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ABSTRACT

Aims. We aim to determine whether Jupiter’s obliquity is bound to remain exceptionally small in the Solar System, or if it could grow
in the future and reach values comparable to those of the other giant planets.
Methods. The spin-axis of Jupiter is subject to the gravitational torques from its regular satellites and from the Sun. These torques
evolve over time due to the long-term variations of its orbit and to the migration of its satellites. With numerical simulations, we explore
the future evolution of Jupiter’s spin axis for different values of its moment of inertia and for different migration rates of its satellites.
Analytical formulas show the location and properties of all relevant resonances.
Results. Because of the migration of the Galilean satellites, Jupiter’s obliquity is currently increasing, as it adiabatically follows the
drift of a secular spin-orbit resonance with the nodal precession mode of Uranus. Using the current estimates of the migration rate of
the satellites, the obliquity of Jupiter can reach values ranging from 6◦ to 37◦ after 5 Gyr from now, according to the precise value of its
polar moment of inertia. A faster migration for the satellites would produce a larger increase in obliquity, as long as the drift remains
adiabatic.
Conclusions. Despite its peculiarly small current value, the obliquity of Jupiter is no different from other obliquities in the Solar
System: It is equally sensitive to secular spin-orbit resonances and it will probably reach comparable values in the future.

Key words. planets and satellites: dynamical evolution and stability – planets and satellites: fundamental parameters

1. Introduction

The obliquity of a planet is the angle between its spin axis and the
normal to its orbit. A non-zero obliquity results in seasonal cli-
mate changes along the planet’s orbit, as occurs on Earth. In the
protoplanetary disc, giant planets are expected to form with near-
zero obliquities, while terrestrial planets should exhibit more
random values (see e.g. Ward & Hamilton 2004; Rogoszinski
& Hamilton 2020a). Yet, the planets of the Solar System all
feature a large variety of obliquities. The case of Mercury is
special because the strong tidal dissipation due to the proximity
of the Sun now tightly maintains Mercury’s obliquity to a near-
zero value (see e.g. Correia & Laskar 2010). Excluding Mercury,
Jupiter is by far the planet of the Solar System that has the small-
est obliquity (see Table 1). This small value seems to put Jupiter
in a different category, and it appears unclear why Jupiter should
be the only giant planet to indefinitely preserve its primordial
obliquity.

Large obliquity changes can be produced by strong impacts.
An impact with a planetary-sized body is thought to have cre-
ated the Moon and affected the spin axis of the Earth, which
has remained unchanged ever since (Canup & Asphaug 2001;
Li & Batygin 2014b). Large-scale collisions have also proba-
bly participated in increasing the obliquity of Uranus (Boué &
Laskar 2010; Morbidelli et al. 2012; Rogoszinski & Hamilton
2020a).

Apart from collisions, a well-known mechanism that can
modify the obliquity of a planet is a so-called “secular spin-orbit
resonance”, that is, a near commensurability between the fre-
quency of precession of the spin axis and the frequency of one
(or several) harmonics appearing in the precession of the orbit.

This mechanism happens to be extremely common in planetary
systems. The overlap of such resonances produces a large chaotic
region for the spin axis of the terrestrial planets of the Solar Sys-
tem (see Laskar & Robutel 1993). This chaos probably had a
strong influence on the early obliquity of Venus, which was then
driven to its current value by the solar tides combined with its
thick atmosphere (Correia & Laskar 2001, 2003; Correia et al.
2003). The Moon currently protects the Earth from large chaotic
variations in its obliquity (Laskar et al. 1993; Li & Batygin
2014a), but due to tidal dissipation within the Earth-Moon sys-
tem, the Earth will eventually reach the chaotic region in a few
gigayears from now (see Néron de Surgy & Laskar 1997). This
chaotic zone also strongly affects the obliquity of Mars, which
still currently wanders between 0◦ and more than 60◦ (Laskar
et al. 2004a; Brasser & Walsh 2011). As shown by Millholland &
Batygin (2019), secular spin-orbit resonances can also take place
very early in the history of a planet, that is, within the protoplane-
tary disc itself. More generally, secular spin-orbit resonances are
thought to strongly affect the obliquity of exoplanets (see e.g.
Atobe et al. 2004; Brasser et al. 2014; Deitrick et al. 2018b,a;
Shan & Li 2018; Millholland & Laughlin 2018, 2019; Quarles
et al. 2019; Saillenfest et al. 2019; Kreyche et al. 2020).

For the giant planets of the Solar System, the secular spin-
orbit resonances are relatively thin today and well separated from
each other. This is why it is so difficult to explain the large obliq-
uity of Uranus by a spin-orbit coupling, now that the precession
of Uranus’ spin axis is far from any first-order resonances (see
e.g. Boué & Laskar 2010, Rogoszinski & Hamilton 2020a,b).
Jupiter and Saturn, on the contrary, are located very close to
strong resonances: Jupiter is close to resonance with the nodal
precession mode of Uranus (Ward & Canup 2006), and Saturn is
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Table 1. Current obliquities of the planets of the Solar System.

