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It is a challenge to develop methods which can process the PolSAR and multispectral (MS) data modalities together without losing information from either for remote sensing applications. This paper presents a study which attempts to introduce novel deep learning based remote sensing data processing frameworks that utilizes convolutional neural networks (CNNs) in both spatial and spectral domains to perform land cover (LC) classification with PolSAR-MS data. Also since earth observation remotely sensed data have usually larger spectral depth than normal camera image data, exploiting the spectral information in remote sensing (RS) data is crucial as well. In fact, convolutions in the subspectral space are intuitive and alternative to the process of feature selection. Recently, researchers have gained success in exploiting the spectral information of RS data, especially the hyperspectral data with CNNs. In this paper, exploitation of the spectral information in the PolSAR-MS data via a permuted localized spectral convolution along with localized spatial convolution is proposed. Further, the study in this paper also establishes the significance of performing permuted localized spectral convolutions over non-localized or localized spectral convolutions. Two models are proposed, namely a permuted local spectral convolutional network (Perm-LS-CNN) and a permuted local spectral-spatial convolutional network (Perm-LSS-CNN). These models are trained on ground truth class data points measured directly on the terrain. The evaluation of the generalization performance is done using ground truth knowledge on selected well known regions in the study areas. Comparison with other popular machine learning classifiers shows that the Perm-LSS-CNN model provides better classification results in terms of both accuracy and generalization.

Introduction

oday, both synthetic aperture radar (SAR) and multispectral (MS) remote sensing data are easily available with good spatial and temporal resolutions. The two data modalities are crucial for earth studies and complement each other in many applications such as land cover classification, crop monitoring, or change detection. In general, multispectral remote sensing data provides spectral reflectance information and PolSAR remote sensing data provides scattering and polarizing behaviour information about the earth surface objects. These earth surface objects are more commonly termed as land covers by the remote sensing community. The basic idea behind utilizing the two data modalities together is to acquire better spatial, spectral, and temporal information on the land covers. Although, higher spectral information can be achieved through hyperspectral remote sensing but at a cost of spatial and temporal information. Also, since it is an optical remote sensing technique, it suffers from the classical challenges (clouds). For applications such as land use land cover classification or land cover monitoring, all three aspects are crucial and a multi sensor approach is more beneficial. Using PolSAR and MS data modalities together is shown to be a convenient and successful strategy. Methodologies listed in many review articles such as in [START_REF] Pohl | Review Article Multisensor Image Fusion in Remote Sensing: Concepts, Methods and Applications[END_REF], or more recently in J. [START_REF] Zhang | Multi-Source Remote Sensing Data Fusion: Status and Trends[END_REF] or [START_REF] Joshi | A Review of the Application of Optical and Radar Remote Sensing Data Fusion to Land Use Mapping and Monitoring[END_REF] have been used by the earth observation data processing community in processing multispectral and PolSAR data together. Authors in [START_REF] Joshi | A Review of the Application of Optical and Radar Remote Sensing Data Fusion to Land Use Mapping and Monitoring[END_REF] provide an extensive review on the application of PolSAR and MS data fusion for remote sensing applications. The reviewed methodologies include traditional, machine learning, and knowledge based decision trees. Authors in [START_REF] Joshi | A Review of the Application of Optical and Radar Remote Sensing Data Fusion to Land Use Mapping and Monitoring[END_REF] also remarked that the studies in multi-sensor data fusion based land cover classification mostly use MS and PolSAR data with machine learning methods. Most popular machine learning-data fusion techniques include artificial neural networks (ANNs or NNs) and support vector machines (SVMs). In fact, studies (J. [START_REF] Zhang | Multi-Source Remote Sensing Data Fusion: Status and Trends[END_REF][START_REF] Joshi | A Review of the Application of Optical and Radar Remote Sensing Data Fusion to Land Use Mapping and Monitoring[END_REF][START_REF] Lary | Machine Learning in Geosciences and Remote Sensing[END_REF]and P. Feng et al. 2019) have also recognized the significance of machine learning in various multi-sensor remote sensing applications. From the aforementioned review, two points are evident; first, utilization of PolSAR and MS data together is a successful strategy and second, machine learning techniques are successful in utilizing the two data modalities together. However, it is challenging for (NNs) with shallow depth (number of layers ≤ 2) to extract high level abstract/complex features from high dimensional remote sensing data without overfitting or losing generalization. Generalization refers to the ability of how well an algorithm performs on 'out of the seen samples' data points. If an algorithm is performing well outside training data, then the algorithm is showing good generalization performance and vice versa. Researchers in many studies [START_REF] Zhu | Deep Learning in Remote Sensing: A Review[END_REF]W. Li et al. 2016;[START_REF] Zhang | Deep Learning for Remote Sensing Data: A Technical Tutorial in the State of the Art[END_REF] are exploring new advanced machine learning approaches for T remote sensing applications that are able to extract complex features from high dimensional remote sensing data. In the direction, deep neural networks with deep learning are the high-potential and powerful tools for extracting high level information from remote sensing data [START_REF] Zhong | Deep Learning Based Multi-Temporal Crop Classification[END_REF][START_REF] Huang | Urban Land-Use Mapping Using a Deep Convolutional Neural Network with High Spatial Resolution Multispectral Remote Sensing Imagery[END_REF]. Authors in [START_REF] Zhu | Deep Learning in Remote Sensing: A Review[END_REF] and L. [START_REF] Zhang | Deep Learning for Remote Sensing Data: A Technical Tutorial in the State of the Art[END_REF] have reviewed studies which used and demonstrated the significance of deep neural network frameworks for remote sensing applications. Convolutional deep neural networks (CNNs) are recently the most widely used deep network models in remote sensing data based land cover classification [START_REF] Zhu | Deep Learning in Remote Sensing: A Review[END_REF]. CNNs have the ability extract complex features directly from data [START_REF] Lecun | Deep Learning[END_REF].

