Nicolas Langrené
email: nicolas.langrene@csiro.au

Xavier Warin
email: warin@edf.fr

Fast multivariate empirical cumulative distribution function with connection to kernel density estimation

Keywords: fast CDF, fast KDE, empirical distribution function, survival function, Laplacian kernel, Matérn covariance, Sargan density, Gaussian kernel approximation, nonparametric copula estimation, fast kernel summation MSC codes: 65C60, 62G30, 62G07, ACM codes: G.3, F.2.1

This paper revisits the problem of computing empirical cumulative distribution functions (ECDF) efficiently on large, multivariate datasets. Computing an ECDF at one evaluation point requires O(N) operations on a dataset composed of N data points. Therefore, a direct evaluation of ECDFs at N evaluation points requires a quadratic O(N 2) operations, which is prohibitive for large-scale problems. Two fast and exact methods are proposed and compared. The first one is based on fast summation in lexicographical order, with a O(N logN) complexity and requires the evaluation points to lie on a regular grid. The second one is based on the divide-andconquer principle, with a O(N log(N) (d-1)∨1) complexity and requires the evaluation points to coincide with the input points. The two fast algorithms are described and detailed in the general d-dimensional case, and numerical experiments validate their speed and accuracy. Secondly, the paper establishes a direct connection between cumulative distribution functions and kernel density estimation (KDE) for a large class of kernels. This connection paves the way for fast exact algorithms for multivariate kernel density estimation and kernel regression. Numerical tests with the Laplacian kernel validate the speed and accuracy of the proposed algorithms. A broad range of large-scale multivariate density estimation, cumulative distribution estimation, survival function estimation and regression problems can benefit from the proposed numerical methods.

Introduction

Let (x 1 , y 1), (x 2 , y 2), . . . , (x N , y N) be a sample of N input (source) points x i = (x 1,i , x 2,i , . . . , x d,i) ∈ R d and output points y i ∈ R. Consider an evaluation (target) point z = (z 1 , z 2 , . . . , z d) ∈ R d . We define a generalized multivariate empirical cumulative distribution function (ECDF) as follows:

F N (z) = F N (z; x, y) 1 N N i=1 y i 1{x 1,i ≤ z 1 , . . . , x d,i ≤ z d } .
(

) 1
In a similar manner, we define a generalized multivariate empirical survival function (ESF) (a.k.a. complementary cumulative distribution function) as follows:

FN (z) = FN (z; x, y) 1 N N i=1 y i 1{x 1,i > z 1 , . . . , x d,i > z d } .
(

) 2
The particular case y ≡ 1 corresponds to the classical joint empirical distribution function

F N (z) = 1 N N i=1 1{x 1,i ≤ z 1 , . . . , x d,i ≤ z d }.
More generally, define the following multivariate ECDF:

F N (z, δ) = F N (z, δ; x, y) 1 N N i=1 y i 1{x 1,i ≤ δ1 z 1 , . . . , x d,i ≤ δ d z d } (3)
where δ = {δ 1 , δ 2 , . . . , δ d } ∈ {-1, 1} d , and where the generalized inequality operator ≤ c corresponds to ≤ (lower or equal) if c ≥ 0, and to < (strictly lower) if c < 0. In particular F N (z) = F N (z, 1; x, y) and FN (z) = F N (-z, -1; -x, y) respectively.

Cumulative distribution functions and their empirical counterparts are a cornerstone of statistical theory. In particular, classical statistical tests of equality of probability distributions such as the Kolmogorov-Smirnov, Cramér-von Mises and Anderson-Darling tests are based upon empirical distribution functions [START_REF] Green | Powerful modified-EDF goodness-of-fit tests[END_REF].

The multivariate versions of these tests are methodologically and computationally more involved [START_REF] Justel | A multivariate Kolmogorov-Smirnov test of goodness of fit[END_REF][START_REF] Chiu | Generalized Cramér-von Mises goodness-of-fit tests for multivariate distributions[END_REF]) due to the greater complexity of multivariate ECDFs (1) compared to their univariate counterpart.

A copula is a particular case of multivariate cumulative distribution function with uniform marginals [START_REF] Durante | Copula theory: an introduction[END_REF]. Empirical copulas appear in the computation of multivariate measures of association (generalizing the bivariate Spearman rho, [START_REF] Schmid | Multivariate extensions of Spearman's rho and related statistics[END_REF][START_REF] Schmid | Copula-based measures of multivariate association[END_REF].

The focus of this article is on the numerical computation of generalized multivariate empirical cumulative distribution functions as defined in equation (3). As the computation of the ECDF (3) at one evaluation point z requires O(N) operations, a direct implementation of equation (3) on a set of M evaluation points requires O(M × N) operations. In particular, when the evaluation points coincide with the input points x 1 , x 2 , . . . , x N , a direct evaluation requires a quadratic O(N 2) operations.

The main contribution of this article is to propose an exact O(N log N) algorithm to perform this task, based on independent data sorting in each dimension, combined with a fast lexicographical-sweep summation algorithm (subsection 2.1). Should the input data be already sorted, the computational complexity is reduced to an optimal O(N). This new algorithm is compared with the state-of-the-art for fast multivariate ECDF computation, namely the fast divide-and-conquer recursion of [START_REF] Bentley | Multidimensional divide-and-conquer[END_REF] with O(N log(N) (d-1)∨1) computational complexity (subsection 2.2).

The second main contribution of this article is to establish that a large class of kernel density estimators can be decomposed into a sum of ECDFs (subsection 3.1), which yields an exact O(N log N) kernel density estimation approach in the lines of [START_REF] Langrené | Fast and stable multivariate kernel density estimation by fast sum updating[END_REF], as well as a novel O(N log(N) (d-1)∨1) kernel density estimation algorithm based on the divide-and-conquer approach of [START_REF] Bentley | Multidimensional divide-and-conquer[END_REF]. The table below summarizes the contributions of this paper.

Contributions multivariate CDF multivariate KDE fast summation this paper

Langrené & Warin (2019) divide-and-conquer [START_REF] Bentley | Multidimensional divide-and-conquer[END_REF] this paper

The class of compatible kernels contain popular kernels such as the uniform, Epanechnikov and Laplacian kernels (subsection 3.2). It also contains a large class of polynomial-exponential kernels which can be used to uniformly approximate any incompatible kernel such as the Gaussian kernel to arbitrary precision (subsection 3.3).

The numerical tests reported in Section 4 illustrate the speed and accuracy of the proposed numerical methods. In practice, the fast summation algorithm requires the evaluation points to lie on a rectilinear grid, while the divide-and-conquer algorithm requires the evaluation points to be the same as the input points. These constraints mean that depending on the chosen algorithm and the set of evaluation points, an additional interpolation of the results might be necessary, the impact of which on accuracy can be deemed acceptable (Figures 3 and5 in Section 4).

The contributions of this article can benefit any numerical procedure requiring a nonparametric estimation of univariate or multivariate cumulative density functions, survival functions or probability density functions. In particular, statistical tests of equality of probability distributions [START_REF] Green | Powerful modified-EDF goodness-of-fit tests[END_REF], nonparametric empirical copula estimation [START_REF] Choroś | Copula estimation[END_REF], kernel density estimation and kernel regression all benefit from the proposed fast computation of ECDFs.