Obliquity Obliquity

Mercury 0.03◦ Jupiter 3.12◦
Venus 177.36◦ Saturn 26.73◦
Earth 23.45◦ Uranus 97.86◦
Mars 25.19◦ Neptune 29.56◦

Notes. Mercury’s obliquity is taken from Konopliv et al. (2020).
Other values are taken from Murray & Dermott (1999) who cite the
compilation made by Yoder (1995).

close to resonance with the nodal precession mode of Neptune
(Ward & Hamilton 2004; Hamilton & Ward 2004; Boué et al.
2009). Therefore, the dynamics of Jupiter’s spin axis seems to be
equally affected by secular spin-orbit resonances as other plan-
ets in the Solar System. This was confirmed by Brasser & Lee
(2015) and Vokrouhlický & Nesvorný (2015), who show that
models of the late planetary migration have to be finely tuned
to avoid overexciting Jupiter’s obliquity by spin-orbit coupling,
while tilting Saturn to its current orientation. In this regard, the
spin-axis dynamics of Jupiter does not appear to be special at all,
in contrast to its small obliquity value.

In this article, we aim to investigate the future long-term
spin-axis dynamics of Jupiter. In particular, we want to deter-
mine whether Jupiter’s obliquity is bound to remain exception-
ally small in the Solar System, or if it could grow in the future
and reach values comparable to those of the other planets.

The precession motion of a planet’s spin axis depends on
the physical properties of the planet (mass repartition and spin
velocity), but also on external torques applied to its equato-
rial bulge. These torques come from the combined gravitational
attraction of the Sun and of satellites (if it has any). Since the
orbit of Jupiter is stable over billions of years (Laskar 1990),
the direct torque from the Sun will not noticeably change in the
future. However, Jupiter’s satellites are known to migrate over
time because of tidal dissipation. The future long-term orbital
evolution of the Galilean satellites has been recently explored
by Lari et al. (2020). The solutions that they describe can there-
fore be used as a guide to study the future spin-axis dynamics
of Jupiter. Due to their much smaller masses, the other satel-
lites of Jupiter do not contribute noticeably to its spin-axis
dynamics.

In Sect. 2, we describe our dynamical model and discuss
the range of acceptable values for the physical parameters of
Jupiter, in particular its polar moment of inertia. In Sect. 3,
we present our results about the future spin-axis dynamics of
Jupiter: We explore the outcomes given by different values of
the poorly known physical parameters of Jupiter and by different
migration rates for its satellites. Our conclusions are summarised
in Sect. 4.

2. Secular dynamics of the spin axis

2.1. Equations of motion

The spin-axis dynamics of an oblate planet subject to the lowest-
order term of the torque from the Sun is given for instance by
Laskar & Robutel (1993) or Néron de Surgy & Laskar (1997).
Far from spin-orbit resonances, and due to the weakness of the
torque, the long-term evolution of the spin-axis is accurately
described by the secular Hamiltonian function (i.e. averaged over
rotational and orbital motions). This Hamiltonian can be written

H(X,−ψ, t) = − α
2

X2(
1 − e(t)2)3/2

−
√

1 − X2(A(t) sinψ + B(t) cosψ
)

+ 2XC(t),

(1)

where the conjugate coordinates are X (cosine of obliquity) and
−ψ (minus the precession angle). The Hamiltonian in Eq. (1)
depends explicitly on time t through the orbital eccentricity e
and through the functions
A(t) =

2
(
q̇ + pC(t)

)√
1 − p2 − q2

,

B(t) =
2
(
ṗ − qC(t)

)√
1 − p2 − q2

,

and C(t) = qṗ − pq̇ . (2)

In these expressions, q = η cos Ω and p = η sin Ω, where η ≡
sin(I/2), and I and Ω are the orbital inclination and the longitude
of ascending node of the planet, respectively. If the orbit of the
planet is fixed in time, its obliquity is constant and its precession
angle ψ circulates with constant angular velocity αX/(1 − e2)3/2.
The quantity α is called the precession constant. It depends on
the spin rate of the planet and of its mass distribution, through
the formula:

α =
3
2
Gm�
ωa3

J2

λ
, (3)

where G is the gravitational constant, m� is the mass of the Sun,
ω is the spin rate of the planet, a is its semi-major axis, J2 is
its second zonal gravity coefficient, and λ is its normalised polar
moment of inertia. We retrieve the expression given for instance
by Néron de Surgy & Laskar (1997) by noting that

J2 =
2C − A − B

2MR2
eq

and λ =
C

MR2
eq
, (4)

where A, B, and C are the equatorial and polar moments of
inertia of the planet, M is its mass, and Req is its equatorial
radius.

The precession rate of the planet is increased if it pos-
sesses massive satellites. If the satellites are far away from the
planet, their equilibrium orbital plane (called Laplace plane, see
Tremaine et al. 2009) is close to the orbital plane of the planet;
therefore, far-away satellites increase the torque exerted by the
Sun on the equatorial bulge of the planet. If the satellites are
close to the planet, on the contrary, their equilibrium orbital
plane coincides with the equator of the planet and precesses
with it as a whole (Goldreich 1965); therefore, close-in satel-
lites artificially increase the oblateness and the rotational angular
momentum of the planet. In the close-in satellite regime, an
expression for the effective precession constant has been derived
by Ward (1975). As detailed by French et al. (1993), it consists in
replacing J2 and λ in Eq. (3) by the effective values:

