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Abstract

A uniaxial compression test was performed on a green compacted alumina powder. Using

Digital Image Correlation (DIC), displacement fields of two perpendicular surfaces of the

specimen were measured showing unavoidable bending effect. A constitutive model was

calibrated through three Finite Element Model Updating approaches. First, an analysis was

performed using average axial strains assessed via DIC and resultant forces to identify the

constitutive model. Then, a plane stress analysis was conducted out using the displacements

of the boundaries of the regions of interest for each camera separately to obtain the sought

parameters. Last, a 3D analysis was carried out using the multi-point constraint method

to link displacement fields of both surfaces. Because of bending, the first two approaches

give rise to two sets of different parameters. The analysis that considers the 3D nature of

bending leads to the set of parameters with the highest degree of confidence.
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1. Introduction1

Uniaxial compression is a well-known experimental procedure to characterize the mechan-2

ical properties of metals, polymers, and ceramics, by establishing the relationship between3

the uniaxial stress state prescribed by the loading condition and the induced triaxial strain4

state [1]. For an ideal uniaxial compression test, a uniform stress state is expected to arise5

within the specimen. However, some artifacts may jeopardize this usually assumed stress6

homogeneity [2, 3]. Features of the test such as the lack of parallelism of the platens and7

eccentric forces on the specimen usually result in non-uniform stress states. Further, geo-8

metrical imperfections of the sample geometry and inhomogeneity may lead to similar issues.9

Ceramics are brittle materials, which makes it hard to ensure the desired geometry of10

the specimen by traditional shaping processes. The difficulty of designing some geometries11

of specimen and fixture parts to reach the desired stress states may lead to spurious data12

and erroneous identification of material parameters [4]. As reported in the ASTM C1424-1013

standard: “actual studies of the effect of bending on the compressive strength distributions14

of advanced ceramics do not exist” [5]. This paper aims to propose a procedure that will15

automatically account for such imperfections.16

The accuracy of the material models depends on the calibration quality from mechanical17

tests. Green compacts are commonly characterized by using mechanical tests such as uniaxial18

compression and Brazilian tests from which material parameters are identified [6–11]. The19

classical identification methods of mechanical parameters uses fitting approaches from stress-20

strain curves obtained in these mechanical tests. For compression tests, the stress distribution21

is commonly assumed as homogeneous and calculated as the ratio of measured force and22

cross-sectional area of the specimen. The strains are evaluated from the use of the cross-head23

displacement (when the machine compliance is negligible with respect to that of the tested24

sample), strain gauges, optical or mechanical (contacting) extensometers. For verification25
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purposes of the stress and strain state distributions in the specimen for uniaxial compression,26

multiple strain gauges are installed on the lateral surfaces of the specimen or a verification27

test specimen is utilized [1, 5]. The difference in measured axial strain values is evidence of28

imperfect mechanical tests. As the fracture of ceramic materials may be catastrophic, it is29

not recommended to use conventional contacting extensometers.30

Full-field measurement methods enrich the identification and calibration of constitutive31

models [12]. In the present study, FE-based digital image correlation (DIC) [13, 14] was32

used. In the earlier implementations of DIC, local registrations of small interrogation win-33

dows were performed [15, 16]. Global approaches were introduced later on [17, 18], often34

based on finite element discretizations of the measured displacement fields [19–22]. Mea-35

suring displacement fields may provide a better understanding of mechanical tests. One36

way of better understanding tests is via numerical simulations. For instance, Finite Ele-37

ment Model Updating (FEMU) is a widely applied identification method [23]. It consists in38

minimizing the difference between measured and computed variables such as loads [24, 25],39

displacements [25, 26], temperatures [27], by an iterative scheme for optimizing the model40

parameters. The combination of FEMU and DIC techniques has achieved satisfactory re-41

sults in the calibration of constitutive models [28–34]. Via DIC analyses, Montilha et al. [11]42

determined the elastic parameters in an alumina green compact and observed dilatancy for43

the tested material in uniaxial compression. Another route usually consists in utilizing more44

complex triaxial testing cells to assess dilatancy [35].45

In this paper, an analysis of a uniaxial compression test on a compacted alumina spec-46

imen (Section 2) was performed using DIC. Images were captured for two perpendicular47

surfaces of a cuboid specimen. The degrees of freedom related to the vertical displacement48

of the common edge in both faces will be coupled by a multi-point constraint approach [36]49

(Section 3). To the best of the authors’ knowledge, such technique was not reported in the50
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literature for DIC analyses. Despite the non-homogeneous strain field obtained in the stud-51

ied uniaxial compression test, it is possible to calibrate some parameters of an elastoplastic,52

nonlinear hardening Drucker-Prager model [37, 38] by using three different FEMU-F ana-53

lyzes (Section 4). Section 5 describes the experimental and numerical results and shows that54

using two of the developed approaches, bending effects may be quantified and accounted for55

in the calibration of the parameters of an elastoplastic model.56

2. Material, experimental procedure and modeling57

An atomized alumina (Al2O3) powder [11, 39] was used to make the cuboid specimen.58