Another advantage of focusing on developing CNNs for PolSAR-MS data processing is that CNNs can directly utilize multi-sensor high dimensional remote sensing data with efficient performance for remote sensing applications. Unlike the conventional data fusion methods, this reduces the need of fusing the PolSAR-MS data modalities together before using it further.

L. [START_REF] Zhang | Deep Learning for Remote Sensing Data: A Technical Tutorial in the State of the Art[END_REF] presents a comparison of CNN based models with some popular remote sensing data classifiers for processing hyperspectral remote sensing data. The CNN model reported in L. [START_REF] Zhang | Deep Learning for Remote Sensing Data: A Technical Tutorial in the State of the Art[END_REF] is designed to effectively capture global spectral features along with local spatial features. Similar studies are reported in [START_REF] Chen | Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks[END_REF], [START_REF] Mei | Integrating Spectral and Spatial Information into Deep Convolutional Neural Networks for Hyperspectral Classification[END_REF]J. Feng et al. (2019). The CNN models in these studies employed one, two, and three dimensional convolutions to extract spectral and spatial information from unimodal remote sensing data. Moreover, CNNs have also been used with multisensor, for example PolSAR-MS data in remote sensing applications. [START_REF] Kussul | Deep Learning Classification of Land Cover and Crop Types Using Remote Sensing Data[END_REF] used one and two dimensional CNNs on Landsat8-Sentinel1 data for land cover and crop type classification and further compared the results with random forest (RF) classifier. Their model reports better classification performance by capturing local contextual (spectral and/or spatial) features whereas the RF classifier captured only the global dominant features. The study in [START_REF] Kussul | Deep Learning Classification of Land Cover and Crop Types Using Remote Sensing Data[END_REF] indicates potential of CNNs with PolSAR-MS data for remote sensing applications and motivates for similar studies.. However, one important aspect comes to consideration while processing PolSAR and MS data together using CNNs. The aspect is the efficient exploitation of the spectral information present in the multisensor data. Exploitation of spectral information of hyperspectral remote sensing data has been done in past, either exclusively with one dimensional CNNs or, along with the spatial information using two, or three dimensional CNNs. Many studies [START_REF] Chen | Deep Learning-Based Classification of Hyperspectral Data[END_REF][START_REF] Hu | Deep Convolutional Neural Networks for Hyperspectral Image Classification[END_REF][START_REF] Mei | Integrating Spectral and Spatial Information into Deep Convolutional Neural Networks for Hyperspectral Classification[END_REF][START_REF] He | Hyperspectral Image Classification Based on Deep Stacking Network[END_REF][START_REF] Yu | Convolutional Neural Networks for Hyperspectral Image Classification[END_REF] and more have used one dimensional CNNs as spectral feature extractors for hyperspectral remote sensing data classification. In contrast, extracting spectral information along with spatial information from hyperspectral remote sensing data using CNNs is a recently popular approach. The approach has however improved the results in land cover monitoring and classification applications.

Because hyperspectral remote sensing data have large spectral dimensions, extracting spectral information is computationally expensive and compounding with extraction of spatial information makes it harder.

Therefore, some studies [START_REF] Makantasis | Deep Supervised Learning for Hyperspectral Data Classification through Convolutional Neural Networks[END_REF][START_REF] Yue | Spectral-Spatial Classification of Hyperspectral Images Using Deep Convolutional Neural Networks[END_REF][START_REF] Aptoula | Deep Learning with Attribute Profiles for Hyperspectral Image Classification[END_REF][START_REF] Zhang | Deep Learning for Remote Sensing Data: A Technical Tutorial in the State of the Art[END_REF] used principal component analysis (PCA) for feature dimensionality reduction and then used two dimensional CNNS for classification applications. While, alternate to this, some studies (H. [START_REF] Zhang | Spectral-Spatial Classification of Hyperspectral Imagery Using a Dual-Channel Convolutional Neural Network[END_REF][START_REF] Yue | A Deep Learning Framework for Hyperspectral Image Classification Using Spatial Pyramid Pooling[END_REF][START_REF] Zhao | Spectral-Spatial Feature Extraction for Hyperspectral Image Classification: A Dimension Reduction and Deep Learning Approach[END_REF] used one and two dimensional CNNs separately to extract the spectral and spatial information and combined the separately extracted features later. Further, some studies used three dimensional CNNs to extract local spectral and spatial information simultaneously. [START_REF] Chen | Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks[END_REF] and Ying Li, Zhang, and Shen (2017) used three dimensional CNNs as spectral-spatial feature extractors and classifiers for hyperspectral remote sensing data.

