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ASYMPTOTIC EXPANSIONS IN CENTRAL AND LOCAL
LIMIT THEOREMS FOR PRODUCTS OF RANDOM

MATRICES

THI THUY BUI, ION GRAMA, AND QUANSHENG LIU

Abstract. Let (An)n>1 be a sequence of independent and identically
distributed random d × d real matrices. Set Gn = An . . . A1, Xx

n =
Gnx

|Gnx| and Sxn := log |Gnx|. We consider asymptotic properties of the

Markov chain (Xx
n , Sxn). For invertible matrices, Le Page [13] established

a central limit theorem and a local limit theorem on (Xx
n , Sxn) with x

a starting point on the unit sphere in Rd. In this paper, motivated by
some applications in branching random walks, we improve and extend
his theorems in the sense that: 1) we prove that the central limit theorem
holds uniformly in x, and give an asymptotic expansion in the local
limit theorem with a continuous function f acting on Xx

n and a directly
Riemann integrable function h acting on Sxn; 2) we extend the results to
the case of nonnegative matrices. Our approach is mainly based on the
spectral gap theory recently developed for products of random matrices,
and smoothing techniques for the approximation of functions.

1. Introduction

Let µ be a probability measure on the set of d×dmatricesM(d,R) (d > 1),
and let (An)n>1 be a sequence of independent and identically distributed
random matrices with law µ, defined on some probability space (Ω,F ,P).
We are interested in the asymptotic behavior of the random walk Gnx, where

Gn = An . . . A1

is the product of the random matrices Ai, x is a starting point on the unit
sphere Sd−1 = {x ∈ Rd : |x| = 1}, with | · | an arbitrary norm on Rd. Notice
that Gnx is completely determined by its log norm and its projection on the
unit sphere, denoted respectively by

Sxn := log |Gnx| and Xx
n = Gn · x := Gnx

|Gnx|
.
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We will use the convention that G0x = x, and introduce conditions such
that Gnx 6= 0. Many authors have contributed to the study of asymptotic
properties of Sxn. For example, central limit theorems have been established
by Benoist and Quint [1] for invertible matrices, and by Hennion [11] for
nonnegative matrices.

While studying branching random walks in Rd governed by products of
random matrices, we need some asymptotic properties as those given in
a central limit theorem and a local limit theorem on the couple (Xx

n , S
x
n),

but we find that the known results on this topic are not sharp enough for
our purposes. We thus focus our study on the Markov chain (Xx

n , S
x
n) for

establishing finer results. The applications in branching random walks will
be considered in a forth coming paper [4].

For invertible matrices, Le Page [13] established a central limit theorem
for (Xx

n , S
x
n) with x a given point in Sd−1, and a local limit theorem for

(Xx
n , S

x
n) with target functions f and h acting on Xx

n and Sxn respectively,
which are supposed to be continuous and of compact support. Such kind
of limit theorems have also been established by Hennion and Hervé [12] in
a more general setting by considering (Xn, Sn) instead of (Xx

n , S
x
n), where

(Xn) is a general Markov chain, Sn =
∑n
i=1 ξ(Xi) with ξ a measurable and

real valued function. Very recently, in parallel to the present work, a Berry-
Essen type theorem on the rate of convergence in the central limit theorem
has been established for (Xx

n , S
x
n) in [17] for both invertible and nonnegative

matrices.
In this paper, our first objective is to improve the central limit theorem

of Le Page [13] for invertible matrices with a uniform convergence in x (see
Theorem 2.1), and deepen his local limit theorem by giving an asymptotic
expansion under the weaker condition that the target functions f and h are
respectively continuous and directly Riemann integrable (see Theorem 2.2).
Our second objective is to prove that the results also hold for nonnegative
matrices.

Our approach is mainly based on the spectral gap theory recently devel-
oped for the norm cocycle by Guivarc’h and Le Page [9] for invertible ma-
trices, and by Buraczewski, Damek, Guivarc’h and Mentemeier (see [5, 6])
for nonnegative matrices. Smoothing techniques are also used for the ap-
proximation of functions: in the proof of Theorem 2.1, we use a smooth ap-
proximation of the indicator function of a Borel set (see Lemma 4.1), while
in the proof of Theorem 2.2, we use a suitable approximation of a directly
Riemann integrable function with the techniques develepped in [16].

The paper is organized as follows. In Section 2, we fix some notation,
introduce our assumptions on the branching products of random matrices
and state the main results. In Section 3, we recall some results on spectral



LOCAL LIMIT THEOREM FOR PRODUCTS OF RANDOM MATRICES 3

theory for products of random matrices which will be used in proofs of main
results. These proofs are given in Sections 4 and 5.

We end this section by fixing some notation. We denote by c,C abso-
lute constants whose values may change from line to line. For a set B,
1B denotes the indicator function, B,Bo and ∂B = B \ Bo denote respec-
tively the closure, the interior and the boundary of B. For t ∈ R, we write
φ(t) = 1√

2πe
−y2/2, Φ(t) =

∫ t
−∞ φ(u)du, and φσ (t) = 1

σ
√

2πe
−t2/(2σ2). For

a measure ν and a measurable function f we denote ν(f) =
∫
fdν. For

two functions f and g, we write f(t) = o(g(t)) or f(t) = O(g(t)) (t → 0)
when limt→0 f(t)/g(t) = 0 or f(t)/g(t) is bounded for |t| small enough, re-
spectively. Denote by L1 the class of complexed valued measurable and
Lebesgue integrable functions defined on R; for f ∈ L1, denote its L1 norm
by ‖f‖L1 =

∫
R |f(x)|dx.

2. Main results

2.1. Notation and preliminaries. Let M(d,R) be equipped with the op-
erator norm ‖a‖ = supx∈Sd−1 |ax| for a ∈ M(d,R). Denote by Γµ :=
[supp µ] the smallest closed semigroup of M(d,R) generated by the sup-
port of µ. Let us recall some definitions in matrix theory. A matrix a is said
to be proximal if it has an algebraic simple dominant eigenvalue. Denote by
M+ the set of matrices with nonnegative entries. A matrix a ∈M+ is said
to be allowable if every row and every column has a positive entry.

