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n 1 be a sequence of independent and identically distributed random d × d real matrices. Set Gn = An . . . A1, X x n = Gnx |Gnx| and S x n := log |Gnx|. We consider asymptotic properties of the Markov chain (X x n , S x n ). For invertible matrices, Le Page [13] established a central limit theorem and a local limit theorem on (X x n , S x n ) with x a starting point on the unit sphere in R d . In this paper, motivated by some applications in branching random walks, we improve and extend his theorems in the sense that: 1) we prove that the central limit theorem holds uniformly in x, and give an asymptotic expansion in the local limit theorem with a continuous function f acting on X x n and a directly Riemann integrable function h acting on S x n ; 2) we extend the results to the case of nonnegative matrices. Our approach is mainly based on the spectral gap theory recently developed for products of random matrices, and smoothing techniques for the approximation of functions.

Introduction

Let µ be a probability measure on the set of d×d matrices M (d, R) (d 1), and let (A n ) n 1 be a sequence of independent and identically distributed random matrices with law µ, defined on some probability space (Ω, F, P). We are interested in the asymptotic behavior of the random walk G n x, where

G n = A n . . . A 1
is the product of the random matrices A i , x is a starting point on the unit sphere S d-1 = {x ∈ R d : |x| = 1}, with | • | an arbitrary norm on R d . Notice that G n x is completely determined by its log norm and its projection on the unit sphere, denoted respectively by

S x n := log |G n x| and X x n = G n • x := G n x |G n x| .
We will use the convention that G 0 x = x, and introduce conditions such that G n x = 0. Many authors have contributed to the study of asymptotic properties of S x n . For example, central limit theorems have been established by Benoist and Quint [START_REF] Benoist | Central Limit Theorem for Linear Groups[END_REF] for invertible matrices, and by Hennion [START_REF] Hennion | Law of large numbers and perturbations for reducible products of independent random matrices Z[END_REF] for nonnegative matrices.

While studying branching random walks in R d governed by products of random matrices, we need some asymptotic properties as those given in a central limit theorem and a local limit theorem on the couple (X x n , S x n ), but we find that the known results on this topic are not sharp enough for our purposes. We thus focus our study on the Markov chain (X x n , S x n ) for establishing finer results. The applications in branching random walks will be considered in a forth coming paper [START_REF] Bui | Central limit theorem and precise large deviations for branching random walks with products of random matrices[END_REF].

For invertible matrices, Le Page [START_REF] Page | Théorèmes limites pour les produits de matrices aléatoires[END_REF] established a central limit theorem for (X x n , S x n ) with x a given point in S d-1 , and a local limit theorem for (X x n , S x n ) with target functions f and h acting on X x n and S x n respectively, which are supposed to be continuous and of compact support. Such kind of limit theorems have also been established by Hennion and Hervé [START_REF] Hennion | Limit theorems for Markov chains and stochastic properties of dynamical systems by quasi-compactness[END_REF] in a more general setting by considering (X n , S n ) instead of (X x n , S x n ), where (X n ) is a general Markov chain, S n = n i=1 ξ(X i ) with ξ a measurable and real valued function. Very recently, in parallel to the present work, a Berry-Essen type theorem on the rate of convergence in the central limit theorem has been established for (X x n , S x n ) in [START_REF] Xiao | Berry-Esseen bound and precise moderate deviations for products of random matrices[END_REF] for both invertible and nonnegative matrices.

In this paper, our first objective is to improve the central limit theorem of Le Page [START_REF] Page | Théorèmes limites pour les produits de matrices aléatoires[END_REF] for invertible matrices with a uniform convergence in x (see Theorem 2.1), and deepen his local limit theorem by giving an asymptotic expansion under the weaker condition that the target functions f and h are respectively continuous and directly Riemann integrable (see Theorem 2.2). Our second objective is to prove that the results also hold for nonnegative matrices.

Our approach is mainly based on the spectral gap theory recently developed for the norm cocycle by Guivarc'h and Le Page [START_REF] Guivarc'h | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF] for invertible matrices, and by Buraczewski, Damek, Guivarc'h and Mentemeier (see [START_REF] Buraczewski | On multidimensional Mandelbrot cascades[END_REF][START_REF] Buraczewski | Precise large deviation results for products of random matrices[END_REF]) for nonnegative matrices. Smoothing techniques are also used for the approximation of functions: in the proof of Theorem 2.1, we use a smooth approximation of the indicator function of a Borel set (see Lemma 4.1), while in the proof of Theorem 2.2, we use a suitable approximation of a directly Riemann integrable function with the techniques develepped in [START_REF] Xiao | Precise large deviation asymptotics for products of random matrices[END_REF].

The paper is organized as follows. In Section 2, we fix some notation, introduce our assumptions on the branching products of random matrices and state the main results. In Section 3, we recall some results on spectral theory for products of random matrices which will be used in proofs of main results. These proofs are given in Sections 4 and 5.

We end this section by fixing some notation. We denote by c,C absolute constants whose values may change from line to line. For a set B, 1 B denotes the indicator function, B, B o and ∂B = B \ B o denote respectively the closure, the interior and the boundary of B. For t ∈ R, we write

φ(t) = 1 √ 2π e -y 2 /2 , Φ(t) = t -∞ φ(u)du, and φ σ (t) = 1 σ √ 2π e -t 2 /(2σ 2 )
. For a measure ν and a measurable function f we denote ν(f ) = f dν. For two functions f and g, we write

f (t) = o(g(t)) or f (t) = O(g(t)) (t → 0) when lim t→0 f (t)/g(t) = 0 or f (t)/g(t)
is bounded for |t| small enough, respectively. Denote by L 1 the class of complexed valued measurable and Lebesgue integrable functions defined on R; Let us recall some definitions in matrix theory. A matrix a is said to be proximal if it has an algebraic simple dominant eigenvalue. Denote by M + the set of matrices with nonnegative entries. A matrix a ∈ M + is said to be allowable if every row and every column has a positive entry.

for f ∈ L 1 , denote its L 1 norm by f L 1 = R |f (x)|dx.