In summary, enough evidence suggests that; one, two, and three dimensional CNNs have been successfully used to extract spectral and/or spatial information from hyperspectral remote sensing data.

However, the significance of spectral and/or spatial CNNs as land cover classifiers with high dimensional multisensor data is still interesting to investigate. Therefore, the study presented in this paper focusses on two aspects.  To critically analyse the one dimensional (1D), two dimensional (2D), and three dimensional The remaining of the paper is organized as follows; Section 2 provides a brief background on PolSAR features and CNNs utilized during the study. Section 3 provides information on the experimental setup i.e. study areas, datasets, ground truth, and other resources considered and used during the study.

Section 4 discusses the popular 1D, 2D, and the 3D CNN models used for remote sensing data processing so far and further presents and discusses 1D, 2D, and 3D CNN model configurations used in this study for PolSAR-MS data processing. Section 5 presents the novel CNN based models developed during the study for PolSAR-MS data processing for land cover classification. Results from the proposed and compared methods are discussed in section 6. Finally, section 7 concludes the paper.

Theoretical Background

Polarization Signatures

Polarization signature (PS) is a three dimensional graphical representation of backscattering behaviour of a target, or in the case of current study, a land cover. In PS representation, x-axis and y-axis represent ellipticity angle and orientation angle respectively and z-axis represent received backscattered power coefficient (sigma naught). Orientation or tilt angle (ψ) varies from -90 0 to 90 0 and ellipticity angle (χ) varies from -45 0 to +45 0 . The signatures are computed using equation (1).
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Where σ represents backscattering coefficient, suffix i and j represent transmit and received combinations respectively. K is the Kennaugh matrix, which provides received power, given the polarization characteristics of the receiving antenna (Antenna Laboratory, 1952). It is also known as the Stokes scattering matrix or the Stokes scattering operator. Computation of K parameters is done similar to [START_REF] Harold | The Kennaugh Matrix[END_REF]. k is the propagation constant. Co-polarized signature is obtained by transmit and received combination of 

Convolutional Neural Networks

CNNs are a popular class of deep feedforward artificial neural networks proposed in various studies (Ian Goodfellow, Bengio, and Courville 2017b;[START_REF] Ciresan | Multi-Column Deep Neural Networks for Image Classification[END_REF][START_REF] Fukushima | Neocognitron: A Self-Organizing Neural Network Model for a Mechanism of Visual Pattern Recognition[END_REF][START_REF] Lecun | Gradient-Based Learning Applied to Document Recognition[END_REF]and W. Zhang et al. 1991). Building blocks of a conventional CNN are; a convolutional layer, a pooling layer, a dropout layer, a fully connected layer, and a loss layer. A generic arrangement of the layers is discussed in Ian Goodfellow, Bengio, and Courville (2017a) and [START_REF] Albelwi | A Framework for Designing the Architectures of Deep Convolutional Neural Networks[END_REF].

Imagine a CNN with M layers, the output state vector of the 𝑚 𝑡ℎ layer is denoted by 𝑶 𝒎 , where

  1, 2... m M 
and, 𝑶 𝟎 represents the input data. The input layer is then connected to a convolutional layer. In the convolutional layer, a 1D, 2D or 3D convolution is performed with kernels. For the sake of understanding, a 2D convolution is explained here. The matrix 𝐖 𝟏 encodes the weights of the links connecting the first convolutional layer to the input layer. A vector b1 which denotes a bias term is also added. Subsequently, a non-linear pointwise activation operation g(.) is performed. Finally, a pooling layer is used which helps in selection of dominant features. The convolution plus pooling in the 𝑚 𝑡ℎ layer is

represented in equation (2). ( ( )) pool g    m W m m-1 m O O b (2)
Where,  indicates convolution operation and pool denotes a spatial aggregation, as defined in [START_REF] Boureau | A Theoretical Analysis of Feature Pooling in Visual Recognition[END_REF]. Several convolutional and pooling layers can be stacked to form a hierarchical feature extraction architecture. The resultant features are then combined to form a one-dimensional feature vector to be taken as input by the fully connected layer. The fully connected layer acts as a typical multi perceptron layer. The last layer is usually a linear (for regression scenarios) or softmax (for classification scenarios) layer, with the number of neurons matching the number of output variables or classes desired.

This layer also specifies how training penalizes the deviation between the predicted and true labels and is normally the final layer.

The weights,   , ,...

1 2 M
W W W and the biases,   , ,... networks can be realized for 1D or 3D CNNs accordingly. However, the architectures of 1D, 2D, and 3D

CNNs for remote sensing data processing are as follows.

 For 1D CNNs, the remote sensing data input is a vector (usually a vector of spectral features). The hyper parameters to be set during the CNN architecture design include; the number and shape of convolution filters to be used in the convolutional layer, stride and dilation values, and the pooling window shape. Regularization methods, preventing the CNN from overfitting, are also used. Among many, Dropout is the most popular regularization method [START_REF] Srivastava | Dropout: A Simple Way to Prevent Neural Networks from Overfitting[END_REF]. Dropout is a technique where randomly selected neurons are ignored during training. This means that their contribution to the activation of downstream neurons is temporally removed on the forward pass and any weight updates are not applied to the neuron on the backward pass. Other methods include Drop Connect, stochastic pooling, early stopping, and weight decay.