For invertible matrices, we will use the strong irreducibility and proxi-
mality conditions.

C1. (i)(Strong irreducibility)There is no finite union W =
⋃n
i=1Wi of sub-

spaces 0 6= Wi ( Rd which is Γµ-invariant (in the sense that ΓµW =W).
(ii) (Proximality) Γµ contains at least one proximal matrix.

Notice that when d = 1, the strong irreducibility and proximality condi-
tions are always satisfied.

For nonnegative matrices, we will need the allowability, positivity and
non-arithmeticity conditions.

C2. (i) (Allowability) Every a ∈ Γµ is allowable.
(ii) (Positivity) Γµ contains at least one matrix belonging toMo

+.

We say that the measure µ is arithmetic if there are t > 0, θ ∈ [0, 2π) and
a function ϑ : Sd−1

+ → R such that for all a ∈ Γµ and all x ∈ V (Γµ),
exp{it log |ax| − iθ + i(ϑ(a·x)− ϑ(x))} = 1,

where Sd−1
+ = {x > 0 : |x| = 1} is the intersection of the unit sphere with

the positive quadrant. Notice when d = 1, we have Sd−1
+ = {1}, and the

above arithmetic condition reduces to the following more usual form: log a
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is almost surely concentrated on an arithmetic progression a0 +a2N for some
a0, a2 > 0.

C3. (Non-arithmeticity) The measure µ is non-arithmetic.

It is known that when d > 2, condition C1 implies C3 (see [10, Proposi-
tion 4.6]).

For both invertible matrices and nonnegative matrices, we will need a
moment condition. For a ∈M(d,R), set

ι(a) := inf
x∈S
|ax|, and a.x := ax

|ax|
for the projective action of a matrix a on x ∈ Sd−1 when ax 6= 0. Then
ι(a) > 0 for both invertible matrices and allowable nonnegative matrices.

C4. There is α ∈ (0, 1) such that
EN(A1)α <∞.

For invertible matrices, this condition is equivalent to the following two-
sided exponential moment condition which is usually used in the literature:
there is α1 > 0 such that EN(A1)α1 <∞, whereN(A1) = max{‖A1‖, ‖A−1

1 ‖}.
We will consider the action of invertible matrices on the projective space

Pd−1 which is obtained from Sd−1 by identifying x and −x, and the action
of nonnegative matrices on Sd−1

+ . When convenient we identify x ∈ Pd−1

with one of its representants in Sd−1. To unify the exposition, we use the
symbol S to denote Pd−1 for invertible matrices, and Sd−1

+ for nonnegative
matrices. The space S will be equipped with the metric d, which is the
angular distance (see [2]) for invertible matrices, and the Hilbert cross-ratio
metric (see [11]) for nonnegative matrices. Moreover, S is a separable metric
space with Borel-σ algebra. For any starting point x ∈ S, as mentioned in
the introduction, Gnx is completely described by (Xx

n , S
x
n). With the above

conditions, Xx
n is well defined and the sequence (Xx

n , S
x
n) is a Markov chain

because Xx
n = An ·Xx

n−1and Sxn = log |AnXx
n−1|+ Sxn−1.

For invertible matrices, it was proved in [9, Theorem 2.6] that if condition
C1 holds, then the Markov chain Xx

n has a unique µ-stationary measure,
which is supported on

V (Γµ) := {va ∈ Pd−1 : a ∈ Γµ,a is proximal},
where va denotes the eigenvector with norm |va| = 1 associated to the
dominant eigenvalue of the proximal matrix a.

For nonnegative matrices, it was shown in [5, Lemma 4.3] that condition
C2 ensures the existence and uniqueness of the invariant measure for the
Markov chain (Xx

n) supported on

V (Γµ) := {va ∈ Sd−1
+ : a ∈ Γµ,a ∈Mo

+}.
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In both cases, we write ν for the unique invariant measure of (Xx
n).

Central limit theorems have been established in the literature. For invert-
ible matrices, under condition C1 and the two-sided exponential moment
condition, Le Page [13] proved that

1√
n

(Sxn − nγ)→ N(0, σ2) in law, (2.1)

where γ = infn>1
1
nE log ‖An · · ·A1‖ is the Lyapunov exponent, and σ2 =

limn→∞
1
nE(Sxn−nγ)2 is the asymptotic variance which is positive and inde-

pendent of x. For nonnegative matrices, under condition C2 and a second
moment condition, Hennion [11] proved that (2.1) holds for some σ > 0; he
also gave a condition of tightness of the sequence (Gn)n>0 to ensure that
σ > 0. As a by-product of our approch, we will show that σ > 0 under the
non-arithmeticity condition C3 (see Proposition 3.3).

2.2. Main results. We state first a central limit theorem for the couple
(Xx

n , S
x
n) with uniform convergence in x ∈ S.

Theorem 2.1. For invertible matrices, assume C1 if d > 1, and C3 if
d = 1. For nonnegative matrices, assume C2 and C3. For both cases,
assume additionally C4.

(1) For any continuous function f on S, we have

lim
n→∞

sup
(x,t)∈S×R

∣∣∣E[f(Xx
n)1{Sxn−nγ

σ
√
n
6t
}]− ν(f)Φ (t)

∣∣∣ = 0. (2.2)

(2) For any measurable set B ⊂ S with ν(∂B) = 0, we have

lim
n→∞

sup
(x,t)∈S×R

∣∣∣P(Xx
n ∈ B,

Sxn − nγ
σ
√
n
6 t
)
− ν(B)Φ (t)

∣∣∣ = 0. (2.3)

For invertible matrices, a point-wise version (by considering a fixed x ∈ S
instead of supx∈S) has been established by Le Page in [13, Theorem 4]. For
nonnegative matrices, the asymptotic for the Markov chain (Xx

n , S
x
n) is new

even for a fixed x. The uniformity in x ∈ S is new for both invertible
matrices and nonnegative matrices. Theorem 2.1 will be deduced form a
result on the convergence rate in (2.2) which has been established in [17] for
the case when f is Hölder continuous.

