N
N

N

HAL

open science

Kaldi-web: An installation-free, on-device speech
recognition system

Mathieu Hu, Laurent Pierron, Emmanuel Vincent, Denis Jouvet

» To cite this version:

Mathieu Hu, Laurent Pierron, Emmanuel Vincent, Denis Jouvet. Kaldi-web: An installation-free,
on-device speech recognition system. INTERSPEECH 2020 Show & Tell, Oct 2020, Shanghai, China.

hal-02910876

HAL Id: hal-02910876
https://hal.science/hal-02910876
Submitted on 3 Aug 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-02910876
https://hal.archives-ouvertes.fr

Kaldi-web: An installation-free, on-device speech recognition system

Mathieu Hu', Laurent Pierron', Emmanuel Vincent', Denis Jouvet"

'Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France

{mathieu.hu, laurent.pierron, emmanuel.vincent, denis.jouvetl}@inria.fr

https://gitlab.inria.fr/kaldi.web/kaldi-wasm

Abstract

Speech provides an intuitive interface to communicate with ma-
chines. Today, developers willing to implement such an inter-
face must either rely on third-party proprietary software or be-
come experts in speech recognition. Conversely, researchers in
speech recognition wishing to demonstrate their results need to
be familiar with technologies that are not relevant to their re-
search (e.g., graphical user interface libraries). In this demo,
we introduce Kaldi-web: an open-source, cross-platform tool
which bridges this gap by providing a user interface built around
the online decoder of the Kaldi toolkit. Additionally, because
we compile Kaldi to Web Assembly, speech recognition is per-
formed directly in web browsers. This addresses privacy issues
as no data is transmitted to the network for speech recognition.
Index Terms: speech recognition, human-computer interaction

1. Introduction

The past years have seen an increase in the number of applica-
tions relying on voice commands. This ranges from all-purpose
personal assistants to more specialized applications. Today, the
development of voice-enabled applications requires developers
to rely on proprietary, cloud-based automatic speech recogni-
tion (ASR) software which sends user data across the network.
This raises the issues of data protection and user privacy as well
as the dependency on such proprietary software.

At the same time, researchers from the ASR community
find new approaches to improve ASR systems. However, the
relevance of their work to real-word scenarios may not be ob-
vious to the developer and ASR enthusiast community as re-
searchers would need to package their work in an intuitive in-
terface to showcase it.

In this paper, we present an open-source, cross-platform
package built around the popular Kaldi toolkit [[1]]. Our package
aims to bridge the gap between these communities by providing

* an ASR engine running in web browsers that can load
any small-sized Kaldi nnet3 model,

* a readily available Graphical User Interface (GUI) to
control this ASR engine.

Our package is under a permissive licence: the source code
we authored is under an Apache-2.0 license while the rest is
either under an Apache-2.0 (Kaldi), a BSD-2.0 (libsamplerateﬂ)
or a CLAPACK license (CLAPACK, CBLAS, BLAS [2]).

The remainder of this paper describes our package in more
detail. In Section[2] the general architecture of the package is
shown. In Section [3] we detail how to showcase custom ASR
models with our GUI as well as potential constraints that these
models have to meet. Section H] describes the resources used
in the live demo of the package. This demo can be viewed at
https://kaldi-web.loria.fr.

Uhttp://www.mega-nerd.com/SRC/

rmre s © 1053% W0 20.01
{3 @ kaldi-web.loria.fr @ :
english_small ~ \!; START

ASR engine ready. Please click on button to start

Transcription ‘

D &

Figure 1: Graphical user interface.

2. Package architecture
2.1. Audio signal flow

The GUI is composed of a drop-down list of available ASR
models, a button to start or stop the ASR system, and a text
field displaying what has been recognized, as shown in Fig.[I]

To prevent heavy computations from freezing the GUI, and
thus giving a poor user experience, the audio signal is processed
in separate threads as shown in Fig.[2] These threads carry out
the following tasks:

 audio formatting: the signal is resampled and encoded
over 16-bit signed integers using libsamplerate;

* ASR: the formatted audio signal is converted to text
using the online2-tcp-nnet3-decode-faster
program of Kaldi that we adapted to our needs.

The GUI, displayed in the web page, runs in a thread that
only processes user inputs, displays the recognized speech and
passes data from a threads to another, i.e. sends the raw audio
from the microphone to the formatting block before forwarding
the formatted audio to the ASR block.

audio
formatting

L7

ASR

GUI

Figure 2: Program architecture.

2.2. Technology stack

To run libsamplerate and Kaldi in web browsers, the C/C++
programs are compiled to WebAssembly (WASM) [3] using the
emscripten [4]] toolchain. WASM is a new language for the web


https://gitlab.inria.fr/kaldi.web/kaldi-wasm
https://kaldi-web.loria.fr

that executes compiled programs at near-native speed and can
even use hardware acceleration.