J′2 = J2 +
1
2

∑
k

mk

M
a2

k

R2
eq

and λ′ = λ +
∑

k

mk

M
a2

k

R2
eq

nk

ω
, (5)

where mk, ak, and nk are the mass, the semi-major axis, and
the mean motion of the kth satellite. In these expressions, the
eccentricities and inclinations of the satellites are neglected. This
approximation has been widely used in the literature. In the case
of a single satellite, Boué & Laskar (2006) have obtained a
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general expression for the precession rate of a planet with an
eccentric and inclined satellite, encompassing both the close-
in and far-away regimes. Using their article, we can verify that
the Galilean satellites are in the close-in regime. The Laplace
plane of Callisto is inclined today by less than 1◦ with respect to
Jupiter’s equator. The small eccentricities and inclinations of the
Galilean satellites would contribute to J′2 and λ′ with terms of
order e2

k and η2
k , so even if ek increases up to 0.1 (a value found

by Lari et al. 2020 in some cases) or if Ik increases up to 10◦,
the additional contribution to J′2 and λ′ would only be of order
10−4 and 10−6, respectively. As we see below, this contribution
is much smaller than our uncertainty on the value of λ, allowing
us to stick to the approximation given by Eq. (5).

2.2. Orbital solution

The Hamiltonian given in Eq. (1) depends on the orbit of
the planet and on its temporal variations. In order to explore
the long-term dynamics of Jupiter’s spin axis, we need an
orbital solution that is valid over billions of years. This is
well beyond the timespan covered by ephemerides. Luckily,
the orbital dynamics of the giant planets of the Solar System
are almost integrable and excellent solutions have been devel-
oped. We use the secular solution of Laskar (1990) expanded in
quasi-periodic series:

z = e exp(i$) =
∑

k

Ek exp(iθk),

ζ = η exp(iΩ) =
∑

k

S k exp(iφk),
(6)

where $ is Jupiter’s longitude of perihelion. The amplitudes Ek
and S k are real constants, and the angles θk and φk evolve linearly
over time t, with frequencies µk and νk:

θk(t) = µk t + θ(0)
k and φk(t) = νk t + φ(0)

k . (7)

The complete orbital solution of Laskar (1990) can be found in
Appendix A for amplitudes down to 10−8.

The series in Eq. (6) contain contributions from all the plan-
ets of the Solar System. In the integrable approximation, the
frequency of each term corresponds to a unique combination of
the fundamental frequencies of the system, usually noted g j and
s j. In the limit of small masses, small eccentricities and small
inclinations (Lagrange-Laplace secular system), the z series only
contains the frequencies g j, while the ζ series only contains
the frequencies s j (see e.g. Murray & Dermott 1999 or Laskar
et al. 2012). This is not the case in more realistic situations, as
recalled for instance by Kreyche et al. (2020) in the context of
obliquity dynamics. In planetary systems featuring mean-motion
resonances, the spin-axis of a planet can be affected by shifted
orbital precession frequencies (Millholland & Laughlin 2019)
or by secondary resonances (Quillen et al. 2017, 2018). How-
ever, this does not apply in the Solar System as it is today,
even when the existing near commensurabilities (like the “great
Jupiter–Saturn inequality”) are taken into account. Table 2 shows
the combinations of fundamental frequencies identified for the
largest terms of Jupiter’s ζ series obtained by Laskar (1990).

As explained by Saillenfest et al. (2019), at first order in the
amplitudes S k and Ek, secular spin-orbit resonant angles can
only be of the form σp = ψ + φp, where p is a given index in
the ζ series. Resonances featuring terms of the z series only
appear at third order and beyond. For the terrestrial planets of
the Solar System, the z and ζ series converge very slowly, which

Table 2. First twenty terms of Jupiter’s inclination and longitude of
ascending node in the J2000 equator and equinox reference frame.

k Identification (∗) νk (′′ yr−1) S k × 108 φ(0)
k (o)

1 s5 0.00000 1 377 467 107.59
2 s6 −26.33023 315 119 307.29
3 s8 −0.69189 58 088 23.96
4 s7 −3.00557 48 134 140.33
5 g5 − g6 + s7 −26.97744 2308 222.98
6 −g5 + g6 + s6 −2.35835 1611 44.74
7 2g6 − s6 82.77163 1372 308.95
8 g5 − g7 + s7 −1.84625 1130 36.64
9 s1 −5.61755 1075 168.70

10 −g5 + g7 + s7 −4.16482 946 51.54
11 g5 + g6 − s6 58.80017 804 32.90
12 g5 − g6 + s6 −50.30212 691 29.84
13 2g5 − s6 34.82788 636 114.12
14 g7 − g8 + s7 −0.58033 565 17.32
15 s2 −7.07963 454 273.79
16 −g5 + g7 + s6 −27.48935 407 38.53
17 g5 − g7 + s6 −25.17116 385 35.94
18 s1 + γ −5.50098 383 162.89
19 −g7 + g8 + s8 −3.11725 321 326.97
20 s2 + 2γ −6.84091 267 106.20

Notes. Due to the secular resonance (g1 − g5) − (s1 − s2), an additional
fundamental frequency γ appears in terms 18 and 20 (see Laskar 1990).
(∗)There is a typographical error in Laskar (1990) in the identification of
the 8th term.

implies that large resonances are very numerous. These reso-
nances overlap massively and produce wide chaotic zones in the
obliquity dynamics (see Laskar & Robutel 1993; Néron de Surgy
& Laskar 1997; Correia et al. 2003; Laskar et al. 2004a). The
situation is very different for the giant planets of the Solar Sys-
tem, for which the z and ζ series converge quickly owing to the
quasi-integrable nature of their dynamics. Therefore, the secular
spin-orbit resonances are small and isolated from each other, and
only first-order resonances play a substantial role.