Fast computation of multivariate cumulative distribution

This section presents two fast algorithms to compute the generalized empirical distributions (1-2-3).

The first one is based on the fast sum updating idea [START_REF] Chen | Fast kernel density independent component analysis[END_REF][START_REF] Langrené | Fast and stable multivariate kernel density estimation by fast sum updating[END_REF]. It requires a rectilinear evaluation grid, and its computational complexity is O(N log N), or O(N) in the case of a uniform grid. It is described in subsection 2.1. To the authors' knowledge, it is the first time this computational technique is used to compute multivariate ECDFs.

The second one is based on the divide-and-conquer principle [START_REF] Bentley | Multidimensional divide-and-conquer[END_REF][START_REF] Bouchard | Monte Carlo valuation of American options: facts and new algorithms to improve existing methods[END_REF][START_REF] Lee | Efficient computation of multivariate empirical distribution functions at the observed values[END_REF]. It requires the evaluation points to be equal to the input points, and its computational complexity is O(N log(N) (d-1)∨1) where d is the dimension of the multivariate input data. It is described in subsection 2.2.

Another fast ECDF algorithm proposed in the literature can be found in [START_REF] Perisic | Projection pursuit indices based on the empirical distribution function[END_REF]; however, this algorithm has been specifically designed for the bivariate case and cannot be extended to higher dimensional ECDFs.

Fast sum updating in lexicographical order

Let z j = (z 1,j , z 2,j , . . . , z d,j) ∈ R d , j ∈ {1, 2, . . . , M }, be a set of M evaluation (target) points.

We require this evaluation grid to be rectilinear, i.e., the M evaluation points z 1 , z 2 , . . . , z M lie on a regular grid with possibly non-uniform mesh, of dimension

M 1 × M 2 × . . . × M d = M : z = (z 1,j1 , z 2,j2 , . . . , z d,j d) ∈ R d , j k ∈ {1, 2, . . . , M k }, k ∈ {1, 2, . . . , d}
For convenience, we extend the definition of the grid with the notational conventions z k,0 -∞ and

z k,M k +1 ∞. In each dimension k ∈ {1, 2, . . . , d}, the vector (z k,1 , z k,2 , . . . , z k,M k) ∈ R M k is assumed to be sorted in increasing order: z k,1 < z k,2 < . . . < z k,M k , k ∈ {1, 2, . .

. , d}

We partition the input data x along this evaluation grid z. For each evaluation grid index (j

y i 1{z 1,j1-1 < x 1,i ≤ z 1,j1 , . . . , z d,j d -1 < x d,i ≤ z d,j d } (4)
Together, the sums (4) form a generalized multivariate histogram (classical histogram in the case y ≡ 1). For completeness, the computation of the local sums (4) is detailed in Appendix A.

In particular, using equation (1), the following key equality holds:

F N (z) = j1 l1=1 j2 l2=1 • • • j d l d =1 s l1,l2,...,l d (5)
for any evaluation point z = (z 1,j1 , z 2,j2 , . . . , z d,j d) ∈ z. We propose a simple fast summation algorithm, Algorithm 1, to compute the ECDFs F N (z) for every z ∈ z in lexicographical order based on the local sum decomposition (5). One can easily verify that the number of operations is proportional to Remark 2.1. One can alternatively define the local sums (4) without the 1/N scaling factor, and apply the division by N to the output of Algorithm 1 (equation (5)). This modification ensures Algorithm 1 does not generate any float rounding error in the case when the y i take integer values, which includes the classical CDF case y ≡ 1.

M 1 × M 2 × . . . × M d = M . As Appendix A
S d = 0 for (j d = 1, ..., M d + 1) do S d + = S d-1,j d Here S d = j1 l1=1 j2 l2=1 • • • j d l d =1 s l1,l2,...,l d = F N (z 1,j1 , z 2,j2 , . . . , z d,j d) = F N (z) from equation (5) end end end Output: F N (z) for all z ∈ z

Fast divide-and-conquer recursion

Consider the case when the evaluation points z j are equal to the input points x i . The calculation of the ECDFs {F N (x i)} i=1,N (equation (1)) corresponds to a domination problem in dimension d. An algorithm based on a recursive divide-and-conquer sequence has first been proposed in [START_REF] Bentley | Multidimensional divide-and-conquer[END_REF] for this problem. An adaptation was proposed in [START_REF] Bouchard | Monte Carlo valuation of American options: facts and new algorithms to improve existing methods[END_REF] to solve this problem for the case of the calculation of conditional expectation using Malliavin weights. The computational complexity was shown to be O(c(d)N log(N) (d-1)∨1). This algorithm has been rediscovered recently in [START_REF] Lee | Efficient computation of multivariate empirical distribution functions at the observed values[END_REF]. They give an extensive study based on the quicksort algorithm providing an optimized version of the algorithm of [START_REF] Bentley | Multidimensional divide-and-conquer[END_REF] and [START_REF] Bouchard | Monte Carlo valuation of American options: facts and new algorithms to improve existing methods[END_REF]. Then they extend the approach to the mergesort algorithm. In all the aforementioned papers, although the different authors insist that the algorithm can be generalized in any dimension, the algorithm descriptions are restricted to dimension 3 for the sake of clarity and simplicity. In the sequel we choose to provide the general d-dimensional version of this important algorithm, and refer to the aforementioned papers for the general conceptual ideas about the divide-and-conquer approach to this problem. The pseudo-code is organized as follows: Algorithm 2 is the main function call, which triggers the divide-and-conquer recursive algorithm 3 w.r.t. dimension, starting from the last dimension. At each recursive iteration, the merge algorithm 4 is used in dimensions below the current dimension. The special 2D case is dealt with the call of the 1D merge algorithm 5. Further details regarding how the algorithm works:

• The n-dimensional merge algorithm 4 is defined using two sets of points κ 1 and κ 2 such that each point of κ 2 dominates the points of κ 1 in the dimension above the current one I dim . A divide-andconquer algorithm is used in the current dimension, splitting κ 1 (respectively κ 2) into two sets κ 1,1 and κ 1,2 (respectively κ 2,1 and κ 2,2) where each point in κ 1,2 ∪ κ 2,2 dominates all points in κ 1,1 and κ 2,1 in the current dimension.

• The n-dimensional merge is called recursively in the current dimension organizing a divide-andconquer algorithm for the couple of sets where no clear dominance is available ((κ 1,1 , κ 2,1), (κ 12 , κ 2,2)).

• For the couple of sets where dominance is clear in the current dimension (κ 1,1 , κ 2,2), the ndimensional merge algorithm is called in the dimension below. In the case when I dim = 2, a direct call to the one-dimensional merge algorithm 5 is performed.

Note that in the algorithm given below, we compute the F N version excluding the current point.

Adding the self contribution for all F N is linear in time. In addition, some tests to check that sets are not empty are omitted for conciseness.