Main results
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For invertible matrices, we will use the strong irreducibility and proximality conditions.

C1. (i)(Strong irreducibility)There is no finite union

W = n i=1 W i of sub- spaces 0 = W i R d which is Γ µ -invariant (in the sense that Γ µ W = W).
(ii) (Proximality) Γ µ contains at least one proximal matrix.

Notice that when d = 1, the strong irreducibility and proximality conditions are always satisfied.

For nonnegative matrices, we will need the allowability, positivity and non-arithmeticity conditions.

C2. (i) (Allowability) Every

a ∈ Γ µ is allowable.
(ii) (Positivity) Γ µ contains at least one matrix belonging to M o + . We say that the measure µ is arithmetic if there are t > 0, θ ∈ [0, 2π) and a function ϑ :

S d-1 + → R such that for all a ∈ Γ µ and all x ∈ V (Γ µ ), exp{it log |ax| -iθ + i(ϑ(a•x) -ϑ(x))} = 1,
where S d-1 + = {x 0 : |x| = 1} is the intersection of the unit sphere with the positive quadrant. Notice when d = 1, we have S d-1 + = {1}, and the above arithmetic condition reduces to the following more usual form: log a is almost surely concentrated on an arithmetic progression a 0 +a 2 N for some a 0 , a 2 0.

C3. (Non-arithmeticity) The measure µ is non-arithmetic.

It is known that when d 2, condition C1 implies C3 (see [START_REF] Guivarc'h | Semigroup actions on tori and stationary measures on projective spaces[END_REF]Proposition 4.6]).

For both invertible matrices and nonnegative matrices, we will need a moment condition. for the projective action of a matrix a on x ∈ S d-1 when ax = 0. Then ι(a) > 0 for both invertible matrices and allowable nonnegative matrices.

C4.

There is α ∈ (0, 1) such that

EN (A 1 ) α < ∞.
For invertible matrices, this condition is equivalent to the following twosided exponential moment condition which is usually used in the literature: there is

α 1 > 0 such that EN (A 1 ) α 1 < ∞, where N (A 1 ) = max{ A 1 , A -1 1 }.
We will consider the action of invertible matrices on the projective space P d-1 which is obtained from S d-1 by identifying x and -x, and the action of nonnegative matrices on S d-1

+ . When convenient we identify x ∈ P d-1 with one of its representants in S d-1 . To unify the exposition, we use the symbol S to denote P d-1 for invertible matrices, and S d-1 + for nonnegative matrices. The space S will be equipped with the metric d, which is the angular distance (see [START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF]) for invertible matrices, and the Hilbert cross-ratio metric (see [START_REF] Hennion | Law of large numbers and perturbations for reducible products of independent random matrices Z[END_REF]) for nonnegative matrices. Moreover, S is a separable metric space with Borel-σ algebra. For any starting point x ∈ S, as mentioned in the introduction, G n x is completely described by (X x n , S x n ). With the above conditions, X x n is well defined and the sequence (

X x n , S x n ) is a Markov chain because X x n = A n • X x n-1 and S x n = log |A n X x n-1 | + S x n-1 .
For invertible matrices, it was proved in [START_REF] Guivarc'h | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF]Theorem 2.6] that if condition C1 holds, then the Markov chain X x n has a unique µ-stationary measure, which is supported on

V (Γ µ ) := {v a ∈ P d-1 : a ∈ Γ µ , a is proximal},
where v a denotes the eigenvector with norm |v a | = 1 associated to the dominant eigenvalue of the proximal matrix a.

For nonnegative matrices, it was shown in [START_REF] Buraczewski | On multidimensional Mandelbrot cascades[END_REF]Lemma 4.3] that condition C2 ensures the existence and uniqueness of the invariant measure for the Markov chain (X x n ) supported on

V (Γ µ ) := {v a ∈ S d-1 + : a ∈ Γ µ , a ∈ M o + }.
In both cases, we write ν for the unique invariant measure of (X x n ).

Central limit theorems have been established in the literature. For invertible matrices, under condition C1 and the two-sided exponential moment condition, Le Page [START_REF] Page | Théorèmes limites pour les produits de matrices aléatoires[END_REF] proved that

1 √ n (S x n -nγ) → N (0, σ 2 ) in law, (2.1) 
where 2 is the asymptotic variance which is positive and independent of x. For nonnegative matrices, under condition C2 and a second moment condition, Hennion [START_REF] Hennion | Law of large numbers and perturbations for reducible products of independent random matrices Z[END_REF] proved that (2.1) holds for some σ 0; he also gave a condition of tightness of the sequence (G n ) n 0 to ensure that σ > 0. As a by-product of our approch, we will show that σ > 0 under the non-arithmeticity condition C3 (see Proposition 3.3).

γ = inf n 1 1 n E log A n • • • A 1 is the Lyapunov exponent, and σ 2 = lim n→∞ 1 n E(S x n -nγ)

Main results.

We state first a central limit theorem for the couple (X x n , S x n ) with uniform convergence in x ∈ S.

Theorem 2.1. For invertible matrices, assume

C1 if d > 1, and C3 if d = 1.
For nonnegative matrices, assume C2 and C3. For both cases, assume additionally C4.