The following theorem gives the asymptotic expansion in the local limit
theorem for products of random matrices.

Theorem 2.2. Assume the conditions of Theorem 2.1.
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(1) For any continuous function f on S and any directly Riemann inte-
grable function h on R, we have as n→∞,

sup
(x,y)∈S×R

|σ
√
nE [f(Xx

n)h(y + Sxn − nγ)]−

ν(f)
∫
R
h(z)φ

(y − z
σ
√
n

)
Hx

(y − z√
n

)
dz| → 0, (2.4)

where

Hx(u) = 1− b(x)
σ2√n

u+ m3
6σ6√n

(3σ2u− u3),

with m3 and b(x) defined in Proposition 3.3.
(2) For any measurable set B ⊂ S with ν(∂B) = 0 and any directly

Riemann integrable function h on R, we have as n→∞

sup
(x,y)∈S×R

|σ
√
nE [1B(Xx

n)h(y + Sxn − nγ)]−

ν(B)
∫
R
h(z)φ

(y − z
σ
√
n

)
Hx

(y − z√
n

)
dz| → 0. (2.5)

When y = 0, f = 1 and h = 1[a,b], the integral E [f(Xx
n)h(y + Sxn − nγ)]

reduces to the local probability P(Sxn ∈ nγ+[a, b]), which is the usual object
studied in local limit theorems.

The expansions (2.4) and (2.5) are new for both invertible matrices and
nonnegative matrices. The first expansion implies the local limit theorem
established in [13, Theorem 6] for invertible matrices, which states that
(2.4) holds when the polynomial Hx(·) is replaced by 1 and when f, h are
continuous functions with compact supports.

The case d = 1 is worth some comments. In this case, Theorem 2.1 follows
from Theorem VII.2.7 of Petrov [14], while expansion (2.4) in Theorem
2.2 was proved by Feller (see [7, Theorem XVI.4.1]) under the same non-
arithmetic condition on µ and when h = 1[a,b] is the indicator function
of an interval. Breuillard (see [3, Theorem 3.2]) proved an expansion like
(2.4) but for any finite order, when µ is strongly non-arithmetic (in the
sense that its characteristic function µ̂(t) =

∫
eitxµ(dx) satisfies Cramér’s

condition lim sup|t|→∞ |µ̂(t)| < 1) with finite moments of order high enough
and when h is integrable and regular enough (he assumed in particular
that h has continuous and integrable derivatives h(k) for 0 6 k 6 K with
K > 2 large enough). Compared with the result of Breuillard, the novelity
in Theorem 2.2 is that we assume the non-arithmetic condition instead of the
strongly arithmetic condition, and we use the direct Riemann integrability
of h instead of the smoothness condition on h.
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3. Spectral gap property

In this section we recall some spectral gap properties studied in [13, 6, 17]
which will be used for the proofs of main results.

For z ∈ C, define the operator Pz on the set C(S) of continuous functions
on S by

Pzf(x) =
∫
M
|ax|zf(a·x)µ(da), for all x ∈ S.

For f ∈ C(S) and β > 0, we introduce the norms

‖f‖∞ := sup
x∈S
|f(x)|; |f |β := sup

x,y∈S

|f(x)− f(y)|
dβ(x, y) ; ‖f‖β := ‖f‖∞ + |f |β.

Consider the Banach space Bβ := {f ∈ C(S) : ‖f‖β < +∞}. Denote by
L(Bβ,Bβ) the set of all bounded linear operators from Bβ to Bβ equipped
with the operator norm

‖P‖Bβ→Bβ := sup
f 6=0

‖Pf‖∞
‖f‖∞

, ∀P ∈ L(Bβ,Bβ).

The following result describes the quasi-compactness of P0. It can be
found in [13, Proposition 4] for invertible matrices and in [6, Proposition
4.2] for nonnegative matrices. For P ∈ L(Bβ,Bβ) and n ∈ N, denote by Pn
the n-fold iteration of P ; by convention P 0 is the identity operator.

Proposition 3.1. Assume the conditions of Theorem 2.1. Let β > 0 be
small enough. Then P0 ∈ L(Bβ,Bβ), and there is an operator L ∈ L(Bβ,Bβ)
whose spectral radius is strictly less than 1, such that for all n ∈ N,

Pn0 = Π0 + Ln,

where Π0 is a rank-one projection satisfying Π0Bβ = {f ∈ Bβ : P0f = f}
and Π0f(x) = ν(f) for all f ∈ Bβ and x ∈ S.

For simplicity, in our proofs we will use a slightly different family of
operators (Rt)t∈R defined by

Rtf(x) := e−itγPitf(x) = E[eit(Sx1−γ)f(Xx
1 )], for f ∈ C(S), x ∈ S.

By the cocycle property log |a2a1x| = log |a2(a1·x)|+ log |a1x| and an induc-
tion, we have

Rnt f(x) = E[eit(Sxn−nγ)f(Xx
n)], n > 1.

We collect in the following two propositions some results from [17] that we
will use. Although these results are stated in [17] only for d > 2, they remain
valid for d = 1. The first proposition concerns the perturbation theory.

Proposition 3.2. Assume the conditions of Theorem 2.1.
(1) There exists a real number δ > 0 such that for t ∈ [−δ, δ] we have:
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(a) For all f ∈ Bβ and n > 1
Rnt f = λn(t)Πtf +Nn

t f,

with ΠtNt = NtΠt = 0.
(b) The mappings

λ : [−δ, δ]→ R, Π : [−δ, δ]→ L(Bβ,Bβ), N : [−δ, δ]→ L(Bβ,Bβ)
are C∞.

(c) For k0 ∈ N, there exist ρ = ρ(k0) ∈ (0, 1) and c = c(k0) > 0
such that for all n > 1,

max
06k6k0

sup
|t|<δ

∥∥∥ dk
dtk

Nn
t

∥∥∥
Bβ→Bβ

6 cρn.

(2) Let K ⊂ R \ {0} be compact. Then for each f ∈ Bβ, there is ρ1 ∈
(0, 1) such that for all n > 1,

sup
t∈K
‖Rnt f‖∞ 6 ρn1‖f‖∞.