This manufacturing process was divided into three steps, namely, (i) isostatic pressing of59

the alumina powder at a minimum pressure to handle the sample, (ii) manual sanding, and60

(iii) final isostatic pressing. In the first step, the specimen was preformed in an isostatic61

AIP CP360 press. The chosen pressure for this step was 10 MPa, which was enough to62

press green compacts that are not too brittle to handle, and prevent major distortions in63

the geometry of the specimen. In the second step, the remaining geometric distortions were64

corrected by sanding the specimen. Last, the specimen was recompacted at 100 MPa The65

specimen was not sintered (green compact). Table 1 summarizes the final geometry of the66

studied specimen and some characteristics.67

Table 1 Basic characteristics/properties of the specimen

Material Dimensions [mm] Mass Density [g/cm3] Average grain size [µm]

Thickness Width Height Apparent Fully-dense

Compacted alumina powder 20.3 20.3 50.8 2.35 3.74∗ 75∗∗

∗ obtained with a helium pycnometer [11]

∗∗ before pressing [11]

Figure 1(a) shows the tested specimen between the platens of the testing machine. A68
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random speckle pattern was sprayed onto the observed surfaces to increase the number of69

gray levels and contrast in the image, and make DIC measurements possible.70

Specimen

Camera 1
Model T5i

Camera 2
Model T5i

(a) (b)

y

xz

y

xz

Figure 1 Experimental setup. (a) Specimen (20.3× 20.3× 50.8 mm3) between the testing machine
platens, and (b) upper schematic view of the camera disposition to image two adjacent lateral

surfaces

The images were simultaneously acquired with two cameras monitoring two adjacent71

lateral surfaces (Fig. 1(b)). The hardware parameters of the optical setup are gathered in72

Table 2.73
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Table 2 DIC hardware parameters

Cameras CANON T5 Rebel

Definition (raw) 3456× 5184 pixels (Bayer pixels)

Color filter Bayer

Gray Levels amplitude 8 bits

Lens CANON 100-mm macro

Aperture f/5.6

Field of view 40×60 mm2

Image scale 11.6 | 10.9 µm/pixel (camera 1 | 2)

Stand-off distance 27 cm | 25 cm (camera 1 | 2)

Image acquisition rate 0.05− 0.17 fps

Exposure time 1/60 s

Patterning technique sprayed black paint

Pattern feature size] 4 pixels (B/W)
]evaluated as full width at half maximum of autocorrelation function

The test was performed in a series of loading-unloading cycles on a servohydraulic MTS74

Bionix testing system equipped with a 15 kN capacity load cell. To reduce the problems75

related to the lack of parallelism between the loaded surfaces, an epoxy resin was applied76

on the upper and lower parts of the specimen (Fig. 1). The testing procedure, shown in77

Fig. 2, consisted of four loading-unloading cycles, followed by a final loading until the force78

started to decrease. A cross-head speed of 0.1 mm/min was selected, and a preload of 30 N79

was applied. The number of acquired pictures was equal to 88 for both perpendicular faces80

(Fig. 1).81
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Figure 2 Force history showing the image acquisition instants (depicted with solid circles)

The original elastoplastic Drucker-Prager model with nonlinear hardening was chosen82

to represent the mechanical behavior of green compacted alumina since this powder (i.e.,83

unsintered ceramic) has a ductile behavior when considered as a continuous medium [11].84

Elasticity was considered as isotropic and linear, characterized by Young’s modulus and85

Poisson’s ratio. This model considers a pressure-dependent yield surface, with a linear form86

when expressed in terms of pressure p and von Mises stress q. The equation of the yield87

locus is expressed with two parameters, namely, the angle of friction β and an intercept (i.e.,88

the so-called material cohesion d).89

Figure 3 Original Drucker-Prager yield surface represented in a pressure p vs. von Mises stress q
plane
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The hardening response was modeled with Voce’s law [40]90

σax = σ∞ − (σ∞ − σy) exp (−b εpax) (1)

where σax is the axial stress, σ∞ the compressive strength, σy the yield stress, b a hardening91

coefficient, and εpax the axial plastic strain. One may note that the parameters d and σy are92

linearly dependent. For the analysis in this work, the identification (described in Section 4)93

was not sensitive to the Poisson’s ratio ν and the friction angle β. Both values were taken94

from the literature [11, 39], respectively as ν = 0.13 and β = 55°.95

3. Digital Image Correlation and multi-point constraint96

Global digital image correlation aims to find the displacement field u that minimizes97

globally the difference of the gray levels between a reference image f and a deformed image98

g corrected by the measured displacement. The corresponding (gray level) conservation law99

is written with the following cost function100

η2 =

Ni∑
i

[f(xi)− g(xi + ui)]
2 (2)

whereNi is the number of pixels in the region of interest (ROI). To ensure a good conditioning101

of the minimization, the displacement of the i-th pixel ui is represented by a set of degrees102

of freedom via finite element (FE) shape functions103

ui = u(xi) =

Nj∑
j

φj(xi) aj (3)

where aj are the (unknown) nodal displacements, and φj(xi) the finite element shape func-104

tion [41]. In the present case, linear triangular elements were selected so that the corre-105
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sponding shape functions were linear with respect to the spatial coordinates.106

