
HAL Id: hal-02910180
https://hal.science/hal-02910180v1

Submitted on 14 Aug 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improved Deep Point Cloud Geometry Compression
Maurice Quach, Giuseppe Valenzise, Frédéric Dufaux

To cite this version:
Maurice Quach, Giuseppe Valenzise, Frédéric Dufaux. Improved Deep Point Cloud Geometry Com-
pression. IEEE International Workshop on Multimedia Signal Processing (MMSP’2020), Sep 2020,
Tampere, Finland. pp.1-6, �10.1109/MMSP48831.2020.9287077�. �hal-02910180�

https://hal.science/hal-02910180v1
https://hal.archives-ouvertes.fr

Improved Deep Point Cloud Geometry Compression

Maurice Quach∗, Giuseppe Valenzise∗, Frederic Dufaux∗
∗Université Paris-Saclay, CNRS, CentraleSupélec, Laboratoire des signaux et systèmes

91190 Gif-sur-Yvette, France

Abstract—Point clouds have been recognized as a crucial
data structure for 3D content and are essential in a number
of applications such as virtual and mixed reality, autonomous
driving, cultural heritage, etc. In this paper, we propose a set
of contributions to improve deep point cloud compression, i.e.:
using a scale hyperprior model for entropy coding; employing
deeper transforms; a different balancing weight in the focal
loss; optimal thresholding for decoding; and sequential model
training. In addition, we present an extensive ablation study
on the impact of each of these factors, in order to provide
a better understanding about why they improve RD perfor-
mance. An optimal combination of the proposed improvements
achieves BD-PSNR gains over G-PCC trisoup and octree of
5.50 (6.48) dB and 6.84 (5.95) dB, respectively, when using
the point-to-point (point-to-plane) metric. Code is available at
https://github.com/mauriceqch/pcc_geo_cnn_v2.

Index Terms—point clouds, compression, neural networks,
geometry, octree

I. INTRODUCTION

Due to recent advances in visual capture technology, point

clouds have been recognized as a crucial data structure for

3D content. In particular, point clouds are essential for nu-

merous applications such as virtual and mixed reality, sensing

for autonomous vehicle navigation, architecture and cultural

heritage, etc. Point clouds are sets of 3D points identified

by their coordinates, which constitute the geometry of the

point cloud. In addition, each point can be associated with

attributes like colors, normals and reflectance. Point clouds

can have a massive number of points, especially in high

precision or large scale captures. This entails a huge storage

and transmission cost. As a result, Point Cloud Compression

(PCC) is fundamental in practice.

The Moving Picture Experts Group (MPEG) is planning to

release two PCC standards [1]: Geometry-based PCC (G-PCC)

and Video-based PCC (V-PCC). G-PCC approaches PCC from

a 3D perspective and compresses point clouds in their native

form using 3D data structures such as octrees. On the other

hand, V-PCC approaches PCC from a 2D perspective, projects

3D data onto a 2D plane and makes use of video compression

technology. In order to evaluate test models, common test

conditions (CTCs) [2] were designed. In this context, the

point-to-point (D1) and the point-to-plane [3] quality metrics

(D2) are used for quantitative evaluation. Recently, deep

point cloud compression (DPCC) methods have been proposed

and shown to provide significant coding gains compared to

traditional methodologies [4], [5].

Funded by ANR ReVeRy national fund (REVERY ANR-17-CE23-0020).

In this paper, we focus on lossy compression of static

point cloud geometry using deep convolutional networks.

Specifically, we propose a set of contributions to improve RD

performance and accelerate model training. We then present an

ablation study identifying key performance factors for DPCC.

In particular, we start from a baseline DPCC model [4] and

we consider the following improvements:

• Entropy modeling: we consider an hyperprior model to

improve entropy coding.

• Deeper transforms that compensate downsampling with

progressively higher numbers of filters.

• Changing the balancing weight in the focal loss: similar

to [4], we cast decoding as an unbalanced classification

problem by optimizing a focal loss [6]. Hence, we study

the RD performance impact of the focal loss α parameter.