Figure 1 shows the location and width of every first-order
resonance for the spin-axis of Jupiter in an interval of precession
constant α ranging from 0 to 5′′ yr−1. Because of the chaotic
dynamics of the Solar System (Laskar 1989), the fundamental
frequencies related to the terrestrial planets (e.g. s1, s2, and γ
appearing in Table 2) could vary substantially over billions of
years (Laskar 1990). However, they only marginally contribute to
Jupiter’s orbital solution and none of them takes part in the res-
onances shown in Fig. 1. Our secular orbital solution of Jupiter
can therefore be considered valid over a billion-year timescale.

2.3. Precession constant

As shown by the Hamiltonian function in Eq. (1), the preces-
sion constant α is a key parameter of the spin-axis dynamics of a
planet. Among the physical parameters of Jupiter that enter into
its expression (see Eq. (3)), all are very well constrained from
observations except the normalised polar moment of inertia λ.

While comparing the values of λ given in the literature,
one must be careful about the normalisation used. Equation (4)
explicitly requires a normalisation using the equatorial radius
Req, since it is linked to the value of J2. However, published val-
ues of the polar moment of inertia are often normalised using
the mean radius of Jupiter, which differs from Req by a factor
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Fig. 1. Location and width of every first-order secular spin-orbit reso-
nance for Jupiter. Each resonant angle is of the form σp = ψ+ φp where
φp has frequency νp labelled on the graph according to its index in the
orbital series (see Table 2 and Appendix A). For a given value of the
precession constant α, the interval of obliquity enclosed by the separa-
trix is shown in pink, as computed using the exact formulas given by
Saillenfest et al. (2019). The green bar on the left shows Jupiter’s cur-
rent obliquity and the range for its precession constant considered in this
article, as detailed in Sects. 2.3 and 2.4.

of about 0.978. This distinction seems to have been missed by
Ward & Canup (2006), who quote the nominal value given by
D. R. Williams in the NASA Jupiter fact sheet1 as 0.254, whereas
it actually translates into λ = 0.243 when it is normalised using
Req. Ward & Canup (2006) also mention that “theoretical values
[of λ] range from 0.255 for the extreme of a constant-density core
and massless envelope to 0.221 for a constant-density envelope
and point-mass core”. Unfortunately, these numbers are taken
from a conference talk given by W. B. Hubbard in 2005 so we
cannot check how they have been obtained. Since Eq. (3) is used,
however, we can assume that they have been properly normalised
using Req.

As is shown in Fig. 1, the spin-axis of Jupiter is located very
close to a strong secular spin-orbit resonance. The correspond-
ing term of the orbital series is related to the precession mode
of Uranus (term k = 4 in Table 2), and the resonant angle is
σ4 = ψ + φ4. As noted by Ward & Canup (2006), dissipative
processes during the early planetary evolution are expected to
have forced Jupiter’s spin axis to spiral down towards the centre
of the resonance, called Cassini state 2. And indeed, the current
value of σ4 is very close to zero, which has a low probability to
happen if Jupiter is far from Cassini state 2 because σ4 would
then circulate between 0◦ and 360◦. In order to match Cassini
state 2, however, Jupiter’s normalised moment of inertia should
be λ ≈ 0.2365 (see Fig. 2). Since this value is not far from what
is proposed in the literature, this prompted Ward & Canup (2006)
to consider this value as likely for Jupiter.

As noted by Le Maistre et al. (2016), the value of λ ≈ 0.2365
corresponds to a massive core for Jupiter, and estimates obtained
from models of Jupiter’s interior structure are generally higher.
Helled et al. (2011) obtain values of λ ranging from 0.251 to

1 https://nssdc.gsfc.nasa.gov/planetary/factsheet/
jupiterfact.html
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Fig. 2. Trajectory of Jupiter’s spin axis in the vicinity of resonance
with the fourth harmonics of ζ (see Table 2). Being farther away from
Jupiter’s precession frequency, the contribution of other harmonics can
be averaged; their mean contribution is included here up to third order
in the amplitudes (as in Eq. (17) of Saillenfest et al. 2019). Each tra-
jectory corresponds to a level curve of the Hamiltonian, which has
only one degree of freedom. The red dot shows the current location
of Jupiter, and the black dot shows Cassini state 2. The red curve is the
current trajectory of Jupiter’s spin axis for λ = 0.250 (top) or λ = 0.237
(bottom).

0.253, that were confirmed by Nettelmann et al. (2012). These
values are consistent with the range of λ ∈ [0.221, 0.255] quoted
above. Other studies seem to agree on even higher values: Wahl
et al. (2017) and Ni (2018) present values of λ ranging between
0.2629 and 0.2644, compatible with the findings of Hubbard &
Marley (1989), Nettelmann et al. (2012), and Hubbard & Militzer
(2016). Finally, both low and high values are obtained by Vazan
et al. (2016), who give either λ = 0.247 or λ = 0.262 for three
different models. As explained by Le Maistre et al. (2016), how-
ever, all these values are model-dependent and still a matter of
debate. Hopefully, the Juno mission will provide direct obser-
vational constraints soon that will help us to determine which
models of Jupiter’s interior structure are the most relevant.