Algorithm 2: Calculate ECDF F (x j) = N i=1 y i 1{x 1,i < x 1,j , . . . , x d,i < x d,j }, j = 1, N Input: x = (x i , . . . , x N), y = (y i , . . . , y N), for all i = 1, . . . , N Calculate the permutation φ j , j = 1, . . . , d such that x j,φ j (1) ≤ x j,φ j (2) ≤ • • • ≤ x j,φ j (N) F (x i) = 0 for i = 1, . . . , N RecurSplittingECDF(x, y, φ, F, N) Output: F (x i) for all i ∈ [1, N] Algorithm 3: Recursive splitting function RecurSplittingECDF Input: x, y, F , φ j (i) for i = 1, M , j = 1, d Split sorted data in two sets according to last dimension κ 1 = {φ d (i), i = 1, M 2 }, φ 1 with values in κ 1 s.t. x j,φ j 1 (1) ≤ x j,φ j 1 (2) ≤ • • • ≤ x j,φ j 1 (M 2) , j = 1, d κ 2 = {φ d (i), i = M 2 + 1, M }, φ 2 in κ 2 s.t. x j,φ j 2 (1) ≤ x j,φ j 2 (2) ≤ • • • ≤ x j,φ j 2 (M 2) ,j = 1, d RecurSplittingECDF(x, y, φ 1 , F, M/2) RecurSplittingECDF(x, y, φ 2 , F, M/2) if (d > 2) then Recursive merge for dimension above 2 MergeNDECDF(x, φ 1 , φ 2 , d -1, y, F, M/2, M/2) else Merge 1D Merge1D(x, φ 1 1 , φ 1 2 , y, F), end Output: F updated Algorithm 4: Recursive merge nD MergeNDECDF in given dimension I dim Input: x, y, F , φ j 1 (i), for all i = 1, M 1 , φ j 2 (i), for all i = 1, M 2 with values in [1, N] for j = 1, I dim κ 1 = {φ I dim 1 (i), i = 1, M 1 } , κ 2 = {φ I dim 2 (i), i = 1, M 2 }
Merge the two sets involved and find median coordinate in dimension I dmin : linear cost with the number of particles

κ = κ 1 ∪ κ 2 , x med s.t; #{x j , j ∈ κ, x I dim ,j ≤ x med } = #{x j , j ∈ κ, x I dim ,j > x med } κ l,1 = {i ∈ κ l , x I dim ,i ≤ x med }, M l,1 = #κ l,1 , for l = 1, 2, κ l,2 = {i ∈ κ l , x I dim ,i > x med }, M l,2 = #κ l,2 , for l = 1, 2
Sort each set for all dimension below or equal to I dim : linear in time using

φ j 1 (i), φ j 2 (i) Create φ j l,m (i), i = 1, . . . M l,m s.t. φ j l,m (i) ∈ κ l,m
, and

x j,φ j l,m (1) ≤ x j,φ j l,m (2) ≤ • • • ≤ x j,φ j l,m (M l,m) , for j ≤ I dim , l = 1, 2, m = 1, 2
.

Merge for set κ 1,l and κ 2,l for l = 1, 2 in same dimension

I dim MergeNDECDF(x, φ 1,l , φ 2,l , I dim , y, F, M 1,l , M 2,l), for l = 1, 2 Clear dominance relation between set below in current dimension: merge in dimension below if (I dim == 2) then Merge the set of 3D problem directly without recursion Merge1D(x, φ 1 1,1 , φ 1 2,2 , y, F) else Merge in dimension below mergedNDECDF(x, φ 1,1 , φ 2,2 , I dim -1, y, F, M 1,l , M 2,l), end Output: F updated Algorithm 5: Final merge function in dimension one : Merge1D , between {x φ1(i) , i = 1, M 1 } and {x φ2(i) , i = 1, M 2 } Input: x, y, F , φ k s.t. φ k (i) ≤ φ k (i + 1), for all i = 1, M k -1, k = 1, 2 S = 0, j = 1 for (i = 1, M 2) do while ((x φ2(i),1 ≥ x φ1(j),1) and j ≤ M 1) do S+ = y φ1(j) , j = j + 1 end F (φ 2 (i))+ = S if (j == M 1 + 1) then for (k = i + 1, M 2) do F (φ 2 (k))+ = S end i = M 2 + 1 end end Output: F updated

Fast kernel density estimation

This section establishes an explicit connection between the computation of empirical cumulative distribution functions and the problem of empirical density estimation, more specifically with kernel density estimation (KDE). The main consequence of this connection is that the fast empirical CDF algorithms introduced in Section 2 also provide a fast way to compute multivariate kernel density estimators.

CDF decomposition of KDE

Using the notations from Section 1, the (univariate) weighted kernel density estimator (aka Parzen-Rosenblatt estimator) at the evaluation point z is given by:

fKDE (z) := 1 N N i=1 w i K h (x i -z) (6)
where K h (u) := 1 h K u h with kernel K and bandwidth h. The classical KDE estimator corresponds to the weights w i ≡ 1. Allowing general weights brings more flexibility, and does not affect the analysis of this section. For example w i can contain the value of a response variable, as in local kernel regression estimation [START_REF] Nadaraya | Theory of probability and its applications[END_REF][START_REF] Watson | Smooth regression analysis[END_REF]. Another possible use of w i concerns repeated values: should the input sample (x 1 , x 2 , . . . , x N) contain repeated values, one can w.l.o.g. compute the kernel sum (6) on the unique values of the input sample, weighted by the time each value appears in the original sample [START_REF] Titterington | A comparative study of kernel-based density estimates for categorical data[END_REF]. Finally, this setting also encompasses kernel quantile estimators [START_REF] Parzen | Nonparametric statistical data modeling[END_REF][START_REF] Sheather | Kernel quantile estimators[END_REF][START_REF] Franke | Nonparametric modeling in financial time series[END_REF]) and some kernel distribution function estimators [START_REF] Azzalini | A note on the estimation of a distribution function and quantiles by a kernel method[END_REF][START_REF] Kim | Non-parametric hazard function estimation using the Kaplan-Meier estimator[END_REF]).

In the following, we focus on the Laplacian kernel, defined by

K(u) = 1 2 e -|u| (7)
Subsections 3.2 and 3.3 will discuss other possible kernel choices in detail. Following (6), the Laplacian kernel density estimator is defined by:

fKDE (z) = 1 N N i=1 w i 2h e -|x i -z| h (8)
This kernel density estimator can be decomposed as follows

fKDE (z) = 1 N N i=1 w i 2h e -|x i -z| h = 1 2hN N i=1 w i e x i -z h 1{x i ≤ z} + N i=1 w i e z-x i h 1{x i > z} = 1 2hN e -z h N i=1 w i e x i h 1{x i ≤ z} + e z h N i=1 w i e -x i h 1{x i > z} = 1 2h e -z h F N (z; x, we x h) + e z h FN (z; x, we -x h) (9)
where the empirical CDF F N and the empirical complementary CDF FN are defined by equations (1) and (2) respectively.