The current study utilizes and investigates the ability of 1D, 2D, and 3D CNNs as land cover classifiers on PolSAR-MS data. Also, the current study proposes new frameworks based on these CNNs.

Experiment Setup

Study area

Two areas are considered for the analysis, the development and the testing of the proposed methodology.

The first study area includes Roorkee city at the foothills of the great Himalayas of the northern India and its neighbouring region. [START_REF] Gillespie | Color Enhancement of Highly Correlated Images. II. Channel Ratio and "Chromaticity" Transformation Techniques[END_REF] and then resampled to the PALSAR-2 PolSAR data spatial resolution of 6 meters using the "bicubic spline" interpolation method [START_REF] Rajput | Multisensor Fusion of Satellite Images for Urban Information Extraction Using Pseudo-Wigner Distribution[END_REF]. A false colour composite using the selected multispectral bands is displayed in Figure 2 

Ground Truth

Five land cover classes are considered namely bare soil (BS), tall vegetation (TV), short vegetation (SV), urban, and water. Ground truth class data points are measured directly on the terrain based on visual inspection. Approximately 1200 data points are collected for both the study areas. Details of the ground truth collected for both study areas are shown in Table 1.

The experiment setup i.e. the study areas, the datasets, or the ground truth data points, is used for, first, a critical analysis of the performance of conventional CNN frameworks and, second, the development of novel CNN classification frameworks for land cover classification. tested with hyperspectral data [START_REF] Hu | Deep Convolutional Neural Networks for Hyperspectral Image Classification[END_REF][START_REF] Chen | Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks[END_REF]. The present study focuses on the analysis of the performance of 1D CNNs; both 1D-CNN-v1 and 1D-CNN-v2 with PolSAR-MS data.

The selected hyper-parameter settings are listed in Table 2. Apart from kernel size, the rest of the represents the spatial extent and 3 represents the number of adjacent bands to be convolved simultaneously.

One filter can convolve with three adjacent bands only. For example, a first filter (in yellow) convolves with bands 1, 2, and 3 whereas a second filter (in blue) convolves with bands 4, 5, and 6. This strategy is also employed in 1D CNNs [START_REF] Chen | Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks[END_REF]). (d). Convolution with 1 × 1 × 3 convolutional filters where 1 × 1 represents to the spatial extent and 3 represents number of arbitrarily selected bands to be involved.

For example, first filter (in yellow) convolves with bands 1, 3, and 7 whereas second filter (in blue) convolves with bands 2, 5, and 6. This strategy is employed in the proposed Perm-LS-CNN framework. 

1D-CNN-v1

Input data size = 2.

Three Dimensional CNN for PolSAR-MS data.

The 2D-CNN-v1 model discussed in section 4.2 is successful because of its spatial contextual awareness.

The localized spatial convolutions provide local connectivity, which controls the impact of neighbouring The proposed 3D CNN model 3D-CNN-v1 architecture and hyperparameters considered are listed in Table 2. The C1 layer of 2D-CNN-v1 in section 4.2 uses the complete spectral depth, i.e. 13 bands, during convolutions whereas 3D-CNN-v1 uses only a subset during convolutions. The idea of local spectral and local spatial convolution is shown in Figure 5(c). This provides an improvement in classification accuracy and robustness compared to other 3D CNN models [START_REF] Chen | Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks[END_REF]and J. Feng et al. 2019).

Configuration and learning parameters are the same as in section 4.1 and are summarized in Table 2. to be convolved simultaneously. One filter can convolve with three adjacent bands only. For example, a first filter (in yellow) convolves with bands 1, 2, and 3 whereas a second filter (in blue) convolves with bands 5, 6, and 7. This strategy is employed in 3D CNNs [START_REF] Chen | Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks[END_REF]). (d). Convolution with 3 × 3 × 3 convolutional filters where 3 × 3 represents the spatial extent and 3 represents the number of arbitrarily selected bands to be involved. For example, a first filter (in yellow) convolves with bands 1, 2, and 4 whereas a second filter (in blue) convolves with bands 5, 7, and 10. This strategy is employed in the proposed Perm-LSS-CNN framework.

Proposed Permuted Local Spectral CNN (Perm-LSS-CNN) Permuted Local Spectral-Spatial

CNN (Perm-LSS-CNN)

In 1D-CNN-v2, a local convolution is performed over the spectral dimension. The convolution filter size in the spectral dimension i.e. 4 is less than the total number of input bands i.e. 13. This local spectral convolution improves the classification performance as discussed in [START_REF] Chen | Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks[END_REF]. Figure 4(c) depicts the pictorial representation of the local spectral convolution employed in 1D-CNN-v2. However, an issue arises in the process of local spectral convolution with high dimensional remote sensing data such as hyperspectral remote sensing data or multisensor data similar to the PolSAR-MS data used in this study.

While performing local spectral convolution, various combinations of spectral bands are not convoluted together and therefore, under-utilizing the full potential of the spectral information present in the data. For example, it is evident from Figure 4(c), that the second spectral band and the tenth spectral band cannot not get convoluted together using 1D-CNN-v2 and hence the use of spectral information is limited. This issue needs more attention while processing multisensor data with CNNs. Similarly, for the PolSAR-MS data used in this study, some polarimetric channels might not convolute together with some multispectral bands.