Here, instead of relying on one particular value of λ, we turn
to the exploration of the whole range of values given in the liter-
ature, namely λ ∈ [0.220, 0.265]. The rotation velocity of Jupiter
is taken from Archinal et al. (2018) and the other physical param-
eters are fixed to those used by Lari et al. (2020) for consistency
with the satellites’ orbital evolution (see below). The corre-
sponding value for the current precession constant of Jupiter,
computed from Eqs. (3) and (5), ranges from 2.64 to 3.17′′ yr−1.
Given this large range, using updated physical parameters (see
e.g. Folkner et al. 2017; Iess et al. 2018; Serra et al. 2019) would
only slightly shift the value of α within our exploration interval.

Because of tidal dissipation, satellites slowly migrate over
time. This produces a drift of the precession constant α on a
timescale that is much larger than the precession motion (i.e.
the circulation of ψ). The long-term spin-axis dynamics of a
planet with migrating satellites is described by the Hamiltonian
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in Eq. (1), but where α is a slowly-varying function of time.
In the Earth-Moon system, the outward migration of the Moon
produces a decrease of α that pushes the Earth towards a
wide chaotic region (see Néron de Surgy & Laskar 1997). This
decrease of α is due to the fact that the Moon is in the far-satellite
regime (see Boué & Laskar 2006). The Galilean satellites, on
the contrary, are in the close-satellite regime, and their outward
migration produces an increase of α, as shown by Eq. (5). This
increase can be quantified using the long-term orbital solution
of Lari et al. (2020) depicted in Fig. 3 and interpolating between
data points. The result is presented in Fig. 4 for the two extreme
values of λ considered in this article, as well as for the value of
λ ≈ 0.2365 proposed by Ward & Canup (2006). Despite the var-
ious outcomes of the dynamics described by Lari et al. (2020),
the result on the evolution of α is almost undistinguishable from
one of their simulations to another, even if the eccentricities of
the satellites are taken into account in Eq. (5). Indeed, the varia-
tion of αmostly depends on the drift of the satellites’ semi-major
axes, which is almost identical in every simulation of Lari et al.
(2020).

Since the rate of energy dissipation between Jupiter and its
satellites is not well known today, the timescale of the drift
shown in Figs. 3 and 4 could somewhat contract or expand. This
point is further discussed in Sect. 3. Moreover, other parameters
in Eq. (3) probably slightly vary over billions of years, such as
the spin velocity of Jupiter or its oblateness. We consider that the
impact of their variations on the value of α is small and contained
within our exploration range.
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Fig. 4. Evolution of the effective precession constant of Jupiter due to
the migration of its satellites. The top and bottom curves correspond
to the two extreme values of the normalised polar moment of inertia
λ considered in this article. They appear into α through Eq. (3). The
central curve corresponds to the value of λ that places Jupiter just near
Cassini state 2 with the precession mode of Uranus (Ward & Canup
2006).

2.4. Initial conditions

The initial orientation of the spin axis is taken from the solution
of Archinal et al. (2018) averaged over short-period terms. At the
level of precision required by our exploratory study, the refined
orientation obtained by Durante et al. (2020) is undistinguishable
from this nominal orientation. With respect to Jupiter’s secular
orbital solution (see Sect. 2.2), this gives an obliquity ε = 3.120◦
and a precession angle ψ = −137.223◦ at time J2000. The uncer-
tainty on these values is extremely small compared to the range
of α considered (see Sect. 2.3). Since the uncertainty is smaller
than the curve width of our figures, we do not consider any error
bar on the initial value of ε and ψ.

3. Obliquity evolution with migrating satellites

For values of λ finely sampled in our exploration interval, the
spin axis of Jupiter is numerically propagated forwards in time
for 5 Gyr. By virtue of trigonometric identities, moving Jupiter’s
orbit one step forwards in time using the quasi-periodic decom-
position in Eq. (6) only amounts to computing a few sums and
products. The trajectories obtained are shown in Fig. 5 for a few
values of λ. They are projected in the plane of the obliquity
and the precession constant of Jupiter, where we localise also
the centres and widths of all first-order secular spin-orbit reso-
nances. See Appendix B for further details about the geometry
of the resonances.

For values of λ smaller than about 0.228, Jupiter starts out-
side of the large resonance with φ4, and the increase of its
precession constant α pushes it even farther away over time. As
shown by the trajectory computed for λ = 0.227, the crossing
of the very thin resonance with φ19 twists the trajectory a little,
but this cannot produce any large change of obliquity. Indeed the
resonance with φ19 is not strong enough to capture Jupiter’s spin
axis: It is crossed quickly as α increases, and Fig. 6 shows that
the libration period of σ19 = ψ + φ19 is very long. This results
in a non-adiabatic crossing (see Appendix C for details). Conse-
quently, no major obliquity variation for Jupiter can be expected
in the future if λ < 0.228. However, such small values of λ
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eq) given in title. The green bar shows the initial location of Jupiter’s spin
axis according to our exploration interval of λ; the central mark is the value proposed by Ward & Canup (2006). The red curves show the centre
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from now; they evolve from bottom to top. According to the exact migration rate of the Galilean satellites, the timeline could somewhat contract or
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Fig. 6. Period of small oscillations about the resonance centre for a reso-
nance with φ4 or φ19. Even though complete closed-form solutions exist
(see Haponiak et al. 2020), the small-oscillation limit leads to handier
formulas, suitable for order of magnitude estimates. The resonant angles
are σ4 = ψ+φ4 and σ19 = ψ+φ19, respectively. Dashed curves are used
for oscillations about Cassini state 2 before the separatrix appears. The
appearance of the separatrix is marked by a blue dot.

seem to be ruled out by most models of Jupiter’s interior (see
Sect. 2.3).

