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Abstract—It is a challenge to develop methods which can process the PolSAR and multispectral (MS) 

data modalities together without losing information from either for remote sensing applications. This 

paper presents a study which attempts to introduce novel deep learning based remote sensing data 

processing frameworks that utilizes convolutional neural networks (CNNs) in both spatial and spectral 

domains to perform land cover (LC) classification with PolSAR-MS data. Also since earth observation 

remotely sensed data have usually larger spectral depth than normal camera image data, exploiting the 

spectral information in remote sensing (RS) data is crucial as well. In fact, convolutions in the sub-

spectral space are intuitive and alternative to the process of feature selection. Recently, researchers 

have gained success in exploiting the spectral information of RS data, especially the hyperspectral data 

with CNNs. In this paper, exploitation of the spectral information in the PolSAR-MS data via a 

permuted localized spectral convolution along with localized spatial convolution is proposed. Further, 

the study in this paper also establishes the significance of performing permuted localized spectral 

convolutions over non-localized or localized spectral convolutions. Two models are proposed, namely 

a permuted local spectral convolutional network (Perm-LS-CNN) and a permuted local spectral-spatial 

convolutional network (Perm-LSS-CNN). These models are trained on ground truth class data points 

measured directly on the terrain. The evaluation of the generalization performance is done using 

ground truth knowledge on selected well known regions in the study areas. Comparison with other 

popular machine learning classifiers shows that the Perm-LSS-CNN model provides better 

classification results in terms of both accuracy and generalization.    

Index Terms— CNNs, PolSAR-MS, spectral-spatial convolution, generalization, Perm-LSS-CNN.
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1. Introduction 

oday, both synthetic aperture radar (SAR) and multispectral (MS) remote sensing data are easily 

available with good spatial and temporal resolutions. The two data modalities are crucial for earth 

studies and complement each other in many applications such as land cover classification, crop 

monitoring, or change detection. In general, multispectral remote sensing data provides spectral reflectance 

information and PolSAR remote sensing data provides scattering and polarizing behaviour information 

about the earth surface objects. These earth surface objects are more commonly termed as land covers by 

the remote sensing community. The basic idea behind utilizing the two data modalities together is to 

acquire better spatial, spectral, and temporal information on the land covers. Although, higher spectral 

information can be achieved through hyperspectral remote sensing but at a cost of spatial and temporal 

information. Also, since it is an optical remote sensing technique, it suffers from the classical challenges 

(clouds). For applications such as land use land cover classification or land cover monitoring, all three 

aspects are crucial and a multi sensor approach is more beneficial. Using PolSAR and MS data modalities 

together is shown to be a convenient and successful strategy. Methodologies listed in many review articles 

such as in Pohl and Van Genderen (1998),  or more recently in J. Zhang (2010) or Joshi et al. (2016) have 

been used by the earth observation data processing community in processing multispectral and PolSAR 

data together. Authors in Joshi et al. (2016) provide an extensive review on the application of PolSAR and 

MS data fusion for remote sensing applications. The reviewed methodologies include traditional, machine 

learning, and knowledge based decision trees. Authors in Joshi et al. (2016) also remarked that the studies 

in multi-sensor data fusion based land cover classification mostly use MS and PolSAR data with machine 

learning methods. Most popular machine learning-data fusion techniques include artificial neural networks 

(ANNs or NNs) and support vector machines (SVMs). In fact, studies (J. Zhang 2010; Joshi et al. 2016; 

Lary et al. 2016; and P. Feng et al. 2019) have also recognized the significance of machine learning in 

various multi-sensor remote sensing applications. From the aforementioned review, two points are evident; 

first, utilization of PolSAR and MS data together is a successful strategy and second, machine learning 

techniques are successful in utilizing the two data modalities together. 

However, it is challenging for (NNs) with shallow depth (number of layers ≤ 2) to extract high level 

abstract/complex features from high dimensional remote sensing data without overfitting or losing 

generalization. Generalization refers to the ability of how well an algorithm performs on ‘out of the seen 

samples’ data points. If an algorithm is performing well outside training data, then the algorithm is showing 

good generalization performance and vice versa. Researchers in many studies (Zhu et al. 2017; W. Li et al. 

2016; and L. Zhang, Zhang, and Du 2016) are exploring new advanced machine learning approaches for 
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remote sensing applications that are able to extract complex features from high dimensional remote sensing 

data. In the direction, deep neural networks with deep learning are the high-potential and powerful tools for 

extracting high level information from remote sensing data (Zhong, Hu, and Zhou 2019; and Huang, Zhao, 

and Song 2018). Authors in Zhu et al. (2017) and  L. Zhang, Zhang, and Du (2016) have reviewed studies 

which used and demonstrated the significance of deep neural network frameworks for remote sensing 

applications. Convolutional deep neural networks (CNNs) are recently the most widely used deep network 

models in remote sensing data based land cover classification (Zhu et al. 2017). CNNs have the ability 

extract complex features directly from data (Yann LeCun, Yoshua Bengio, and Geoffrey Hinton 2015). 

Another advantage of focusing on developing CNNs for PolSAR-MS data processing is that CNNs can 

directly utilize multi-sensor high dimensional remote sensing data with efficient performance for remote 

sensing applications. Unlike the conventional data fusion methods, this reduces the need of fusing the 

PolSAR-MS data modalities together before using it further. 

L. Zhang, Zhang, and Du (2016) presents a comparison of CNN based models with some popular 

remote sensing data classifiers for processing hyperspectral remote sensing data. The CNN model reported 

in L. Zhang, Zhang, and Du (2016) is designed to effectively capture global spectral features along with 

local spatial features. Similar studies are reported in Chen et al. (2016), Mei et al. (2016),  and J. Feng et al. 

(2019). The CNN models in these studies employed one, two, and three dimensional convolutions to 

extract spectral and spatial information from unimodal remote sensing data. Moreover, CNNs have also 

been used with multisensor, for example PolSAR-MS data in remote sensing applications. Kussul et al. 

(2017) used one and two dimensional CNNs on Landsat8-Sentinel1 data for land cover and crop type 

classification and further compared the results with random forest (RF) classifier. Their model reports 

better classification performance by capturing local contextual (spectral and/or spatial) features whereas the 

RF classifier captured only the global dominant features. The study in Kussul et al. (2017) indicates 

potential of CNNs with PolSAR-MS data for remote sensing applications and motivates for similar studies.. 

However, one important aspect comes to consideration while processing PolSAR and MS data 

together using CNNs. The aspect is the efficient exploitation of the spectral information present in the 

multisensor data.  Exploitation of spectral information of hyperspectral remote sensing data has been done 

in past, either exclusively with one dimensional CNNs or, along with the spatial information using two, or 

three dimensional CNNs. Many studies (Chen et al. 2014; Hu et al. 2015; Mei et al. 2016; He et al. 2016; 

and Yu, Jia, and Xu 2017) and more have used one dimensional CNNs as spectral feature extractors for 

hyperspectral remote sensing data classification. In contrast, extracting spectral information along with 

spatial information from hyperspectral remote sensing data using CNNs is a recently popular approach. The 

approach has however improved the results in land cover monitoring and classification applications.  
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Because hyperspectral remote sensing data have large spectral dimensions, extracting spectral information 

is computationally expensive and compounding with extraction of spatial information makes it harder. 