• Optimal thresholding for decoding: in order to classify

voxels as occupied or not, we propose an optimal thresh-

olding approach that minimizes a given distortion metric

(instead of a fixed threshold as in [4]).

• Sequential training: in order to reduce the computational

complexity of training a network for each RD tradeoff,

we propose a sequential training procedure. That is, we

train a network corresponding to a given RD point by fine

tuning the network trained from the previous RD point.

This makes training times up to 8 times faster compared

to training independently and improves RD performance.

• Ablation study An extensive ablation study evaluating the

impact of each factor mentioned above on RD perfor-

mance. The evaluated conditions are detailed in Table I.

• Octree partitioning An efficient octree partitioning algo-

rithm that is significantly faster compared to recursive

octree partitioning.

II. RELATED WORK

Our research is related most closely to three research

areas: static point cloud geometry compression, deep image

compression and deep point cloud compression.

Static point cloud geometry compression methods are usu-

ally based on the octree structure [7]. Indeed, octrees provide

an efficient way of partitioning the 3D space and representing

point clouds. In particular, they are especially suitable for

lossless coding in combination with octree entropy models [8].

However, lossy compression using octrees alone has poor

performance as pruning octree levels decreases the number

of points exponentially resulting in significant distortion. To

alleviate this issue, many solutions have been proposed such

as triangle [9] surface models, planar [10] surface models,

978-1-7281-9320-5/20/$31.00 ©2020 European Union

TABLE I

Experimental conditions evaluated in this study. Each

condition is an improvement over the previous one.

Name Model Transforms α Threshold Training
c1 Baseline Shallow 0.90 Fixed Independent
c2 Hyperprior — — — —
c3 — Deep — — —
c4 — — 0.75 — —
c5 — — — Optimal —
c6 — — — — Sequential

graph-based enhancement layers [11] and volumetric functions

[12]. The core idea is that by encoding approximations along a

coarse octree, we can alleviate the shortcomings of the octree

structure. Different from previous work in this area, we study

learned approximation models based on deep neural networks.

Deep image compression considers the use of deep neu-

ral networks for image compression. An end-to-end image

compression solution with joint RD optimization along with a

learned entropy model has been proposed in [13], which also

replaces (non-differentiable) quantization with uniform noise

at training time. As a follow-up of that work, a scale hyperprior

model has been proposed in [14]. The scale hyperprior enables

the modeling of spatial correlations in the latent space; for

each element, it uses a Gaussian distribution whose standard

deviation is predicted by a dedicated network. We design

models for PCC using these learning-based entropy modeling

techniques.

DPCC is a recent research avenue exploring the use of

deep neural networks for PCC. For lossy geometry coding,

voxel-based DPCC methods have been shown to outperform

traditional methods significantly [4], [5], [15]. For lossless

geometry coding, deep neural networks have been used to

improve entropy modeling [16]. Also, DPCC for attributes has

been explored by interpreting point clouds as a 2D discrete

manifold in 3D space [17]. Closely related to our study,

the behavior and performance of DPCC methods has been

investigated in [5]. However, this particular study investigates

the characteristics and RD impact of the latent space. In

contrast, we seek to understand and identify key performance

factors for rate-distortion (RD) performance on a larger scale.

III. PROPOSED IMPROVEMENTS

In this section we present different strategies to improve

DPCC. We consider as baseline the network proposed in our

preliminary work [4] (denoted as c1 in the following). In that

work, we relied on shallow transforms to compress entire point

clouds at once. However, this has a fundamental limitation

in terms of memory usage, as it does not allow to compress

large point clouds as those commonly used in MPEG CTCs.

Therefore, in this work we make use of octree partitioning to

partition point clouds into blocks of size 64× 64× 64 voxels,

which we have found to be a good trade-off between memory

usage and coding performance. In the rest of the paper, we

denote the different considered improvements with c2,. . ., c6,

which are summarized in Table I.

x

fa

Q

fs

x̃

y

ỹ

ACỹ

0101

(a) Baseline model.

x

fa y fha

Q

fhsQ

ỹfs

x̃

z

z̃

ACỹ

0101

σ̃

ACz̃

0101

(b) Hyperprior model.

