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Equilibrium Signaling in Spatially Inhomogeneous
Diffusion and External Forces

Malcolm Egan, Bayram Cevdet Akdeniz and Bao Quoc Tang

Abstract—Complex fluid media where molecules are suscep-
tible to forces due, for example, to external magnetic fields,
complicates the design of molecular communication systems. In
particular, the equations governing the motion of each molecule
in time do not typically admit tractable solutions, which makes
receiver design challenging for standard signaling schemes;
e.g., concentration shift keying. In this paper, we propose a
new signaling scheme, which leads to simple expressions for
receiver statistics, even when spatially inhomogeneous diffusion
and external forces are present. Our scheme exploits the equi-
librium statistics of the system, which arise in a wide range of
scenarios. We illustrate our approach in a bounded system with
inhomogeneous diffusion and external forces determined by a
quadratic potential.

I. INTRODUCTION

A key feature of any molecular communication system is the
underlying mechanism governing the motion of information-
carrying molecules in a fluid medium. For systems with a finite
number of such molecules, the motion is inherently stochas-
tic, due to random fluctuation caused by thermal processes
or interactions with the molecules comprising the fluid. As
such, statistical mechanics provides a sound framework to
characterize the statistics of the location of each molecule [1].

There are two basic statistical models for diffusion. The
first approach is known as the master equation, where the
individual molecules can jump between discrete voxels [2].
The second approach is based on the Langevin stochastic
differential equation, where the position of each molecule lies
on a continuum [3]. Both approaches induce a Markov process,
which can be described via a Fokker-Planck equation (also
known as a Kolmogorov forward equation).

While the master equation approach is particularly useful
for capturing both stochastic chemical kinetics and diffusion,
the Smoluchowski equation arising in the Langevin approach
is derived from a Newtonian perspective [4]. That is, the effect
of friction and external forces on diffusion can be explicitly
modeled. Indeed, the vast majority of work in molecular
communications has implicitly adopted the Langevin approach
in the absence of external forces, which leads to molecular
motion governed by Brownian motion without drift. In some
cases, drift has also been introduced, which corresponds to the
assumption that information-carrying molecules are acted on
by a force leading to a homogeneous velocity [1].

Key difficulties in designing molecular communication sys-
tems governed by the Smoluchowski equation are incorpo-
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rating the effect of boundary conditions, spatially inhomoge-
neous diffusion coefficients, and external forces. Nevertheless,
particularly for sufficiently small systems with a reflective
boundary, the geometry of the system has a strong impact
on the motion of information-carrying molecules on short
time scales [3]. On the other hand, active transport—such
as in bacterial chemotaxis—is often modeled via external
forces with a more complex functional form [1]. Both of
these difficulties typically mean that the resulting Fokker-
Planck equation—describing the probability a molecule is
in a location x at time {—does not admit a simple closed
form solution, requiring further approximations or numerical
methods.

As a simple expression for the probability a given molecule
is observed by a receiver at a given time ¢ is not generally
available, it is challenging to derive near optimal decision
rules for detection at the receiver for many standard signal-
ing schemes. For example, concentration shift keying (CSK)
typically requires an accurate approximation for the statistics
of the number of molecules observed by the receiver before
a given time ¢, often optimized to reduce the probability of
error [5].

In this paper, we propose an alternative signaling scheme
that admits a simple approximation for the probability a
molecule lies in a receiver at a sampling time. Our scheme
is applicable for systems which have a finite volume (i.e., a
bounded environment), a passive receiver, where inertial forces
are dominated by drag forces, and may be affected by an
external force defined by a scalar potential as well as spatially
inhomogeneous diffusion coefficients. As such, it is in general
difficult to solve the full Fokker-Planck equation to yield near
optimal decision rules for the short sampling times required
for standard CSK schemes.

The key idea underlying our approach is that while the
full Fokker-Planck equation may be intractable, the long-
term behavior of the system may be dramatically simpler. In
particular, the Smoluchowski equation often converges to an
equilibrium state as the sampling time ¢ — oo [3].