Crucially, such a CDF decomposition of KDE also holds in the multivariate setting. The multivariate Laplacian kernel is defined by

K d (u) = 1 2 d e -|u| = 1 2 d e -d k=1 |u k | (10)
and the weighted multivariate Laplacian kernel density estimator is given by

fKDE (z) = 1 2 d N Π d k=1 h k N i=1 w i e -| x i -z h | = 1 2 d N Π d k=1 h k N i=1 w i e - d k=1 | x k,i -z k | h k (11) where h = (h 1 , h 2 , . . . , h d) ∈ R d is a multivariate bandwidth. The general matrix bandwidth case is discussed in Appendix B.
Using the same approach as equation (9), the sum (11) can be decomposed as follows:

fKDE (z) = 1 2 d N Π d k=1 h k N i=1 w i d k=1 e - z k h k e x k,i h k 1{x k,i ≤ z k } + e z k h k e - x k,i h k 1{-x k,i < -z k } = 1 2 d N Π d k=1 h k N i=1 w i δ∈{-1,1} d d k=1 e - δ k z k h k e δ k x k,i h k 1{δ k x k,i ≤ δ k δ k z k } = 1 2 d Π d k=1 h k δ∈{-1,1} d e - d k=1 δ k z k h k 1 N N i=1 w i e d k=1 δ k x k,i h k 1{δ 1 x 1,i ≤ δ1 δ 1 z 1 , . . . , δ d x d,i ≤ δ d δ d z d } = 1 2 d Π d k=1 h k δ∈{-1,1} d e - d k=1 δ k z k h k F N (δz, δ; δx, y) (12) with y i = y i (δ) := w i e d k=1 δ k x k,i h k
, where we used the definition of the generalized empirical CDF F N (z, δ; x, y) (equation (3)) and its generalized inequality operator ≤ c . Equation (12) shows that the computation of the multivariate Laplacian kernel density estimator (32) can be decomposed into the computation of 2 d generalized empirical CDF (3), which can be computed efficiently using the algorithms described in Section 2.

Compatible kernels

In the previous subsection, we used the Laplacian kernel (7)-(10) to illustrate the concept of CDF decomposition of KDE. Such a decomposition is not restricted to the Laplacian kernel; actually, a large class of kernels (though not all kernels) is compatible with such a decomposition. Let us start with the simplest one, namely the uniform kernel

K(u) = 1 2
1{|u|≤1} .

(

) 13
The weighted uniform kernel density estimator is given by

fKDE (z) = 1 N N i=1 w i 2h 1{| x i -z h |≤1} (14)
and can be decomposed as follows:

fKDE (z) = 1 2hN N i=1 w i 1{xi≤z+h} - N i=1 w i 1{xi<z-h} = F N (z + h, 1; x, w) -F N (z -h, -1; x, w) 2h . (15
)
The multivariate uniform kernel density estimator is given by

K d (u) = 1 2 d 1{ u ∞≤1} (16)
and its corresponding weighted multivariate kernel density estimator

fKDE (z) = 1 2 d N Π d k=1 h k N i=1 w i 1{ x i -z h ∞ ≤1} = 1 2 d N Π d k=1 h k N i=1 w i d k=1 1 x k,i -z k h k ≤1 (17)
can be decomposed as follows:

fKDE (z) = 1 2 d N Π d k=1 h k N i=1 w i d k=1 (1{x k,i ≤z k +h k } -1{x k,i <z k -h k }) = 1 2 d N Π d k=1 h k N i=1 w i δ∈{-1,1} d d k=1 δ k 1{x k,i ≤ δ k z k + δ k h} = 1 2 d Π d k=1 h k δ∈{-1,1} d d k=1 δ k F N (z + δh, δ; x, w) . (18
)
The uniform kernel is the simplest example of the large compatible class of kernels called symmetric beta kernels [START_REF] Marron | Canonical kernels for density estimation[END_REF][START_REF] Duong | Spherically symmetric multivariate beta family[END_REF], defined in the univariate case by:

K(u) = (1 -u 2) α 2 2α+1 B(α + 1, α + 1) 1{|u| ≤ 1} (19)
where we used the Beta function B(x, y) = Γ(x)Γ(y) Γ(x+y) . This class of kernels includes the uniform (α = 0), Epanechnikov (α = 1), biweight (α = 2) and triweight (α = 3) as particular cases. The fast sum updating decompositions in [START_REF] Gasser | Discussion: linear smoothers and additive models[END_REF] and [START_REF] Seifert | Fast algorithms for nonparametric curve estimation[END_REF] (univariate case) and Langrené & Warin (2019) (multivariate case) can be recognised as CDF decompositions and show that the class (19) in particular is compatible with CDF decomposition. While equivalent to fast sum updating decomposition, one can argue that kernel sum decomposition in terms of CDFs makes the approach clearer and easier to understand, especially in the multivariate setting (see equations (12) and (18)). In view of this discussion, we can infer from [START_REF] Langrené | Fast and stable multivariate kernel density estimation by fast sum updating[END_REF] that other kernels such as the tricube kernel K(u) = 70 81 (1 -|u|

3) 3 1{|u| ≤ 1} and the cosine kernel

K(u) = π 4 cos π 2 u 1{|u| ≤
1} admit a CDF decomposition of KDE. Kernels based around the Laplacian kernel, such as the

Silverman kernel K(u) = 1 2 exp -|u| √ 2 sin |u| √ 2 + π 4
are also compatible, and one can build upon compatible kernels to create new ones, as shown in subsections 3.3 and 3.4.

New compatible infinite-support kernels

Unfortunately, some kernels are simply incompatible with CDF decomposition. They are such that the term K(x-z h) cannot be decomposed into terms depending on x only and terms depending on z only. Most incompatible kernels have unbounded support, such as the logistic kernel

K(u) = 1 e u +2+e -u , the Cauchy kernel K(u) = 1 π(1+u 2) , the Fejér-de la Vallée Poussin kernel K(u) = 1 π sin 2 (u) u 2 ,
and most importantly the popular Gaussian kernel

K(u) = 1 √ 2π e -u 2 2 .
As the finite-support Epanechnikov kernel K(u) = 3 4 1 -u 2 1{|u| ≤ 1} is known to be optimal in terms of asymptotic mean integrated squared error (AMISE, [START_REF] Epanechnikov | Non-parametric estimation of a multivariate probability density[END_REF], one can wonder whether such limitation is actually problematic in practice. However, infinite-support kernels are not devoid of merit for multiple reasons. For example, more robust non-asymptotic Fourierbased kernel selection criteria rule out the Epanechnikov kernel [START_REF] Cline | Admissible kernel estimators of a multivariate density[END_REF][START_REF] Tsybakov | Introduction to nonparametric estimation[END_REF]) and recommend infinite-support kernels of Fejér type, in particular the Fejér-de la Vallée Poussin kernel [START_REF] Stepanova | On estimation of analytic density functions in L p[END_REF][START_REF] Kosta | Efficient density estimation and value at risk using Fejér-type kernel functions[END_REF]. Moreover, infinite-support kernel have been recommended for consistent likelihood cross-validation [START_REF] Brewer | A Bayesian model for local smoothing in kernel density estimation[END_REF][START_REF] Zhang | A Bayesian approach to bandwidth selection for multivariate kernel density estimation[END_REF][START_REF] Hofmeyr | Fast exact evaluation of univariate kernel sums[END_REF], and for tail probability estimation [START_REF] Lall | Kernel flood frequency estimators: bandwidth selection and kernel choice[END_REF]. Finally, kernels with unbounded support produce smooth prediction functions, which is a desirable feature for density visualization [START_REF] Berthold | Guide to intelligent data analysis: how to intelligently make sense of real data[END_REF].

