barely measurable amplitudes were found
after the initial excitations have damped out. However, since the phy-
sical phenomenon responsible for these tiny oscillations (see explana-
tions below) is exactly the same as for the case of Re = ×2.39 104,

Fig. 7. Case I: Simulated motion of the coupled system: Time evolution of the vertical displacement at the monitoring point Pw of 2-DOF numerical tests in the Re
range ×2.39 104 Re ×3.60 104 compared with the experiments of Wood et al. (2020).

G. De Nayer, et al. International Journal of Heat and Fluid Flow 85 (2020) 108631

10



these two low Re numbers are not considered here. At Re = ×2.39 104

the situation is slightly different. Still a strongly damped heave motion
is observed. The pitch motion is also severely damped. However, finally
an oscillation amplitude remains which could be clearly measured and
is denoted as small-amplitude oscillation (SAO) (amplitude below
0.2 mm). Note that in the simulations the observed amplitudes of the
oscillations in case of = ×Re 1.65 104 were found to be two orders of
magnitude smaller than for = ×Re 2. 39 104.

Fig. 7a depicts the vertical displacement of the monitoring point Pw
for the case of Re = ×2.39 104. Obviously, the initial excitation is
damped very fast, but an oscillation with a very small but unmistakably
ascertainable amplitude remains after the initialization phase. In Wood
et al. (2020) it was speculated that the oscillations are caused by a
laminar separation of the boundary layer which appears alternatingly
on the upper and lower surface of the airfoil. However, based on the
measurements it was not possible to prove this conjecture since the
appearing recirculation regions are rather small. Of course, the pre-
dictions allow to clarify this issue. For this purpose, Fig. 8 depicts a
series of snapshots of the flow field in the vicinity of the trailing edge.
Based on the contour plots of the instantaneous streamwise velocity and
the streamlines, the separated flow regions are visible appearing in an
alternating manner on both sides of the airfoil. The pitch frequency is
predicted at =f 7.93h

sim Hz and the frequency of the strongly damped
heave at =f 7.30sim Hz. Compared with the experimental value avail-
able for the pitch frequency a relative error of 1.6% is achieved. Similar
to the measurements the heave is damped (see Fig. 8i). Since the heave
and pitch frequencies are not equal, no phase-shift angle can be de-
duced. Fig. 9 provides a larger excerpt of the flow field by a series of
eight snapshots representing a full cycle of the motion. Based on the
streamwise velocity, the pressure coefficient and the vorticity compo-
nent y it is obvious that solely in the vicinity of the trailing edge in-
stantaneous phenomena in terms of flow separation and vortex gen-
eration take place.

5.1.2. Large-amplitude oscillations
As for the previous Reynolds number an initial perturbation is in-

troduced for the simulation at Re = ×3.06 104 contrarily to the ex-
periment. This measure is necessary since without any perturbation
only a marginally small oscillation of the structure is observed. After a
transition phase in which the amplitude of the initially disturbed mo-
tion decreases again, the airfoil continues to oscillate with a small
amplitude below 0.4 mm (see Fig. 7b) and at a frequency of

=f 7.77sim Hz. This amplitude is larger than for Re = ×2.39 104, but
still rather small. Heave and pitch have the same frequency, which is
predicted with a relative error of 1.7 % compared with the experiment.
As for Re = ×2.39 104 the pitch dominates in terms of the amplitude.
Although the predicted frequency is in close agreement with the ex-
periment, the predicted motion behavior differs from the experimental
one as visible in Fig. 7b. By slightly increasing the inflow velocity in the
simulation up to Re = ×3.39 104 combined with the initial perturba-
tion introduced before, the displacement of the airfoil after the initial
phase fits to the experimental motion measured at Re = ×3.06 104.
This is depicted in Fig. 7c. Indeed, a LAO with an amplitude of 0.003 m
and a frequency of =f 7.69sim Hz is predicted with a phase-shift angle
of = °138sim , which also better fits to the experimental shift found at
Re = ×3.06 104 ( = °130exp ). As before the pitch motion is dominating
over the heave (Fig. 10i).