For example, out of the 13 bands, only 4 consecutive bands get convoluted together with a convolutional kernel window of 4. Moreover, the stacking of PolSAR and MS data in a common feature set induces arbitrary ordering and irrelevant band neighbourhood relationships: MS neighbour bands may be related by some wavelength ordering relation, but the boundary between PolSAR and MS bands is irrelevant.

Therefore, using local filters in these conditions should be well generalized.

To address the issue, the present study proposes an ensemble approach which attempts to improves the utilization of spectral information. To present a proof of concept, this paper introduces a permuted local spectral CNN model namely Perm-LS-CNN which is based on the 1D-CNN-v2 discussed in section 4.1. (Wu et al. 2011, Mishra, Garg, andSingh 2017).

Perm-LS-CNN

i j ij i j SI        (3)
The class separabilities are measured on the ground truth class samples of Roorkee area and at the first convolutional layer i.e. C1, of the 2D-CNN-v1, 3D-CNN-v1 and the proposed Perm-LSS-CNN models for Roorkee PolSAR-MS data. For each model and class pair, the highest SI value achieved using equation 3 is given in Table 4. For example, in the BS-water class pair case, the highest SI value of; 1.82 for 2D-CNN-v1, 1.99 for 3D-CNN-v1, and 2.87 for the Perm-LSS-CNN are obtained. In other example, in the tall vegetation (denoted as 'TV)-short vegetation (denoted as 'SV) class pair case, the highest SI value of; 1.46 for 2D-CNN-v1, 1.56 for 3D-CNN-v1, and 2.77 for the Perm-LSS-CNN are obtained. Overall, it is observed from Table 4 that 3 Classification results with these models are shown in Figure 6 and Table 5 for the Roorkee PolSAR-MS data set, and in Figure 7 and Table 6 for the Haridwar PolSAR-MS data set. 
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  3D) CNN capabilities to perform land cover classification using multi-sensor (PolSAR-MS) data. Development of novel classification frameworks based on 1D (spectral) or 3D (spectral-spatial) CNNs; in order to improve the generalization ability of the classifier during land cover classification with PolSAR-MS satellite data. 1D, 2D, and 3D CNN frameworks for PolSAR-MS data based land cover classification are discussed in section 4. The idea of extracting the spectral information efficiently from PolSAR-MS data using CNNs is achieved by performing a permuted localized spectral convolution alone, or along with localized spatial convolution on PolSAR-MS data. Spectral permutation before localized spectral convolution is proposed to increase the generalization ability of the CNN classifiers. Based on this idea, two models are proposed, namely permuted local spectral CNN (Perm-LS-CNN) and permuted local spectral-spatial CNN (Perm-LSS-CNN). Both the models are discussed in section 5.

  the polarization behavior (linear, circular or elliptical polarization), while orientation or tilt angle defines polarization states, for example, horizontal or vertical polarization (Jong-Sen Lee, Mitchell R. Grunes, and Wolfgang-Martin Boerner; 1997). For the sake of visualization, copolarized PS of an arbitrary land cover is shown in Figure1. H and V basis have been considered and the co-polarized signatures are considered in the current study.

Figure 1

 1 Figure 1 Co-polarized polarization signature of an arbitrary land cover

  of the CNN compose the model parameters, which are iteratively and jointly optimized via overall accuracy maximization over the training set. Similar

mWmW

  is a matrix and m b is vector. In general, 1D CNNs are used as feature extractors in remote sensing data, especially hyperspectral data processing.  For 2D CNNs, the convolution is performed on the two spatial dimensions (e.g. images). The input may contain extra dimensions (such as spectral information), but these are not used in the convolution. is a 3D matrix and m b is vector. It is important to note that in 2D CNNs, local convolutions are only performed in the spatial dimensions and not in the spectral dimension. 2D CNNs are used as spatial feature extractors and classifiers.  In 3D CNNs, convolutions are performed in the spatial dimensions and the temporal dimension simultaneously. However, in the absence of temporal information and presence of high spectral information, spectral dimension replaces the temporal dimension and local spectral convolutions are possible. m W is a 4D matrix and m b is vector. Therefore, 3D CNNs are used as spatial temporal or spatial spectral feature extractors and classifiers in remote sensing data processing.

  (b) for visualization purpose. The spatial resolutions of the PolSAR and MS datasets are used judiciously via CNNs later in the study towards improvement of the land cover classification The re-sampled, pre-processed multispectral bands are then co-registered with the selected pre-processed PolSAR features and the co-registered 13 bands (six from Landsat-8 and seven from PALSAR-2 data) are termed as PolSAR-MS data further in the study and are used as input data for further analysis and study. The flowchart shown in Figure 3 depicts the experiment setup.

Figure 2

 2 Figure 2 Datasets for Roorkee study area: (a). False colour composite of ALOS PALSAR-2 PolSAR data and, (b). False colour composite of Lansat-8 multispectral data

  parameters are similar for both models. Rectified linear unit or ReLU and Softmax activation functions are used in the intermediate and output layers respectively. A dropout strategy is considered for regularization and dropout fraction values of 0.2 for C1 and 0.1 for C2 and FC layer are set. Pooling is not considered because it hinders the full usability of the spectral variation. The loss function used in both models is the categorical cross entropy function. It optimizes the classification accuracy based on probabilities of each class during classification. The learning rate and the number of epochs are set to 0.01 and 200 respectively.