Therefore, some studies (Makantasis et al. 2015; Yue et al. 2015; Aptoula, Ozdemir, and Yanikoglu 2016; 

and L. Zhang, Zhang, and Du 2016) used principal component analysis (PCA) for feature dimensionality 

reduction and then used two dimensional CNNS for classification applications. While, alternate to this, 

some studies (H. Zhang et al. 2017; Yue, Mao, and Li 2016; and Zhao and Du 2016) used one and two 

dimensional CNNs separately to extract the spectral and spatial information and combined the separately 

extracted features later. Further, some studies used three dimensional CNNs to extract local spectral and 

spatial information simultaneously. Chen et al. (2016) and Ying Li, Zhang, and Shen (2017) used three 

dimensional CNNs as spectral-spatial feature extractors and classifiers  for hyperspectral remote sensing 

data.  

In summary, enough evidence suggests that; one, two, and three dimensional CNNs have been 

successfully used to extract spectral and/or spatial information from hyperspectral remote sensing data. 

However, the significance of spectral and/or spatial CNNs as land cover classifiers with high dimensional 

multisensor data is still interesting to investigate. Therefore, the study presented in this paper focusses on 

two aspects. 

 To critically analyse the one dimensional (1D), two dimensional (2D), and three dimensional 

(3D) CNN capabilities to perform land cover classification using multi-sensor (PolSAR-MS) 

data. 

 Development of novel classification frameworks based on 1D (spectral) or 3D (spectral-spatial) 

CNNs; in order to improve the generalization ability of the classifier during land cover 

classification with PolSAR-MS satellite data. 

1D, 2D, and 3D CNN frameworks for PolSAR-MS data based land cover classification are 

discussed in section 4. The idea of extracting the spectral information efficiently from PolSAR-MS data 

using CNNs is achieved by performing a permuted localized spectral convolution alone, or along with 

localized spatial convolution on PolSAR-MS data. Spectral permutation before localized spectral 

convolution is proposed to increase the generalization ability of the CNN classifiers. Based on this idea, 

two models are proposed, namely permuted local spectral CNN (Perm-LS-CNN) and permuted local 

spectral-spatial CNN (Perm-LSS-CNN). Both the models are discussed in section 5. 

The remaining of the paper is organized as follows; Section 2 provides a brief background on 

PolSAR features and CNNs utilized during the study. Section 3 provides information on the experimental 
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setup i.e. study areas, datasets, ground truth, and other resources considered and used during the study.  

Section 4 discusses the popular 1D, 2D, and the 3D CNN models used for remote sensing data processing 

so far and further presents and discusses 1D, 2D, and 3D CNN model configurations used in this study for 

PolSAR-MS data processing. Section 5 presents the novel CNN based models developed during the study 

for PolSAR-MS data processing for land cover classification. Results from the proposed and compared 

methods are discussed in section 6. Finally, section 7 concludes the paper. 

2. Theoretical Background 

2.1. Polarization Signatures 

Polarization signature (PS) is a three dimensional graphical representation of backscattering 

behaviour of a target, or in the case of current study, a land cover. In PS representation, x-axis and y-axis 

represent ellipticity angle and orientation angle respectively and z-axis represent received backscattered 

power coefficient (sigma naught). Orientation or tilt angle (ψ) varies from -900 to 900 and ellipticity angle 

(χ) varies from -450 to +450. The signatures are computed using equation (1). 
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Where σ represents backscattering coefficient, suffix i and j represent transmit and received 

combinations respectively. K is the Kennaugh matrix, which provides received power, given the 

polarization characteristics of the receiving antenna (Antenna Laboratory, 1952). It is also known as the 

Stokes scattering matrix or the Stokes scattering operator.  Computation of K parameters is done similar to 

(Harold 2007). k is the propagation constant. Co-polarized signature is obtained by transmit and  received 

combination of 
i j   and 

i j  , and cross polarized signature of 90
i j  , and 

i j   . 

Ellipticity angle defines the polarization behavior (linear, circular or elliptical polarization), while 

orientation or tilt  angle defines polarization states, for example, horizontal or vertical polarization (Jong-

Sen Lee, Mitchell R. Grunes, and Wolfgang-Martin Boerner; 1997). For the sake of visualization, co-

polarized PS of an arbitrary land cover is shown in Figure 1. H and V basis have been considered and the 

co-polarized signatures are considered in the current study. 
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Figure 1 Co-polarized polarization signature of an arbitrary land cover 

2.2. Convolutional Neural Networks 

CNNs are a popular class of deep feedforward artificial neural networks proposed in various studies (Ian 

Goodfellow, Bengio, and Courville 2017b; Ciresan, Meier, and Schmidhuber 2012; Fukushima and Miyake 

1982; LeCun et al. 1998; and W. Zhang et al. 1991). Building blocks of a conventional CNN are; a 

convolutional layer, a pooling layer, a dropout layer, a fully connected layer, and a loss layer. A generic 

arrangement of the layers is discussed in Ian Goodfellow, Bengio, and Courville (2017a) and Albelwi and 

Mahmood (2017).  

Imagine a CNN with M layers, the output state vector of the 𝑚𝑡ℎ layer is denoted by 𝑶𝒎, where 

 1,2...m M and, 𝑶𝟎 represents the input data. The input layer is then connected to a convolutional layer. In 

the convolutional layer, a 1D, 2D or 3D convolution is performed with kernels. For the sake of 

understanding, a 2D convolution is explained here. The matrix 𝐖𝟏 encodes the weights of the links 

connecting the first convolutional layer to the input layer. A vector b1 which denotes a bias term is also 

added. Subsequently, a non-linear pointwise activation operation g(.) is performed. Finally, a pooling layer 

is used which helps in selection of dominant features. The convolution plus pooling in the 𝑚𝑡ℎ layer is 

represented in equation (2). 

( ( ))pool g  mW
m m-1

mO O b  (2) 

Where,   indicates convolution operation and pool denotes a spatial aggregation, as defined in 

Boureau et al. (2010). Several convolutional and pooling layers can be stacked to form a hierarchical 
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feature extraction architecture. The resultant features are then combined to form a one-dimensional feature 

vector to be taken as input by the fully connected layer. The fully connected layer acts as a typical multi 

perceptron layer. The last layer is usually a linear (for regression scenarios) or softmax (for classification 

scenarios) layer, with the number of neurons matching the number of output variables or classes desired. 

This layer also specifies how training penalizes the deviation between the predicted and true labels and is 

normally the final layer. 

The weights,  , ,...
1 2 M

W W W and the biases,  , ,...
1 2 M

b b b of the CNN compose the model parameters, which 

are iteratively and jointly optimized via overall accuracy maximization over the training set. Similar 

networks can be realized for 1D or 3D CNNs accordingly. However, the architectures of 1D, 2D, and 3D 

CNNs for remote sensing data processing are as follows. 