Fig. 10 represents one complete cycle of the LAO of the airfoil.
Contours of the streamwise velocity component u, the pressure coeffi-
cient cp and the y-vorticity y are depicted. During the whole cycle the
flow is attached on both airfoil sides up about 2/3 of the chord length
and vortices are continuously shed from the current suction side at a
frequency of about 130 Hz corresponding to a Strouhal number
( = f t USt /NACA with tNACA is the thickness of the airfoil) of 0.31. As
visible in the series of figures (Fig. 10), when the airfoil moves upwards
the pitch angle is most of the time positive (and vice versa) generating
more lift. In case of a limit-cycle oscillation this counteracts the
damping of the heave motion.

Fig. 8. Case I: One cycle of the airfoil oscillation (SAO) at Re = ×2.39 104 in the x-z-plane at =y 0 (close-up at the trailing edge with >x c/ 0.82), streamwise
velocity u normalized by the free-stream velocity U . The last diagram depicts the phase-shift angle between the heave and the pitch motion.
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5.1.3. Flutter
At Re = ×3.60 104 the motion behavior changes: The amplitude of

the displacement continuously increases without any initial perturba-
tion as depicted in Fig. 7d. This fits to the observation made during the

experiment and can be denoted as flutter. In the experiment the motion
of the airfoil was manually stopped to avoid the destruction of the
springs. In the simulation the amplitude grows until the divergence of
the coupled solver. Very large excitations of the airfoil with respect to

Fig. 9. Case I: One cycle of the airfoil oscillation (SAO) at Re = ×2.39 104 in the x-z-plane at =y 0, streamwise velocity u normalized by the free-stream velocityU
(top), pressure coefficient cp (middle), y-vorticity y normalized by the free-stream velocity U and the chord length c (bottom) ( y ). The last diagram depicts the
phase-shift angle between the heave and the pitch motion.
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the heave and pitch motion lead to a strongly deformed grid and thus
have to end up with a crash of the solver. Both heave and pitch occur at
the same frequency, which is predicted at =f 7.63sim Hz. This flutter
frequency is in close agreement with the experimental value

( =f 7.79exp Hz). A phase-shift angle between pitch and heave of
= °149sim is observed, which is slightly larger than the one measured

by Wood et al. (2020) (see Table 8).
Fig. 11 represents one complete cycle of the airfoil motion at a given

time (t 200 s), where the heave and pitch amplitudes (about 0.007 m

Fig. 10. Case I: One cycle of the airfoil oscillation (LAO) at Re = ×3.39 104 in the x-z-plane at =y 0, streamwise velocity u normalized by the free-stream velocityU
(top), pressure coefficient cp (middle), y-vorticity y normalized by the free-stream velocity U and the chord length c (bottom) ( y ). The last diagram depicts the
phase-shift angle between the heave and the pitch motion.
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for the heave and about °12 for the pitch) are comparable with the
maximal values provided in the experiments (about 0.005 m for the
heave and about °12 for the pitch). As before, contours of the stream-
wise velocity component u, the pressure coefficient cp and the y-vorti-
city y are depicted. Starting at an instant in time, where the angle of
attack is close to zero, the following observations can be made for the
upper side of the airfoil. (Note that the lower side is not considered here
since after the half of the period the phenomena observed on the upper
side also appear on the lower side.) At the first snapshot depicted in
Fig. 11a, a wholesome boundary layer exists along the entire chord
length of the airfoil. Then the angle of attack increases leading to an
adverse pressure gradient in Fig. 11b and to the appearance of flow
separation close to the trailing edge. A vortical structure is generated
visible by the low pressure region. With a further increase of the angle
of attack depicted in Fig. 11c the separation moves upstream and ad-
ditional low pressure regions are generated between x c/ = 0.5 and 1.0.
A series of vortices is shed at the suction side at a frequency of about
145 Hz corresponding to a Strouhal number of 0.32, which is nearly
identical to the St value observed at Re = ×3.39 104. When the angle
of attack decreases again, the processes do not stop directly. Instead a
hysteresis effect is observed. Thus, these phenomena are still visible in
the next two snapshots of the series (i.e., Figs. 11d and 11e). The
streamwise velocity even needs more time (see Fig. 11f and g) until all
disturbances are gone and a wholesome boundary layer has developed
again on the upper side (Fig. 11h). As mentioned above, identical ob-
servations can be made for the lower side at half a time interval later.