(1) For any continuous function f on S, we have

lim n→∞ sup (x,t)∈S×R E f (X x n )1 S x n -nγ σ √ n t -ν(f )Φ (t) = 0. (2.2)
(2) For any measurable set B ⊂ S with ν(∂B) = 0, we have

lim n→∞ sup (x,t)∈S×R P X x n ∈ B, S x n -nγ σ √ n t -ν(B)Φ (t) = 0. (2.3)
For invertible matrices, a point-wise version (by considering a fixed x ∈ S instead of sup x∈S ) has been established by Le Page in [START_REF] Page | Théorèmes limites pour les produits de matrices aléatoires[END_REF]Theorem 4]. For nonnegative matrices, the asymptotic for the Markov chain (X x n , S x n ) is new even for a fixed x. The uniformity in x ∈ S is new for both invertible matrices and nonnegative matrices. Theorem 2.1 will be deduced form a result on the convergence rate in (2.2) which has been established in [START_REF] Xiao | Berry-Esseen bound and precise moderate deviations for products of random matrices[END_REF] for the case when f is Hölder continuous.

The following theorem gives the asymptotic expansion in the local limit theorem for products of random matrices.

Theorem 2.2. Assume the conditions of Theorem 2.1. (1) For any continuous function f on S and any directly Riemann integrable function h on R, we have as

n → ∞, sup (x,y)∈S×R |σ √ nE [f (X x n )h(y + S x n -nγ)] - ν(f ) R h(z)φ y -z σ √ n H x y -z √ n dz| → 0, (2.4) 
where

H x (u) = 1 - b(x) σ 2 √ n u + m 3 6σ 6 √ n (3σ 2 u -u 3 ),
with m 3 and b(x) defined in Proposition 3.

(2) For any measurable set B ⊂ S with ν(∂B) = 0 and any directly

Riemann integrable function h on R, we have as n → ∞ sup

(x,y)∈S×R |σ √ nE [1 B (X x n )h(y + S x n -nγ)] - ν(B) R h(z)φ y -z σ √ n H x y -z √ n dz| → 0. (2.5) When y = 0, f = 1 and h = 1 [a,b] , the integral E [f (X x n )h(y + S x n -nγ)] reduces to the local probability P(S x n ∈ nγ + [a, b]
), which is the usual object studied in local limit theorems.

The expansions (2.4) and (2.5) are new for both invertible matrices and nonnegative matrices. The first expansion implies the local limit theorem established in [START_REF] Page | Théorèmes limites pour les produits de matrices aléatoires[END_REF]Theorem 6] for invertible matrices, which states that (2.4) holds when the polynomial H x (•) is replaced by 1 and when f, h are continuous functions with compact supports.

The case d = 1 is worth some comments. In this case, Theorem 2.1 follows from Theorem VII.2.7 of Petrov [START_REF] Petrov | Sums of independent random variables[END_REF], while expansion (2.4) in Theorem 2.2 was proved by Feller (see [START_REF] Feller | An introduction to probability theory and its applications[END_REF]Theorem XVI.4.1]) under the same nonarithmetic condition on µ and when h = 1 [a,b] is the indicator function of an interval. Breuillard (see [START_REF] Breuillard | Distributions diophantiennes et théorème limite local sur R d[END_REF]Theorem 3.2]) proved an expansion like (2.4) but for any finite order, when µ is strongly non-arithmetic (in the sense that its characteristic function μ(t) = e itx µ(dx) satisfies Cramér's condition lim sup |t|→∞ |μ(t)| < 1) with finite moments of order high enough and when h is integrable and regular enough (he assumed in particular that h has continuous and integrable derivatives h (k) for 0 k K with K 2 large enough). Compared with the result of Breuillard, the novelity in Theorem 2.2 is that we assume the non-arithmetic condition instead of the strongly arithmetic condition, and we use the direct Riemann integrability of h instead of the smoothness condition on h.

Spectral gap property

In this section we recall some spectral gap properties studied in [START_REF] Page | Théorèmes limites pour les produits de matrices aléatoires[END_REF][START_REF] Buraczewski | Precise large deviation results for products of random matrices[END_REF][START_REF] Xiao | Berry-Esseen bound and precise moderate deviations for products of random matrices[END_REF] which will be used for the proofs of main results.

For z ∈ C, define the operator P z on the set C(S) of continuous functions on S by

P z f (x) = M |ax| z f (a•x)µ(da), for all x ∈ S.
For f ∈ C(S) and β > 0, we introduce the norms

f ∞ := sup x∈S |f (x)|; |f | β := sup x,y∈S |f (x) -f (y)| d β (x, y) ; f β := f ∞ + |f | β .
Consider the Banach space

B β := {f ∈ C(S) : f β < +∞}. Denote by L(B β , B β )
the set of all bounded linear operators from B β to B β equipped with the operator norm

P B β →B β := sup f =0 P f ∞ f ∞ , ∀P ∈ L(B β , B β ).
The following result describes the quasi-compactness of P 0 . It can be found in [START_REF] Page | Théorèmes limites pour les produits de matrices aléatoires[END_REF]Proposition 4] for invertible matrices and in [6, Proposition 4.2] for nonnegative matrices. For P ∈ L(B β , B β ) and n ∈ N, denote by P n the n-fold iteration of P ; by convention P 0 is the identity operator. Proposition 3.1. Assume the conditions of Theorem 2.1. Let β > 0 be small enough. Then P 0 ∈ L(B β , B β ), and there is an operator L ∈ L(B β , B β ) whose spectral radius is strictly less than 1, such that for all n ∈ N,

P n 0 = Π 0 + L n , where Π 0 is a rank-one projection satisfying Π 0 B β = {f ∈ B β : P 0 f = f } and Π 0 f (x) = ν(f ) for all f ∈ B β and x ∈ S.
For simplicity, in our proofs we will use a slightly different family of operators (R t ) t∈R defined by

R t f (x) := e -itγ P it f (x) = E[e it(S x 1 -γ) f (X x 1 )], for f ∈ C(S), x ∈ S. By the cocycle property log |a 2 a 1 x| = log |a 2 (a 1 •x)| + log |a 1 x| and an induc- tion, we have R n t f (x) = E[e it(S x n -nγ) f (X x n )]
, n 1. We collect in the following two propositions some results from [START_REF] Xiao | Berry-Esseen bound and precise moderate deviations for products of random matrices[END_REF] that we will use. Although these results are stated in [START_REF] Xiao | Berry-Esseen bound and precise moderate deviations for products of random matrices[END_REF] only for d 2, they remain valid for d = 1. The first proposition concerns the perturbation theory.