The second proposition concerns the Taylor expansion of λ and the posi-
tivity of the asymptotic variance.

Proposition 3.3. Assume the conditions of Theorem 2.1.
(1) The Taylor expansion of λ at 0 of order 3 is given by

λ(t) = 1− σ2

2 t
2 − im3

6 t3 + o(t3),

where m3 = limn→∞
1
n

∫
V (Γµ) E(Sxn − nγ)3dν(x).

(2) For each x ∈ S, the limit b(x) = limn→∞ E(Sxn − nγ) exists in R,
the function x 7→ b(x) is in Bβ, and the derivative Π′0 of Πt at 0,
satisfies

Π′0f(x) = i ν(f)b(x), for f ∈ Bβ, x ∈ S.

(3) If µ is non-arithmetic, then σ > 0.

4. Proof of Theorem 2.1

Proof of Theorem 2.1, part (1). From [17, Theorem 2.1], for f ∈ Bβ, we
have

lim
n→∞

sup
(x,t)∈S×R

∣∣∣E[f(Xx
n)1{Sxn−nγ

σ
√
n
6t
}]− ν(f)Φ (t)

∣∣∣ = 0. (4.1)

Combining this with the fact that the Banach space Bβ is dense in C(S)
with respect to the norm ‖.‖∞ gives the conclusion of part (1). �
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To prove part (2), we first introduce a smooth approximation of an indi-
cator function:

Lemma 4.1. (Smooth approximation of an indicator function)
(1) Let A,B ⊂ S be non-empty closed sets with A ∩ B = ∅. Then there

is a continuous function ϕ : S → [0, 1] such that ϕ(x) = 1 for all
x ∈ A and ϕ(x) = 0 for all x ∈ B.

(2) Let A ⊂ S be a non-empty measurable set with ν(∂A) = 0, and let
ε > 0. Then there exist two continuous functions ϕ−, ϕ+ : S → [0, 1]
such that

ϕ− 6 1A 6 ϕ
+ and ν{x ∈ S : ϕ+ 6= ϕ−} < ε.

Proof. For a non-empty set D ⊂ S and x ∈ S, define
dist(x,D) = inf{d(x, z) : z ∈ D}.

(1) Since A,B are closed and disjoint we have dist(x,B) + dist(x,A) 6= 0
for all x ∈ S. The function defined below satisfies the desired properties:

ϕ(x) := dist(x,B)
dist(x,B) + dist(x,A) , x ∈ S.

(2) Since ν is a Borel measure on S, we have
ν(A) = inf{ν(U) : A ⊆ U,Uopen},
ν(Ao) = sup{ν(K) : K ⊆ Ao,Kcompact}.

Hence for each ε > 0, there exists a compact K ⊂ Ao such that ν(K) >
ν(Ao) − ε

2 . Since K and (Ao)c are disjoint closed sets, by part (1), there
exists a continuous function ϕ− : S → [0, 1] such that ϕ−(x) = 1 for x ∈ K
and ϕ−(x) = 0 for x ∈ (Ao)c.

Similarly, there exists an open set U ⊃ A such that ν(U) < ν(A) + ε
2 .

Again by part (1) applied to the disjoint closed sets A and U c, we see that
there is a continuous function ϕ+ : S → [0, 1] such that ϕ+(x) = 1 for x ∈ A
and ϕ+(x) = 0 for x ∈ U c. Therefore,

K ∪ U c ⊂ {x ∈ S : ϕ+(x) = ϕ−(x)}.
Consequently,

{x ∈ S : ϕ+(x) 6= ϕ−(x)} ⊂ Kc ∩ U = U \K.
Since U \K = (U \A) ∪ (A \Ao) ∪ (Ao \K), it follows that

ν{x ∈ S : ϕ+(x) 6= ϕ−(x)} 6 ν(U \A) + ν(A \Ao) + ν(Ao \K) < ε,

where we have used the hypothesis that ν(A \ Ao) = ν(∂A) = 0. From the
construction of ϕ− and ϕ+, it is obvious that ϕ− 6 1B 6 ϕ+. �
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Proof of Theorem 2.1, part (2). Let ε > 0 be given. By Lemma 4.1, there
exists two continuous functions ϕ+ and ϕ−: S → [0, 1] such that

ϕ− 6 1B 6 ϕ
+ and ν{x ∈ S : ϕ+ 6= ϕ−} < ε. (4.2)

By the triangular inequality in R, we have

sup
(x,t)∈S×R

∣∣∣E[1B(Xx
n)1{Sxn−nγ

σ
√
n
6t
}]− ν(B)Φ (t)

∣∣∣
6 sup

(x,t)∈S×R

∣∣∣E[(1B − ϕ+)(Xx
n)1{Sxn−nγ

σ
√
n
6t
}]∣∣∣

+ sup
(x,t)∈S×R

∣∣∣E[ϕ+(Xx
n)1{Sxn−nγ

σ
√
n
6t
}]− ν(ϕ+)Φ (t)

∣∣∣
+ sup

(x,t)∈S×R

∣∣∣ν(ϕ+ − 1B)Φ (t)
∣∣∣ . (4.3)

By part (1), the second term in (4.3) is less than ε for n enough large. The
third term is also less than ε by the property (4.2) since

ν(ϕ+ − 1B) 6 ν(ϕ+ − ϕ−) 6 ν{x ∈ S : ϕ+ 6= ϕ−} < ε. (4.4)

The first term can be estimated as follows:

sup
(x,t)∈S×R

∣∣∣E[(1B − ϕ+)(Xx
n)1{Sxn−nγ

σ
√
n
6t
}]∣∣∣

6 sup
(x,t)∈S×R

∣∣∣E[(ϕ+ − ϕ−)(Xx
n)1{Sxn−nγ

σ
√
n
6t
}]∣∣∣

6 sup
(x,t)∈S×R

∣∣∣E[ϕ+(Xx
n)1{Sxn−nγ

σ
√
n
6t
}]− ν(ϕ+)Φ (t)

∣∣∣
+ sup

(x,t)∈S×R

∣∣∣E[ϕ−(Xx
n)1{Sxn−nγ

σ
√
n
6t
}]− ν(ϕ−)Φ (t)

∣∣∣
+ sup

(x,t)∈S×R

∣∣∣ν(ϕ+ − ϕ−)Φ (t)
∣∣∣.