Similar to Re = ×3.39 104, when the airfoil moves upwards the
pitch angle is most of the time positive (and vice versa) generating even
more lift. However, for Re = ×3.60 104 this lift is stronger than the
damping of the system amplifying the heave motion and contributing to
the increase of the motion amplitude as expected in case of flutter.

It has to be noted that the motion behavior of the airfoil in case I
highly depends on the distance xEG. Indeed, for =x 0EG no flutter
phenomenon is observed at Re = ×3.60 104, but an LAO. In that case
flutter is achieved at about Re = ×4.69 104. That demonstrates the
high sensitivity of this test case.

5.2. Case III: >x 0EG

In case III the extra mass is mounted behind the elastic axis, thus
>x 0EG . xEG is much larger than for case I and a value of =x c/ 0.059EG

was evaluated in Section 4.3. In the experimental study (Wood et al.,
2020) a different behavior than for case I is observed for the free-os-
cillation test case with 2-DOF under varying wind loads. Up to

= ×Re 3.06 104 solely small-amplitude oscillations are found, where
especially the heave motion experiences a very strong damping. Limited
cycle oscillations with large amplitudes (LAO) are not detected at any
Re number investigated. However, flutter sets in at Re = ×3.39 104

with a single characteristic frequency of 7.89 Hz and a much smaller
phase-shift angle of = °25exp than for case I. This different behavior of

case III renders it an interesting case for the simulations.
At a Reynolds number of ×4.1 104 this instability is also predicted

by the simulation for case III with a frequency of =f 7.63sim Hz and a
phase-shift angle between pitch and heave of = °25sim . A relative
error of only 3.3% on the predicted frequency and a full coincidence
concerning the phase-shift angle are obtained. Thus, a good agreement
with the experimental data is found. The pitch motion dominates over
the heave motion in terms of amplitude: Angles larger than °20 are
rapidly reached, whereas the heave motion oscillates below 4 mm.

Figs. 12 and 13 depict a complete cycle of the oscillation at an in-
stant in time when the amplitudes are already large. The streamwise
velocity normalized by the inflow velocity and the pressure coefficient
are plotted in Fig. 12, whereas the y-vorticity y normalized by the free-
stream velocity U and the chord length c and the instantaneous
streamlines are shown in Fig. 13. The cycle starts with a nearly zero
pitch angle (see Figs. 12a and 13a). The pitch angle grows extremely
fast, while the heave motion increases more slowly. The large angle of
attack leads to a massive separation of the flow and the formation of a
large recirculation area directly at the leading edge on the suction side
of the airfoil (see Figs. 12d and 13d). A clockwise rotating leading-edge
vortex (LEV) forms, detaches and moves downstream during the de-
crease of the pitch angle (see Figs. 12e and 13e). Then, the flow re-
attaches again on the upper side due to the effect of the favorable
pressure gradient. Due to the geometrical symmetry similar observa-
tions can be made half a period later for a negative pitch angle and a
downward heave motion. At this instant in time the LEV representing a
large quasi two-dimensional vortical structure is rotating in counter-
clockwise direction. Since at this amplitude of motion two LEVs are
shed during a cycle, the shedding frequency is about 15.2 Hz corre-
sponding to a low Strouhal number of about 0.04. This shedding fre-
quency and the frequency corresponding to the airfoil motion
( =f 7.63 Hzsim ) are also clearly visible in the measured data for the
wake (see Fig. 27 of Wood et al., 2020).