Fig. 1: Entropy models considered in this work. The f
functions are learned transforms, Q refers to quantization and

AC to arithmetic coding with its associated density model.

A. Entropy modeling (c2)

We consider models that take the voxelized point clouds x
and x̃ as input and output. In particular, we consider a baseline

model (Fig. 1a) and an hyperprior model (Fig. 1b).

The baseline model is based on an autoencoder architecture

with an analysis fa and a synthesis transform fs [13]. y is

modeled using a learned entropy model for each feature map.

The baseline model is expressed as follows

y = fa(x) ỹ = Q(y) x̃ = fs(ỹ). (1)

We consider a scale hyperprior model [14] as a better en-

tropy model for ỹ. Specifically, we model y with a zero-mean

gaussian density model N (0, σ̃2) where standard deviations σ̃2

are predicted from y with σ̃ = fhs(Q(fha(y))). As a result,

the spatial dependencies can be modeled better compared to

the learned entropy model. The hyperprior model is expressed

as follows

y = fa(x) ỹ = Q(y) x̃ = fs(ỹ) (2)

z = fha(y) z̃ = Q(z) σ̃ = fhs(z̃) (3)

where z is modeled with a learned density model for each

feature map.

The compression model is trained using joint RD optimiza-

tion with the loss function R + λD. For each RD tradeoff,

we train a model with the corresponding λ value resulting in

transforms and entropy models specialized for this particular

tradeoff. The entropy R is computed on ỹ, and z̃ for the

hyperprior model, using their associated entropy models. Since

the quantization operation Q is not differentiable, we use

additive uniform noise during training in place of quantization

as originally proposed in [13].

B. Deeper transforms (c3)

We compare shallow and deep transforms for analysis and

synthesis, as illustrated in Fig. 2. Specifically, we focus on

C, N , 9, ↓ 2

C, N , 5, ↓ 2

C, N , 5, ↓ 2

(a) Shallow Analysis

AB, N1 , ↓ 2

AB, N2 , ↓ 2

AB, N3 , ↓ 2

C, N3 , 3

(b) Deep Analysis

C, N , 3

C, N , 3, ↓ 2

C, N , 3

(c) Hyper analysis

CT, N , 5, ↑ 2

CT, N , 5, ↑ 2

CT, N , 9, ↑ 2

(d) Shallow Synthesis

SB, N3 , ↑ 2

SB, N2 , ↑ 2

SB, N1 , ↑ 2

C, 1, 3

(e) Deep Synthesis

CT, N , 3

CT, N , 3, ↑ 2

CT, N , 3

(f) Hyper synthesis

C, N , 3, ↓ 2

C, N , 3

C, N , 3

+

(g) Analysis block (AB)

CT, N , 3, ↑ 2

CT, N , 3

CT, N , 3

+

(h) Synthesis block (SB)

Fig. 2: Transform types. Each layer is specified as follows:

convolution type (C refers to convolution, CT to transposed

convolution), number of filters, filter size and strides.

analysis and synthesis transforms and use shallow hyper-

analysis and hyper-synthesis transforms (Fig. 2c and 2f).

The transforms based on 3D convolutions and 3D transpose

convolutions introduced in [4] are referred to as shallow

transforms (Fig. 2a and 2d). We introduce deeper variants of

shallow transforms (Fig. 2b and 2e), which we refer to as

deep transforms. These transforms are composed of residual

[18] blocks (Fig. 2g and 2h) which use skip-connections to

prevent issues such as exploding or vanishing gradients. The

skip-connections act as “shortcuts” in the network allowing

gradients to backpropagate through shorter paths. We also

make them progressive by increasing the number of filters

progressively as N1/4 = N2/2 = N3. The rationale behind

this choice is that the number of filters should compensate the

downsampling along the spatial dimensions. In that way, the

capacity at a given layer W × H × D × N decreases more

slowly which allows the network to compress information

more easily. In our experiments, we set N3 = 64.