 For 1D CNNs, the remote sensing data input is a vector (usually a vector of spectral features). 

mW  is a matrix and mb  is vector. In general, 1D CNNs are used as feature extractors in remote 

sensing data, especially hyperspectral data processing. 

 For 2D CNNs, the convolution is performed on the two spatial dimensions (e.g. images). The 

input may contain extra dimensions (such as spectral information), but these are not used in the 

convolution. mW  is a 3D matrix and mb  is vector. It is important to note that in 2D CNNs, local 

convolutions are only performed in the spatial dimensions and not in the spectral dimension. 2D 

CNNs are used as spatial feature extractors and classifiers. 

 In 3D CNNs, convolutions are performed in the spatial dimensions and the temporal dimension 

simultaneously. However, in the absence of temporal information and presence of high spectral 

information, spectral dimension replaces the temporal dimension and local spectral convolutions 

are possible. mW  is a 4D matrix and mb  is vector. Therefore, 3D CNNs are used as spatial 

temporal or spatial spectral feature extractors and classifiers in remote sensing data processing. 

 The hyper parameters to be set during the CNN architecture design include; the number and shape 

of convolution filters to be used in the convolutional layer, stride and dilation values, and the pooling 

window shape. Regularization methods, preventing the CNN from overfitting, are also used. Among many, 

Dropout is the most popular regularization method (Srivastava et al. 2014). Dropout is a technique where 

randomly selected neurons are ignored during training. This means that their contribution to the activation 

of downstream neurons is temporally removed on the forward pass and any weight updates are not applied 
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to the neuron on the backward pass. Other methods include Drop Connect, stochastic pooling, early 

stopping, and weight decay. 

The current study utilizes and investigates the ability of 1D, 2D, and 3D CNNs as land cover 

classifiers on PolSAR-MS data. Also, the current study proposes new frameworks based on these CNNs. 

3. Experiment Setup 

3.1. Study area 

Two areas are considered for the analysis, the development and the testing of the proposed methodology. 

The first study area includes Roorkee city at the foothills of the great Himalayas of the northern India and 

its neighbouring region. The area extends from 29.951 degrees North and 77.865 degrees East to 29.803 

degrees North and 78.068 degrees East.  The area covers about 361 km2 of landscape. Another study area 

includes Haridwar city of the northern India and neighbouring region. The area extends from 29.973 

degrees North and 77.995 degrees East to 29.823 degrees North and 78.168 degrees East. The area covers 

about 270 km2 of landscape. Both study areas have mixed class type landscape, which is beneficial for the 

evaluation of classifiers performance in mixed class scenarios. 

3.2. Dataset 

Multisensor dataset is used in the study i.e. multispectral and PolSAR data acquired over the study areas. 

Multispectral data used is the Landsat-8 multispectral data acquired on March 17, 2015. PolSAR data used 

is the ALOS PALSAR-2 L band fully polarimetric single look complex PolSAR data acquired on March 

13, 2015. 

Preprocessing is required with both the multispectral and the PolSAR raw data. The landsat-8 

multispectral data suffers from atmospheric perturbations whereas the PolSAR data suffers from speckle 

noise. Preprocessing is done separately on the multispectral and the PolSAR data. PALSAR-2 single look 

complex PolSAR data is calibrated, multilooked, speckle filtered, and terrain corrected to obtain 

backscattering (sigma naught) coefficients in a procedure similar to P Mishra, Singh, and Yamaguchi 

(2011). Gamma MAP polarimetric speckle filter with a window size of 3 3  is used for speckle filtering 

similar to Pooja Mishra, Garg, and Singh (2017). Four features namely HH, HV, VH, and VV are obtained. 

Since, HV and VH are similar due to the reciprocity theorem, only HH, HV, and VV are used further. A 

false colour composite using the selected features is displayed n Figure 2(a) for visualization purpose. 

Derived PolSAR features are also used in this study. Polarization signatures (PSs) are computed from the 
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single look complex PolSAR data with procedure similar to Phartiyal et al. (2017). Further, polarization 

signatures correlation features (PSCFs) are computed from the PSs using procedure similar to as explained 

in Phartiyal, Kumar, and Singh (2020). PSCFs provide the degree of correlation between 

canonical/standard target PSs and observed/pixel PSs. Based on the analysis of Phartiyal, Kumar, and 

Singh (2020), four PSCFs namely “corr_co_Di”, “corr_co_FP”, “corr_co_HD”, and “corr_co_VD” are 

used as derived PolSAR features in the current study. Overall, three basic (HH, HV, and VV) and four 

derived (corr_co_Di, corr_co_FP, corr_co_HD, and corr_co_VD) PolSAR features are used in the current 

study. Landsat 8 operational land imager (OLI) multispectral data is atmospherically corrected first. Out of 

the 11 bands, 6 bands namely blue, green, red, near infrared, short wave infrared 1, and short wave 

infrared 2 are selected for the study. These selected bands are pan sharpened as explained in Gillespie, 

Kahle, and Walker (1987) and then resampled to the PALSAR-2 PolSAR data spatial resolution of 6 meters 

using the “bicubic spline” interpolation method (Rajput, Ghosh, and Kumar 2014). A false colour 

composite using the selected multispectral bands is displayed in Figure 2(b) for visualization purpose. The 

spatial resolutions of the PolSAR and MS datasets are used judiciously via CNNs later in the study towards 

improvement of the land cover classification The re-sampled, pre-processed multispectral bands are then 

co-registered with the selected pre-processed PolSAR features and the co-registered 13 bands (six from 

Landsat-8 and seven from PALSAR-2 data) are termed as PolSAR-MS data further in the study and are 

used as input data for further analysis and study. The flowchart shown in Figure 3 depicts the experiment 

setup. 

3.3. Ground Truth 

Five land cover classes are considered namely bare soil (BS), tall vegetation (TV), short vegetation (SV), 

urban, and water. Ground truth class data points are measured directly on the terrain based on visual 

inspection. Approximately 1200 data points are collected for both the study areas. Details of the ground 

truth collected for both study areas are shown in Table 1. 

The experiment setup i.e. the study areas, the datasets, or the ground truth data points, is used for, 

first, a critical analysis of the performance of conventional CNN frameworks and, second, the development 

of novel CNN classification frameworks for land cover classification. 
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Figure 2 Datasets for Roorkee study area: (a). False colour composite of ALOS PALSAR-2 PolSAR data 

and, (b). False colour composite of Lansat-8 multispectral data 

 

Figure 3 Flowchart of the CNNs based land cover classification  methodology with PolSAR-MS data 

Table 1 Summary of the ground truth collected for study. BS = Bare Soil, TV = Tall Vegetation, SV = 

Short Vegetation. All points are acquired directly on the field by visual inspection at selected GPS 

coordinates. 