Contrarily to the experiment no physical limitations of the pitch
angle and the heave motion are present in the simulations. Therefore, in
case of the current instability found in the predictions, the pitch angle
rapidly increases until the fluid solver diverges. At very large pitch
angles the already described leading-edge vortex (LEV) and a second
large vortical structure denoted trailing-edge vortex (TEV) form one
after another and then combine to a complex rotating vortical structure
convected downstream due to the free-stream velocity (see Figs. 14).
Both LEV and TEV are quasi 2D structures at the Re numbers con-
sidered.

5.3. Comparison of the airfoil motions in case of dynamic instability

Sections 5.1 and 5.2 have presented the numerical results obtained
for case I and III and compared them with the experimental data. In the
current section the differences between both airfoil motions will be
highlighted.

Fig. 15 schematically depicts the global motion of the airfoil in both
cases. The airfoil simplified as a plate moves up and down following a
sinusoidal curve representing the heave motion (in blue). At the same
eight positions already shown in Figs. 11–13 the plate rotates by the
pitch angle of the airfoil where the angles sketched in Fig. 15 are pre-
dicted by the simulations. Moreover, at each position two arrows de-
noting the direction of the heave motion (black arrow) and the direc-
tion of the lift force (red arrow) are added helping to understand the
energy transfer during one cycle. In both cases the work generated by
the lift is globally in the direction of the heave. Thus, when the energy
due to the lift force is larger than the energy consumed by the structural
damping, the amplitude of the motion increases.

In case I the heave motion contributes to the global motion of the
airfoil with a comparable extent as the displacements generated by the
pitch angle. Since the phase-shift angle is large, i.e., °149 , the maximum
of the pitch angle is reached between the minimum and the zero

Table 8
Case I: Predicted and measured frequencies and phase-shift angle with their
relative errors.

Case I Symbol Unit SAO LAO Flutter

Heave
(strongly
damped)

Pitch

Motion frequency sim. f sim Hz 7.30 7.93 7.69 7.63
exp. f exp Not available 8.06 7.93 7.79

relative error f % – 1.6 3.0 2.1

Phase-shift angle sim. sim ° - 138 149
exp. exp - 130 137

Relative error % - 6.2 8.8
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crossing of the heave motion (see Fig. 15a). That leads to a motion
similar to a swimming fish.

In case III the contribution of the heave motion to the global motion
is negligible compared to the pitching motion. The phase-shift angle is

much smaller, i.e., °25 leading to a maximum pitch angle just before the
maximum of the heave motion is reached. Thus, the global motion of
the airfoil looks like a flapping wing: The airfoil rotates around a virtual
point located between the elastic axis and the trailing edge.

Fig. 11. Case I: One cycle of the airfoil oscillation (flutter) at Re = ×3.60 104 in the x-z-plane at =y 0, streamwise velocity u normalized by the free-stream velocity
U (top), pressure coefficient cp (middle) and y-vorticity y normalized by the free-stream velocityU and the chord length c (bottom) ( y ). The last diagram depicts
the phase-shift angle between the heave and the pitch motion.
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6. Conclusions

Inspired by the experimental study (Wood et al., 2020), in which the
dynamic behavior of an elastically mounted NACA 0012 airfoil with 2-
DOF (heave and pitch) was investigated in the transitional Reynolds

number regime, the identical FSI setup was numerically studied in the
present contribution. For this purpose, eddy-resolving simulations of
the fluid flow were coupled with a solver for describing the translation
and rotation of the wing within a partitioned coupling scheme. In a first
step the material parameters provided by the measurements were