C. Changing the balancing weight in the focal loss (c4)

When considering point clouds as voxel grids, we observe

that most of the space is empty (usually > 95%). This large

class imbalance between occupied voxels and unoccupied

voxels is a barrier to effective training. Indeed, without any

countermeasures, the network would converge towards empty

outputs only. In order to resolve this class imbalance issue,

we adopt the focal loss [6] as our distortion loss.

The focal loss is well suited for point clouds since it ad-

dresses the class imbalance issue with α-balancing. Moreover,

the focal loss differentiates between easy and hard examples

using the γ parameter. Specifically, the higher γ is, the more

hard examples are emphasized. With γ = 0, the focal loss

becomes equivalent to the weighted binary cross-entropy.

For conciseness, we adopt the following notation. If x = 1,

then xt = x, αt = α and x̃t = x̃; otherwise xt = 1 − x,

αt = 1− α and x̃t = 1− x̃. We then define the focal loss as

FL(x, x̃) = αtxt(1− x̃t)
γ log(x̃t). (4)

We study the impact of the focal loss α parameter on RD

performance. The α parameter governs the attention given to

occupied voxels and empty voxels. A high α value makes

marking occupied voxels as empty more costly than marking

empty voxels as occupied and results in denser reconstructions.

Originally, we picked the same α value (0.90) as in [4]. This

was motivated by the fact that point clouds are often comprised

of more than 95% of empty space.

However, we found experimentally that lower α values can

actually provide better coding gains. We hypothesize that this

is due to the fact that the default γ = 2 in the focal loss

emphasizes hard examples (occupied voxels) more than easy

examples (empty voxels). Thus, γ = 2 already alleviates the

class imbalance issue which explains this phenomenon.

D. Optimal thresholding for decoding (c5)

For each block, after decoding y (and z for the hyperprior

model) into x̃, we need to convert x̃ into binary values in order

to obtain the decompressed point cloud. The baseline method

(c1) employs a fixed threshold t = 0.5. In contrast, we perform

this conversion by finding optimal thresholds for each block

of voxels. This threshold is transmitted as side information in

the bitstream with a small overhead in terms of bitrate.

We formulate optimal thresholding as the problem of finding

an optimal threshold t⋆ such that

t⋆ = argmin
t

d(x,H(x̃− t)) (5)

where d is a distortion metric and H(x) is the heaviside step

function (equal to 1 when x ≥ 0 and 0 otherwise).

E. Sequential training (c6)

We train compression models for each RD tradeoff using a

corresponding λ value. This allows for transforms and entropy

models to be specialized for this particular tradeoff resulting in

better RD performance. Unfortunately, using this independent

training scheme, we need to train one model for each tradeoff.

To alleviate this issue, we propose a novel sequential train-

ing scheme that speeds up training significantly and improves

RD performance. The core idea of this scheme is to use

previously trained neural network weights as a starting point

for new neural networks. Essentially, given a set of λ tradeoffs,

we first train λ1. Then, for each subsequent model, we train

λi using the trained weights of λi−1.

TABLE II

RD performance for each experimental condition. We specify BD-PSNR values (dB) compared to G-PCC trisoup and octree

in each cell (trisoup BD-PSNR / octree BD-PSNR). The greatest values for trisoup and octree are indicated in bold and the

second greatest in italic. c6 consistently outperforms all other conditions.