To solve the minimization problem, an iterative scheme is proposed where the degrees of107

freedom {a} are decomposed as a current guess {a}(n), and incremental updates {δa}108

{a}(n+1) = {a}(n) + {δa} (4)

Linearizing the summand of the DIC cost function given in Eq. (2), the solution is found by109

solving the following linear system [13, 16, 42]110

[M ]{δa} = {b} (5)

where111

Mjk =

Ni∑
i=1

(∇f(xi) · φj(xi)) (φk(xi) ·∇f(xi)) (6)

and112

bj =

Ni∑
i=1

(∇f(xi) · φj(xi)) (f(xi)− g̃(xi)] (7)

where g̃(xi) = g(x+ u(n)(x)).113

Constraint conditions, commonly applied in the FE method [43], are used to introduce114

additional relationships among degrees of freedom or couple separate regions together. To115

couple the common regions observed by both cameras, the multi-point constraint (MPC)116

with the linear transformation method [36] was used herein. Alternative constraint proce-117

dures such as Lagrange multipliers and penalty methods could also be used. The Lagrange118

multiplier approach increases the number of equations of the linear system, while the se-119

lected method requires less effort than the others to assemble the global equations. On the120

other hand, the penalty method conserves the number of system variables but may lead to121

an ill-conditioned set of equations [44].122
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From Eq. (5), the following linear system is written to determine the degrees of freedom123

from the separate image acquisitions independently124

[M c1] 0

0 [M c2]



{
δac1

}
{
δac2

}
 =

{b
c1}

{bc2}

 (8)

where c1 and c2 designate the two cameras. It is worth noting that the units of the nodal dis-125

placements {ac1} and {ac2} are pixels, which can have different physical dimensions for each126

camera, depending on the lens and the magnification. To have a better global perspective127

of the system variables, the pixel quantities are converted into usual units of length128

{δac} = {δac} πc and
{
b
c
}

= {bc} πc (9)

where πc is the physical size of one pixel for a photographed face by camera c. Converting129

the displacements and also the right-hand terms {bc}, the linear system (8) is rewritten as130

[M c1] [0]

[0] [M c2]



{
δac1

}
{
δac2

}
 =


{
b
c1
}

{
b
c2
}
 (10)

If there are two regions that can be coupled using the MPC method, a relationship between131

various degrees of freedom may be expressed as ac1i = ac2j . One can write a linear transfor-132

mation [T ] linking all degrees of freedom (
{
ac1
}
and

{
ac2
}
) to a unique vector with effective133

degrees of freedom {ag}134 
{
δac1

}
{
δac2

}
 = [T ] {δag} (11)
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The linear system concerning all effective degrees of freedom reads135

[M g] {δag} =
{
b
g
}

(12)

with136

[M g] = [T ]>

[M c1] 0

0 [M c2]

 [T ] and {bg} = [T ]>


{
b
c1
}

{
b
c2
}
 (13)

Vertical misplacement of the mesh boundaries on the two perpendicular analyzed faces of137

the specimen may lead to artifacts after coupling the displacements of nodes belonging to the138

common edge, thereby resulting in inaccurate displacement fields (see Fig. 8). To solve this139

problem, the optimization of the position of the mesh boundaries was conducted. The cost140

function given in Eq.(14) is based on the minimization of the global mismatch strain of the141

elements that contain a constrained node, as a shift in the position of the mesh boundaries142

causes spurious shear strains in these elements143

es =

Nim∑
j

Ne∑
i

[
ε
(i,j)
12

]2
γs2

(14)

where ε12 denotes the (nodal) shear strain, γs the shear strain uncertainty estimated from144

ten images acquired before the test when the specimen was pre-loaded, Nim the number of145

images, and Ne the number of elements that contain constrained nodes.146

4. Identification framework147

In this study, Finite Element Model Updating (FEMU) is chosen as an identification148

method. FEMU is an approach to calibrate material parameters involved in mechanical149

tests by the development of an FE model of the mechanical test, and its comparison with ex-150

perimental data [28, 31, 45]. The algorithm uses the results of DIC in FE models to minimize151
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the distance between measured and predicted quantities. It is chosen to use the experimental152

geometry and the measured displacement fields as prescribed Dirichlet boundary conditions153

on the edges of the FE model. The cost function for the so-called FEMU-F route is based154

on the differences between measured and computed reaction forces155

χ2
F ({p}) =

1

γF 2nt

∑
t

(Fm(t)− Fc(t, {p}))2 (15)

where γF is the load uncertainty (on Fm), nt the number of time increments, and Fc the156

computed reaction forces, which depend on material parameters gathered in the column vec-157

tor {p}. The identification methodology consists in a nonlinear least-squares minimization158

of this cost function.159

Considering the current set of parameters {pn} at iteration n, the minimization is per-160

formed by calculating the correction {δp} from the linearized computed forces Fc161