By working with WASM, the end application can run di-
rectly in web browsers. This means that the same source code
can run on a wide range of devices. Additionally, in the case of
ASR, it is privacy-preserving as the whole processing pipeline
takes place on the device. Furthermore, since the application
runs in the browser, no installation is required on the device.

In addition to Kaldi and libsamplerate, our package relies
on the libraries CLAPACK, CBLAS and BLAS for matrix op-
erations. Since emscripten only compiles from C and C++, we
converted the FORTRAN source code of these libraries to C us-
ing the program f£2c, then manually corrected inconsistencies
and errors in the resulting code so that the corrected C source
code passes all the tests in CBLAS as well as all the matrix
operation tests in Kaldi.

The source code of these WASM and Kaldi compatible ma-
trix libraries and the compilation scripts are also available in our
repository.

2.3. Application architecture

The application as well as the ASR models are retrieved from
the web. The web page is hosted on a server, which can be split
in three main components as shown in Fig.

* a web server, which sends the web page to the client;

* a model server, which sends the list of available ASR
models to the client as well as each requested model.
Note that, to avoid downloading an ASR model every
time the page is loaded, the model is stored locally when-
ever possible;

 a frontend server, which hides the implementation de-
tails that the previous two servers represent to the client.
The client only sends requests to the frontend server,
which forwards the requests/response to/from the rele-
vant server.

web
server

browser server

web frontend T

model
server

Figure 3: Application architecture.

3. Supported ASR models
3.1. Loading custom models in the interface

To use custom ASR models with our GUI, the source code of
the package has first to be downloaded and installed. The instal-
lation steps are described in the wiki of the package and won’t
be detailed here.

Once installed, the frontend server, the web server and the
model server described in Section 2] can be launched with the
command line npm start entered at the root of the directory.

As the model server looks for ASR models bundled in a
zip archive in the directory dummy_serv/public, custom
models must be zipped and put in this directory too. These zip
archives must have a . zip extension and follow a certain for-
mat, which is also detailed in the wiki.

3.2. Model specifications

The ASR program can run any Kaldi nnet3 model, whether it is
chained or not and using i-vectors or not. The decoding graph
must be built and the word-to-symbol map, which is usually
named words . txt, must be available.

In addition to these requirements, it should be noted that the
target device that will run the application will impose further re-
strictions. For example, in our live demo, the model english
will run on most recent laptops and desktops but not on mobile
phones as it may require more memory than available. In con-
trast, the model english_small can be used on most recent
mobile phones. For reference, the model english_small
contains a 6-layer time-delay neural network, a decoding graph
of 105 MB, and close to 170,000 entries in words . txt.

4. Live demo

The live demo of the package, located at |https://kaldi-
web.loria.fr, distributes two models for the English language.

The larger model named english is the English ASR
model of the Zamia speech project”} The smaller model named
english_small relies on the same acoustic model as the
larger one but the decoding graph has been downsized by re-
ducing the size of the grammar and the lexicon.

5. Conclusion

In this demo, an open-source, cross-platform package for client-
side ASR is presented. By compiling Kaldi to WASM, we show
that it is possible to run an ASR system on the client directly
without requiring the end user to compile or install any pro-
gram. Moreover, web applications being cross-platform by na-
ture, the application provided in our package runs on a wide
range of devices. Our package can be used to demonstrate cus-
tom Kaldi nnet3 ASR models. The source code being avail-
able, it is of course also possible to modify the GUI, integrate
it in other applications, or even compile other parts of Kaldi to
WASM if needed.

6. Acknowledgements

The authors would like to thank Olivier Rochel for insight-
ful discussions about C program compilation and linking and
Philippe Schaeffer for advising them on licensing issues.

7. References

[1] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek,
N. Goel, M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz,
J. Silovsky, G. Stemmer, and K. Vesely, “The Kaldi speech recog-
nition toolkit,” in ASRU, 2011.

[2] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Don-
garra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney,
and D. Sorensen, LAPACK Users’ Guide, 3rd ed.  Philadelphia,
PA: Society for Industrial and Applied Mathematics, 1999.

[3] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Holman,
D. Gohman, L. Wagner, A. Zakai, and J. F. Bastien, “Bringing the
web up to speed with WebAssembly,” in PLDI, 2017, pp. 185-200.

[4] A. Zakai, “Emscripten: An LLVM-to-JavaScript compiler,” in
OOPSLA, 2011, pp. 301-312.

Zhttps://github.com/gooofy/zamia-speech


https://kaldi-web.loria.fr
https://kaldi-web.loria.fr

	 Introduction
	 Package architecture
	 Audio signal flow
	 Technology stack
	 Application architecture

	 Supported ASR models
	 Loading custom models in the interface
	 Model specifications

	 Live demo
	 Conclusion
	 Acknowledgements
	 References