In the last display, the first two terms are less than ε for n large enough,
again by part (1); the third one is also less then ε by (4.4). �

5. Proof of Theorem 2.2

Proof of Theorem 2.2, part (1). We assume that both f and h are nonnega-
tive; we can do this by considering the positive and negative parts. We will
proceed the proof in 4 steps.
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Step 1. We first establish (2.4) for f ∈ Bβ and h ∈ L1 whose Fourier
transform

ĥ(u) =
∫
R
e−ituh(t)dt, ∀u ∈ R,

has a compact support supp(ĥ) ⊂ [−k, k]. By the inversion formula of
Fourier transform and Fubini’s theorem, for any x ∈ S and y ∈ R,

E [f(Xx
n)h(y + Sxn − nγ)] = E

[
f(Xx

n)
2π

∫
R
eiu(y+Sxn−nγ)ĥ(u)du

]
= 1

2π

∫
R
eiuyĥ(u)E

[
eiu(Sxn−nγ)f(Xx

n)
]
du

= 1
2π

∫
R
eiuyĥ(u)Rnuf(x)du.

By the change of variables u = t√
n
and using Proposition 3.2, we have:

I :=
√
nE [f(Xx

n)h(y + Sxn − nγ)]

= 1
2π

∫
R
e
ity√
n ĥ
( t√

n

)
Rnt√

n

f(x)dt

= I1 + I2 + I3,

where

I1 = 1
2π

∫
|t|6δ1

√
n
e
ity√
n ĥ
( t√

n

)
λn
( t√

n

)
Π t√

n
f(x)dt,

I2 = 1
2π

∫
|t|6δ1

√
n
e
ity√
n ĥ
( t√

n

)
Nn

t√
n

f(x)dt,

I3 = 1
2π

∫
|t|>δ1

√
n
e
ity√
n ĥ
( t√

n

)
Rnt√

n

f(x)dt,

with δ1 ∈ (0, δ] a parameter which will be fixed later. We will prove that I1
gives the main term of the desired expansion, while I2 and I3 tend to 0.

Estimation of I1. By Proposition 3.3 and an elementary calculation, we
obtain, as t√

n
→ 0,

λn
( t√

n

)
= e−

σ2t2
2 exp

(
− im3t

3

6
√
n

+ o
( t3√

n

))
. (5.1)

By Taylor’s expansion of the operator Πt on a neighborhood of 0, we have

Π t√
n
f(x) = Π0f(x) + t√

n
Π′0f(x) +O

( t2
n

)
, (5.2)

where Π0 and Π′0 are bounded operators on Bβ defined in Propositions 3.1
and 3.3(2). Notice that Π0f(x) = ν(f) and Π′0f(x) = iν(f)b(x). With (5.1)
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and (5.2) in mind, we do the composition

λn
( t√

n

)
Π t√

n
f(x) =λn

( t√
n

) [
Π t√

n
f(x)− ν(f)− itν(f)b(x)√

n

]
+
[
λn
( t√

n

)
− e−

σ2t2
2
(
1− im3t

3

6
√
n

)]
ν(f)

+
[
λn
( t√

n

)
− e−

σ2t2
2
] itν(f)b(x)√

n

+ ν(f)e−
σ2t2

2
(
1 + itb(x)√

n
− im3t

3

6
√
n

)
. (5.3)

Choosing δ1 6 δ small enough such that when |t|/
√
n 6 δ1, we have

∣∣∣− im3t
3

6σ3√n
+ o

( t3√
n

)∣∣∣ 6 σ2t2

4 and λn( t√
n

) 6 e−
σ2t2

4 . (5.4)

In the definition of I1, we substitute λn( t√
n

)Π t√
n
f(x) by the decomposition

(5.3); this leads to a decomposition of I1 which we write accordingly as

I1 = J1 + J2 + J3 + J4.

We first estimate the integral J1. Using (5.2), (5.4) and the fact that ĥ is
bounded, we obtain

|J1| 6
1

2π sup
t∈R
|ĥ(t)|

∫
|t|6δ1

√
n
e−

σ2t2
4 O

( t2
n

)
dt

6
∫
R
e−

σ2t2
4 |t|dt ·O

( 1√
n

)
6

C√
n
.

To estimate J2, we use the following inequality (see inequality XVI(2.8) in
[7]): for all u, v ∈ C,

|eu − 1− v| 6
(
|u− v|+ 1

2 |v|
2
)
emax(|u|,|v|). (5.5)

Using (5.5) with u = − im3t
3

6
√
n

+ o
( t3√

n

)
and v = − im3t

3

6
√
n
, we have

|J2| 6
ν(f)
2π sup

t∈R
|ĥ(t)|

∫
|t|6δ1

√
n
e−

σ2t2
2

[
|t|3o

( 1√
n

)
+ t6O

( 1
n

)]
e
σ2t2

4 dt

6
∫
R

(|t|3 + |t5|)e−
σ2t2

4 dt ·O
( 1√

n

)
6

C√
n
.
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For J3, we use again inequality (5.5) and the fact that the mapping b belongs
to Bβ, to conclude that

|J3| 6
∫
|t|6δ1

√
n

|tν(f)b(x)|√
n

e−
σ2t2

2

∣∣∣1− λnit√
n

∣∣∣
6 ν(f)‖b‖∞δ1

∫
R
e−

σ2t2
4

∣∣∣− im3t
3

6
√
n

+ o
( t3√

n

)∣∣∣dt
6
∫
R
e−

σ2t2
4 |t|3dt ·O

( 1√
n

)
6

C√
n
.

Hence, we obtain the following estimate of I1:

|I1 − J4| 6
C√
n
. (5.6)

Estimation of I2. From Proposition 3.2, we know that for |t| 6 δ1
√
n

there exists a constant c > 0 and ρ ∈ (0, 1) such that
∥∥∥Nn

it√
n

f
∥∥∥
β
6 cρn.