Fc(t, {pn}+ {δp}) ≈ Fc(t, {pn}) +
∂Fc

∂{p}
(t, {pn}) {δp} (16)

about the current estimate {pn} of the sought parameters. The cost function then becomes162

χ2
F ({δp}) =

1

γF 2nt

∑
t

(
Fm(t)− Fc(t, {pn})−

∂Fc

∂{p}
(t, {pn}) {δp}

)2

(17)

and its minimization with respect to {δp} leads to a linear system163

[H ]{δp} = {h} (18)
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where [H ] is the Hessian164

[H ] =
∑
t

(
∂Fc

∂{p}
(t, {pn})

)>
∂Fc

∂{p}
(t, {pn}) (19)

{h} the right-hand member165

{h} =
∑
t

(
∂Fc

∂{p}
(t, {pn})

)>
(Fm(t)− Fc(t, {pn}) (20)

and ∂Fc

∂{p}(t, {pn}) the so-called sensitivity vector [46].166

Three different FEMU-F approaches were used in this study (Table 3) using Abaqus [38]167

FE code and Correli 3.0 framework [47] for DIC analyses.168

13



Table 3 Summary of the three different FEMU-F approaches

Type of

analysis
Coupled

Mesh

boundary

correction

Input for

identification
FE model

Classical

(plane stress)
× X

Average strain

(DIC gauge)

1 four-noded element

(CPS4)

2D Plane

Stress
× X

Prescribed DIC

displacements on

boundaries

170 three-noded

elements (CPS3)

3D

Coupled
X X

Prescribed DIC

displacement on

boundaries +

extrapolations

490 eight-noded brick

elements (C3D8)

First, a “classical” analysis was conducted using a virtual DIC strain gauge (i.e., averaging169

the axial strain results over the DIC mesh). An FE model with one element was used to170

fit the constitutive law with the experimental stress-strain curve. Prescribed displacements171

were applied, as depicted in Fig. 4, to reach the same average strains as measured by DIC.172

Assuming uniform stress states, the resultant force was calculated and compared to the173

experimental load. With this approach, a FEMU-F scheme can be used to calibrate the174

material parameters.175
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Prescribed 
vertical 

displacement

Figure 4 One-element model to calibrate material parameters via FEMU-F using uniform stress
assumption

Moreover, a plane stress and a three-dimensional analysis were run to compare the176

FEMU-F results using the data from each face independently, and using data from both177

(coupled) faces in a 3D modeling, respectively. For the 2D Plane Stress analysis, the DIC178

meshes (with three-noded triangular elements) were used in the FE analyses. The vertical179

displacements obtained for each node in the upper and lower boundaries of the mesh (yellow180

circles in Fig. 5(a-b)) were prescribed as Dirichlet boundary conditions.181

(a) (b)

y y

xz

Coupled
edge

Figure 5 Reference images with mesh and boundary conditions applied in the 2D Plane Stress
analysis of faces y − z (a) and x− y (b). The ROI dimensions where the mesh is defined are

≈ 30 mm in height and ≈ 20.3 mm in width

In the 3D Coupled analysis, a hexahedron-element mesh was adopted. The vertical dis-182
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placements were applied all over the cross-section of the upper and lower boundaries of183

the ROIs. For this purpose, the displacement fields obtained from DIC runs with MPC184

(Section 3) were used to fit, for the sake of simplicity, a plane. These results were then185

extrapolated for the vertical displacements inside the considered cross-sections of the spec-186

imen. Figure 6 shows these extrapolations for the first four force peaks (Fig. 2), following187

the coordinate system defined in Fig. 1 (i.e., the vertical axis y is positive downward). The188

coefficients of the fitted planes were used as non-uniform distributions of displacement in the189

FE model. This approach allows the bending effect in the specimen to be represented as a190

measured displacements may induce nonuniform strain distributions.191
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Figure 6 Extrapolated boundary conditions for the first four force peaks of ( 1 to 4 ): (a) top and
(b) bottom surfaces of the 3D model. The red circles depict measured quantities by DIC

5. Results192

Section 5.1 shows the results of the DIC analysis and compares the use or not of the193

multi-point constraint (MPC) technique. A FEMU-F analysis using DIC data as virtual194

strain gauges (Classical) is shown in Section 5.2. Then, 2D Plane Stress FEMU-F analyses195

conducted for both faces independently are compared with the previous one in terms of196
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calibrated parameters (Section 5.3). Last, the 3D Coupled FEMU-F analysis using DIC and197