Proposition 3.2. Assume the conditions of Theorem 2.1.

(1) There exists a real number δ > 0 such that for t ∈ [-δ, δ] we have:

(a) For all f ∈ B β and n 1

R n t f = λ n (t)Π t f + N n t f, with Π t N t = N t Π t = 0. (b) The mappings λ : [-δ, δ] → R, Π : [-δ, δ] → L(B β , B β ), N : [-δ, δ] → L(B β , B β ) are C ∞ . (c) For k 0 ∈ N, there exist ρ = ρ(k 0 ) ∈ (0, 1) and c = c(k 0 ) > 0
such that for all n 1, max

0 k k 0 sup |t|<δ d k dt k N n t B β →B β cρ n . (2) Let K ⊂ R \ {0} be compact. Then for each f ∈ B β , there is ρ 1 ∈ (0, 1) such that for all n 1, sup t∈K R n t f ∞ ρ n 1 f ∞ .
The second proposition concerns the Taylor expansion of λ and the positivity of the asymptotic variance. (1) The Taylor expansion of λ at 0 of order 3 is given by

λ(t) = 1 - σ 2 2 t 2 -i m 3 6 t 3 + o(t 3 ),
where

m 3 = lim n→∞ 1 n V (Γµ) E(S x n -nγ) 3 dν(x).
(2) For each x ∈ S, the limit b(x) = lim n→∞ E(S x n -nγ) exists in R, the function x → b(x) is in B β , and the derivative Π 0 of Π t at 0, satisfies

Π 0 f (x) = i ν(f )b(x), for f ∈ B β , x ∈ S.
(3) If µ is non-arithmetic, then σ > 0.

Proof of Theorem 2.1

Proof of Theorem 2.1, part [START_REF] Benoist | Central Limit Theorem for Linear Groups[END_REF]. From [17, Theorem 2.1], for f ∈ B β , we have

lim n→∞ sup (x,t)∈S×R E f (X x n )1 S x n -nγ σ √ n t -ν(f )Φ (t) = 0. (4.1)
Combining this with the fact that the Banach space B β is dense in C(S) with respect to the norm . ∞ gives the conclusion of part (1).

To prove part (2), we first introduce a smooth approximation of an indicator function: (1) Since A, B are closed and disjoint we have dist(x, B) + dist(x, A) = 0 for all x ∈ S. The function defined below satisfies the desired properties:

ϕ(x) := dist(x, B) dist(x, B) + dist(x, A) , x ∈ S.
(2) Since ν is a Borel measure on S, we have

ν(A) = inf{ν(U ) : A ⊆ U, U open}, ν(A o ) = sup{ν(K) : K ⊆ A o , Kcompact}.
Hence for each ε > 0, there exists a compact K ⊂ A o such that ν(K) > ν(A o ) -ε 2 . Since K and (A o ) c are disjoint closed sets, by part (1), there exists a continuous function ϕ -: S → [0, 1] such that ϕ -(x) = 1 for x ∈ K and ϕ -(x) = 0 for x ∈ (A o ) c .

Similarly, there exists an open set U ⊃ A such that ν(U ) < ν(A) + ε 2 . Again by part (1) applied to the disjoint closed sets A and U c , we see that there is a continuous function ϕ + : S → [0, 1] such that ϕ + (x) = 1 for x ∈ A and ϕ + (x) = 0 for x ∈ U c . Therefore,

K ∪ U c ⊂ {x ∈ S : ϕ + (x) = ϕ -(x)}. Consequently, {x ∈ S : ϕ + (x) = ϕ -(x)} ⊂ K c ∩ U = U \ K. Since U \ K = (U \ A) ∪ (A \ A o ) ∪ (A o \ K), it follows that ν{x ∈ S : ϕ + (x) = ϕ -(x)} ν(U \ A) + ν(A \ A o ) + ν(A o \ K) < ε,
where we have used the hypothesis that ν(A \ A o ) = ν(∂A) = 0. From the construction of ϕ -and ϕ + , it is obvious that ϕ -1 B ϕ + .

Proof of Theorem 2.1, part [START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF]. Let ε > 0 be given. By Lemma 4.1, there exists two continuous functions ϕ + and ϕ -: S → [0, 1] such that ϕ -1 B ϕ + and ν{x ∈ S :

ϕ + = ϕ -} < ε. (4.2)
By the triangular inequality in R, we have sup

(x,t)∈S×R E 1 B (X x n )1 S x n -nγ σ √ n t -ν(B)Φ (t) sup (x,t)∈S×R E (1 B -ϕ + )(X x n )1 S x n -nγ σ √ n t + sup (x,t)∈S×R E ϕ + (X x n )1 S x n -nγ σ √ n t -ν(ϕ + )Φ (t) + sup (x,t)∈S×R ν(ϕ + -1 B )Φ (t) . (4.3)
By part (1), the second term in (4.3) is less than ε for n enough large. The third term is also less than ε by the property (4.2) since

ν(ϕ + -1 B ) ν(ϕ + -ϕ -) ν{x ∈ S : ϕ + = ϕ -} < ε. ( 4.4) 
The first term can be estimated as follows:

sup

(x,t)∈S×R E (1 B -ϕ + )(X x n )1 S x n -nγ σ √ n t sup (x,t)∈S×R E (ϕ + -ϕ -)(X x n )1 S x n -nγ σ √ n t sup (x,t)∈S×R E ϕ + (X x n )1 S x n -nγ σ √ n t -ν(ϕ + )Φ (t) + sup (x,t)∈S×R E ϕ -(X x n )1 S x n -nγ σ √ n t -ν(ϕ -)Φ (t) + sup (x,t)∈S×R ν(ϕ + -ϕ -)Φ (t) .
In the last display, the first two terms are less than ε for n large enough, again by part (1); the third one is also less then ε by (4.4).