Hence,

|I2| 6 Cρn
∫
R
|ĥ(t)|dt. (5.7)

Estimation of I3. From Proposition 3.2(2), we have

sup
δ1
√
n6|t|6c

√
n

‖Rnit√
n

f‖∞ < ρn1‖f‖∞.

Using this together with the condition that supp(ĥ) ⊂ [−k, k], we get

|I3| 6 Cρn
∫
R
|ĥ(t)|dt. (5.8)

Collecting the bounds (5.6), (5.7) and (5.8), we have

|I − J4| 6 C
( 1√

n
+ ρn1 + ρn

)
. (5.9)

Set

Q(t) = 1 + it√
n
b(x)− im3t

3

6
√
n
.

It is not difficult to see that∣∣∣ν(f)
2π

∫
|t|>δ1

√
n
e
ity√
n ĥ
( t√

n

)
e
−σ2t2

2 Q(t)dt
∣∣∣

6 C
(
e−

σ2δ2
1n

2

∫
R
|ĥ(t)|dt+ 1√

n
sup
t∈R
|ĥ(t)|

)
.
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Hence we replace the integral on |t| 6 δ1
√
n of J4 in (5.9) by an integral on

R. We get

sup
(x,y)∈S×R

∣∣∣I − ν(f)
2π

∫
R
e
ity√
n ĥ
( t√

n

)
e
−σ2t2

2 Q(t)dt
∣∣∣ n→∞→ 0.

Note that φ̂(σt) = e−
σ2t2

2 is the Fourier transform of φσ(t) = 1√
2πσ2

e
−t2
2σ2 .

Then

lim
n→∞

sup
(x,y)∈S×R

∣∣∣I − ν(f)
2π

∫
R
e
ity√
n ĥ
( t√

n

)
φ̂ (tσ)Q(t)dt

∣∣∣ = 0.

But one has for all p > 0, (σt)pφ̂(σt) = (−i)pφ̂(p)
σ (t) where the notation f (p)

is the derivative of order p of f , it implies
1

2π

∫
R
e
ity√
n ĥ
( t√

n

)
φ̂ (tσ)Q(t)dt =

√
n

∫
R
h
(
y + u

√
n
)
φσ(u)Hx(u)du,

whereHx(u) is a polynomial such thatQ
(
−i ddx

)
φσ(u) = Hx(u)φσ(u). With

an elementary calculation, we get

Hx(u) = 1− b(x)
σ2√n

u+ m3
6σ6√n

(3σ2u− u3).

Using the change of variables z = y + u
√
n, we get

lim
n→∞

sup
(x,y)∈S×R

∣∣∣I − ν(f)
∫
R
h(z)φσ

(y − z√
n

)
Hx

(y − z√
n

)
dz
∣∣∣ = 0,

or, equivalently,

lim
n→∞

sup
(x,y)∈S×R

∣∣∣σI − ν(f)
∫
R
h(z)φ

(y − z
σ
√
n

)
Hx

(
y − z√
n

)
dz
∣∣∣ = 0.

So we have established (2.4) for f ∈ Bβ and Lebesgue integrable function h
whose Fourier transform ĥ has a compact support.

Step 2. We establish (2.4) for f ∈ Bβ and h ∈ L1 satisfying h ∈ Hε for
all ε ∈ (0, 1

4) and

lim
ε→0

∫
R
hε(u)du = lim

ε→0

∫
R
hε(u)du =

∫
R
h(u)du, (5.10)

where Hε, hε and hε are defined below. For any nonnegative Lebesgue
integrable function h defined on R, and for any ε > 0 and u ∈ R, set
Bε(u) = {u′ ∈ R : |u′ − u| 6 ε},

hε(u) = sup
v∈Bε(u)

h(v) and hε(u) = inf
v∈Bε(u)

h(v).



LOCAL LIMIT THEOREM FOR PRODUCTS OF RANDOM MATRICES 15

For any ε > 0, denote by Hε the set of nonnegative Lebesgue integrable
functions h such that hε and hε are measurable and Lebesgue integrable:

Hε = {h ∈ L1 : h > 0, hε and hε are measurable and integrable}.
We shall use the following result proved in [8, Lemma 5.2].

Lemma 5.1. Let h ∈ L1 be such that h ∈Hε for all ε ∈ (0, 1/4). Then we
have, for all ε ∈ (0, 1/4) and u ∈ R,

hε ∗ κε2(u)−
∫
|v|>ε

hε(u− v)κε2(v)dv 6 h(u) 6 (1 + 4ε)hε ∗ κε2(u),

where κ is defined on R by

κ(u) = 1
2π
(sin

(
u
2
)

u
2

)2
for u ∈ R∗, and κ(0) = 1

2π .

Moreover, we need some properties of the kernel κ that we state in the
following. The function κ is integrable and its Fourier transform is given by

κ̂(t) = 1− |t| for all t ∈ [−1, 1], and κ̂(t) = 0 otherwise.
Note that ∫

R
κ(u)du = κ̂(0) = 1 =

∫
R
κ̂(t)dt.

For any ε > 0, we define the function κε on R by

κε(u) = 1
ε
κ
(u
ε

)
, u ∈ R. (5.11)

Its Fourier transform is given by κ̂ε(t) = κ̂(εt). Note also that, for any ε > 0,
we have ∫

|u|> 1
ε

κ(u)du 6 1
π

∫ +∞

1
ε

4
u2du = 4ε

π
. (5.12)

For simplicity, we denote, for any f ∈ C(S) and h ∈ L1,
I(n, f, h) = σ

√
nE [f(Xx

n)h(y + Sxn − nγ)] , (5.13)

K(n, f, h) = ν(f)
∫
R
h(z)φ

(y − z
σ
√
n

)
Hx

(y − z√
n

)
dz. (5.14)

Notice that supx∈S,u∈R |φ(uσ )Hx(u)| < ∞. This implies the following uni-
form bound in x ∈ S, y, z ∈ R, n > 1:

φ
(y − z
σ
√
n

)
Hx

(y − z√
n

)
6 C. (5.15)

From this we see that for f ∈ C(S) and h ∈ L1,
K(n, f, h) 6 Cν(f)‖h‖L1 . (5.16)
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Remark that, for f and h fixed as in the beginning of Step 2, with the
notation (5.13) and (5.14), to prove the desired conclusion (2.4), it suffices
to establish the following result: for all ε > 0 small enough, when n is large
enough,

sup
(x,y)∈(S,R)

|I(n, f, h)−K(n, f, h)| 6 ν(f)δh(ε) + ε, (5.17)

where

δh(ε) = C
(
‖h− h2ε‖L1 + ‖h2ε − h‖L1

)
+ C‖h2ε‖L1(ε+ ε2)

→ 0 as ε→ 0 (due to (5.10)).