MPC techniques is discussed in the Section 5.4.198

5.1. Digital image correlation and multi-point constraint199

The images were processed using the Correli 3.0 framework [47] in which the additional200

steps described above were added. Table 4 shows the DIC analysis parameters. Displacement201

and strain noise-floor levels were calculated by the average of temporal standard deviation202

of all nodes and elements, respectively, when ten images were analyzed. They were acquired203

once the sample was mounted and the servohydraulic system was active. Strictly speaking,204

such uncertainties are no longer noise-floor estimates since they include the fluctuations205

associated with the hydraulic system. This observation is confirmed by studying the ratio206

between displacement and strain uncertainties (i.e., about 1230). It is expected that the ratio207

of the noise-floor estimates would be equal to the element length (i.e., 128 on average) [48].208

This ten time increase of the displacement fluctuations was already observed when dealing209

with servohydraulic testing machines [49]. Interestingly, such displacement fluctuations,210

which are rigid body motions, have a very small impact on the strain fluctuations.211
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Table 4 DIC analysis parameters

DIC software Correli 3.0 [47]

Image filtering RGB2gray

Element length 124 | 133 pixels (camera 1 | 2)

Shape functions linear (T3)

Mesh unstructured (see Fig. 5)

Matching criterion sum of squared differences (Eq. (2))

Interpolant cubic

Displacement uncertainty 0.16 pixel

Strain calculation derivative of shape functions

Strain uncertainty 1.3× 10−4

The displacement fields for both surfaces of the specimen under a compressive axial force212

of 620 N (first peak force 1 , see Fig. 2 at time ≈ 50 s, image 8) are shown in Fig. 7. The213

physical size of one pixel was 42.7 µm for face y − z and 45.9 µm for face x − y. DIC is a214

full-field technique that also allows checking the “quality” of the test (i.e., how close it is to215

a priori assumed boundary conditions). In uniaxial compression, for example, the vertical216

displacement contours should be horizontal to comply with the hypotheses that the strain217

and stress fields should be homogeneous before cracks initiate. Figure 7 shows that the218

vertical displacement fields are not satisfying this condition. The inclined contours evidence219

the presence of bending of the sample during the test. Bending may have find its origin in the220

causes already described in Section 1. A nonuniform stress distribution is a consequence of221

bending, which may make the Classical approach inaccurate to treat the results. It is worth222

noting that bending may be a consequence of material heterogeneities. However, the pressing223

procedure used herein to manufacture the sample minimizes such heterogeneity. Moreover,224
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a local heterogeneous behavior can be seen if the representative elementary volume is not225

respected. To avoid this artifact, a specimen with dimensions much larger than the average226

granule size of the powder (about 75 µm [11]) was used. Local heterogeneities would also227

lead to a considerable non-smooth displacement field, which was not observed in this study.228

25.0

30.0

35.0

40.0

45.0

Camera 2Camera 1

Figure 7 Vertical displacement fields (positive downward, expressed in µm) using independent DIC
analyses for faces y − z and x− y

In spite of the displacement fields measured from faces y−z and x−y, (Fig. 7) showing the229

same tendency, the displacement levels on the common edge of the sample (right edge y− z230

and left edge x− y) are slightly different. By using the approach described in Section 3, the231

displacement field can be measured by prescribing the equality of the vertical displacements232

of both faces of the shared edge (MPC technique). Figure 8 shows the DIC results using this233

approach. A continuous vertical displacement field is observed for both faces, which means234

the technique successfully coupled the vertical degrees of freedom of the common edge in235

the two images. However, a numerical artifact emerges in this region, which is evidenced by236

the appearance of fluctuations in the form of “waves” in the displacement field. This artifact237
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is a consequence of a vertical misplacement of the mesh boundaries, which were initially238

positioned by visual inspection.239

25.0

30.0

35.0

40.0

45.0

x-y facey-z face

Figure 8 Vertical displacement fields of faces y − z and x− y (positive downward, expressed in
µm) when the constraints of equal vertical displacements is prescribed on the common edge

To solve this problem, the optimization of the mesh boundary positions was performed240

by varying the vertical position of one mesh with respect to the other one. The result of241

the minimization of Eq. (14) showed that the meshes had to be shifted by a relative vertical242

displacement of 1.48 mm (i.e., ≈ 64 pixels). The visual positioning of mesh boundaries243

was estimated to be in the yellow box of Fig. 9(a), and its optimization is depicted in244

white. Figure 9(b) shows the “shear” cost function (Eq. (14)) against the vertical mesh245

boundary translation about the optimal position. A smooth parabolic shape is observed and246

its minimum is close to unity, which means that the shear strain uncertainty γs is reached.247
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Figure 9 (a) Initial visual positioning of mesh boundaries (yellow) and after optimization (white).
(b) Cost function es vs. vertical translation of mesh on x− y face