While the model in this paper accounts for diffusion—albeit
in the presence of external forces—the presence of an equi-
librium state bears a number of similarities with the Fokker-
Planck equation arising from the reaction-diffusion master
equation (RDME) accounting for chemical reactions and a
simplified model of diffusion [6]. Recently, we developed an
analogous signaling scheme for RDME models [7] and we
show that the same detection algorithm can be applied to the
Langevin model considered in this paper.

To illustrate our approach, we consider a system with
a quadratic potential and inhomogeneous diffusion coeffi-



cients, which can, for example, arise due to the presence
of electrostatic steering of molecules [8]. While deriving the
optimal sampling time and the resulting detection rule requires
extensive numerical computations in the case of standard CSK
schemes, the equilibrium distribution admits a very simple
form. We show that even for finite sampling times, it is feasible
to obtain a good approximation for the receiver statistics and
use this to obtain a near optimal decision rule for sufficiently
long symbol periods.

II. SYSTEM MODEL

Let [b,b:], — oo < b < b, < oo be a bounded one-
dimensional domain consisting of transmitting and receiving
devices, with a fluid medium separating the devices. Messages
to be sent by the transmitter are encoded into the quantity of
molecules of a chemical species S, which diffuses within the
domain 2. The receiver domain is denoted by Qpy.

Consider a single information-carrying molecule, which is
colloidal; i.e., larger than the liquid molecules forming the
fluid medium. In this paper, we assume that the motion of each
molecule is independent and governed by the Smoluchowski
equation [3]

dx
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where &(¢) is a standard Wiener process, y(x) > 0 is a friction
constant, o(x) > 0 is the scale parameter of the noise, and F’
is an external force.

We note that the Smoluchowski equation is a special case
of the general Langevin equation
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when friction dominates inertial forces. In particular, the limit
of strong friction is relevant at sufficiently long time scales,
where the molecule loses memory of its initial velocity.

Associated to the Smoluchowski equation in (1) is a Fokker-
Planck equation, given by [3]
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where D(z) = 2'2(%22 is the diffusion coefficient. Observe

that in general, the diffusion coefficient is spatially inhomo-
geneous; i.e., the diffusion coefficient depends on the location
x.

To account for the finite volume of the system, it is
necessary to also introduce boundary conditions. In the case of
reflective boundaries, considered in this paper, the boundary
conditions are given by
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is the flux at location x.

Under certain conditions detailed in the following section,
the Fokker-Planck equation in (3) admits an equilibrium state.
That is, a solution p.,(z) satisfying the boundary conditions
such that the flux vanishes; i.e.,

j(a:,t|x07t0) :0 (6)

Moreover, the form of p, is sufficiently tractable to develop
near optimal detection rules for sufficiently long symbol
periods. In the following section, we develop a new signaling
and detection scheme exploiting this property.

III. SIGNALING AND DETECTION

In this section, we detail our proposed scheme. We focus on
the case of binary signaling with equally likely symbols. That
is, for the transmitter to send a bit 1, it generates A molecules
of species S within the transmitter. For the case of bit 0, the
transmitter generates zero molecules of S. As we will show,
the precise locations where the molecules of S are generated
within the transmitter does not affect receiver design, due to
the fact that the equilibrium solution remains the same.

A. Signaling Scheme

Assume that the system operates using time slots with
duration T, and that no molecules of S are present in the
system at time ¢ = 0. The bit to be transmitted in time slot n
is denoted by s,,. Molecules of S may then diffuse throughout
the system; however, no molecules degrade.

Consider the n-th time slot. Due to the previous n — 1
transmissions, there are Ny (nT) molecules of species S in
the transmitter. At a time n7, 4 § shortly after the beginning
of the n-th time slot, transmitter produces a quantity of S
depending on the bit to be transmitted. In particular,

NTx(nTs) + A
NTX(nTS)

Sp =1,
sp =0,

Nrx(nTs +6) = { @)
for § > 0 a sufficiently small period of time; that is, § is chosen
such that no molecules of S diffuse outside of the transmitter.