Proof of Theorem 2.2

Proof of Theorem 2.2, part [START_REF] Benoist | Central Limit Theorem for Linear Groups[END_REF]. We assume that both f and h are nonnegative; we can do this by considering the positive and negative parts. We will proceed the proof in 4 steps.

Step 1. We first establish (2.4) for f ∈ B β and h ∈ L 1 whose Fourier transform

h(u) = R e -itu h(t)dt, ∀u ∈ R,
has a compact support supp( ĥ) ⊂ [-k, k]. By the inversion formula of Fourier transform and Fubini's theorem, for any x ∈ S and y ∈ R,

E [f (X x n )h(y + S x n -nγ)] = E f (X x n ) 2π R e iu(y+S x n -nγ) h(u)du = 1 2π R e iuy h(u)E e iu(S x n -nγ) f (X x n ) du = 1 2π R e iuy h(u)R n u f (x)du.
By the change of variables u = t √ n and using Proposition 3.2, we have:

I := √ nE [f (X x n )h(y + S x n -nγ)] = 1 2π R e ity √ n h t √ n R n t √ n f (x)dt = I 1 + I 2 + I 3 ,
where

I 1 = 1 2π |t| δ 1 √ n e ity √ n h t √ n λ n t √ n Π t √ n f (x)dt, I 2 = 1 2π |t| δ 1 √ n e ity √ n h t √ n N n t √ n f (x)dt, I 3 = 1 2π |t|>δ 1 √ n e ity √ n h t √ n R n t √ n f (x)dt,
with δ 1 ∈ (0, δ] a parameter which will be fixed later. We will prove that I 1 gives the main term of the desired expansion, while I 2 and I 3 tend to 0.

Estimation of I 1 . By Proposition 3.3 and an elementary calculation, we obtain, as t √ n → 0,

λ n t √ n = e -σ 2 t 2 2 exp - im 3 t 3 6 √ n + o t 3 √ n .
(5.1) By Taylor's expansion of the operator Π t on a neighborhood of 0, we have

Π t √ n f (x) = Π 0 f (x) + t √ n Π 0 f (x) + O t 2 n , (5.2)
where Π 0 and Π 0 are bounded operators on B β defined in Propositions 3.1 and 3.3 [START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF]. Notice that Π 0 f (x) = ν(f ) and Π 0 f (x) = iν(f )b(x). With (5.1)

(5.2) in mind, we do the composition

λ n t √ n Π t √ n f (x) =λ n t √ n Π t √ n f (x) -ν(f ) - itν(f )b(x) √ n + λ n t √ n -e -σ 2 t 2 2 1 - im 3 t 3 6 √ n ν(f ) + λ n t √ n -e -σ 2 t 2 2 itν(f )b(x) √ n + ν(f )e -σ 2 t 2 2 1 + itb(x) √ n - im 3 t 3 6 √ n . (5.3)
Choosing δ 1 δ small enough such that when |t|/ √ n δ 1 , we have

- im 3 t 3 6σ 3 √ n + o t 3 √ n σ 2 t 2 4 and λ n ( t √ n ) e -σ 2 t 2 4 .
(5.4)

In the definition of I 1 , we substitute

λ n ( t √ n )Π t √ n
f (x) by the decomposition (5.3); this leads to a decomposition of I 1 which we write accordingly as

I 1 = J 1 + J 2 + J 3 + J 4 .
We first estimate the integral J 1 . Using (5.2), (5.4) and the fact that h is bounded, we obtain

|J 1 | 1 2π sup t∈R | h(t)| |t| δ 1 √ n e -σ 2 t 2 4 O t 2 n dt R e -σ 2 t 2 4 |t|dt • O 1 √ n C √ n .
To estimate J 2 , we use the following inequality (see inequality XVI(2.8) in [START_REF] Feller | An introduction to probability theory and its applications[END_REF]): for all u, v ∈ C,

|e u -1 -v| |u -v| + 1 2
|v| 2 e max(|u|,|v|) .

(5.5) Using (5.5) with u = -

im 3 t 3 6 √ n + o t 3 √ n and v = - im 3 t 3 6 √ n , we have |J 2 | ν(f ) 2π sup t∈R | h(t)| |t| δ 1 √ n e -σ 2 t 2 2 |t| 3 o 1 √ n + t 6 O 1 n e σ 2 t 2 4 dt R (|t| 3 + |t 5 |)e -σ 2 t 2 4 dt • O 1 √ n C √ n .
For J 3 , we use again inequality (5.5) and the fact that the mapping b belongs to B β , to conclude that

|J 3 | |t| δ 1 √ n |tν(f )b(x)| √ n e -2 t 2 2 1 -λ n it √ n ν(f ) b ∞ δ 1 R e -σ 2 t 2 4 - im 3 t 3 6 √ n + o t 3 √ n dt R e -σ 2 t 2 4 |t| 3 dt • O 1 √ n C √ n .
Hence, we obtain the following estimate of I 1 :

|I 1 -J 4 | C √ n . (5.6)
Estimation of I 2 . From Proposition 3.2, we know that for |t| δ 1 √ n there exists a constant c > 0 and ρ ∈ (0, 1) such that

N n it √ n f β cρ n .
Hence,

|I 2 | Cρ n R | h(t)|dt. ( 5.7) 
Estimation of I 3 . From Proposition 3.2(2), we have sup