Figure 10 shows the displacement field with the corrected mesh position. The artifact is248

less pronounced and the displacement field is smoother than in the previous case.249

25.0

30.0

35.0

40.0

45.0

x-y facey-z face

Figure 10 Vertical displacement fields for faces y − z and x− y (positive downward, expressed in
µm) when the constraints of equal vertical displacements is prescribed on the common edge and

the meshes were repositioned
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This methodology made possible an analysis of both images in a more consistent way,250

allowing the use of the displacement fields for FEMU-F optimization with considerations251

of three dimensions. The corrected mesh was used in all identification approaches. The252

correction is the most influential in the three-dimensional coupled analysis.253

5.2. Classical FEMU-F analysis254

By the use of a FEMU-F approach, the Young’s modulus E, yield stress σy, harden-255

ing coefficient b, and compressive strength σ∞ were identified using the ROI of DIC as a256

virtual gauge for the sequence of images of y − z and x − y faces independently. Before257

running the FEMU-F procedure, a sensitivity analysis was conducted (see Appendix A).258

The identifiability of the sought parameters was checked (and confirmed) for the considered259

experiment.260

Figure 11 shows the stress-strain responses for axial strains obtained from independent261

DIC analyses. From the full-field measurements, the axial strains were evaluated averaging262

the engineering strain measure of DIC mesh elements (Fig. 5). The numerical results were263

derived from a one-element FE model.The difference between experimental curves of y − z264

and x−y faces (Fig. 11) are due to bending of the specimen, which should be better captured265

using the three-dimensional model of Section 5.4.266
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Figure 11 Classical (independent) analyses using DIC as a virtual strain gauge. Experimental and
numerical stress-strain curves for (a) y − z face, and (b) x− y face

The difference between computed and measured loads, namely load residuals, are reported267

in Fig. 12. Their levels are similar for both faces, which is shown by the calculation of the root268

mean square (RMS) differences, namely 223 N (or 0.54 MPa) for the x− y face, and 173 N269

(or 0.42 MPa) for the y−z face. After the first two cycles, the residuals increase significantly,270

in other words, mostly in the plastic regime (Fig. 12). These cycles of loading and unloading271

have a better agreement between computed and measured forces, thereby highlighting that272

the selected elastic model cannot fully capture the unloading and reloading sequences of the273

last three cycles. Damage may explain such differences. The equivalent error (in RMS sense)274

for both faces is equal to 200 N, much higher than the load uncertainty, which evidences275

that this error has its source in the numerical and material models chosen herein.276
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Figure 12 Load residuals for x− y and y − z faces

The values of the calibrated parameters are gathered in Table 5. The differences in277

levels for each face are mostly related to the assumption of homogeneous stress states in the278

specimen, which is not a good representation for this test.279

Table 5 Calibrated parameters for Classical FEMU-F analysis

Parameters x− y face y − z face Average

E [GPa] 2.9 2.1 2.5

σy [MPa] 2.3 2.0 2.1

σ∞ [MPa] 12.4 11.6 12.0

b [-] 212 199 206

5.3. 2D Plane Stress FEMU-F analysis280

By using boundary conditions measured via DIC, a plane stress analysis was performed281

for both faces independently. In this analysis, a non-homogeneous stress state can be achieved282

and bending effects partly taken into account. The same constitutive parameters as in the283

previous analysis were inspected. A sensitivity analysis was also performed for all images of284
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the test and the results were similar as before (Appendix A). In Fig. 13, experimental and285

numerical forces are compared for y − z and x− y faces. A good agreement is observed.286
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Figure 13 Plane stress analyses using measured boundary conditions. Experimental and computed
forces for (a) y − z and (b) x− y faces

The difference between computed and measured forces are also very similar for both faces.287

The RMS values for the residual forces were evaluated as 221 N for x− y face and 175 N for288

y− z face. In the present case, the equivalent RMS error is 199 N, a value very close to that289

obtained in the previous analysis, which means that there was no significant improvement290

in the representation of the problem by the numerical model.291
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Figure 14 Force residuals for the plane stress analyses

Table 6 shows the two sets of parameters obtained for y − z and x − y faces. The292

gap between numerical and experimental data was minimized iteratively by the FEMU-F293

method (Fig. 13). However, there is a lack of agreement between the calibrated parameters294

for the two analyses, showing that the plane stress assumption was not sufficient to treat this295

problem. In the present case, bending has a three-dimensional nature, making inaccurate296

the previous assumption. Most of calibrated parameters were slightly closer to each other in297

comparison with the classical approach (Table 5), which may be related to the consideration298

of the bending effect in each face separately thanks to the plane stress analysis.299