For values of λ larger than 0.228, on the contrary, Jupiter
is currently located inside or below the large resonance with
φ4. As predicted, the value λ = 0.2365 results in very small
oscillations around Cassini state 2. As its precession constant

α slowly increases with time, Jupiter is captured into the reso-
nance and follows the drift of its centre towards large obliquities.
Indeed, the resonance with φ4 is large, and the libration period
of σ4 = ψ + φ4 is short compared to the variation timescale of
α (see Figs. 5 and 6). This results in an adiabatic capture. The
various possible outcomes of adiabatic and non-adiabatic cross-
ings of secular spin-orbit resonances have recently been studied
by Su & Lai (2020). However, the orbital motion is here not
limited to a single harmonic, and Appendix C shows that the
separatrix of the resonance is replaced by a chaotic “moat”. Prop-
erly speaking, the resonance with φ4 becomes a “true resonance”
only as soon as the separatrix appears, that is, for α larger than
α ≈ 3.04′′ yr−1 (see Appendix B). In the whole range of values
of λ > 0.228 considered in this article, the spin-axis of Jupiter
is initially located close enough to Cassini state 2 to invariably
end up inside the separatrix of the resonance when it appears.
The capture probability is therefore 100%. None of our simu-
lation shows a release out of resonance or a turn-off towards
Cassini state 1, which could have been a possible outcome if
Jupiter’s spin axis was initially located farther away from Cassini
state 2 or if the drift of α was not adiabatic2. Since in canonical
coordinates the resonance width increases for α growing up to
4.244′′ yr−1, no separatrix crossing can happen, even for a large
libration amplitude inside the resonance (e.g. for λ = 0.228 in
Fig. 5). The maximum obliquity reached by Jupiter is therefore
only limited by the finite amount of time considered.

2 There is a typographical error in Saillenfest et al. (2019): the list of
the Cassini states given before Eq. (22) should read (4,2,3,1) instead of
(1,2,3,4) in order to match the denomination introduced by Peale (1969).
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If the Galilean satellites migrate faster than shown in Fig. 3,
the obliquity reached in 5 Gyr would be larger than that pre-
sented in Fig. 5. The migration rate of the satellites is not well
known. According to Lari et al. (2020), the long-term migration
rate of the satellites varies by ±15% over the uncertainty range
of the parameter (k2/Q)0,1 measured by Lainey et al. (2009).
This parameter quantifies the dissipation within Jupiter at Io’s
frequency. Figure 7 shows the maximum obliquity reached in
5 Gyr for λ sampled in our exploration interval and (k2/Q)0,1
sampled in its uncertainty range. We retrieve the discontinuity
at λ ≈ 0.228 discussed before, below which only small obliquity
variations are possible. For λ > 0.228, as expected, we see that
a fast migration and a small moment of inertia produce a fast
increase of obliquity, which reaches 37◦ in 5 Gyr in the most
favourable case of Fig. 7. On the contrary, a slow migration and
a large moment of inertia produce a slow increase of obliquity,
which barely reaches 6◦ in 5 Gyr in the most unfavourable case
of Fig. 7.

4. Discussion and conclusion

Prompted by the peculiarly small value of the current obliquity of
Jupiter, we studied the future long-term evolution of its spin-axis
under the influence of its slowly migrating satellites.

Jupiter is located today near a strong secular spin-orbit reso-
nance with the nodal precession mode of Uranus (Ward & Canup
2006). Because of this resonance, the obliquity of Jupiter is
found to be currently increasing, provided that its normalised
polar moment of inertia λ = C/(MR2

eq) is larger than about
0.228. Such a small value seems to be ruled out by models of
Jupiter’s interior (see e.g. Helled et al. 2011; Hubbard & Militzer
2016; Wahl et al. 2017). For larger values of λ, the migration
of the Galilean satellites induces an adiabatic drift of the pre-
cession constant α of Jupiter that pushes its spin axis inside the

resonance and forces it to follow the resonance centre towards
high obliquities. For the value λ ≈ 0.2365 proposed by Ward &
Canup (2006), the obliquity can reach values as large as 30◦ in
the next 5 Gyr. For the value λ ≈ 0.252 obtained by Helled et al.
(2011), the obliquity reaches values ranging from about 17◦ to
23◦. The increase is more modest for values close to λ ≈ 0.264
found by other authors, for which the maximum value of the
obliquity ranges from about 6◦ to 17◦. Hence, our main conclu-
sion is that, contrary to Saturn, Jupiter did not have time to tilt
much yet from its primordial orientation, but it will in the future
and possibly a lot.