δ 1 √ n |t| c √ n R n it √ n f ∞ < ρ n 1 f ∞ .
Using this together with the condition that supp( h) ⊂ [-k, k], we get

|I 3 | Cρ n R | h(t)|dt. ( 5.8) 
Collecting the bounds (5.6), (5.7) and (5.8), we have

|I -J 4 | C 1 √ n + ρ n 1 + ρ n . ( 5.9) 
Set

Q(t) = 1 + it √ n b(x) - im 3 t 3 6 √ n .
It is not difficult to see that

ν(f ) 2π |t|>δ 1 √ n e ity √ n h t √ n e -σ 2 t 2 2 Q(t)dt C e - σ 2 δ 2 1 n 2 R | h(t)|dt + 1 √ n sup t∈R | h(t)| .
Hence we replace the integral on |t| δ 1 √ n of J 4 in (5.9) by an integral on R. We get sup (x,y)∈S×R

I - ν(f ) 2π R e ity √ n h t √ n e -σ 2 t 2 2 Q(t)dt n→∞ → 0. Note that φ(σt) = e -σ 2 t 2 2 is the Fourier transform of φ σ (t) = 1 √ 2πσ 2 e -t 2 2σ 2 . Then lim n→∞ sup (x,y)∈S×R I - ν(f ) 2π R e ity √ n h t √ n φ (tσ) Q(t)dt = 0.
But one has for all p 0, (σt

) p φ(σt) = (-i) p φ (p) σ (t)
where the notation f (p) is the derivative of order p of f , it implies

1 2π R e ity √ n h t √ n φ (tσ) Q(t)dt = √ n R h y + u √ n φ σ (u)H x (u)du,
where

H x (u) is a polynomial such that Q -i d dx φ σ (u) = H x (u)φ σ (u)
. With an elementary calculation, we get

H x (u) = 1 - b(x) σ 2 √ n u + m 3 6σ 6 √ n (3σ 2 u -u 3 ).
Using the change of variables z = y + u √ n, we get lim n→∞ sup (x,y)∈S×R

I -ν(f ) R h(z)φ σ y -z √ n H x y -z √ n dz = 0, or, equivalently, lim n→∞ sup (x,y)∈S×R σI -ν(f ) R h(z)φ y -z σ √ n H x y -z √ n dz = 0.
So we have established (2.4) for f ∈ B β and Lebesgue integrable function h whose Fourier transform ĥ has a compact support.

Step 2. We establish (2.4) for f ∈ B β and h ∈ L 1 satisfying h ∈ H ε for all ε ∈ (0, 1 4 ) and

lim ε→0 R h ε (u)du = lim ε→0 R h ε (u)du = R h(u)du, ( 5.10) 
where H ε , h ε and h ε are defined below. For any nonnegative Lebesgue integrable function h defined on R, and for any ε > 0 and u ∈ R, set

B ε (u) = {u ∈ R : |u -u| ε}, h ε (u) = sup v∈Bε(u) h(v) and h ε (u) = inf v∈Bε(u) h(v).
For any ε > 0, denote by H ε the set of nonnegative Lebesgue integrable functions h such that h ε and h ε are measurable and Lebesgue integrable:

H ε = {h ∈ L 1 : h 0, h ε
and h ε are measurable and integrable}.

We shall use the following result proved in [8, Lemma 5.2].

Lemma 5.1. Let h ∈ L 1 be such that h ∈ H ε for all ε ∈ (0, 1/4). Then we have, for all ε ∈ (0, 1/4) and u ∈ R,

h ε * κ ε 2 (u) - |v| ε h ε (u -v)κ ε 2 (v)dv h(u) (1 + 4ε)h ε * κ ε 2 (u),
where κ is defined on R by

κ(u) = 1 2π sin u 2 u 2 2
for u ∈ R * , and κ(0) = 1 2π .

Moreover, we need some properties of the kernel κ that we state in the following. function κ is integrable and its Fourier transform is given by

κ(t) = 1 -|t| for all t ∈ [-1, 1], and κ(t) = 0 otherwise. Note that R κ(u)du = κ(0) = 1 = R κ(t)dt.
For any ε > 0, we define the function κ ε on R by

κ ε (u) = 1 ε κ u ε , u ∈ R. (5.11)
Its Fourier transform is given by κ ε (t) = κ(εt). Note also that, for any ε > 0, we have

|u| 1 ε κ(u)du 1 π +∞ 1 ε 4 u 2 du = 4ε π .
(5.12)

For simplicity, we denote, for any f ∈ C(S) and h ∈ L 1 ,

I(n, f, h) = σ √ nE [f (X x n )h(y + S x n -nγ)] ,
(5.13)

K(n, f, h) = ν(f ) R h(z)φ y -z σ √ n H x y -z √ n dz. (5.14) Notice that sup x∈S,u∈R |φ( u σ )H x (u)| < ∞.
This implies the following uniform bound in x ∈ S, y, z ∈ R, n 1:

φ y -z σ √ n H x y -z √ n C. (5.15)
From this we see that for f ∈ C(S) and h ∈ L 1 ,

K(n, f, h) Cν(f ) h L 1 .
(5.16)

Remark that, for f and h fixed as in the beginning of Step 2, with the notation (5.13) and (5.14), to prove the desired conclusion (2.4), it suffices to establish the following result: for all ε > 0 small enough, when n is large enough, sup (x,y)∈(S,R)

|I(n, f, h) -K(n, f, h)| ν(f )δ h (ε) + ε, ( 5.17) 
where

δ h (ε) = C h -h 2ε L 1 + h 2ε -h L 1 + C h 2ε L 1 (ε + ε 2 )
→ 0 as ε → 0 (due to (5.10)).