Table 6 Calibrated parameters for 2D Plane Stress FEMU-F analyses

Parameters x− y face y − z face Average

E [GPa] 2.9 2.2 2.6

σy [MPa] 2.2 2.0 2.1

σ∞ [MPa] 12.8 11.9 12.3

b [-] 209 197 203
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5.4. 3D Coupled FEMU-F analysis300

The 3D FEMU-F analysis used the data obtained from DIC using a multi-point constraint301

approach to couple the vertical DOFs on the shared edge of the specimen. On the top and302

bottom boundaries, the DIC data were extrapolated as described in Section 5.1. Sensitivities303

and the Hessian matrix are again very similar to those of the other two methods (Appendix304

A). The experimental and computed forces are reported in Fig. 15(a), and the corresponding305

residual forces in Fig. 15(b). The residual forces are similar for 3D and plane stress analyses,306

the RMS of the residual force for the present case is 191 N, which is lower than the values of307

the previous two analyses, thereby showing that the 3D consideration of the bending effect308

is an improvement in the numerical representation of the mechanical test.309
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Figure 15 (a) Experimental and computed forces, and (b) corresponding residuals for the 3D
Coupled FEMU-F analysis

The minimization of the gap between computed and experimental data by the 3D Coupled310

FEMU-F algorithm resulted in yet another set of parameters in comparison with the previous311

analyses (Table 7). It is interesting to note that their levels lie between those previously found312

and close, but not identical, to their averages.313
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Table 7 Calibrated parameters for 3D FEMU-F analysis

Parameters 3D FEMU-F

E [GPa] 2.5

σy [MPa] 2.0

σ∞ [MPa] 12.4

b [-] 207

From the load distribution obtained in the FE model, it was possible to calculate the314

load eccentricity (i.e., the point where the resultant moment vanishes) in directions x and315

z (Fig. 16). Small eccentricities are observed in both directions. However, neglecting them316

may lead to erroneous calibration of material parameters. For example, considering the317

parameters in the classical FEMU-F approach for the x − y face, the Young’s modulus is318

15.4% higher in comparison with that obtained in this last analysis. It is important to note319

that care was taken to minimize the bending effect during the test, by the use of epoxy resin320

in the end portion of the specimen and checking the parallelism in the platens of the testing321

machine. Yet, even with such procedures, it was not possible to fully align the sample.322

Further, it is interesting to note that beyond the second cycle, the eccentricity does not323

evolve much. This phenomenon is related to the fact that the material is yielding and that324

this nonlinearity induces stress (and strain) redistributions that were not possible in the325

elastic regime.326
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Figure 16 Eccentricity of the load distribution at loading peaks, expressed as distance from the
center of the cross section

Figure 17(a) shows the FE results of the axial strain distribution in the ROI of the spec-327

imen for the last image (i.e., at maximum loading). Non-homogeneous strains are observed328

in the specimen. Moreover, the average value of axial strain is close to the diagonal of the329

cross-section that is related to the same magnitude of eccentricity shown in Fig. 16. The330

so-called percent bending [5] is a quantity defined as the difference between the strain on331

the surface and the nominal axial strain divided by the nominal axial strain. It is a measure332

of the goodness of uniaxial compression tests. Figure 17(b) shows the average and standard333

deviation of the axial strains as functions of the image number. The two quantities are334

proportional to each other during the whole test. From such data, it is possible to calcu-335

late a maximum percent bending of 23, which is approximately 10 times higher than the336

recommended level (i.e., 2.5 [5]).337
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Figure 17 (a) Axial strain distribution in the FE model for the last image (88) and (b) Average
(square symbols) and standard deviation (solid blue line) of axial strain vs. image number

6. Conclusions338

Some experimental artifacts in uniaxial compression tests may lead to spurious bending339

effects, rendering inaccurate the usual assumption of uniform strain over the cross-section of340

the specimen. DIC measurements were conduced by using two cameras that captured images341

of two perpendicular free surfaces of the specimen. The multi-point constraint technique was342

used to couple the degrees of freedoms of the shared boundary of the images captured from343

both faces in a DIC framework.344

A FEMU-F methodology was applied to calibrate the elastoplastic parameters of a345

Drucker-Prager model for three distinct cases:346

• Classical approach where DIC was used as a virtual strain gauge and the constitutive347

model was fitted with the load-strain curve independently for the results of both faces;348

• 2D Plane stress analysis where the boundary conditions were prescribed displacements349

obtained independently from DIC analyses;350
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• 3D Coupled analysis where the multi-point constraint technique was used to join the351

results of DIC from image acquisitions of both faces, and extrapolation of the measured352

boundary conditions to two cross-sections.353

As expected, the independent analyses for both faces (i.e., classical approach and plane-stress354

analyses, see Table 3) resulted in different sets of parameters as a consequence of the violation355

of the uniform strain assumption. As 2D Plane Stress analyses consider the bending effect356

in their plane, most of the calibrated parameters were closer to each other in comparison357

with the classical approach. The full consideration of the bending effect in the 3D Coupled358

analysis leads to a set of parameters that lies within the intervals of the parameters found359

from the previous two approaches. The average parameters of Classical and 2D Plane Stress360

analyses are also good approximations of the set of parameters obtained in the 3D analysis.361