Land Cover 
Roorkee Haridwar 

Training and validation Testing Training and validation Testing 

BS 200 40 200 40 

TV 200 40 200 40 

SV 200 40 200 40 

Urban 200 40 200 40 

Water 200 40 200 40 

Total 1000 200 1000 200 
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4. 1D, 2D, and 3D CNNs for Land Cover Classification with PolSAR-MS Data 

4.1. One dimensional CNNs for PolSAR-MS data. 

One dimensional or 1D CNNs have been successfully used with unimodal remote sensing data in the recent 

years. Chen et al. (2014) used stacked auto encoders for classification with hyperspectral remote sensing 

data. They also used PCA for hyperspectral feature reduction before classification as the number of input 

features is very high (say 176 for KSC dataset). A range i.e. from 4 to 8 principle components are 

considered as features during classification. PolSAR-MS data used in the present study only have 13 

spectral bands and do not require feature reduction. Hu et al. (2015) used different 1D CNNs for two 

popular hyperspectral remote sensing data (the Salimas Valley and the Indian Pines dataset) classification. 

Mei et al. (2016) also used 1D CNN for hyperspectral remote sensing data classification. All these studies 

report that 1D CNNs are good feature extractors for hyperspectral remote sensing data. Most of these 

studies used some form of feature reduction technique before feeding data to the 1D CNN in order to 

reduce the computational complexity of the model. The reduced number of bands are on the same order as 

the number of bands present in the PolSAR-MS data considered in this study, which justifies the direct use 

of 1D CNNs for PolSAR-MS remote sensing data. 

Two variants of 1D CNNs are considered here. In the first 1D CNN model i.e. 1D-CNN-v1, the 

kernel size of the filter in the first convolutional layer i.e. C1 layer is equal to the spectral depth of PolSAR-

MS data i.e. 13. One dimensional spectral convolution is shown in Figure 4(b). In the second 1D CNN 

model, i.e. 1D-CNN-v2, the kernel size is less than the spectral depth of PolSAR-MS data. One dimensional 

local spectral convolution is visualized in Figure 4(c). Models similar to 1D-CNN-v2 has been successfully 

tested with hyperspectral data (Hu et al. 2015, and Chen et al. 2016). The present study focuses on the 

analysis of the performance of 1D CNNs; both 1D-CNN-v1 and 1D-CNN-v2 with PolSAR-MS data.  

The selected hyper-parameter settings are listed in Table 2. Apart from kernel size, the rest of the 

parameters are similar for both models. Rectified linear unit or ReLU and Softmax activation functions are 

used in the intermediate and output layers respectively. A dropout strategy is considered for regularization 

and dropout fraction values of 0.2 for C1 and 0.1 for C2 and FC layer are set. Pooling is not considered 

because it hinders the full usability of the spectral variation. The loss function used in both models is the 

categorical cross entropy function. It optimizes the classification accuracy based on probabilities of each 

class during classification. The learning rate and the number of epochs are set to 0.01 and 200 respectively. 
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Figure 4 (a). Data cuboid with M by N pixels and P bands. (b). Convolution with 1 × 1 × 𝑃 convolutional 

filter where 1 × 1 represents to the spatial extent and P represents total number of bands in the data. Each 

filter convolves with all the bands as all times. This strategy is employed in 1D CNNs during per pixel 

classification of remote sensing data. (c). Convolution with 1 × 1 × 3 convolutional filters where  1 × 1 

represents the spatial extent and 3 represents the number of adjacent bands to be convolved simultaneously. 

One filter can convolve with three adjacent bands only. For example, a first filter (in yellow) convolves 

with bands 1, 2, and 3 whereas a second filter (in blue) convolves with bands 4, 5, and 6. This strategy is 

also employed in 1D CNNs (Chen et al. 2016). (d). Convolution with  1 × 1 × 3 convolutional filters where 

1 × 1 represents to the spatial extent and 3 represents number of arbitrarily selected bands to be involved. 

For example, first filter (in yellow) convolves with bands 1, 3, and 7 whereas second filter (in blue) 

convolves with bands 2, 5, and 6. This strategy is employed in the proposed Perm-LS-CNN framework. 

Table 2 1D-CNN-v1, 1D-CNN-v2, 2D-CNN-v1and 3D-CNN- v1 CNN model configurations, 

hyperparameter and training settings 

Model 

Layer 

Input Convolutional 

layer 1 (C1) 

Convolutional 

layer 2 (C2) 

Fully connected 

layer (FC) 

Output layer 

1D-CNN-

v1 

Input data size = 

1 13  

Normalization = 

Batch 

Normalization 

Filters = 20 

Kernel size = 1 13  

Activation = ReLU 

Dropout fraction = 

0.2 

Pooling size = 0  

Filters = 20 

Kernel size = 

1 1  
Activation = 

ReLU 

Dropout fraction 

= 0.1 

Pooling size = 0 

Nodes =16 

Activation = ReLU 

Dropout fraction = 

0.1 

 

Labels = 5 

Activation = 

Softmax 

 

1D-CNN-

v2 

Input data size = 

1 13  

Normalization = 

Batch 

Filters = 20 

Kernel size = 1 4  

Activation = ReLU 

Dropout fraction = 

Filters = 20 

Kernel size = 

1 4  
Activation = 
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Normalization 0.2 

Pooling size = 0  

ReLU 

Dropout fraction 

= 0.1 

Pooling size = 0 

2D-CNN-

v1 

Input data size = 

3 3 13   

Normalization = 

Batch 

Normalization 

Filters = 20 

Kernel size = 3 3  

Activation = ReLU 

Dropout fraction = 

0.2 

Pooling size = 0  

Filters = 20 

Kernel size = 

1 1  
Activation = 

ReLU 

Dropout fraction 

= 0.1 

Pooling size = 0 

3D-CNN-

v1 

Input data size = 

3 3 13   

Normalization = 

Batch 

Normalization 

Filters = 20 

Kernel size = 

3 3 4   

Activation = ReLU 

Dropout fraction = 

0.2 

Pooling size = 0  

Filters = 20 

Kernel size = 

1 1 4   
Activation = 

ReLU 

Dropout fraction 

= 0.1 

Pooling size = 0 

Training parameters Loss function = Categorical cross entropy 

Learning rate = 0.01 

Number of epochs = 200 

Optimizer = Adam (Kingma and Ba 2015) 

10 fold cross validation strategy is employed during training 

4.2. Two Dimensional CNN for PolSAR-MS data. 

The use of spectral information without spatial information by 1D CNNs undermines the full potential of 

remote sensing data. Adding spatial information provides contextual aid to the classifiers, especially CNNs 

in the classification process. Two dimensional or 2D CNNs have also been successfully used with 

unimodal remote sensing data in the recent years. Sharma et al. (2017) used patch based 2D CNN model 

for land cover classification with multispectral data. They opted a  5 × 5 × 8 Landsat 8 image patch and a 

3 × 3 2D convolutional kernel. Geng et al. (2015) used 2D CNNs for land cover classification with 

PolSAR data.  Many studies (Makantasis et al. 2015; Yue et al. 2015; Zhao et al. 2015; Zhao and Du 2016; 

and Yunsong Li, Xie, and Li 2017) used 2D CNNs for classification with hyperspectral remote sensing 

data. The need for dimension reduction in these studies is already discussed in the previous section. These 

studies support the utilization of 2D CNNs with PolSAR-MS data for land cover classification. Kussul et 

al. (2017) used 2D CNNs for crop type classification with PolSAR and multispectral data. They used 

Landsat-8 multispectral and Sentinel-1 C-Band PolSAR data. Although Kussul et al. (2017) have studied 

the PolSAR-MS data potential for crop type classification with 2D CNNs, the current study differs on: – 

first, using PolSAR-MS on a single time stamp with a focus on spectral and spatial features. Kussul et al. 
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(2017) used time series PolSAR-MS data with a focus on temporal and spectral features; and – second, 

Quad PolSAR data is considered in the present study in contrast to dual PolSAR used in Kussul et al. 