The model of tidal dissipation applied by Lari et al. (2020)
to the Galilean satellites and used here to compute the drift
of α is simplified. The current migration rates of satellites in
the Solar System have been proved to be higher than previ-
ously thought (see Lainey et al. 2009, 2017). As discussed by
Lari et al. (2020), the migration of the Galilean satellites could
be even faster than considered here if ever one of the outer
satellites was pushed by a resonance with the frequency of an
internal oscillation of Jupiter (Fuller et al. 2016). This would
result in a faster increase of Jupiter’s obliquity. This increase
would be halted, however, if the satellites ever migrate so fast
as to break the adiabaticity of the capture into secular spin-orbit
resonance. In this case, Jupiter would cross the resonance and
exit without following the drift of its centre (see e.g. Ward &
Hamilton 2004; Su & Lai 2020). Numerical experiments show
that adiabaticity would be broken for a migration more than
110 times faster than currently estimated. Such an extremely fast
migration seems unlikely. Moreover, with such a fast migration,
Callisto and then Ganymede would soon go beyond the close-
satellite regime (Boué & Laskar 2006): This would slow down
the increase of α and possibly restore the adiabaticity of its drift.
Therefore, the future increase of Jupiter’s obliquity appears to be
a robust result.

The maximum obliquity that Jupiter will reach could be
very large, but it depends on the precise value of Jupiter’s polar
moment of inertia and on the precise migration rate of the
Galilean satellites. We hope to obtain soon new estimates for
these two crucial parameters, in particular from the results of the
Juno and JUICE missions.
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Appendix A: Orbital solution for Jupiter

Table A.1. Quasi-periodic decomposition of Jupiter’s eccentricity and
longitude of perihelion (variable z).

k µk (′′ yr−1) Ek × 108 θ(0)
k (◦)

1 4.24882 4411915 30.67
2 28.22069 1574994 308.11
3 3.08952 180018 121.36
4 52.19257 51596 45.55
5 27.06140 18405 218.71
6 29.37998 17762 217.54
7 28.86795 10743 32.64
8 27.57346 9436 43.74
9 5.40817 6135 120.31

10 0.66708 5755 73.98
11 53.35188 4415 314.90
12 76.16447 2441 143.03
13 51.03334 1354 316.29
14 7.45592 1354 20.24
15 −19.72306 1083 293.24
16 4.89647 982 291.61
17 5.59644 941 290.35
18 1.93168 767 198.10
19 3.60029 543 121.39
20 −56.90922 485 44.11
21 2.97706 470 306.81
22 5.47449 354 95.01
23 17.91550 295 155.35
24 5.71670 269 300.52
25 −20.88236 222 203.93
26 6.93423 173 349.25
27 1.82121 161 150.50
28 5.35823 145 274.88
29 7.05595 139 178.82
30 7.34103 114 27.85
31 17.36469 101 123.95
32 0.77840 99 65.10
33 7.57299 80 191.47
34 5.99227 53 293.56
35 5.65485 51 219.22
36 4.36906 49 40.82
37 5.23841 43 92.97
38 6.82468 37 14.53
39 −0.49216 29 164.74
40 17.08266 28 179.38
41 16.81285 27 273.37
42 7.20563 23 323.91
43 7.71663 15 273.52
44 19.01870 10 219.75
45 17.15752 10 325.02
46 16.52731 6 131.91
47 17.63081 6 183.87
48 17.81084 6 58.56
49 18.18553 5 57.27
50 17.47683 5 260.26
51 17.72293 4 48.46
52 17.55234 4 197.65
53 18.01611 4 44.83
54 16.26122 2 58.89
55 18.08627 2 356.17
56 18.46794 1 209.01

Notes. This solution has been directly obtained from Laskar (1990) as
explained in the text. The phases θ(0)

k are given at time J2000.

Table A.2. Quasi-periodic decomposition of Jupiter’s inclination and
longitude of ascending node (variable ζ).

k νk (′′ yr−1) S k × 108 φ(0)
k (◦)

1 0.00000 1377467 107.59
2 −26.33023 315119 307.29
3 −0.69189 58088 23.96
4 −3.00557 48134 140.33
5 −26.97744 2308 222.98
6 −2.35835 1611 44.74
7 82.77163 1372 308.95
8 −1.84625 1130 36.64
9 −5.61755 1075 168.70

10 −4.16482 946 51.54
11 58.80017 804 32.90
12 −50.30212 691 29.84
13 34.82788 636 114.12
14 −0.58033 565 17.32
15 −7.07963 454 273.79
16 −27.48935 407 38.53
17 −25.17116 385 35.94
18 −5.50098 383 162.89
19 −3.11725 321 326.97
20 −6.84091 267 106.20
21 −28.13656 256 134.07
22 −7.19493 226 105.14
23 −6.96094 215 97.96
24 0.46547 162 286.88
25 −17.74818 149 123.28
26 −7.33264 144 196.75
27 −5.85017 130 345.47
28 11.50319 103 281.01
29 −5.21610 97 198.91
30 −5.37178 97 215.48
31 −5.10025 94 15.38
32 0.57829 56 103.72
33 −5.96899 55 170.64
34 −1.19906 53 133.26
35 −6.73842 47 44.50
36 −7.40536 44 233.35
37 −7.48780 40 47.95
38 −6.15490 40 269.77
39 20.96631 40 57.78
40 −6.56016 38 303.47
41 9.18847 32 1.15
42 −8.42342 32 211.21
43 10.34389 32 190.85
44 −18.85115 23 240.06
45 −17.19656 17 334.19
46 18.14984 15 291.19
47 −19.40256 14 207.96
48 −18.01114 11 242.09
49 −17.66094 11 138.93
50 −17.83857 9 289.13
51 −17.54636 8 246.71
52 −18.30007 6 267.05
53 −17.94404 5 212.26
54 −18.59563 5 98.11
55 −19.13075 1 305.90