As pointed out in Hofmeyr (2020), all known infinite-support kernels compatible with fast recursions are based around the Laplacian kernel (7), which is why subsection 3.1 focused on this important kernel. In the multivariate case, infinite-support kernels are more straightforward to decompose into CDFs than finite-support kernels. Indeed the decomposition of multivariate Beta kernels in Langrené & Warin 2019 requires the support of the kernel to be a hyperrectangle, which holds for product kernels but not for radially symmetric kernels. By contrast, equation (12) shows that obviously no such limitation exists for the Laplacian kernel.

In this subsection, we introduce an important class of kernels which is compatible with fast recursion and can be used to approximate all the incompatible kernels mentioned so far. It is defined by

K(u) = γ p h p k=0 β k,p |u| k h k e -αp |u| h (20
)
with parameters α p > 0, β k,p , k = 0, 1, . . . , p, and scaling parameter γ p > 0 defined such that the kernel (20) integrates to one:

γ p 1 2 p k=0 β k,p k! α k+1 p . (21
)
The bandwidth parameter h > 0 does not affect the integral of the kernel (

∞ -∞ K(u)du = 1 h ∞ -∞ K u h du).
The class of kernels (20) contains the Sargan kernels [START_REF] Goldfeld | Econometric modelling with non-normal disturbances[END_REF]; or double Gamma kernel sums, [START_REF] Nguyen | A connection between the double gamma model and Laplace sample mean[END_REF], and is obtained by multiplying the Laplacian kernel by a polynomial term in |u|. Such a distribution occurs when averaging p + 1 i.i.d. Laplace distributions [START_REF] Craig | On the distributions of certain statistics[END_REF][START_REF] Weida | On certain distribution functions when the law of the universe is Poisson's first of error[END_REF][START_REF] Kotz | The Laplace distribution and generalizations: a revisit with applications to communications[END_REF].

As pointed out in [START_REF] Kafaei | On the adequacy of the "Sargan distribution" as an approximation to the normal[END_REF], the theoretical foundation for considering kernels of the type (20) is the generalization of the Stone-Weierstrass theorem in Stone (1962, Section 11) which states that any continous function can be uniformly approximated by functions of the form (20) (without the scaling constant). In particular, any continuous density/kernel function can be uniformly approximated by (20) to arbitrary precision for sufficiently large p. This includes all the kernels incompatible with fast recursion such as the Gaussian kernel.

Indeed, the sub-class of Matérn kernels [START_REF] Matérn | Spatial variation[END_REF][START_REF] Matérn | Spatial variation[END_REF]) defined by

K Matérn (u) γ p h p k=0 p! k!(p -k)! (2p -k)! (2p)! 2 2p + 1 k |u| k h k e - √ 2p+1 |u| h (22) γ p √ 2p + 1 2 p k=0 p! (p-k)! (2p-k)! (2p)! 2 k (23)
is known to converge to the Gaussian kernel for large p.

K Matérn (u) → p→∞ 1 h √ 2π e -|u| 2 2h 2 (24)
(in particular the scaling constant γ p defined in equation (23) converges to 1/ √ 2π when p → ∞). The case p = 0 corresponds to the Laplacian kernel (7), and the Matérn kernels with p = 1 and p = 2 are given explicitly by

K Matérn 3/2 (u) = √ 3 4h 1 + √ 3 |u| h e - √ 3 |u| h (25) K Matérn 5/2 (u) = 3 √ 5 16h 1 + √ 5 |u| h + 5 3 |u| 2 h 2 e - √ 5 |u| h (26)
They are known in the literature as the Matérn-3/2 kernel (25) and Matérn-5/2 kernel (26) respectively, owing to the classical parameterization ν = p + 1 2 . For the definition of these kernels, the bandwidth parameter h > 0 can be chosen in different ways: one can fix it to 1 for simplicity, to the value defining the canonical shape of the kernel (h = [START_REF] Marron | Canonical kernels for density estimation[END_REF], or in such a way as to ease the visual comparison of the kernel shape to some other kernels. As Matérn kernels approximate Gaussian kernels (equation (24)), one can choose to set h such that K(0) = 1/ √ 2π, namely h = √ 2π/γ p , as shown on Figure 1. In [START_REF] Goldfeld | Econometric modelling with non-normal disturbances[END_REF], the motivation to investigate the class of distributions (20) was to approximate the Gaussian distribution by a more tractable distribution with explicit integrals (see also [START_REF] Missiakoulis | Sargan densities which one?[END_REF][START_REF] Kafaei | On the adequacy of the "Sargan distribution" as an approximation to the normal[END_REF], [START_REF] Tse | A note on Sargan densities[END_REF][START_REF] Hadri | A note on Sargan densities[END_REF] for specific kernel suggestions within the class (20)). Figure 1 suggests that computationally-attractive low-order Matérn kernels such as (26) or even (25) might suffice to approximate the shape of a Gaussian kernel. In the context of kernel density estimation, the fact that such kernels are compatible with fast recursions and CDF decompositions make them even more attractive than Gaussian kernels.

R K 2 (u)du 1/5 / R u 2 K(u)du 2/5 ,

New compatible higher-order kernels

Finally, another interesting set of kernels is the class of higher-order kernels. Definition 3.1. (see for example [START_REF] Silverman | Density estimation for statistics and data analysis[END_REF]. A kernel K is said to be of order p if and only if

u j K(u)du =      1 if j = 0 0 if 1 ≤ j ≤ p -1 c k = 0, |c k | < ∞ if j = p
The order p of a kernel is even when K is chosen symmetric. The kernel order has a direct connection to the best AMISE, namely O N -p 2p+1 , of the KDE estimator [START_REF] Gasser | Kernels for nonparametric curve estimation[END_REF][START_REF] Silverman | Density estimation for statistics and data analysis[END_REF]). This suggests that high-order kernels should asymptotically perform better (though see [START_REF] Silverman | Density estimation for statistics and data analysis[END_REF] and [START_REF] Marron | Exact mean integrated squared error[END_REF] on the usefulness of such kernels on moderate sample sizes). It is known that any kernel defined as a symmetric probability density function with finite variance is necessarily of order 2 [START_REF] Schucany | On nonparametric regression with higher-order kernels[END_REF][START_REF] Jones | Generalized jackknifing and higher order kernels[END_REF]. One consequence is that kernels of order p > 2 necessarily take negative values in places. Examples of fourth-order kernels include K(u) = 9 8 1 -5 3 u 2 1{u ≤ |1|} [START_REF] Bartlett | Statistical estimation of density functions[END_REF], and K(u) = 15 32 3 -10u 2 + 7u 4 1{|u| ≤ 1} [START_REF] Gasser | Kernels for nonparametric curve estimation[END_REF] which, being polynomial kernels, are compatible with fast recursion (see subsection 3.2). More generally, there exists various ways to turn a secondorder kernel into a fourth order kernel [START_REF] Schucany | Improvement of kernel type density estimators[END_REF][START_REF] Jones | Generalized jackknifing and higher order kernels[END_REF][START_REF] Devroye | Universal smoothing factor selection in density estimation: theory and practice[END_REF]. For example, K being a second-order kernel, the kernels

4 3 K(u) -1 6 K u 2 , 3 2 K(u) + 1 2 uK (u), and (s4-s2u 2)K(u) s4-s 2 2
, s p R u p K(u)du are known to be fourth-order kernels, among many other examples. In the case of the (second-order) Laplacian kernel K(u) = 1 2 e -|u| (equation (7)), we obtain the following infinite-support fourth-order kernels:

1 3 2e -|u| - 1 4 e -| u 2 | (27) 1 4 (3 -|u|) e -|u| (28) 1 5 3 - 1 4 u 2 e -|u| (29)
which are all compatible with fast recursion (see the decompositions of the similar kernels from subsection 3.3 and Appendix C). Beyond these simple examples, the Laplacian kernel is also the root of the high-order class of Laguerre kernels [START_REF] Berlinet | Hierarchies of higher order kernels[END_REF].