Figure 4

 4 Figure 4 (a). Data cuboid with M by N pixels and P bands. (b). Convolution with 1 × 1 × 𝑃 convolutional filter where 1 × 1 represents to the spatial extent and P represents total number of bands in the data. Each filter convolves with all the bands as all times. This strategy is employed in 1D CNNs during per pixel classification of remote sensing data. (c). Convolution with 1 × 1 × 3 convolutional filters where 1 × 1

  Figure 5(b). The configuration for the intermediate and output layers and learning parameters are the same as in section 4.1 and are summarized in Table2.

  pixels on the pixel to classify. Parameter sharing between local filters also makes the learning faster and less cumbersome, in contrast to fully connected neural networks. In remote sensing data applications, spectral information is as important, if not more, as spatial information. Local connectivity in spectral dimension also provides the same benefits. Advantages of local spectral convolutions and local spatial convolutions together can be exploited using 3D CNNs. The 3D CNNs have been successfully used with hyperspectral (unimodal) remote sensing data in the recent years. Chen et al. (2016), H. Zhang et al. (2017), and J. Feng et al. (2019) used 3D CNNs for spectral spatial information extraction for fusion and classification applications.

Figure 5 :

 5 Figure 5: (a). Data cuboid with M by N pixels and P bands. (b). Convolution with 3 × 3 × 𝑃 convolutional filter where 3 × 3 represents the spatial extent and P represents the total number of bands in the data. Each filter convolves with all the bands. This strategy is employed in 2D CNNs. (c). Convolution with 3 × 3 × 3 convolutional filters where 3 × 3 represents to the spatial extent and 3 represents number of adjacent bands

  Figure 5(d). The proposed Perm-LSS-CNN model configurations are provided in Table3. Similar to Perm-

  the worst feature, for separation of the two classes, i and j. Remote sensing studies have used this measure for feature selection purposes

  the Perm-LSS-CNN model transforms the input data space to a feature space where the classes are more significantly separable than what is achieved by 2D-CNN-v1 or 3D-CNN-v1. The above experiment establishes the advantage of permuted local convolution in the spectral dimension with spatial context over the convolution strategies used in 2D-CNN-v1 or 3D-CNN-v1.

Figure 6

 6 Figure 6 (a) Google Earth image of the Roorkee study area, India. Classified images are shown for different classifiers: (b) 1D-CNN-v1, (c) 1D-CNN-v2, (d) Perm-LS-CNN, (e) 2D-CNN-v1, (f) 3D-CNN-v1, (g) Perm-LSS-CNN, (h) RBF-SVM and, (i) RF.

Figure 7

 7 Figure 7 (a) Google Earth image of the Haridwar study area, India. Classified images are shown for different classifiers: (b) 1D-CNN-v1, (c) 1D-CNN-v2, (d) Perm-LS-CNN, (e) 2D-CNN-v1, (f) 3D-CNN-v1, (g) Perm-LSS-CNN, (h) RBF-SVM and, (i) RF.

Figure 8 Figure 8

 88 Figure 8 shows the training and validation curves for different methods

  The area extends from 29.951 degrees North and 77.865 degrees East to 29.803 degrees North and 78.068 degrees East. The area covers about 361 km 2 of landscape. Another study area includes Haridwar city of the northern India and neighbouring region. The area extends from 29.973 degrees North and 77.995 degrees East to 29.823 degrees North and 78.168 degrees East. The area covers complex PolSAR data with procedure similar to[START_REF] Phartiyal | Optimal Use of PolarimetricSsignature on PALSAR -2 Data for Land Cover Classification[END_REF]. Further, polarization signatures correlation features (PSCFs) are computed from the PSs using procedure similar to as explained in[START_REF] Phartiyal | An Improved Land Cover Classification Using Polarization Signatures for PALSAR 2 Data[END_REF]. PSCFs provide the degree of correlation between canonical/standard target PSs and observed/pixel PSs. Based on the analysis of[START_REF] Phartiyal | An Improved Land Cover Classification Using Polarization Signatures for PALSAR 2 Data[END_REF], four PSCFs namely "corr_co_Di", "corr_co_FP", "corr_co_HD", and "corr_co_VD" are used as derived PolSAR features in the current study. Overall, three basic (HH, HV, and VV) and four derived (corr_co_Di, corr_co_FP, corr_co_HD, and corr_co_VD) PolSAR features are used in the current study. Landsat 8 operational land imager (OLI) multispectral data is atmospherically corrected first. Out of the 11 bands, 6 bands namely blue, green, red, near infrared, short wave infrared 1, and short wave infrared 2 are selected for the study. These selected bands are pan sharpened as explained in Gillespie,

	PALSAR-2 single look
	complex PolSAR data is calibrated, multilooked, speckle filtered, and terrain corrected to obtain
	backscattering (sigma naught) coefficients in a procedure similar to P Mishra, Singh, and Yamaguchi
	(2011). Gamma MAP polarimetric speckle filter with a window size of 3 3  is used for speckle filtering
	similar to Pooja Mishra, Garg, and Singh (2017). Four features namely HH, HV, VH, and VV are obtained.

about 270 km 2 of landscape. Both study areas have mixed class type landscape, which is beneficial for the evaluation of classifiers performance in mixed class scenarios.