(2017). The increased channels add complementary information which in turn add an indirect weighting of 

the spatial features. Analysis of fully polarimetric PolSAR with multispectral data for classification is 

therefore beneficial. 

A 2D CNN model namely 2D-CNN-v1 is proposed here. 2D-CNN-v1 configuration and 

hyperparameter settings considered are listed in Table 2. The idea of a local spatial convolution is shown in 

Figure 5(b). The configuration for the intermediate and output layers and learning parameters are the same 

as in section 4.1 and are summarized in Table 2.  

4.3. Three Dimensional CNN for PolSAR-MS data. 

The 2D-CNN-v1 model discussed in section 4.2 is successful because of its spatial contextual awareness. 

The localized spatial convolutions provide local connectivity, which controls the impact of neighbouring 

pixels on the pixel to classify. Parameter sharing between local filters also makes the learning faster and 

less cumbersome, in contrast to fully connected neural networks. In remote sensing data applications, 

spectral information is as important, if not more, as spatial information. Local connectivity in spectral 

dimension also provides the same benefits. Advantages of local spectral convolutions and local spatial 

convolutions together can be exploited using 3D CNNs. The 3D CNNs have been successfully used with 

hyperspectral (unimodal) remote sensing data in the recent years.  Chen et al. (2016), H. Zhang et al. 

(2017), and J. Feng et al. (2019) used 3D CNNs for spectral spatial information extraction for fusion and 

classification applications. 

The proposed 3D CNN model 3D-CNN-v1 architecture and hyperparameters considered are listed 

in Table 2. The C1 layer of 2D-CNN-v1 in section 4.2 uses the complete spectral depth, i.e. 13 bands, 

during convolutions whereas 3D-CNN-v1 uses only a subset during convolutions. The idea of local spectral 

and local spatial convolution is shown in Figure 5(c). This provides an improvement in classification 

accuracy and robustness compared to other 3D CNN models (Chen et al. 2016; and J. Feng et al. 2019). 

Configuration and learning parameters are the same as in section 4.1 and are summarized in Table 2.  
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Figure 5: (a). Data cuboid with M by N pixels and P bands. (b). Convolution with 3 × 3 × 𝑃 convolutional 

filter where 3 × 3 represents the spatial extent and P represents the total number of bands in the data. Each 

filter convolves with all the bands. This strategy is employed in 2D CNNs. (c). Convolution with 3 × 3 × 3 

convolutional filters where 3 × 3 represents to the spatial extent and 3 represents number of adjacent bands 

to be convolved simultaneously. One filter can convolve with three adjacent bands only. For example, a 

first filter (in yellow) convolves with bands 1, 2, and 3 whereas a second filter (in blue) convolves with 

bands 5, 6, and 7. This strategy is employed in 3D CNNs (Chen et al. 2016). (d). Convolution with 3 × 3 ×

3 convolutional filters where 3 × 3 represents the spatial extent and 3 represents the number of arbitrarily 

selected bands to be involved. For example, a first filter (in yellow) convolves with bands 1, 2, and 4 

whereas a second filter (in blue) convolves with bands 5, 7, and 10. This strategy is employed in the 

proposed Perm-LSS-CNN framework. 

5. Proposed Permuted Local Spectral CNN (Perm-LSS-CNN) Permuted Local Spectral-Spatial 

CNN (Perm-LSS-CNN) 

In 1D-CNN-v2, a local convolution is performed over the spectral dimension. The convolution filter size in 

the spectral dimension i.e. 4 is less than the total number of input bands i.e. 13. This local spectral 

convolution improves the classification performance as discussed in Chen et al. (2016). Figure 4(c) depicts 

the pictorial representation of the local spectral convolution employed in 1D-CNN-v2. However, an issue 

arises in the process of local spectral convolution with high dimensional remote sensing data such as 

hyperspectral remote sensing data or multisensor data similar to the PolSAR-MS data used in this study. 

While performing local spectral convolution, various combinations of spectral bands are not convoluted 

together and therefore, under-utilizing the full potential of the spectral information present in the data.  For 

example, it is evident from Figure 4(c), that the second spectral band and the tenth spectral band cannot not 
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get convoluted together using 1D-CNN-v2 and hence the use of spectral information is limited. This issue 

needs more attention while processing multisensor data with CNNs. Similarly, for the PolSAR-MS data 

used in this study, some polarimetric channels might not convolute together with some multispectral bands. 

For example, out of the 13 bands, only 4 consecutive bands get convoluted together with a convolutional 

kernel window of 4. Moreover, the stacking of PolSAR and MS data in a common feature set induces 

arbitrary ordering and irrelevant band neighbourhood relationships: MS neighbour bands may be related by 

some wavelength ordering relation, but the boundary between PolSAR and MS bands is irrelevant. 

Therefore, using local filters in these conditions should be well generalized.  

To address the issue, the present study proposes an ensemble approach which attempts to improves 

the utilization of spectral information. To present a proof of concept, this paper introduces a permuted local 

spectral CNN model namely Perm-LS-CNN which is based on the 1D-CNN-v2 discussed in section 4.1. 

Perm-LS-CNN performs local spectral convolutions on permuted sets of the PolSAR-MS data. The 

permuted sets of the PolSAR-MS data provide increased combinations of PolSAR-MS bands that are 

missing from using only the original PolSAR-MS band ordering. The idea of local spectral convolution 

with permuted PolSAR-MS bands can be realized in Figure 4(d). The proposed Perm-LS-CNN model 

configurations are provided in Table 3. A permutation layer before the first convolution layer is added to 

obtain permuted sets of the original PolSAR-MS bands. Although the optimal number of permuted sets 

required for full utilization of the spectral information is not derived in this study, 20 permuted sets are 

used as a proof of concept. Other configuration and hyperparameters are similar to 1D-CNN-v2 and are 

listed in Table 3. 

Further, based on the Perm-LS-CNN, another novel classification framework for land cover 

classification using PolSAR-MS data is introduced here. This framework extends the idea of Perm-LS-CNN 

to spatial context. The proposed permuted local spectral-spatial CNN or the Perm-LSS-CNN utilizes the 

spatial feature extraction capability of CNNs, along with the idea of permuted local spectral convolution 

proposed here. The added spatial context helps CNNs to extract more complex and abstract features, which 

further improves the classification results. The idea of permuted spectral-spatial convolution is presented in 

Figure 5(d). The proposed Perm-LSS-CNN model configurations are provided in Table 3. Similar to Perm-

LS-CNN, 20 permuted sets are created in the Perm-LSS-CNN model. All hyperparameters are set as for 3D-

CNN-v1 and are listed in Table 3.  