The key idea behind the proposed signaling scheme is that
for sufficiently large 7%, the total number of molecules of S
will be approximately drawn from the stationary distribution
of the Fokker-Planck equation. As such, since the equilibrium
statistics are known, near-optimal detection rules can be de-
rived.

B. Equilibrium Statistics

In the presence of reflective boundary conditions, the
Fokker-Planck equation admits an equilibrium solution if
the fluctuation-dissipation condition and the external force is
determined by a scalar potential are satisfied. In particular, a
general form of the fluctuation-dissipation condition! account-
ing for spatially inhomogeneous diffusion is given by [10]

0
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IThe reader is referred to [9] for a detailed discussion of fluctuation-
dissipation conditions.



where 3 = kE%T, where kp is Boltzmann’s constant and 7T is
the temperature of the system.

In this case, the Fokker-Planck equation in (3) can be written
as
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If the external force is determined by a scalar potential
F = —U, and the function U is bounded in [b;,b,], then
the equilibrium solution to the Fokker-Planck equation in (3)
is given by [3, Sec. 5.2]

Poo(z) = Ze PU@), (10)
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where Z = ( fbljr e‘ﬁU(f’:)dx) is the normalizing constant.
Note that scalar potentials are ubiquitous; for example, arising
from electrostatic and gravitational fields. We also highlight
that the equilibrium solution p., in (10) is remarkable in that
it only depends on S and the potential U. That is, given
these parameters, it is straightforward to obtain the asymptotic
statistics of the system. This is true even if the diffusion
coefficient is spatially inhomogeneous.

The equilibrium solution to the Smoluchowski equation
provides information about the statistics for the location of
a single molecule. The probability that the molecule lies in
the receiver at a sufficiently large sampling time 7 can then
be well approximated by

Prx(Ts) z/ pm(:r)dx:/ Ze PU@ qg. (11)
QRx QRx

To derive the statistics for the quantity of molecules in the
receiver at the sampling time 7T, let X; be a Bernoulli random
variable with success probability prx(7s), which indicates
whether or not molecule 7 lies in the receiver. Suppose that N
molecules have been emitted into the system before a sampling
time n7Ts. The total number of molecules in the receiver at the
sampling time is then given by

N
Xiot = »_ Xi.
=1

Since each molecule’s motion is assumed to be independent,
for a sufficiently large NN, it follows from the central limit
theorem that Xy, is then well approximated by a Gaussian
random variable

Xtot ~ N(Npr(nTs)7 Npr(nTs))

12)
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C. Near-Optimal Detection

Under the assumption that the statistics for the number of
molecules in the transmitter at a sampling time nT given N
molecules are present in the system at time (n — 1) + 0 is
given by (13), it is now feasible to derive detection rules. In
particular, we seek to obtain an estimate for the transmitted se-
quence (81, ...,8n11) € {0,1}"F1. Although the observation
process is Markovian, for a sufficiently large time slot T, the
observations Ngy(T5s), ..., Nrx((n+ 1)Ts) at each sampling
time k7T, k = 1,2,... are approximately independent. Let

NRgx denote the vector of observations at the receiver for the
quantity of S and s € {0,1}""! denote a potential vector of
transmitted bits.
Under the Gaussian approximation in (13), the joint likeli-
hood of the observations is given by
2
)

(14)

fNRx‘S(n)
n+1 7
1 ( (ni — pir Zj:l sj)
= exp | —

i=1 /27y Z;Zl s; 200375085

where p, = prx(Ts)A, with A as in (7). Moreover, assuming
the independence of elements of Ngry ; and the validity of
(14), the optimal detection rule is given by

fNRx\s(n)'

A form of the Viterbi algorithm with appropriate branch
weights can be used to efficiently solve the optimiza-
tion problem in (15). The algorithm is detailed in Algo-
rithm 1. For the k-th symbol s, € {0,1}, let p(nk|si) =
log(fng.. (kTy)s, (1)), Where s are the symbols in s up
to time k7. In the k-th symbol interval, it is necessary
to compute P_q10 and Pjy_; 1, which correspond to the
probability of the most probable sequence until the k£ — 1-th
symbol is 0 and 1, respectively.