3.2. Dataset

Multisensor dataset is used in the study i.e. multispectral and PolSAR data acquired over the study areas. Multispectral data used is the Landsat-8 multispectral data acquired on March 17, 2015. PolSAR data used is the ALOS PALSAR-2 L band fully polarimetric single look complex PolSAR data acquired on March 13, 2015. Preprocessing is required with both the multispectral and the PolSAR raw data. The landsat-8 multispectral data suffers from atmospheric perturbations whereas the PolSAR data suffers from speckle noise. Preprocessing is done separately on the multispectral and the PolSAR data. Since, HV and VH are similar due to the reciprocity theorem, only HH, HV, and VV are used further. A false colour composite using the selected features is displayed n Figure 2(a) for visualization purpose. Derived PolSAR features are also used in this study. Polarization signatures (PSs) are computed from the single look

Table 2

 2 

		1D-CNN-v1, 1D-CNN-v2, 2D-CNN-v1and 3D-CNN-v1 CNN model configurations,	
	hyperparameter and training settings				
				Layer			
	Model	Input	Convolutional	Convolutional	Fully	connected	Output layer
			layer 1 (C1)	layer 2 (C2)	layer (FC)	

Table 3 .

 3 Similar to Perm-LS-CNN, 20 permuted sets are created in the Perm-LSS-CNN model. All hyperparameters are set as for 3D-CNN-v1 and are listed in Table3.The advantage and significance of the permuted local spectral-spatial convolutions used in Perm-LSS-CNN over the local spatial convolutions used in 2D-CNN-v1 or local spectral-spatial convolutions used in is 3D-CNN-v1 is evaluated based on a class separability measure proposed in[START_REF] Cumming | Feature Utility in Polarimetric Radar Image Classification[END_REF]. The separability measure is computed using equation (3). are mean values for class i and j respectively, and

	ij SI is the measure of separability

i  and j 

Table 3

 3 Perm-LS-CNN and Perm-LSS-CNN model configurations, hyperparameters and training settings

				Layer		
	Model	Input	Permutation layer (P1)	Convolutional layer 1 (C1)	Convolutional layer 2 (C2)	Fully connected	Output layer
						layer (FC)	
	Perm-LS-	Input image	Permuted sets				
	CNN	size = 1 13 	= 20				
		Normalization	Kernel size =				
		= Batch	1 13 				
		Normalization	Activation =				
			Linear				

. Results and Discussions The

  Table 4 separability index values for all the possible class pairs for the 2D CNN-v1, 3D CNN-v1, and 'Perm-LSS-CNN filters.

	Class pairs	Highest Separability Index (SI) value 2D CNN-v1 3D-CNN-v1	Perm-LSS-CNN
	BS vs Water	1.82	1.99	2.87
	BS vs Urban	2.09	2.35	2.90
	BS vs TV	2.98	3.82	3.75
	BS vs SV	1.29	1.69	1.87
	Water vs Urban	3.05	3.04	3.57
	Water vs TV	2.59	3.75	4.38
	Water vs SV	1.43	1.29	1.64
	Urban vs TV	2.81	3.64	5.47
	Urban vs SV	1.70	2.10	2.27
	TV vs SV	1.47	1.56	1.77
	6			

models 1D-

 and 

Perm-LSS-CNN are trained and cross validated on ground truth class data points provided in Table 1. The training parameters for 1D-CNN-v2, 2D-CNN-v1, and 3D-CNN-v1 are provided in Table 2, and the training parameters for Perm-LS-CNN, and Perm-LSS-CNN are provided in Table

Table 5

 5 Classification performance of various classifiers considered for PolSAR-MS Roorkee dataset. *AD is the difference between precision and recall, averaged over all the land cover classes considered.

	Method	Overall Accuracy (%)	Quadratic Kappa	BS TV	Precision (%) (a.k.a. user accuracy) SV Urban Water	Recall (%) (a.k.a producer accuracy) AD*(%) BS TV SV Urban Water
	1D-CNN-v1	95	0.938 94.5 100 85.2	100	97.5 93.4 92.4	97	97.5	96.3	4.9
	1D-CNN-v2	95.2	0.939 96.4 100 84.5	100	97.1	93 91.8 96.6	98.1	98.4	5.3
	Perm-LS-CNN	95.7	0.946	97 100 86.5	100	97.1 94.4 92.1 94.2	98.1	98.4	4.3
	2D-CNN-v1	95.3	0.941 96.4 100 83.9	100	98.4 94.1 92.7	98	96.9	96.3	5.8
	3D-CNN-v1	96.3	0.933 98.8 100 84.5	100	99.6 95.6	91 100	98.7	98.4	6.1

Table 6

 6 Classification performance of various classifiers considered for PolSAR-MS Haridwar dataset.*AD is the difference between precision and recall, averaged over all the land cover classes considered.