Below we will prove (5.17) by giving upper and lower bounds of

I(n, f, h) - K(n, f, h).
Upper bound of I(n, f, h) -K(n, f, h). By Lemma 5.1, we have, for any x ∈ S, n 1, y ∈ R and ε ∈ (0, 1/4),

I(n, f, h) (1 + 4ε)I(n, f, h ε * κ ε 2 ). Since h ε and κ ε 2 are integrable, the function h ε * κ ε 2 is also integrable; its Fourier transform h ε κ ε 2 has a compact support included in [-1/ε 2 , 1/ε 2 ].
Consequently, we can use the result proved in Step 1, applied to f and h ε * κ ε 2 , to conclude that for n large enough, Consequently, for any u ∈ R,

I(n, f, h) (1 + 4ε)K(n, f, h ε * κ ε 2 ) + ε. ( 5 
h ε * κ ε 2 (u) h 2ε (u) |v| ε κ ε 2 (v)dv + |v| ε h ε (u -v)κ ε 2 (v)dv h 2ε (u) + |v| ε h ε (u -v)κ ε 2 (v)dv.
From this together with the bound (5.15), inequality (5.18) implies

I(n, f, h) (1 + 4ε)K(n, f, h 2ε ) + (1 + 4ε)Cν(f ) R |v| ε h ε (z -v)κ ε 2 (v)dvdz + ε.
For a bound of the first term in the right hand side, we use the decomposition K(n, f, h 2ε ) = K(n, f, h) + K(n, f, h 2ε -h) and the inequality (5.16) for

K(n, f, h 2ε -h) to get K(n, f, h 2ε ) K(n, f, h) + Cν(f ) h 2ε -h L 1 . Therefore I(n, f, h) (1 + 4ε) K(n, f, h) + Cν(f ) h 2ε -h L 1 + (1 + 4ε)Cν(f ) R |v| ε h ε (z -v)κ ε 2 (v)dvdz + ε.
For a bound of the last integral, we use (5.11) and (5.12), to obtain

R |v| ε h ε (z -v)κ ε 2 (v)dvdz h ε L 1 4ε π .
Using this and the bound of K(n, f, h) in (5.16), from the preceding bound of I(n, f, h) we get for f ∈ B β and h ∈ H ε ,

I(n, f, h) -K(n, f, h) 4ν(f )ε h L 1 + Cν(f )(1 + 4ε) h 2ε -h L 1 + 4Cν(f )(1 + 4ε)ε π h ε L 1 + ε Cν(f ) h 2ε -h L 1 + Cν(f )(ε + ε 2 ) h 2ε L 1 + ε. (5.20) Lower bound of I(n, f, h)-K(n, f, h). With the notation g v,ε (u) = h ε (u- v)
and by Lemma 5.1, we have: 

I(n, f, h) I(n, f, h ε * κ ε 2 ) - |v| ε I(n, f, g v,ε )κ ε 2 (v)dv. ( 5 
I(n, f, h ε * κ ε 2 ) K(n, f, h ε * κ ε 2 ) -ε.
(5.22) By (5.19) and (5.12),

h ε * κ ε 2 (z) h 2ε (z) |v| ε κ ε 2 (v)dv 1 - 4ε π h 2ε (z).
From this and the bound (5.16) for K(n, f, h 2ε ), the inequality (5.22) implies (5.21). Using (5.20) with h replaced by g v,ε (which lies in H ε ) and (5.16) for K(n, f, g v,ε ), we get

I(n, f, h ε * κ ε 2 ) K(n, f, h 2ε ) - 4ε π Cν(f ) h 2ε L 1 -ε. Using K(n, f, h 2ε ) = K(n, f, h) + K(n, f, h 2ε -h) and the bound (5.16) for K(n, f, h 2ε -h), we have I(n, f, h ε * κ ε 2 ) -K(n, f, h) -Cν(f ) h -h 2ε L 1 - 4Cν(f )ε π h 2ε L 1 -ε. (5.23) Bound of |v| ε I(n, f, g v,ε )κ ε 2 (v)dv in
I(n, f, g v,ε ) Cν(f ) g v,ε L 1 + Cν(f ) (g v,ε ) 2ε -g v,ε L 1 + Cν(f )(ε + ε 2 ) (g v,ε ) 2ε L 1 + ε. This implies that I(n, f, g v,ε ) Cν(f )(1 + ε + ε 2 ) (g v,ε ) 2ε L 1 + ε.
(5.24)

Note that, for any v ∈ R,

(g ε,v ) 2ε (u) = sup w∈[u-2ε,u+2ε] h ε (w -v) sup w∈[u-2ε,u+2ε] h(w -v) = h 2ε (u -v). So, (g ε,v ) 2ε L 1 h 2ε L 1
. This together with (5.24) and(5.12) implies that 

|v| ε I(n, f, g v,ε )κ ε 2 (v)dv Cν(f )(1 + ε + ε 2 ) h 2ε L 1 + ε |v| ε κ ε 2 (v)dv Cν(f )(1 + ε + ε 2 ) h 2ε L 1 + ε 4ε π . ( 5 
I(n, f, h) -K(n, f, h) -Cν(f ) h -h 2ε L 1 + Cν(f ) h 2ε L 1 (ε + ε 2 ) -ε. ( 5.26) 
Combining the upper bound (5.20), the lower bound (5.26) and the condition (5.10), the desired result (5.17) or (2.4) follows for f ∈ B β and h ∈ H ε for all ε ∈ (0, 1 4 ) and h satisfies (5.10).

Step 3. We prove (2.4) for f ∈ B β and h which is nonnegative and directly Riemann integrable. Since h is directly Riemann integrable, M := sup y∈R h(y) < +∞. Let η ∈ (0, 1) and ε ∈ (0, M η).