Experimental conditions
Point cloud Metric c6 c5 c4 c3 c2 c1

loot
D1 5.91 / 7.00 5 .84 / 6 .89 4.05 / 5.06 2.03 / 3.67 −0.27 / 2.26 −0.72 / 1.88
D2 6 .85 / 6.12 6.90 / 6 .11 4.10 / 3.33 1.44 / 1.23 −1.81 / −0.81 −2.60 / −1.40

redandblack
D1 5.02 / 6.50 4 .81 / 6 .30 3.28 / 4.71 1.43 / 3.45 −0.19 / 2.58 −0.59 / 2.01
D2 5.93 / 5.65 5 .74 / 5 .46 2.91 / 2.62 0.55 / 0.79 −1.73 / −0.46 −2.42 / −1.18

longdress
D1 5.54 / 6.94 5 .41 / 6 .79 3.75 / 5.10 1.81 / 3.82 −0.26 / 2.64 −0.79 / 2.10
D2 6.59 / 6.01 6 .52 / 5 .91 3.90 / 3.30 1.41 / 1.36 −1.37 / −0.34 −2.20 / −1.09

soldier
D1 5.55 / 6.91 5 .49 / 6 .88 3.76 / 5.11 1.88 / 3.88 −0.28 / 2.60 −0.77 / 2.13
D2 6.54 / 6.02 6 .52 / 6.02 3.86 / 3 .36 1.39 / 1.45 −1.54 / −0.40 −2.31 / −1.06

Average
D1 5.50 / 6.84 5 .39 / 6 .71 3.71 / 5.00 1.79 / 3.71 −0.25 / 2.52 −0.72 / 2.03
D2 6.48 / 5.95 6 .42 / 5 .87 3.69 / 3.15 1.20 / 1.21 −1.61 / −0.50 −2.38 / −1.18

TABLE III

Impact of the focal loss α parameter on RD performance.

We specify BD-PSNR values (dB) compared to G-PCC

trisoup for different α values. The greatest values are

indicated in bold and the second greatest in italic. α = 0.75
outperforms all other α values.

α

Point cloud Metric 0.90 0.75 0.50 0.25

loot
D1 2.03 4 .05 4.41 1.24
D2 1.44 4.10 6.47 4 .19

redandblack
D1 1.43 3.28 2 .24 −3.70
D2 0.55 2 .91 5.19 1.63

longdress
D1 1.81 3.75 3 .66 −0.11
D2 1.41 3 .90 6.28 3.88

soldier
D1 1.88 3 .76 4.48 1.68
D2 1.39 3.86 6.32 4 .45

Average
D1 1.79 3.71 3 .70 −0.22
D2 1.20 3 .69 6.07 3.54

In this training scheme, we proceed to train the different

tradeoffs in descending order. That is, we first train a low

distortion, high bitrate model. Then, for each subsequent

model, we progressively lower the bitrate while trying to

minimize the increase in distortion.

IV. EXPERIMENTS

In this paper, we evaluate the six different improvement

strategies described in Section III and summarized in Table I.

The BD-PSNR gains are reported in Table II.

A. Experimental setup

We perform our experiments on four point

clouds specified in the MPEG CTCs [2], [19].

Namely, “longdress_vox10_1300”, “loot_vox10_1200”,

“redandblack_vox10_1490”, “soldier_vox10_0690” which we

refer to as “longdress”, “loot”, “redandblack” and “soldier”.

We train our models on a subset of the ModelNet40 dataset.

First, we sample the dataset into voxelized point clouds with

resolution 512 and select the 200 largest point clouds. Then,

we divide these point clouds into blocks with resolution 64 and

select the 4000 largest blocks. This produces a small dataset

containing rich point clouds, accelerates dataset loading time

and reduces memory footprint when training. We perform

training with λ values ranging from 5× 10−6 to 3× 10−4.

We evaluate the different conditions using G-PCC trisoup

and octree as baselines. Specifically, we use G-PCC v10.0

(released in May 2020) with the included configurations,

“mpeg-pcc-dmetric” v0.12.3 for D1 and D2 metrics, Python

3.6.9 and TensorFlow 1.15.0 with the Adam optimizer [20].