Below we will prove (5.17) by giving upper and lower bounds of I(n, f, h)−
K(n, f, h).

Upper bound of I(n, f, h) −K(n, f, h). By Lemma 5.1, we have, for any
x ∈ S, n > 1, y ∈ R and ε ∈ (0, 1/4),

I(n, f, h) 6 (1 + 4ε)I(n, f, hε ∗ κε2).

Since hε and κε2 are integrable, the function hε ∗ κε2 is also integrable; its
Fourier transform ĥεκ̂ε2 has a compact support included in [−1/ε2, 1/ε2].
Consequently, we can use the result proved in Step 1, applied to f and
hε ∗ κε2 , to conclude that for n large enough,

I(n, f, h) 6 (1 + 4ε)K(n, f, hε ∗ κε2) + ε. (5.18)

Notice that for |v| 6 ε and u ∈ R, we have [u−v−ε, u−v+ε] ⊂ [u−2ε, u+2ε].
Therefore, by definition,

hε(u− v) > h2ε(u) and hε(u− v) 6 h2ε(u). (5.19)

Consequently, for any u ∈ R,

hε ∗ κε2(u) 6 h2ε(u)
∫
|v|6ε

κε2(v)dv +
∫
|v|>ε

hε(u− v)κε2(v)dv

6 h2ε(u) +
∫
|v|>ε

hε(u− v)κε2(v)dv.

From this together with the bound (5.15), inequality (5.18) implies

I(n, f, h) 6 (1 + 4ε)K(n, f, h2ε)

+ (1 + 4ε)Cν(f)
∫
R

∫
|v|>ε

hε(z − v)κε2(v)dvdz + ε.

For a bound of the first term in the right hand side, we use the decompo-
sition K(n, f, h2ε) = K(n, f, h) +K(n, f, h2ε − h) and the inequality (5.16)
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for K(n, f, h2ε − h) to get K(n, f, h2ε) 6 K(n, f, h) + Cν(f)
∥∥∥h2ε − h

∥∥∥
L1
.

Therefore

I(n, f, h) 6 (1 + 4ε)
[
K(n, f, h) + Cν(f)

∥∥∥h2ε − h
∥∥∥
L1

]
+ (1 + 4ε)Cν(f)

∫
R

∫
|v|>ε

hε(z − v)κε2(v)dvdz + ε.

For a bound of the last integral, we use (5.11) and (5.12), to obtain∫
R

∫
|v|>ε

hε(z − v)κε2(v)dvdz 6
∥∥∥hε∥∥∥

L1

4ε
π
.

Using this and the bound of K(n, f, h) in (5.16), from the preceding bound
of I(n, f, h) we get for f ∈ Bβ and h ∈Hε,

I(n, f, h)−K(n, f, h) 6 4ν(f)ε‖h‖L1 + Cν(f)(1 + 4ε)‖h2ε − h‖L1

+ 4Cν(f)(1 + 4ε)ε
π

‖hε‖L1 + ε

6 Cν(f)‖h2ε − h‖L1 + Cν(f)(ε+ ε2)‖h2ε‖L1 + ε.
(5.20)

Lower bound of I(n, f, h)−K(n, f, h). With the notation gv,ε(u) = hε(u−
v) and by Lemma 5.1, we have:

I(n, f, h) > I(n, f, hε ∗ κε2)−
∫
|v|>ε

I(n, f, gv,ε)κε2(v)dv. (5.21)

Bound of I(n, f, hε∗κε2). The Fourier transform of hε∗κε2 has a compact
support included in [−1/ε2, 1/ε2]. So by the the result proved in Step 1, for
n large enough,

I(n, f, hε ∗ κε2) > K(n, f, hε ∗ κε2)− ε. (5.22)

By (5.19) and (5.12),

hε ∗ κε2(z) > h2ε(z)
∫
|v|6ε

κε2(v)dv >
(
1− 4ε

π

)
h2ε(z).

From this and the bound (5.16) forK(n, f, h2ε), the inequality (5.22) implies

I(n, f, hε ∗ κε2) > K(n, f, h2ε)−
4ε
π
Cν(f)‖h2ε‖L1 − ε.

Using K(n, f, h2ε) = K(n, f, h) +K(n, f, h2ε − h) and the bound (5.16) for
K(n, f, h2ε − h), we have

I(n, f, hε ∗ κε2)−K(n, f, h) > −Cν(f)‖h− h2ε‖L1 −
4Cν(f)ε

π
‖h2ε‖L1 − ε.

(5.23)
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Bound of
∫
|v|>ε I(n, f, gv,ε)κε2(v)dv in (5.21). Using (5.20) with h re-

placed by gv,ε (which lies in Hε) and (5.16) for K(n, f, gv,ε), we get

I(n, f, gv,ε) 6 Cν(f)‖gv,ε‖L1 + Cν(f)‖(gv,ε)2ε − gv,ε‖L1

+ Cν(f)(ε+ ε2)‖(gv,ε)2ε‖L1 + ε.

This implies that

I(n, f, gv,ε) 6 Cν(f)(1 + ε+ ε2)‖(gv,ε)2ε‖L1 + ε. (5.24)
Note that, for any v ∈ R,

(gε,v)2ε(u) = sup
w∈[u−2ε,u+2ε]

hε(w − v) 6 sup
w∈[u−2ε,u+2ε]

h(w − v) = h2ε(u− v).