The advantage and significance of the permuted local spectral-spatial convolutions used in Perm-

LSS-CNN over the local spatial convolutions  used in 2D-CNN-v1 or local spectral-spatial convolutions 

used in is 3D-CNN-v1 is evaluated based on a class separability measure proposed in Cumming and Van 
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Zyl (1989). The separability measure is computed using equation (3). ijSI is the measure of separability 

between class i and j. i and j  are mean values for class i and j respectively, and i and j  are standard 

deviation for class i and j respectively. 

i j

ij

i j

SI
 

 




  (3) 

Table 3 Perm-LS-CNN and Perm-LSS-CNN model configurations, hyperparameters and training settings 

Model 

Layer 

Input Permutation 

layer (P1) 

Convolutional 

layer 1 (C1) 

Convolutional 

layer 2 (C2) 

Fully 

connected 

layer (FC) 

Output 

layer 

Perm-LS-

CNN 

Input image 

size = 1 13  

Normalization 

= Batch 

Normalization 

Permuted sets 

= 20 

Kernel size = 

1 13  

Activation = 

Linear 

 

Filters = 20 

Kernel size = 

1 4  
Activation = 

ReLU 

Dropout 

fraction = 0.2 

Pooling size = 

0  

Filters = 20 

Kernel size = 

1 4  
Activation = 

ReLU 

Dropout 

fraction = 0.1 

Pooling size = 

0 

Nodes =16 

Activation = 

ReLU 

Dropout 

fraction = 0.1 

 

Labels = 5 

Activation 

= Softmax 

 

Perm-LSS-

CNN 

Input image 

size = 3 3 13   

Normalization 

= Batch 

Normalization 

Permuted sets 

= 20 

Kernel size = 

1 1 13   

Activation = 

Linear 

 

Filters = 20 

Kernel size = 

3 3 4   

Activation = 

ReLU 

Dropout 

fraction = 0.2 

Pooling size = 

0  

Filters = 20 

Kernel size = 

1 1 4   
Activation = 

ReLU 

Dropout 

fraction = 0.1 

Pooling size = 

0 

Training 

parameters 

Loss function = Categorical cross entropy 

Learning rate = 0.01 

Number of epochs = 200 

Optimizer = Adam (Kingma and Ba 2015) 

10 fold cross validation strategy is employed during training 

In particular, 0.8 < ijSI  < 1.5 indicates a good feature, ijSI > 2.0 indicates the best feature, and ijSI  

< 0.8 indicates the worst feature, for separation of the two classes, i and j. Remote sensing studies have 

used this measure for feature selection purposes (Wu et al. 2011, Mishra, Garg, and Singh 2017). 

The class separabilities are measured on the ground truth class samples of Roorkee area and at the 

first convolutional layer i.e. C1, of the 2D-CNN-v1, 3D-CNN-v1 and the proposed Perm-LSS-CNN models 

for Roorkee PolSAR-MS data.  For each model and class pair, the highest SI value achieved using equation 



 

18 

 

3 is given in Table 4.  For example, in the BS-water class pair case, the highest SI value of; 1.82 for 2D-

CNN-v1, 1.99 for 3D-CNN-v1, and 2.87 for the Perm-LSS-CNN are obtained. In other example, in the tall 

vegetation (denoted as ‘TV)-short vegetation (denoted as ‘SV) class pair case, the highest SI value of; 1.46 

for 2D-CNN-v1, 1.56 for 3D-CNN-v1, and 2.77 for the Perm-LSS-CNN are obtained. 

Overall, it is observed from Table 4 that the Perm-LSS-CNN model transforms the input data space 

to a feature space where the classes are more significantly separable than what is achieved by 2D-CNN-v1 

or 3D-CNN-v1.  

The above experiment establishes the advantage of permuted local convolution in the spectral 

dimension with spatial context over the convolution strategies used in 2D-CNN-v1 or 3D-CNN-v1. 

Table 4 separability index values for all the possible class pairs for the 2D CNN-v1, 3D CNN-v1, and 

‘Perm-LSS-CNN filters. 

Class pairs 
Highest Separability Index (SI) value 

2D CNN-v1 3D-CNN-v1 Perm-LSS-CNN 

BS vs Water 1.82 1.99 2.87 

BS vs Urban 2.09 2.35 2.90 

BS vs TV 2.98 3.82 3.75 

BS vs SV 1.29 1.69 1.87 

Water vs Urban 3.05 3.04 3.57 

Water vs TV 2.59 3.75 4.38 

Water vs SV 1.43 1.29 1.64 

Urban vs TV 2.81 3.64 5.47 

Urban vs SV 1.70 2.10 2.27 

TV vs SV 1.47 1.56 1.77 

6. Results and Discussions 

The models 1D-CNN-v1, 1D-CNN-v2, 2D-CNN-v1, 3D-CNN-v1, Perm-LS-CNN, and Perm-LSS-CNN are 

trained and cross validated on ground truth class data points provided in Table 1. The training parameters 

for 1D-CNN-v2, 2D-CNN-v1, and 3D-CNN-v1 are provided in Table 2, and the training parameters for 

Perm-LS-CNN, and Perm-LSS-CNN are provided in Table 3 Classification results with these models are 

shown in Figure 6 and Table 5 for the Roorkee PolSAR-MS data set, and in Figure 7 and Table 6 for the 

Haridwar PolSAR-MS data set. Figure 6(a) and Figure 7(a) show Google Earth images for the Roorkee and 

the Haridwar study areas respectively for reference purposes. Heydari and Mountrakis (2019) reports a 

detailed comparison of deep neural networks with SVMs for land cover classification with remote sensing 

data. They deplore the lack of case studies where a quantitative and qualitative comparison of deep neural 

networks with SVMs with multi or high spectral remote sensing data. Therefore, two non-CNN 

classification methods namely radial basis kernel-support vector machine (RBF-SVM), and random forest 
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(RF) are also considered here for comparison. The RBF-SVM method parameters settings are; (a). 

Regularization parameter is set to 12.7 and, (b). Kernel influence parameter is set to 0.056568. The random 

forest method parameters settings are; (a). The number of features to consider when looking for the best 

split is set to 4, and, (b). The number of trees in the forest is set to 41. 