B. Experimental results

In Fig. 3 and Table II, we observe that each condition is a

net improvement over previous ones. c6 outperforms G-PCC

trisoup with an average BD-PSNR of 5.50 dB on D1 and 6.48
dB on D2 and outperforms G-PCC octree with an average

BD-PSNR of 6.84 dB on D1 and 5.95 dB on D2. Note that

the lowest bitrate point for c6 is not included in BD-PSNR

computations in order to keep integration intervals consistent

and keep BD-PSNRs comparable across different conditions.

We also observe that c5 (optimal thresholding) is especially

beneficial for the point-to-plane metric (D2) with an improve-

ment of 1.68 dB for D1 and 2.73 dB for D2 compared to c4.

Indeed, optimal thresholding provides optimal sets of thresh-

olds for D1 and D2 yielding two separate reconstructions.

In Fig. 4, we provide qualitative results on “sol-

dier_vox10_0690”. We observe that shapes and local point

densities are reproduced more accurately compared to G-PCC

trisoup. Overall, our method results in lower distortions at

similar bitrates.

C. Ablation study

In this subsection, we present BD-PSNR values when

compared to G-PCC trisoup. The hyperprior model (c2) results

in an improvement of 0.47 dB for D1 and 0.77 dB for D2

compared to c1. Adding deep transforms (c3) further improves

D1 by 2.04 dB and D2 by 2.81 dB compared to c2.

In Table III, we observe that setting α = 0.75 for D1

and α = 0.50 for D2 increases RD performance significantly

for all point clouds. The average BD-PSNR for α = 0.75 is

3.71 dB for D1 and 3.69 dB for D2. Also, the average BD-

PSNR for α = 0.50 is 3.70 dB for D1 and 6.07 dB for D2.

Indeed, higher α values lead to denser reconstructions which

are favored by D1 and lower α values to sparser ones which

c6 c5 c4 c3 c2 c1 G-PCC trisoup G-PCC octree

0.0 0.2 0.4 0.6 0.8 1.0
bits per input point

60

65

70

75

D
1
P
S
N
R

(d
B
)

0.0 0.2 0.4 0.6 0.8 1.0
bits per input point

65

70

75

80

D
2
P
S
N
R

(d
B
)

(a) “loot_vox10_1200”

0.0 0.2 0.4 0.6 0.8 1.0
bits per input point

60

65

70

75

D
1
P
S
N
R

(d
B
)

0.0 0.2 0.4 0.6 0.8 1.0
bits per input point

65

70

75

80

D
2
P
S
N
R

(d
B
)

(b) “redandblack_vox10_1490”

0.0 0.2 0.4 0.6 0.8 1.0
bits per input point

60

65

70

75

D
1
P
S
N
R

(d
B
)

0.0 0.2 0.4 0.6 0.8 1.0
bits per input point

65

70

75

80

D
2
P
S
N
R

(d
B
)

(c) “longdress_vox10_1300”

0.0 0.2 0.4 0.6 0.8 1.0
bits per input point

60

65

70

75

D
1
P
S
N
R

(d
B
)

0.0 0.2 0.4 0.6 0.8 1.0
bits per input point

65

70

75

80

D
2
P
S
N
R

(d
B
)

(d) “soldier_vox10_0690”

Fig. 3: RD curves for each condition in Table II. c6 consistently outperforms G-PCC trisoup and G-PCC octree.

(a) Original (b) c6 (D1 69.59 dB, 0.194 bpp) (c) G-PCC Trisoup (D1 65.87 dB, 0.188 bpp)

0.0

0.5

1.0

1.5

2.0

2.5

3.0+

Fig. 4: Qualitative evaluation on “soldier_vox10_0690”. For c6 and G-PCC Trisoup, we show the decompressed point cloud

and its D1 squared errors. The errors are displayed according to the color scale on the right and are truncated to the 99th

percentile (3.0). In parentheses, we specify the D1 PSNR along with the number of bits per input point (bpp).

0 10000 20000 30000

Training steps

1

2

3

4

5

6

b
it
s
p
er

p
o
in
t

3.00e-04

1.00e-04

5.00e-05

2.00e-05

0 10000 20000 30000

Training steps

20000

40000

60000

80000

100000

F
o
ca
l
lo
ss

3.00e-04

1.00e-04

5.00e-05

2.00e-05

(a) Independent training.