Fig. 12. Case III: One cycle of the airfoil oscillation (flutter) at Re = ×4.1 104 in the x-z-plane at =y 0, streamwise velocity u normalized by the free-stream velocity
U (top) and pressure coefficient cp (bottom). The last diagram depicts the phase-shift angle between the heave and the pitch motion.
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proven and the missing pure material damping coefficients were de-
termined based on 1-DOF free-oscillation tests in still air. A subsequent
validation step was carried out exploiting the corresponding 2-DOF
free-oscillation tests in still air. After these important steps the actual
investigations considered two cases (center of gravity nearly identical

to the elastic axis (I) and behind (III) the e.a.) of the wing under various
free-stream velocities. The main findings of the study are:

• The coupled high-fidelity solver allows to predict the FSI problem
with an acceptable accuracy leading to either small/large-amplitude

Fig. 13. Case III: One cycle of the airfoil oscillation (flutter) at Re = ×4.1 104 in the x-z-plane at =y 0, y-vorticity y normalized by the free-stream velocityU and
the chord length c (bottom) ( y ) and instantaneous streamlines (bottom).

G. De Nayer, et al. International Journal of Heat and Fluid Flow 85 (2020) 108631

17



oscillations or flutter depending on the case and Re number con-
sidered.
• Nevertheless, a very high sensitivity of the 2-DOF coupled case is
observed. That comprises on the one hand side the governing
properties of the setup such as the mass moment of inertia, the
stiffness and the damping ratio. On the other hand the geometrical
distance between the center of gravity and the elastic axis is found to
be a very decisive parameter, which has to be determined very
carefully, in order to lay the basic premise that measurements and
predictions can match.
• Especially case I, where the center of gravity approximately coin-
cides with the elastic axis, was studied in detail by successively in-
creasing the Reynolds number. At the two lowest Re numbers con-
sidered limit-cycle oscillations with marginally small and thus
barely measurable amplitudes are observed in the predictions in
agreement with the measurements. First small-amplitude oscilla-
tions with unmistakably ascertainable displacements are detected at
Re = ×2.39 104 which are dominated by a pitch motion, whereas
the heave motion is strongly damped. Large-amplitude oscillations
are measured in the experiment at Re = ×3.06 104. However, at
this Re number the predicted amplitudes are still rather small. An
increase of the Re number by about 10% significantly changes the
situation. Now, the predicted amplitudes are in close agreement

with the experimentally measured LAO. Finally, at Re = ×3.60 104

flutter is found for both, the measurements and the predictions. The
flutter frequency and the shift in the phase angle between pitch and
heave are in reasonable agreement. Contrary to the experiments the
simulations allow to study the entire flow phenomena appearing
during a complete cycle of the airfoil oscillation, which is governed
by a series of vortices and flow separation appearing close to the
trailing edge.
• When increasing the distance xEG between the center of gravity and
the elastic axis (i.e., case III), the dynamic system reveals a stronger
coupling between the heave and the pitch motion associated with a
significantly smaller phase-shift angle than in case I. In agreement
with the experiment (Wood et al., 2020) a phase-shift angle of

= 25 is found for case III. Thus, the associated motion patterns of
both cases significantly deviate. The motion in case I is comparable
to a swimming fish, whereas the movement pattern in case III can be
described by a flapping wing. Both scenarios are well reproduced in
the predictions.
• Furthermore, the flow field in case III observed during the flutter
scenario is dominated by large-scale vortical structures arising at the
leading-edge (LEV) and for even large angles of attack also at the
trailing edge (TEV). These flow phenomena can be adequately
predicted by the applied large-eddy simulation technique.

Fig. 14. Case III: Formation and shedding of leading-edge vortex (LEV) and trailing-edge vortex (TEV) at very large angles of attack.

Fig. 15. Comparison of the airfoil motion.
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Appendix A. Case II: 2-DOF free-oscillation test in still air applying the experimentally determined value of =x c/ 0.022EG

Fig. A16
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