From Table 5 and Table 6, it is evident that the proposed Perm-LSS-CNN provides the best 

performance for both the datasets with a 10-fold cross validation overall accuracy of 97.8 and quadratic 

kappa of 0.972 for the Roorkee data set, overall accuracy of 97.9 and quadratic kappa of 0.974 for the 

Haridwar data set. Individual class precision (a.k.a. user) and recall (a.k.a. producer) accuracies are also 

provided in Tables 5 and 6 for the Roorkee and the Haridwar data sets. The difference between the 

precision and the recall averaged over all land cover classes (termed as AD in table 5 and 6) is computed to 

evaluate the generalization ability and consistency of the methods. AD is minimum with Perm-LSS-CNN 

for Roorkee data and second minimum for the Haridwar data. It is also observed that the AD is consistent 

for both data sets, i.e. around 3 whereas the AD for other methods varies significantly with the two data 

sets. This indicates the good generalization ability of the Perm-LSS-CNN. Further, Table 5 and Table 6 also 

show that even if the overall accuracy of the proposed Perm-LSS-CNN is best, the other classifiers have 

shown comparable overall accuracies as well.  

A detailed analysis of the classification performance of all the methods considered here is however 

required to support these tabular results. A visual analysis of the classified images from 2D-CNN-v1, 3D-

CNN-v1, Perm-LSS-CNN, RF, and RBF-SVM is thus performed. Five ‘region of interest’ areas are selected 

for visual inspection from the Roorkee study area. The selected areas are marked as A, B, C, D, and E in 

Figure 6(a). They contain the points that are taken as ground truth. Table 7 shows the classification results 

on these selected areas obtained from the considered five methods.  

In Table 7, Figure (a) show a river and man-made riverbed markers. In Figure (b), (c), (d), (e) and 

(f), the man-made riverbed structures are correctly classified by each method. But, in Figure (b), and (c), 

water flow in the river is not consistent which is undesirable, whereas, in Figure (d), (e) and (f), water flow 

is consistent. Figure (g) shows an agriculture field with a building located in the upper right corner. In 

Figure (h), and (i), the building is classified as SV by RF and RBF-SVM, whereas it is correctly classified 

as urban by 2D-CNN-v1, 3D-CNN-v1, and the Perm-LSS-CNN in Figure (j), (k) and (l). Figure (m) shows a 

dried up river, a canal, and a bridge over the canal. The river is partially classified as Short Vegetation in 

Figure (n), and (o) whereas, it is correctly classified as Bare Soil in Figure (p), (q) and (r). The bridge is 

well off the ground and oriented perpendicular to the orbit of the SAR sensor, hence exhibits double 

bounce scattering (only from one side). It is consistently classified as a urban structure in Figure (p) and (r). 

The same is wrongly classified in Figure (n), (o) and (q). Observing the above two examples suggest that 
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RF and RBF-SVM methods are unable to capture subtle changes in land covers. Also, 3D-CNN-v1 

classified the bridge as Bare Soil, missing the double bounce nature inherited in the PolSAR features.  

Figure (s) show a peculiar TV pattern within a golf ground. The structural and spectral identity are better 

preserved by Perm-LSS-CNN (see Figure (x)) as compared to other classifiers. In Figure (t), and (u), most 

of the ground areas (Bare Soil or Short Vegetation) is wrongly classified as water. In Figure (v), the golf 

ground is approximately well classified, although the shape is a partially deteriorated. Figure (y) shows a 

tree line. Again, the structural and spectral identity is most significantly preserved by Perm-LSS-CNN as 

shown in in Figure (d1)).   

Overall observation of Table 5, 6, and 7 suggest that the proposed Perm-LSS-CNN method yields 

better classification performance both in terms of classification accuracy and generalization ability by 

capturing the structural and spectral identity of land covers. It is also observed that classification accuracies 

alone cannot be used as reliable indicators for comparing classification methods because of the overfitting 

nature of supervised classification methods. For example, RF and RBF-SVM provides good classification 

accuracies (see Table 5 and Table 6) but lacks generalization performance (see Table 7). The generalization 

accuracy on well-known ground truth is the real test. The reason for the inferior generalization ability of the 

2D-CNN-v1 is that the 2D convolutional filter is convolving with all the spectral features together, which 

reduces the possibility for generation of local spectrally significant features (see Figure 5(b). The proposed 

Perm-LSS-CNN generates such combinations of spectral and spatial properties and hence shows improved 

generalization performance. 

In summary, the analysis of the results in Table 5, 6, and 7 indicate the improved classification 

performance of the proposed Perm-LSS-CNN over other methods considered for comparison. The 

discussion also indicates an increase in the generalization ability of the Perm-LSS-CNN because of the 

ensemble learning scenario. 

Further, training curves and training time of the CNN based methods used here are provided in 

appendix section of the paper. Table 8 provides summary of the training time taken by the considered 

classifiers for the Roorkee dataset. Table 8 indicates that the proposed Perm-LSS-CNN classifier takes the 

longest training time. It is because the Perm-LSS-CNN is trained with 20 ensembles of permuted spectral 

features. In fact, training the Perm-LSS-CNN with 20 permuted sets of input spectral features increased the 

execution time 3 to 4 folds. Moreover, he training time is not very crucial in the land cover classification 

application. Figure 8 provides the training curves for 1D-CNN-v2, 2D-CNN-v1, 3D-CNN-v1, and Perm-

LSS-CNN. The convergence of the validation curve of the Perm-LSS-CNN in Figure 8(d) indicates to the 

better generalization performance of the method. 
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Conclusion 

This paper presents a critical analysis of the potential and performance of the one dimensional, two 

dimensional, and three dimensional convolutional neural networks, where dimensionality refers to that of 

the convolved features: spectral, spatial or both. These CNNs are applied to land cover classification with 

multisensor (PolSAR plus multispectral) remote sensing data. Two novel CNN based models are 

introduced, where local filters in either spectral only (Perm-LS-CNN) or spatial-spectral domains (Perm-

LSS-CNN) are applied after a permutation layer. The permutation layer generates an ensemble of band 

combinations, which are drawn upon by the CNN in order to generate powerful features for land cover 

classification. The results demonstrate the improved generalization ability of these models compared to 

both alternative CNN architectures and other machine learning models (SVM and random forests). Perm-

LSS-CNN also fully uses both PolSAR and multispectral information, improving results compared to other 

popular methods for PolSAR-MS data based land cover classification. A separability measure is used for 

the model significance evaluation. Separability analysis states that the Perm-LSS-CNN transforms the input 

data space into a feature space where separability among classes increases. This increase in separability is 

achieved due to the inclusion of permuted local spectral convolution in addition to the local spatial 

convolution which is not available in the 1D-CNN-v1, 2D-CNN-v1, or 3D-CNN-v1 CNN models. A fine 

analysis on ground truth data provides an extra qualitative assessment which complements the quantitative 

classification results. These demonstrate that the proposed Perm-LSS-CNN model is able to generalize 

much better while keeping high classification accuracies.  
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(a)                (b)               (c) 

   

(d)                (e)               (f) 

   
(g)                (h)               (i) 

BS Water Urban TV SV 

Figure 6 (a) Google Earth image of the Roorkee study area, India. Classified images are shown for different 

classifiers: (b) 1D-CNN-v1, (c) 1D-CNN-v2, (d) Perm-LS-CNN, (e) 2D-CNN-v1, (f) 3D-CNN-v1, (g) 

Perm-LSS-CNN, (h) RBF-SVM and, (i) RF. 

 

Table 5 Classification performance of various classifiers considered for PolSAR-MS Roorkee dataset. *AD 

is the difference between precision and recall, averaged over all the land cover classes considered. 