0 10000 20000 30000

Training steps

1

2

3

4

5

6

b
it
s
p
er

p
o
in
t

3.00e-04

1.00e-04

5.00e-05

2.00e-05

0 10000 20000 30000

Training steps

20000

40000

60000

80000

100000

F
o
ca
l
lo
ss

3.00e-04

1.00e-04

5.00e-05

2.00e-05

(b) Sequential training.

Fig. 5: Bits per point and focal loss when training indepen-

dently and sequentially. Sequential training is more efficient as

it reuses previously trained models to train subsequent ones.

are favored by D2. We select α = 0.75 (c4) as we have found

experimentally that it performs better when associated with

optimal thresholding. Compared to α = 0.90 (c3), α = 0.75
brings an improvement of 1.92 dB for D1 and 2.49 dB for D2

.

Then, we use optimal thresholding (c5) with the point-

to-point (D1) and point-to-plane (D2) objective metrics. As

a result, we obtain two point clouds respectively optimized

with D1 and D2. Also, we encode thresholds on 8 bits with

256 uniformly distributed threshold values between 0 and 1.

Optimal thresholding (c5) results in an improvement of 1.68
dB for D1 and 2.73 dB for D2 compared to c4.

Training DPCC models is time consuming as shown in

Fig. 5. Indeed, the c5 condition requires 4 hours of training

resulting in a total of 16 hours for four models on an Nvidia

GeForce GTX 1080 Ti. With sequential training (c6), these

models train in 30 to 60 minutes instead of 4 hours which is

up to 8 times faster. In addition, this results in an improvement

of 0.11 dB for D1 and 0.06 dB for D2 compared to c5.

V. CONCLUSION

We propose a set of key performance factors for DPCC

and we present an extensive ablation study on the individual

impact of these factors. More precisely, we provide insights

on the individual impact of scale hyperprior models, deep

transforms, the focal loss α value, optimal thresholding and

sequential training. We analyze each of these factors in order

to provide a better understanding about why they improve RD

performance. The final model (c6) outperforms G-PCC trisoup

with an average BD-PSNR of 5.50 dB on D1 and 6.48 dB on

D2 and outperforms G-PCC octree with an average BD-PSNR

of 6.84 dB on D1 and 5.95 dB on D2.

REFERENCES

[1] S. Schwarz, M. Preda, V. Baroncini, M. Budagavi, P. Cesar, P. A. Chou,
R. A. Cohen, M. Krivokuca, S. Lasserre, Z. Li, J. Llach, K. Mammou,
R. Mekuria, O. Nakagami, E. Siahaan, A. Tabatabai, A. M. Tourapis,
and V. Zakharchenko, “Emerging MPEG Standards for Point Cloud
Compression,” IEEE Journal on Emerging and Selected Topics in

Circuits and Systems, pp. 1–1, 2018.
[2] “Common test conditions for point cloud compression,” in ISO/IEC

JTC1/SC29/WG11 MPEG output document N19084, Feb. 2020.
[3] D. Tian, H. Ochimizu, C. Feng, R. Cohen, and A. Vetro, “Geometric

distortion metrics for point cloud compression,” in 2017 IEEE Interna-

tional Conference on Image Processing (ICIP). Beijing: IEEE, Sep.
2017, pp. 3460–3464.

[4] M. Quach, G. Valenzise, and F. Dufaux, “Learning Convolutional
Transforms for Lossy Point Cloud Geometry Compression,” in 2019

IEEE International Conference on Image Processing (ICIP), Sep. 2019,
pp. 4320–4324, iSSN: 1522-4880.

[5] A. F. R. Guarda, N. M. M. Rodrigues, and F. Pereira, “Deep Learning-
Based Point Cloud Coding: A Behavior and Performance Study,” in 2019

8th European Workshop on Visual Information Processing (EUVIP), Oct.
2019, pp. 34–39, iSSN: 2164-974X.