As pointed out previously, the fourth-order kernels (27)-(28)-(29) necessarily take negative values, which can be deemed undesirable in a variety of application contexts. Higher-order kernels can be fixed to become non-negative [START_REF] Glad | Correction of density estimators that are not densities[END_REF][START_REF] Oudjane | l 2 -density estimation with negative kernels[END_REF] without loss of statistical performance, however the fast recursion compatibility would be lost in the truncation process. As a final remark, while there exists "superkernels" of infinite-order [START_REF] Devroye | A note on the usefulness of superkernels in density estimation[END_REF][START_REF] Politis | Multivariate density estimation with general flat-top kernels of infinite order[END_REF][START_REF] Hansen | Exact mean integrated squared error of higher order kernel estimators[END_REF][START_REF] Chacón | A note on kernel density estimation at a parametric rate[END_REF], to our knowledge none of them is compatible with fast recursion.

Numerical results

Finally, this section reports numerical speed and accuracy results for multivariate CDF computation (subsection 4.1) and multivariate KDE computation (subsection 4.2). Three approaches will be compared:

• the naive approach (direct computation of the sums (1) and (11) independently for each evaluation point),

• the fast summation approach (subsection 2.1), and

• the fast divide-and-conquer approach (subsection 2.2)

While the first approach is much slower than the other two, its results will serve as a benchmark for checking the accuracy of the other two methods.

Unless otherwise stated, we set the number of evaluation points M to be equal to the number of input points N :

• For the fast summation algorithm , we create an evaluation grid of shape

M 1 × M 2 × . . . × M d with M 1 = M 2 = . . . = M d N 1/d , which ensures that M = N .
• For the fast divide-and-conquer algorithm , the evaluation points are equal to the input points, which also ensures that M = N .

• For the naive algorithm, we set the evaluation sample to the evaluation grid when comparing to the fast summation algorithm, and to the input points when comparing to the divide-and-conquer algorithm.

The choices of input sample and bandwidth do not affect the speed or accuracy of the two proposed algorithms. For this reason, and for the sake of simplicity, we arbitrarily choose to draw the N input points from a d-dimensional Gaussian random variable X ∼ N(0, 1 d) and to fix the bandwidth to h = 0.1 in each dimension. We perform the tests on an Intel R CPU i7-6820HQ @ 2.70GHz1 . The code was written in C++ and is available in the StOpt2 library [START_REF] Gevret | STochastic OPTimization library in C++[END_REF]. Beyond CDF and KDE, StOpt implements fast kernel regression as well, as the weights ω i in equation (6) can be chosen in such a way as to cover all the terms needed to perform a Nadaraya-Watson kernel regression or a locally linear kernel regression (see for example Appendix B in Langrené & Warin 2019).

Cumulative distribution function

Table 1 reports CDF calculation time (in seconds) on a bivariate example (d = 2) with the naive, fast summation and divide-and-conquer approaches. We observe that, as expected, the fast summation and divide-and-conquer methods offer a massive speedup compared to naive summation (around 1 second for the fast algorithms vs. more than two hours for the direct computation for 1,28 million points for example), and both fast computation times are of the same order (as expected since

O(N log(N) (d-1)∨1) = O(N logN) when d = 2).
Nb particles 20,000 40,000 80,000 160,000 320,000 640,000 The CDF values calculated by the naive approach and the two fast methods are exactly the same with no rounding error whatsoever since the y≡1 case is a counting problem (integer count values with final division by N ; see Remark 2.1 on the fast summation case). Suppose now that we specifically want to estimate the CDF values at the input points. The divideand-conquer approach does this by design, while the fast summation approach requires an interpolation from the grid points to the input points. Figure 3 reports, for different numbers M of evaluation points, the maximum interpolation error over the N sample points between the CDF values computed by fast summation and linearly interpolated to the input points, and the divide-and-conquer CDF values (taken as reference).

Figure 3: Maximal error on CDF for evaluation at sample points using fast summation and interpolation taking as reference the divide and conquer calculation.

When M = N , one can see that the worst-case interpolation error ranges from around 1 E-4 for d = 2 and N = 1, 280, 000 to around 1 E-1 for d = 5 and N = 20, 000. This worst-case interpolation error is lower for small d and large N , and can be reduced by using a finer grid, i.e. taking M larger than N , as shown by the three curves on Figure 3. Beyond linear interpolation, one could also resort to higher-order interpolation to reduce this error. Nevertheless, these results show that computing CDF values at input points by fast summation + interpolation is a viable method, with better results in the small d high N case.

Kernel density estimation

We now perform the same numerical tests for kernel density estimation, more specifically Laplacian kernel density estimation (equation (12)). Table 3 reports KDE calculation time (in seconds) on a bivariate example with the naive, fast summation and divide-and-conquer approaches. Once again, the fast summation and divide-and-conquer methods offer a massive speedup compared to naive summation (respectively 0.34s and 2.29s vs. almost eight hours for the direct computation of (11) for 0,64 million points for example), and both fast computation times are of the same order, up to a constant factor (around 6.0).

Nb particles 20,000 40,000 80,000 160,000 320,000 640,000 As for accuracy, the maximum difference between the KDE values of the naive approach and those of both fast methods, caused by float rounding errors, remains below 1 E-14 independently of the dimension of the problem.

Finally, we also test the accuracy of the fast summation approach when the evaluation points are required to coincide with the input points, which requires an interpolation from the grid points. As in the CDF case, the worst-case interpolation error ranges between around 1 E-4 and 2 E-1, is smaller for small d, large N or large M . However, the accuracy improvements obtained by increasing M get smaller in higher dimension. Nevertheless, the fast summation + interpolation approach can still be considered a viable option for KDE estimation at the input data points, provided d is small or N is large.

Conclusion

A new algorithm based on fast summation in lexicographical order has been developed to efficiently calculate multivariate empirical cumulative distribution functions (ECDFs) with O(N logN) computational cost for N arbitrary data points and N evaluation points on a rectilinear grid. Numerical tests and comparisons to a state-of-the-art O(N log(N) (d-1)∨1) divide-and-conquer algorithm confirm the speed of this exact algorithm. Besides, we establish a multivariate decomposition formula of kernel density estimators (KDEs) into a weighted sum of generalized ECDFs for a large class of kernels. This connection leads to new fast KDE algorithms: one based on fast summation with O(N logN) complexity, and one based on divide-and-conquer recursion with O(N log(N) (d-1)∨1) complexity.

The class of compatible kernels includes classical kernels such as the uniform, Epanechnikov and Laplacian kernels. We show that it also includes the Sargan and Matérn kernels, which can be used to approximate incompatible kernels such as the Gaussian kernel. Following our computational breakthrough, several possible extensions and potential future work come to mind:

• The investigation of computational methods for the related kernel distribution estimation problem [START_REF] Yamato | Uniform convergence of an estimator of a distribution function[END_REF][START_REF] Liu | Kernel estimation of multivariate cumulative distribution function[END_REF] based on the algorithmic approaches developed in this paper.