However, the latter led to the lowest identification residuals. This observation shows that362

the 3D model better captures bending effects and leads to more trustworthy results.363

The developed procedure permitted to check, measure and consider the bending effects364

in uniaxial compression tests and their analyses. The implemented procedure was applied to365

measure the displacement fields on two perpendicular lateral surfaces of the specimen. The366

use of two cameras is the minimum required to capture the parasite bending effect in both367

directions perpendicular to the loading axis. In return, the boundary conditions have to be368

extrapolated on the non-measured surfaces. The procedure can also be applied using a four-369

camera system. In this case, the extrapolation would be only performed only for bulk nodes.370

It is worth noting that a multiview correlation framework [50] may have been used. It would371

not have required the use of multi-point constraint technique to measure the 3D surface372

displacement fields. However, it would involve a calibration step of the cameras. Last, the373

boundary conditions could themselves have been introduced as additional unknowns to the374

minimization problem [51]. As a final perspective, a study with several specimens should be375
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carried out to further evaluate the benefit of the newly developed procedure.376
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Appendix A: Sensitivity Analysis519

The sensitivity analysis is part of the calculations performed in the FEMU-F procedure520

to check the identifiability of the sought parameters (Section 4). The load sensitivities521

were computed by using Eq. (21) for the three FEMU-F approaches described in this study522

(Table 3). The derivatives were estimated via forward differences with a perturbation factor523

α = 10−2 of each parameter (∆pi = αpi)524

SFi(pi, t) =
∂Fc

∂pi
(pi, t) ≈

Fc(pi + ∆pi, t)− Fc(pi, t)

∆pi
(21)

Note that the variables described in Eq. (21) are the same as those used in Eq. (15).525

Figure 18 shows the computed load sensitivities SF for the different FEMU-F approaches,526

indicating the influence of the studied material parameters at the different steps of the test.527

The results of the sensitivity analysis are very similar between the independently analyzed528

faces (Figure 18(a-b)) and the different FEMU-F approaches. The elastic modulus increases529

its sensitivity at a higher rate in the elastic regions and a slower rate in the elastoplastic530

regime, following the loading curve shown in Fig. 2.531

All the parameters related to plasticity show no sensitivity in elasticity before first yielding532

(as expected). The yield stress σy has a fast increase in sensitivity in the transition from533

elastic to plastic regimes, and then a slow decrease until the peak stress. The contribution534

of the hardening coefficient b and compressive strength σ∞ become more important at the535

end of the test, where their sensitivities are higher. For all parameters, the load sensitivities536

are very high (in comparison with the load uncertainty of 4.5 N or the corresponding stress537

uncertainty of 11 kPa) for a one percent variation of each parameter. This result indicates538

that the parameters are expected to be identifiable for the considered test and proposed539

identication route.540
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Figure 18 Computed load sensitivity for: (a) Classical analysis, (b) 2D Plane stress FEMU-F
analysis and (c) 3D Coupled FEMU-F analysis.

Figure 19(a) shows the Hessian matrix in decimal logarithm for the Classical FEMU-F541

approach (see Eq. (19)). The sensitivity of the material parameters taken independently is542

related to the diagonal terms of the matrix. The off-diagonal terms represent the correla-543

tions between two parameters. The spectrum of eigen values (Fig. 19(b)) is not very wide,544

which indicates that the overall conditioning of the Hessian matrix is very good, namely,545

all parameters should be identifiable. The most sensitive parameters are the hardening and546

Young’s moduli (i.e., the third and fourth eigen vectors are mostly dependent on these two547

parameters), followed by the yield stress and then the ultimate strength.548
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Figure 19 a) Hessian matrix in decimal logarithm for x− y face in the classical FEMU-F analysis,
(b) Decimal logarithm of the eigenvalues of Hessian matrix, and (c) corresponding eigenvectors.

As a consequence of very similar sensitivities for the FEMU-F approaches (Fig. 18), the549

Hessian matrix for the 2D Plane Stress and 3D Coupled approaches are also alike as shown550

in Figure 20.551
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Figure 20 Hessian matrix in decimal logarithm for: (a) 2D Plane Stress and (b) 3D Coupled
analyses.

41


	Introduction
	Material, experimental procedure and modeling
	Digital Image Correlation and multi-point constraint
	Identification framework
	Results
	Digital image correlation and multi-point constraint
	Classical FEMU-F analysis
	2D Plane Stress FEMU-F analysis
	3D Coupled FEMU-F analysis

	Conclusions
	Acknowledgments
	References