[6] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal Loss for
Dense Object Detection,” in 2017 IEEE International Conference on

Computer Vision (ICCV), Oct. 2017, pp. 2999–3007, iSSN: 2380-7504.
[7] R. Schnabel and R. Klein, “Octree-based Point-cloud Compression,”

in Proceedings of the 3rd Eurographics / IEEE VGTC Conference

on Point-Based Graphics, ser. SPBG’06, 2006, pp. 111–121. [Online].
Available: http://dx.doi.org/10.2312/SPBG/SPBG06/111-120

[8] D. C. Garcia and R. L. d. Queiroz, “Intra-Frame Context-Based Octree
Coding for Point-Cloud Geometry,” in 2018 25th IEEE International

Conference on Image Processing (ICIP), Oct. 2018, pp. 1807–1811.
[9] A. Dricot and J. Ascenso, “Adaptive Multi-level Triangle Soup for

Geometry-based Point Cloud Coding,” in 2019 IEEE 21st International

Workshop on Multimedia Signal Processing (MMSP), Sep. 2019, pp.
1–6, iSSN: 2163-3517.

[10] ——, “Hybrid Octree-Plane Point Cloud Geometry Coding,” in 2019

27th European Signal Processing Conference (EUSIPCO), Sep. 2019,
pp. 1–5, iSSN: 2219-5491.

[11] P. de Oliveira Rente, C. Brites, J. Ascenso, and F. Pereira, “Graph-
Based Static 3D Point Clouds Geometry Coding,” IEEE Transactions

on Multimedia, vol. 21, no. 2, pp. 284–299, Feb. 2019.
[12] M. Krivokuća, M. Koroteev, and P. A. Chou, “A Volumetric Approach

to Point Cloud Compression,” arXiv:1810.00484 [eess], Sep. 2018,
arXiv: 1810.00484. [Online]. Available: http://arxiv.org/abs/1810.00484

[13] J. Ballé, V. Laparra, and E. P. Simoncelli, “End-to-end Optimized
Image Compression,” in 2017 5th International Conference on Learning

Representations (ICLR), 2017.
[14] J. Ballé, D. Minnen, S. Singh, S. J. Hwang, and N. Johnston, “Variational

image compression with a scale hyperprior,” in 2018 6th International

Conference on Learning Representations (ICLR), Jan. 2018.
[15] J. Wang, H. Zhu, Z. Ma, T. Chen, H. Liu, and Q. Shen, “Learned Point

Cloud Geometry Compression,” arXiv:1909.12037 [cs, eess], Sep. 2019,
arXiv: 1909.12037. [Online]. Available: http://arxiv.org/abs/1909.12037

[16] L. Huang, S. Wang, K. Wong, J. Liu, and R. Urtasun, “OctSqueeze:
Octree-Structured Entropy Model for LiDAR Compression,”
arXiv:2005.07178 [cs, eess], May 2020, arXiv: 2005.07178. [Online].
Available: http://arxiv.org/abs/2005.07178

[17] M. Quach, G. Valenzise, and F. Dufaux, “Folding-based compression
of point cloud attributes,” in 2020 IEEE International Conference

on Image Processing (ICIP), to be published. [Online]. Available:
http://arxiv.org/abs/2002.04439

[18] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for
Image Recognition,” in 2016 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), Jun. 2016, pp. 770–778, iSSN: 1063-6919.
[19] E. d’Eon, B. Harrison, T. Myers, and P. A. Chou, “8i Vox-

elized Full Bodies - A Voxelized Point Cloud Dataset,” in
ISO/IEC JTC1/SC29 Joint WG11/WG1 (MPEG/JPEG) input document

WG11M40059/WG1M74006, Geneva, Jan. 2017.
[20] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic

Optimization,” in 2015 3rd International Conference on Learning

Representations, Dec. 2014, arXiv: 1412.6980. [Online]. Available:
http://arxiv.org/abs/1412.6980