Method 

Overall 

Accuracy 

(%) 

Quadratic 

Kappa 

Precision (%)  

(a.k.a. user accuracy) 

Recall (%)  

(a.k.a producer accuracy) AD*(%) 

BS TV SV Urban Water BS TV SV Urban Water 

1D-CNN-v1 95 0.938 94.5 100 85.2 100 97.5 93.4 92.4 97 97.5 96.3 4.9 

1D-CNN-v2 95.2 0.939 96.4 100 84.5 100 97.1 93 91.8 96.6 98.1 98.4 5.3 

Perm-LS-

CNN 
95.7 0.946 97 100 86.5 100 97.1 94.4 92.1 94.2 98.1 98.4 4.3 

2D-CNN-v1 95.3 0.941 96.4 100 83.9 100 98.4 94.1 92.7 98 96.9 96.3 5.8 

3D-CNN-v1 96.3 0.933 98.8 100 84.5 100 99.6 95.6 91 100 98.7 98.4 6.1 
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Perm-LSS-

CNN 
97.8 0.972 99.7 99.6 91.1 100 99.3 94.3 98.3 99.6 98.7 99 3.3 

RBF-SVM 94.6 0.93 94.6 99.3 90.2 96.2 94 92.6 94 93.5 98 96.7 3.2 

RF 91.7 0.932 86.8 96.8 88.2 96.8 93.1 92.1 97.1 65 88.6 90.6 7.9 

 

   
(a)                (b)               (c) 

   
(d)                (e)               (f) 

   
(g)                (h)               (i) 

BS Water Urban TV SV 

Figure 7 (a) Google Earth image of the Haridwar study area, India. Classified images are shown for 

different classifiers: (b) 1D-CNN-v1, (c) 1D-CNN-v2, (d) Perm-LS-CNN, (e) 2D-CNN-v1, (f) 3D-CNN-

v1, (g) Perm-LSS-CNN, (h) RBF-SVM and, (i) RF. 
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Table 6 Classification performance of various classifiers considered for PolSAR-MS Haridwar dataset. 

*AD is the difference between precision and recall, averaged over all the land cover classes considered. 

Method 

Overall 

Accuracy 

(%) 

Quadratic 

Kappa 

Precision (%)  

(a.k.a. user accuracy) 

Recall (%)  

(a.k.a producer accuracy) AD*(%) 

BS TV SV Urban Water BS TV SV Urban Water 

1D-CNN-v1 94.1 0.925 100 100 70.2 96.6 99.3 97.1 87.1 98.9 95 99.3 9.2 

1D-CNN-v2 95 0.937 100 100 73.2 99.1 99.3 99.2 87.8 100 95.9 99.3 8.6 

Perm-LS-

CNN 
96.1 0.95 100 100 77.8 100 100 100 89.2 100 97.5 100 7.1 

2D-CNN-v1 94.7 0.933 100 100 70.9 99.6 100 97.8 89.2 100 92.9 99.3 9.9 

3D-CNN-v1 96.5 0.955 100 100 80.1 99.1 100 98.5 90.3 99 100 100 6.2 

Perm-LSS-

CNN 
97.9 0.974 100 100 89.3 99.1 100 99.2 96 99.1 96.7 100 3.4 

RBF-SVM 96.1 0.95 98.5 100 86.2 95.8 97.2 97.8 92.7 95.7 96.6 100 4.3 

RF 94.4 0.928 97 98.6 86.2 91.6 95.1 97.7 95.9 84.9 91.6 100 1.9 
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Table 7 Results from different classification techniques applied on the Roorkee data set. The areas include data points collected as ground truth. 

Areas 
Google Earth 

image 
RF RBFSVM  2D-CNN-v1 3D-CNN-v1 Perm-LSS-CNN 

A 
(29.944039, 
77.939183) 

      
 (a) (b) (c) (d) (e) (f) 

B 
(29.930272, 

77.964298) 

      
 (g) (h) (i) (j) (k) (l) 

C 
(29.934405, 
78.004034) 

      
 (m) (n) (o) (p) (q) (r) 

D 
(29.857237, 

77.905425) 

      
 (s) (t) (u) (v) (w) (x) 

E 
(29.846738, 

78.020642) 

      
 (y) (z) (a1) (b1) (c1) (d1) 



 

31 

 

Appendix 

Performance of Classification Methods: Single Sensor vs Multi Sensor 

The performance of various classifiers is evaluated with single sensor and multisensor datasets to indicate 

to the impact of multisensor data on land cover classification results. Table 8 provides the classification 

performance of 1D-CNN-v2, 2D-CNN-v1, 3D-CNN-v1, and Perm-LSS-CNN classifier with datasets namely 

PolSAR (PALSAR-2) only, multispectral (Landsat-8) only, and PolSAR-MS combined, table 8 indicates 

that the validation performance of the Perm-LSS-CNN classifier is similar to other classifiers even if the 

training performance is higher. This corresponds to the overfitting nature of Perm-LSS-CNN with low 

dimensional data due to the “spectral ensemble training” approach opted. However, as the dimensionality 

of the data increases, the “deep learning” and “spectral ensemble training” kicks in and increase the 

validation performance of the Perm-LSS-CNN. Further, the generalization performance of the Perm-LSS-

CNN is also improved. 

Table 8 Summary of classification performance and training time of the 1D-CNN-v2, 2D-CNN-v1, 3D-

CNN-v1, and Perm-LSS-CNN classifier with single sensor (PALSAR-2 or Landsat-8) and multisensor 

(PALSAR-2 and Landsat-8) datasets. 

Data Model Training Accuracy (%) Validation Accuracy (%) Training time (s) 

PALSAR-2 only 

1D-CNN-v2 78 74 36.68 

2D-CNN-v1 86 80 38.60 

3D-CNN-v1 87 82 41.61 

Perm-LSS-CNN 91 82 160.27 

RBF SVM 75 69 10.50 

RF 77 71 15.27 

Landsat-8 only 

1D-CNN-v2 90 76 34.09  

2D-CNN-v1 91 81 35.39 

3D-CNN-v1 93 82 38.81 

Perm-LSS-CNN 96 86 149.11 

RBF SVM 92 85 10.56 

RF 88 82 15.32 

PALSAR-2 plus 

Landsat-8 

1D-CNN-v2 95 87 44.89  

2D-CNN-v1 96 87 40.80 

3D-CNN-v1 96.3 90 51.40 

Perm-LSS-CNN 98 97 165.2 
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RBF SVM 94 86 10.88 

RF 91 84 15.91 

 

 

Training Curves for CNN models 

Figure 8 shows the training and validation curves for different methods  

   

    

Figure 8 Training curves of models for Roorkee PolSAR-MS (PALSAR-2 plus Landsat-8) data: (a). 1D-

CNN-v2, (b). 2D-CNN_v1, (c). 3D-CNN_v1 and, (d) The Perm-LSS-CNN model. The blue colour curve is 

the training curve and the orange colour curve is the validation curve. 

 