• Further investigation of the promising class of multivariate polynomial-exponential kernels, in particular their ability to approximate multivariate kernels, and their ability to speed up statistical techniques based on multivariate Gaussian variables using the fast algorithms from this paper.

• The application of fast kernel regression for image processing, as uniform pixel grids are an ideal ground for Algorithm 1 for which its computational complexity is an optimal O(N).

• The comparison, more generally, of our algorithms to fast convolution methods such as the Fast Fourier Transform (FFT) for compatible convolution kernels.

A Computation of local sums

This appendix details how to efficiently compute the local sums s j1,j2,...,j d defined in equation (4) (subsection 2.1). Subsection A.1 details the general case, based on independent input data sorting in each dimension, for a O(N log N) computational cost. Subsection A.2 details the uniform grid case: in this special case, the computational cost can be brought down to O(N) by using constant mesh divisions as a substitute to sorting.

A.1 General case

k,φ k (1) < x k,φ k (2) < • • • < x k,φ k (N) (30)
x idx = 1 input index ∈ {1, 2, . . . , N } z idx = 1 evaluation grid index ∈ {1, 2, . . . , M k } while (x idx ≤ N) do if (x k,φ k (x idx) ≤ z k,z idx) then INDEX[k, φ k (x idx)] = z idx x idx += 1 else z idx += 1 end end end s j1,j2,...,j d = 0, ∀(j1,j2,...,j d)∈{1,2,...,M1+1}×...×{1,2,...,M d +1} for (i = 1, 2, ..., N) do s INDEX[1,i], INDEX[2,i], ..., INDEX[d,i] += y i /N end Output: s j1,j2,...,j d = 1 N N i=1 y i 1{z 1,j1-1 < x 1,i ≤ z 1,j1 , . . . , z d,j d -1 < x d,i ≤ z d,j d }
for every local sum index (j1,j2,...,j d)∈{1,2,...,M1+1}×...×{1,2,...,M d +1} Algorithm 6 has a O(N logN) computational complexity, owing to the data sorting in each dimension. Its memory complexity is O(N + M).

Remark A.1. An alternative algorithm to compute the same local sums has been proposed in [START_REF] Bouchard | Monte Carlo valuation of American options: facts and new algorithms to improve existing methods[END_REF]. It is based on partial sorts in each dimension and its computational complexity is O((d k=1 M k + 1)N). This complexity is better than O(N log N) when M log(N) d . However, in the case when M ≈N (and d) complexity does not improve over Algorithm 6.

M 1 = M 2 = . . . = M d), its equivalent O(N 1+ 1

A.2 Uniform grid case

Algorithm 7: Fast computation of local sums by mesh division on uniform grid

Input: input sample x i = (x 1,i , . . . , x d,i), i = 1, 2, . . . , N Input: evaluation grid (z 1,j1 , z 2,j2 , . . . , z d,j d), j k ∈ {1, 2, . . . , M k }, k ∈ {1, 2, . . . , d} Define index matrix INDEX[k, i] local sum index ∈ {1, 2, M k + 1} where k = 1, 2, . . . , d and i = 1, 2, . . . , N for (k = 1, 2, ..., d) do ∆z k z k,2 -z k,1 constant mesh = z k,3 -z k,2 = z k,4 -z k,3 = . . . for (i = 1, 2, ..., N) do mesh division rounded to upper integer INDEX[k, i] = max(1 , min(M k + 1 , 1 + (x k,i -z k,1)/∆z k)) end end s j1,j2,...,j d = 0, ∀(j1,j2,...,j d)∈{1,2,...,M1+1}×...×{1,2,...,M d +1} for (i = 1, 2, ..., N) do s INDEX[1,i], INDEX[2,i], ..., INDEX[d,i] += y i /N end Output: s j1,j2,...,j d = 1 N N i=1 y i 1{z 1,j1-1 < x 1,i ≤ z 1,j1 , . . . , z d,j d -1 < x d,i ≤ z d,j d }
for every local sum index (j1,j2,...,j d)∈{1,2,...,M1+1}×...×{1,2,...,M d +1} Algorithm 7 has a O(N) computational complexity, and O(N + M) memory complexity.

B General matrix bandwidth

The general multivariate weighted Parzen-Rosenblatt kernel density estimator is defined by: fKDE

(z) = 1 |H| 1/2 N N i=1 w i K d H -1/2 (x i -z) (31
)
where H is a symmetric positive definite d × d bandwidth matrix, see for example [START_REF] Wand | Kernel smoothing[END_REF]. As pointed out in [START_REF] Langrené | Fast and stable multivariate kernel density estimation by fast sum updating[END_REF], one can without loss of generality focus on the diagonal bandwidth case H = diag(h), where h = (h 1 , h 2 , . . . , h d) ∈ R d . Indeed, the eigenvalue decomposition of the symmetric positive definite matrix H is given by H = R∆ 2 R where R is a rotation matrix and ∆ = diag(h) is a diagonal matrix with strictly positive diagonal elements.

Consequently,

H -1/2 (x i -z) = diag(1 h)(R T x i -R T z).
By rotating both the input points x i and the evaluation point z using the rotation matrix R T , the multivariate kernel density estimator (31) becomes

fKDE (z) = 1 N Π d k=1 h k N i=1 w i K d x i -z h (32)
where x i and z denote respectively the input points and evaluation point in the new coordinates.

In the Laplacian kernel case, equation (32) turns into the multivariate KDE equation (11) used in Section 3.

C Multivariate Matérn kernel

Taking the Matérn-3/2 kernel (25) (p = 1) with h = √ 3 as example, several approaches exist to define a multivariate kernel. One approach, known as product kernel, is to multiply univariate kernels:

K d (u) = 1 4 d d k=1 (1 + |u k |) e -|u k | (33)
Another approach is to replace the absolute value |u| by the L1 norm u 1 = d k=1 |u k |, along with a correction of the normalization constant:

K d (u) = 1 2 d (1 + d) 1 + d k=1 |u k | e -d k=1 |u k | (34)
The product approach (33) preserves the continuous differentiability of the kernel, which is not the case for the additive approach (34). Nevertheless, the CDF decomposition of the additive kernel (34) contains significantly fewer terms than the one of the product kernel (33). Indeed, the KDE decomposition of (34) is given by 1 . This decomposition contains 2 d (d + 1) CDFs to compute. By contrast, similar computations show that the KDE decomposition of the product kernel (33) contains a total of 4 d CDFs to compute. In other words, the additive kernel (34) is much more attractive than the product kernel (33) from a computational point of view, even when accounting for its lower efficiency. These two kernels are however not as computationally attractive as the Laplacian and uniform kernels, whose CDF decompositions contain 2 d terms ((12) and (18)).