So,
∥∥∥(gε,v)2ε

∥∥∥
L1
6
∥∥∥h2ε

∥∥∥
L1
. This together with (5.24) and(5.12) implies that∫

|v|>ε
I(n, f, gv,ε)κε2(v)dv 6

(
Cν(f)(1 + ε+ ε2)

∥∥∥h2ε
∥∥∥
L1

+ ε
) ∫
|v|>ε

κε2(v)dv

6
(
Cν(f)(1 + ε+ ε2)

∥∥∥h2ε
∥∥∥
L1

+ ε
)4ε
π
. (5.25)

Putting together (5.21), (5.23) and (5.25), we obtain

I(n, f, h)−K(n, f, h) > −Cν(f) ‖h− h2ε‖L1 + Cν(f)
∥∥∥h2ε

∥∥∥
L1

(ε+ ε2)− ε.
(5.26)

Combining the upper bound (5.20), the lower bound (5.26) and the con-
dition (5.10), the desired result (5.17) or (2.4) follows for f ∈ Bβ and h ∈Hε

for all ε ∈ (0, 1
4) and h satisfies (5.10).

Step 3. We prove (2.4) for f ∈ Bβ and h which is nonnegative and
directly Riemann integrable. Since h is directly Riemann integrable, M :=
supy∈R h(y) < +∞. Let η ∈ (0, 1) and ε ∈ (0,Mη).

By a result of approximation in the proof of Theorem 2.2 in [16], there ex-
ist two functions h−η,ε and h+

η,ε which belong to Hε1 for all ε1 ∈ (0,min{1/4,Mη, η/3})
small enough, and which satisfy (5.10), together with

h−η,ε 6 h 6 h
+
η,ε and

∫
R

[
h+
η,ε(t)− h−η,ε(t)

]
dt < 3ε. (5.27)

The first inequality in (5.27) gives K(n, f, h+
η,ε−h) 6 K(n, f, h+

η,ε−h−η,ε), so
that
|I(n, f, h)−K(n, f, h)| 6 |I(n, f, h)− I(n, f, h+

η,ε)|
+ |I(n, f, h+

η,ε)−K(n, f, h+
η,ε)|+ |K(n, f, h+

η,ε − h−η,ε)|. (5.28)
In the right hand side, as n→∞, the second term tends to 0 uniformly in
x ∈ S and y ∈ R by the result proved in Step 2. The third one is bounded
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by Cν(f)3ε from the bound (5.16) for K(n, f, h+
η,ε − h−η,ε) and the property

(5.27). Therefore, using (5.28) and passing to the limit as n→∞, we obtain
lim sup
n→∞

sup
(x,y)∈S×R

|I(n, f, h)−K(n, f, h)|

6 lim sup
n→∞

sup
(x,y)∈S×R

|I(n, f, h)− I(n, f, h+
η,ε)|+ Cν(f)3ε. (5.29)

Now
I(n, f, h)− I(n, f, h+

η,ε) 6 I(n, f, h+
η,ε)− I(n, f, h−η,ε)

=
[
I(n, f, h+

η,ε)−K(n, f, h+
η,ε)
]

+K(n, f, h+
η,ε − h−η,ε)

+
[
K(n, f, h−η,ε)− I(n, f, h−η,ε)

]
. (5.30)

As in the preceding, in the last display, as n→∞, the first and third terms
tend to 0 uniformly in x ∈ S and y ∈ R by the result proved in Step 2; the
second one is bounded by Cν(f)3ε (by (5.16) and (5.27)). Therefore,

lim sup
n→∞

sup
(x,y)∈S×R

|I(n, f, h)− I(n, f, h+
η,ε)| 6 Cν(f)3ε. (5.31)

Combining (5.29) and (5.31), we obtain
lim sup
n→∞

sup
(x,y)∈S×R

|I(n, f, h)−K(n, f, h)| 6 Cν(f)6ε. (5.32)

Since ε > 0 est arbitrary, this gives (2.4).
Step 4. We establish (2.4) for f ∈ C(S) and h which is directly Riemann

integrable. Let ε > 0. From the fact that Bβ is dense in C(S) with respect
to the norm ‖.‖∞, there is a function f̃ ∈ Bβ such that ‖f̃−f‖∞ < ε. Hence
we have

I(n, f, h)−K(n, f, h) = I(n, f − f̃ , h) + [I(n, f̃ , h)−K(n, f̃ , h)]
−K(n, f − f̃ , h). (5.33)

It follows from the result proved in Step 3 that
lim
n→∞

sup
(x,y)∈S×R

|I(n, f̃ , h)−K(n, f̃ , h)| = 0.

Consequently, by (5.33)
lim sup
n→∞

sup
(x,y)∈S×R

|I(n, f, h)−K(n, f, h)|

6 lim sup
n→∞

sup
(x,y)∈S×R

∣∣∣I(n, f − f̃ , h)−K(n, f − f̃ , h)
∣∣∣

6 ‖f − f̃‖∞ sup
(x,y)∈S×R

[
I(n, 1, h) +K(n, 1, h)

]
, (5.34)

where the last inequality follows directly from the definition of I and K. By
the result proved in Step 3 (applied to f = 1) and the bound (5.16) applied
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for K(n, 1, h), we see that I(n, 1, h)−K(n, 1, h) and I(n, 1, h) are bounded
uniformly in x, y and n > 1. Hence

sup
(x,y)∈S×R

[
I(n, 1, h) +K(n, 1, h)

]
<∞.

Since ‖f̃ − f‖∞ < ε and ε > 0 is arbitrary, this together with (5.34) implies
lim sup
n→∞

sup
(x,y)∈S×R

|I(n, f, h)−K(n, f, h)| = 0,

which completes the proof of part (1) of Theorem 2.2.
�

Proof of Theorem 2.2, part (2). For the proof of part (2), we use the con-
clusion of part (1) and the approximation of the indicator function by a
continuous function (see Lemma 4.1). Because the argument is quite simi-
lar to the proof of part (2) of Theorem 2.1, we omit the details. �
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