	Method	Overall Accuracy (%)	Quadratic Kappa	BS TV	Precision (%) (a.k.a. user accuracy) SV Urban Water	Recall (%) (a.k.a producer accuracy) AD*(%) BS TV SV Urban Water
	1D-CNN-v1	94.1	0.925 100 100 70.2	96.6	99.3 97.1 87.1 98.9	95	99.3	9.2
	1D-CNN-v2	95	0.937 100 100 73.2	99.1	99.3 99.2 87.8 100	95.9	99.3	8.6
	Perm-LS-CNN	96.1	0.95 100 100 77.8	100	100 100 89.2 100	97.5	100	7.1
	2D-CNN-v1	94.7	0.933 100 100 70.9	99.6	100 97.8 89.2 100	92.9	99.3	9.9
	3D-CNN-v1	96.5	0.955 100 100 80.1	99.1	100 98.5 90.3	99	100	100	6.2
	Perm-LSS-CNN	97.9	0.974 100 100 89.3	99.1	100 99.2	96 99.1	96.7	100	3.4
	RBF-SVM	96.1	0.95 98.5 100 86.2	95.8	97.2 97.8 92.7 95.7	96.6	100	4.3
	RF	94.4	0.928	97 98.6 86.2	91.6	95.1 97.7 95.9 84.9	91.6	100	1.9

Table 7

 7 Results from different classification techniques applied on the Roorkee data set. The areas include data points collected as ground truth.

	Areas	Google Earth image	RF	RBFSVM	2D-CNN-v1	3D-CNN-v1	Perm-LSS-CNN
	A						
	(29.944039,						
	77.939183)						
		(a)	(b)	(c)	(d)	(e)	(f)
	B						
	(29.930272,						
	77.964298)						
		(g)	(h)	(i)	(j)	(k)	(l)
	C						
	(29.934405,						
	78.004034)						
		(m)	(n)	(o)	(p)	(q)	(r)
	D						
	(29.857237,						
	77.905425)						
		(s)	(t)	(u)	(v)	(w)	(x)
	E						
	(29.846738,						
	78.020642)						
		(y)	(z)	(a1)	(b1)	(c1)	(d1)
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(RF) are also considered here for comparison. The RBF-SVM method parameters settings are; (a).

Regularization parameter is set to 12.7 and, (b). Kernel influence parameter is set to 0.056568. The random forest method parameters settings are; (a). The number of features to consider when looking for the best split is set to 4, and, (b). The number of trees in the forest is set to 41.

From Table 5 andTable 6, it is evident that the proposed Perm-LSS-CNN provides the best performance for both the datasets with a 10-fold cross validation overall accuracy of 97.8 and quadratic kappa of 0.972 for the Roorkee data set, overall accuracy of 97.9 and quadratic kappa of 0.974 for the Haridwar data set. Individual class precision (a.k.a. user) and recall (a.k.a. producer) accuracies are also provided in Tables 5 and6 for the Roorkee and the Haridwar data sets. The difference between the precision and the recall averaged over all land cover classes (termed as AD in table 5 and6) is computed to evaluate the generalization ability and consistency of the methods. AD is minimum with Perm-LSS-CNN for Roorkee data and second minimum for the Haridwar data. It is also observed that the AD is consistent for both data sets, i.e. around 3 whereas the AD for other methods varies significantly with the two data sets. This indicates the good generalization ability of the Perm-LSS-CNN. Further, Table 5 andTable 6 also show that even if the overall accuracy of the proposed Perm-LSS-CNN is best, the other classifiers have shown comparable overall accuracies as well.

A detailed analysis of the classification performance of all the methods considered here is however required to support these tabular results. A visual analysis of the classified images from 2D-CNN-v1, 3D-CNN-v1, Perm-LSS-CNN, RF, and RBF-SVM is thus performed. Five 'region of interest' areas are selected for visual inspection from the Roorkee study area. The selected areas are marked as A, B, C, D, and E in Figure 6(a). They contain the points that are taken as ground truth. Table 7 shows the classification results on these selected areas obtained from the considered five methods.

In Table 7, Overall observation of Table 5, 6, and 7 suggest that the proposed Perm-LSS-CNN method yields better classification performance both in terms of classification accuracy and generalization ability by capturing the structural and spectral identity of land covers. It is also observed that classification accuracies alone cannot be used as reliable indicators for comparing classification methods because of the overfitting nature of supervised classification methods. For example, RF and RBF-SVM provides good classification accuracies (see Table 5 andTable 6) but lacks generalization performance (see Table 7). The generalization accuracy on well-known ground truth is the real test. The reason for the inferior generalization ability of the 2D-CNN-v1 is that the 2D convolutional filter is convolving with all the spectral features together, which reduces the possibility for generation of local spectrally significant features (see Figure 5 
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Appendix

Performance of Classification Methods: Single Sensor vs Multi Sensor

The performance of various classifiers is evaluated with single sensor and multisensor datasets to indicate to the impact of multisensor data on land cover classification results. Table 8 provides the classification performance of 1D- , and Perm-LSS-CNN classifier with datasets namely PolSAR (PALSAR-2) only, multispectral (Landsat-8) only, and PolSAR-MS combined, table 8 indicates that the validation performance of the Perm-LSS-CNN classifier is similar to other classifiers even if the training performance is higher. This corresponds to the overfitting nature of Perm-LSS-CNN with low dimensional data due to the "spectral ensemble training" approach opted. However, as the dimensionality of the data increases, the "deep learning" and "spectral ensemble training" kicks in and increase the validation performance of the Perm-LSS-CNN. Further, the generalization performance of the Perm-LSS-CNN is also improved.