15)
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Algorithm 1 Detection Algorithm
1: Initialize: £ = 0.
2: while k <n+1
k=k+1.
log Py, o = max; log Py_1,; + p(n
log P 1 = max; log Py—1.; + p(
0 = argmax; log Pr,_1 ; + p(n
Tk, = arg max; log P 1 + p(
End while.
3: 8541 = argmax; Py
j=n+1.
4: while j > 1
j=j—1L
S; = Tj7s;_‘+1.
End while.
5: Return: s*.

We remark that Algorithm 1 has the same form as the near
optimal detection algorithm developed in [7] for equilibrium
signaling in the presence of chemical reactions. The reason for
this is that both systems converge to an equilibrium inducing
receiver observations with known approximately Gaussian
statistics.

I'V. NUMERICAL RESULTS

In this section, we illustrate our signaling scheme in the
presence of spatially inhomogeneous diffusion and a quadratic
external potential. We note that this scenario is challenging
for standard CSK schemes due to the fact that the finite time
behavior of the system must be characterized. In particular, as
the Fokker-Planck equation does not admit tractable solutions
for finite times, detection rules are difficult to obtain.
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We assume that the system lies in the domain
[-4 pm,4 pm], the transmitter is placed at x = —1 um
and the receiver is defined by the domain [1 pm,2 pm]. Let
Dy, > 0. The diffusion coefficient is assumed to be

D(z) = Dye ", (16)

which is spatially inhomogeneous due to the dependence of
the diffusion coefficient on z. We assume that molecules are
influenced by a quadratic external potential leading to a force
F = —kx, k > 0. The drag and scale parameters in (1)
are then determined via the fluctuation-dissipation condition in
(8), which ensures that the system converges to an equilibrium
state.

In order to obtain a solution of the SDE in (1), we utilize
the Euler—-Maruyama method, detailed in [11]. To account for
the reflective boundary conditions, when a molecule passes
the boundary, it is projected into the domain [—4 pm,4 pm]
as detailed in [12]. Unless otherwise stated, parameters are
chosen as Dy = 1071, k=107, 8 = ;5hg=sr, @ = 0.1

Due to the fact that we require a finite sampling time, a key
question is how small the symbol period can be while still
yielding a good approximation of the equilibrium distribution.
Fig. 1 plots the empirical estimate of the distribution for
the number of molecules with different symbol periods. The
distribution is estimated via kernel density estimation with
bandwidth parameter i = 5. Observe that the receiver statistics
rapidly converge to the distribution expected from (13).

In Fig. 2, we plot the average probability of error as defined
in [7, Eq. (36)] for varying quantity of molecules A. Observe
that the probability of error rapidly decays, suggesting that the
detection rule is well adapted to the receiver statistics. We also
see that as the distance between the transmitter and receiver
increases, corresponding to varying x4, the probability of error
increases, which is a consequence of the external force applied
to each molecule. In particular, the external force concentrates
the probability density function for the location of a single
molecule towards the center of the domain.

V. CONCLUSION

To develop molecular communication strategies in complex
environments, it is necessary to have accurate characterizations
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Fig. 2. Average probability of error with different initial position, x4 pm,
of the receiver with a region [z4 pm, x4 + 1 pm] and varying quantity of
molecules A.

of the statistics for the number of molecules within the
receiver. Unfortunately in the presence of spatially inhomo-
geneous diffusion and external forces, such a characterization
is typically intractable. In this paper, we proposed a new ap-
proach exploiting equilibrium solutions to the Fokker-Planck
equation governing the motion of individual molecules. By
doing so, we obtained a near optimal detection rule for suffi-
ciently large symbol periods. As such, this work extends the
notion of equilibrium signaling developed in [7]. Numerical
results validated our approach in the presence of a force
governed by a quadratic potential and spatially inhomogeneous
diffusion.
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