By a result of approximation in the proof of Theorem 2.2 in [START_REF] Xiao | Precise large deviation asymptotics for products of random matrices[END_REF], there exist two functions h - η,ε and h + η,ε which belong to H ε 1 for all ε 1 ∈ (0, min{1/4, M η, η/3}) small enough, and which satisfy (5.10), together with

h - η,ε h h + η,ε and R h + η,ε (t) -h - η,ε (t) dt < 3ε.
(5.27)

The first inequality in (5.27) gives K(n, f, h + η,ε -h) K(n, f, h + η,ε -h - η,ε ), so that

|I(n, f, h) -K(n, f, h)| |I(n, f, h) -I(n, f, h + η,ε )| + |I(n, f, h + η,ε ) -K(n, f, h + η,ε )| + |K(n, f, h + η,ε -h - η,ε )|.
(5.28) In the right hand side, as n → ∞, the second term tends to 0 uniformly in x ∈ S and y ∈ R by the result proved in Step 2. The third one is bounded by Cν(f )3ε from the bound (5.16) for K(n, f, h + η,ε -h - η,ε ) and the property (5.27). Therefore, using (5.28) and passing to the limit as n → ∞, we obtain Since ε > 0 est arbitrary, this gives (2.4).

I(n, f, h - η,ε ) = I(n, f, h + η,ε ) -K(n, f, h + η,ε ) + K(n, f, h + η,ε -h - η,ε ) + K(n, f, h - η,ε ) -I(n, f, h - η,ε ) . ( 5 
Step 4. We establish (2.4) for f ∈ C(S) and h which is directly Riemann integrable. Let ε > 0. From the fact that B β is dense in C(S) with respect to the norm . ∞ , there is a function f ∈ B β such that f -f ∞ < ε. Hence we have

I(n, f, h) -K(n, f, h) = I(n, f -f , h) + [I(n, f , h) -K(n, f , h)]

-K(n, f -f , h).

( 

. 1 .

 1 Notation and preliminaries. Let M (d, R) be equipped with the operator norm a = sup x∈S d-1 |ax| for a ∈ M (d, R). Denote by Γ µ := [supp µ] the smallest closed semigroup of M (d, R) generated by the support of µ.

  For a ∈ M (d, R), set ι(a) := inf x∈S |ax|, and a.x := ax |ax|

Proposition 3 . 3 .

 33 Assume the conditions of Theorem 2.1.

Lemma 4 . 1 .

 41 (Smooth approximation of an indicator function) (1) Let A, B ⊂ S be non-empty closed sets with A ∩ B = ∅. Then there is a continuous function ϕ : S → [0, 1] such that ϕ(x) = 1 for all x ∈ A and ϕ(x) = 0 for all x ∈ B. (2) Let A ⊂ S be a non-empty measurable set with ν(∂A) = 0, and let ε > 0. Then there exist two continuous functions ϕ -, ϕ + : S → [0, 1] such that ϕ -1 A ϕ + and ν{x ∈ S : ϕ + = ϕ -} < ε. Proof. For a non-empty set D ⊂ S and x ∈ S, define dist(x, D) = inf{d(x, z) : z ∈ D}.

  .18) Notice that for |v| ε and u ∈ R, we have [u-v-ε, u-v+ε] ⊂ [u-2ε, u+2ε]. Therefore, by definition,h ε (u -v) h 2ε (u) and h ε (u -v) h 2ε (u).(5.19)

  .25) Putting together (5.21), (5.23) and (5.25), we obtain

  |I(n, f, h)-K(n, f, h)| lim sup n→∞ sup (x,y)∈S×R |I(n, f, h) -I(n, f, h + η,ε )| + Cν(f )3ε. (5.29) Now I(n, f, h) -I(n, f, h + η,ε ) I(n, f, h + η,ε ) -

2 .

 2 .33) It follows from the result proved in Step 3 that lim n→∞ sup (x,y)∈S×R |I(n, f , h) -K(n, f , h)| = 0. Consequently, by (5.33) lim sup n→∞ sup (x,y)∈S×R|I(n, f, h) -K(n, f, h)| lim sup n→∞ sup (x,y)∈S×R I(n, f -f , h) -K(n, f -f , h) f -f ∞ sup (x,y)∈S×R I(n, 1, h) + K(n, 1, h) , (5.34) where the last inequality follows directly from the definition of I and K. By the result proved in Step 3 (applied to f = 1) and the bound (5.16) applied for K(n, 1, h), we see that I(n, 1, h) -K(n, 1, h) and I(n, 1, h) are bounded uniformly in x, y and n 1. Hence sup (x,y)∈S×R I(n, 1, h) + K(n, 1, h) < ∞. Since f -f ∞ < ε and ε > 0 is arbitrary, this together with (5.34) implies lim sup n→∞ sup (x,y)∈S×R |I(n, f, h) -K(n, f, h)| = 0, which completes the proof of part (1) of Theorem 2.Proof of Theorem 2.2, part (2). For the proof of part (2), we use the conclusion of part (1) and the approximation of the indicator function by a continuous function (see Lemma 4.1). Because the argument is quite similar to the proof of part (2) of Theorem 2.1, we omit the details.

  .21) Bound of I(n, f, h ε * κ ε 2 ). The Fourier transform of h ε * κ ε 2 has a compact support included in [-1/ε 2 , 1/ε 2 ]. So by the the result proved in Step 1, for n large enough,

  .30) As in the preceding, in the last display, as n → ∞, the first and third terms tend to 0 uniformly in x ∈ S and y ∈ R by the result proved in Step 2; the second one is bounded by Cν(f )3ε (by(5.16) and (5.27)). Therefore,

	lim sup n→∞	(x,y)∈S×R sup	|I(n, f, h) -I(n, f, h + η,ε )| Cν(f )3ε.	(5.31)
	Combining (5.29) and (5.31), we obtain	
	lim sup		

n→∞ sup (x,y)∈S×R |I(n, f, h) -K(n, f, h)| Cν(f )6ε.

(5.32)
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