N d k=1 h k N i=1 w i K d x i -z h = 1 2 d (1 + d) 1 N d k=1 h k N i=1 w i 1 + d l=1 x l,i -z l h l e - d k=1 x k,i -z k h k = 1 2 d (1 + d) 1 N d k=1 h k N i=1 w i 1 + d l=1 x l,i -z l h l × d k=1 e - z k h k e x k,i h k 1{x k,i ≤ z k } + e z k h k e - x k,i h k 1{-x k,i < -z k } = 1 2 d (1 + d) 1 N d k=1 h k N i=1 δ∈{-1,1} d

D Divide-and-conquer for Laplacian kernel density estimation

This Appendix explains how to adapt the divide-and-conquer algorithm described in Section 2.2 to compute the 2 d CDF vectors {F N (x i , δ)} i=1,N required to compute equation (12). A possible approach would consist in adapting the algorithm 2 used to calculate (3) with δ = (1, .., 1) by applying a modified version 2 d times to calculate the different terms.

We propose a single algorithm, implemented in the StOpt library, which makes it possible to compute the F N for all the δ in one recursion, avoiding to sort the particles 2 d times.

We give the algorithm obtained in general dimension to calculate for all δ ∈ {-1, 1} d , and given m, l with values in 1, . . . , d, (p, q) ∈ N 2 a general term for j = 1, N N i=1

x p l,i x q m,i e d k=1 δ k x k,i h k 1{δ 1 x 1,i < δ 1 x 1,j , . . . , δ d x d,i < δ d x d,j }.

Once again observe that the inequalities are strict in the expression above. As before the tests for non-empty sets are dropped out.

• Algorithm 8 is the main calling similar to 2. The special 2D case is dealt with the call of the two different one-dimensional merge algorithm 11 and 12 instead of a single one-dimensional algorithm.

• The n-dimensional merge algorithm 10 is similar to Algorithm 4. Besides, a set ∆ of δ ∈ {-1, 1} d is given as input too such that either δ k x k ≤ δ k y k for k > I dim for all x ∈ κ 1 and y ∈ κ 2 or δ k x k > δ k y k for k > I dim for all x ∈ κ 1 and y ∈ κ 2 .

For the couple of sets (κ 1,1 , κ 2,2),(κ 2,1 , κ 1,2) where dominance is clear in the current dimension, the n-dimensional merge algorithm is called in the dimension below and some subset of ∆. In the case when I dim = 2, a direct call to the one-dimensional merge algorithms 11 and 12 is performed.

• Two one-dimensional merge in dimension 1 are used. The first version Merge1D1 is used for the δ such that δ 1 = 1 and is the same as the Merge1D algorithm except that it works for a set of δ given as input. The second one is for the δ such that δ 1 = -1.

Algorithm 8: Calculate for 1 ≤ l ≤ m ≤ d, p, q given

F (x j , δ) = N i=1
x p l,i x q m,i e

 shows that the computation of the local sums (4) costs O(N logN) operations (or only O(N) if the grid is uniform or the data already sorted), the overall computational complexity of Algorithm 1 is O(M +N logN), or O(N logN) when M ≈N (respectively O(M + N) and O(N) when the grid is uniform or the data already sorted).

Figure 1 :

 1 Figure 1: Comparison to Gaussian kernel

Figure 2

 2 Figure 2 reports time calculation as a function of N logN for the fast summation approach and as a function of c d N log(N) d-1 for the divide-and-conquer approach, with the scaling constants c 3 = 3000, c 4 = 200, c 5 = 15, c 6 = 1 chosen to make the visual comparison easier. The resulting straight lines confirm the theoretical complexity.

Figure 2 :

 2 Figure 2: Runtime for CDF estimation (left: fast summation; right: divide-and-conquer)

Figure 4

 4 Figure 4 reports time calculation as a function of N logN for the fast summation approach and as a function of c d N log(N) d-1 for the divide-and-conquer approach (with scaling constants c 3 = 4000, c 4 = 250, c 5 = 20, c 6 = 1). Once again, the resulting straight lines confirm the theoretical complexity.

Figure 4 :

 4 Figure 4: Runtime for KDE estimation (left: fast summation; right: divide-and-conquer)

 Figure 5 reports the maximum interpolation error over the N sample points between the linearly interpolated CDF values computed by fast summation and the divide-and-conquer CDF values.

Figure 5 :

 5 Figure 5: Maximal error on KDE evaluation at sample points using fast summation and interpolation taking as reference the divide and conquer calculation.

 1,i ≤ δ1 δ 1 z 1 , . . . , δ d x d,i ≤ δ d δ d z d } 1,i ≤ δ1 δ 1 z 1 , . . . , δ d x d,i ≤ δ d δ d z d } l h lF N (δz, δ; δx, y (0)) -

 1,i < δ 1 x 1,j , . . . , δ d x d,i < δ d x d,j }, j = 1, N, δ ∈ {-1, 1} d Input: x = (x i , . . . , x N), ψ(x i , δ) = x p li = 1, . . . , N , δ ∈ {-1, 1} dCalculate φ j , j = 1, . . . , d such that x j,φ j (1) ≤ x j,φ j (2) ≤ • • • ≤ x j,φ j (N) F (x i , δ) = 0 for i = 1, . . . , N , for all δ ∈ {-1, 1} d RecurSplitting(x, ψ, φ, F, N) Output: F (x i , δ) for all i ∈ [1, N] and all δ ∈ {-1, 1} d

Table 2 :

 2 6D CDF calculation time (in seconds)

	1,280,000

Table 3 :

 3 2D KDE calculation time (in seconds)As in the CDF case, the computation time gap between the two fast methods grows with the dimension, as shown on Table4.

	Fast summation time	0.01	0.01	0.04	0.08	0.14	0.34
	Divide-and-conquer time 0.05	0.08	0.19	0.43	0.99	2.29
	Naive time	28	115	439	1742	7198	28132

Table 4 :

 4 6D KDE calculation time (in seconds)

 Algorithm 6: Fast computation of local sums by independent sorting in each dimensionInput: input sample x i = (x 1,i , . . . , x d,i), i = 1, 2, . . . , N Input: evaluation grid (z 1,j1 , z 2,j2 , . . . , z d,j d), j k ∈ {1, 2, . . . , M k }, k ∈ {1,2, . . . , d} Define index matrix INDEX[k, i] local sum index ∈ {1, 2, M k + 1} where k = 1, 2, . . . , d and i = 1, 2, . . . , N for (k = 1, 2, ..., d) do Sort the set {x k,1 , . . . x k,N } in increasing order, using for example quicksort or mergesort (O(N log N)): define the permutation φ k : {1, 2, . . . , N } → {1, 2, . . . , N } such that x

https://ark.intel.com/content/www/fr/fr/ark/products/88970/intel-core-i7-6820hq-processor-8m-cache-up-to-3-60-ghz.html

2 https://gitlab.com/stochastic-control/StOpt

Algorithm 9: Recursive splitting function RecurSplitting Input: x, ψ, F , φ j (i

, and

Algorithm 11: Final merge function in dimension one : Merge1D1 for two sets of points

for all δ ∈ ∆. All elements δ of ∆ are such that δ 1 = 1.

while ((x φ2(i),1 < x φ1(j),1) and j ≥ 1) do S(δ)+ = ψ(φ 1 (j), δ) for all δ ∈ ∆ , j = j -1 end F (φ 2 (i), δ)+ = S(δ) for all δ ∈ ∆ if (j == 0) then for (k = 1, i -1) do F (φ 2 (k), δ)+ = S(δ) for all δ ∈ ∆ end i = 0 end end Output: F updated