Notes. This solution has been directly obtained from Laskar (1990) as
explained in the text. The phases φ(0)

k are given at time J2000.
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The secular orbital solution of Laskar (1990) is obtained by mul-
tiplying the normalised proper modes z•i and ζ•i (Tables VI and
VII of Laskar 1990) by the matrix S̃ corresponding to the lin-
ear part of the solution (Table V of Laskar 1990). In the series
obtained, the terms with the same combination of frequencies are
then merged together, resulting in 56 terms in eccentricity and
60 terms in inclination. This forms the secular part of the orbital
solution of Jupiter, which is what is required by our averaged
model.

The orbital solution is expressed in the variables z and ζ as
described in Eqs. (6) and (7). In Tables A.1 and A.2, we give the
terms of the solution in the J2000 ecliptic and equinox reference
frame for amplitudes down to 10−8.

Appendix B: Crossing the resonance with φ4

Figures 1 and 5 show the location and width of all first-order sec-
ular spin-orbit resonances produced by Jupiter’s orbital solution
(Appendix A). In particular, Jupiter is located very close to the
large resonance with φ4, whose frequency is the nodal preces-
sion mode of Uranus. Figures B.1 and B.2 show the geometry
of the resonance with φ4 for different values of the precession
constant α of Jupiter. These graphs can be understood as hori-
zontal sections of Fig. 5, where we can locate the centre of the
resonance (i.e. Cassini state 2) and the separatrix width. For
easier comparison, Figs. 5 and B.1 share the same horizontal
axis.
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Fig. B.1. Level curves of the Hamiltonian function in the vicinity of resonance with φ4. The resonant angle is σ4 = ψ+φ4. Other terms are averaged
and included up to the third order of their amplitudes (see Saillenfest et al. 2019). Each panel corresponds to a different value of the precession
constant α. Equilibrium points (called Cassini states) are shown by black spots. The interior of the resonance is coloured red and the separatrix is
shown with a thick red curve. The location and width of the resonance for continuous values of α can be seen in Fig. 5. In order to avoid being
misled by coordinate singularities, Fig. B.2 shows the same level curves in a different set of coordinates.
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Fig. B.2. Same as Fig. B.1, but using polar coordinates that are not singular for an obliquity ε = 0◦. The outer black circle corresponds to an
obliquity ε = 40◦.

Appendix C: Crossing the resonance with φ19

As a matter of fact, Jupiter’s orbital motion is not restricted to the
φ4 term. However, secular spin-orbit resonances with all other
terms (apart from φ19) are located very far from the location of
Jupiter, so that their effects average over time. The case of φ19
is special: even though it is very thin, this resonance is not far
from Jupiter’s location (see the upper red curve in Fig. 5), which
means that ψ + φ19 is a slow angle that cannot be averaged out.

Instead of considering only φ4, as in Appendix B, a more
rigorous model of the long-term spin-axis dynamics of Jupiter
consists in averaging the Hamiltonian function over all angles
except resonances with both φ4 and φ19. For a constant value
of α, this results in a two-degree-of-freedom Hamiltonian sys-
tem, in which the two angle coordinates are σ4 = ψ + φ4 and
σ19 = ψ+ φ19. The dynamics can then be studied using Poincaré
surfaces of section. Figure C.1 shows two examples of sections.
The lower island centred at σ19 = 0 corresponds to the thin
resonance with φ19: as expected, it is completely distorted as
compared to the unperturbed separatrix (blue curve) due to the
proximity of the large resonance with φ4. It still persists, how-
ever, as a set of periodic orbits. In contrast, the large resonance
with φ4 is hardly affected at all by the φ19 term, which only trans-
forms its separatrix into a thin chaotic belt. In the left panel
of Fig. C.1, we can also recognise Cassini state 1 with φ4 (for
σ4 = π and a small obliquity), that is also visible in Fig. B.1.

We investigated whether Jupiter could be trapped into the
thin resonance with φ19 and follow its resonance centre, but
we found out that this can never happen. On the one hand, the

current phase of σ19 is close to π, so that even if λ is finely
tuned to place Jupiter right inside the resonance, it ends up near
the separatrix, leading to an unstable resonant motion. On the
other hand, as shown in Fig. 6, the libration period of σ19 is
extremely large (the width and oscillation frequency both scale
as the square root of the amplitude S 19). This means that, as α
increases, the crossing of this resonance is not adiabatic. The
libration periods shown in Fig. 6 should be compared to the
time needed for α to go through the resonant region. Accord-
ing to Fig. 4, the mean increase rate of α is 0.086′′ yr−1 Gyr−1

and according to Fig. 5, the resonances have a vertical width
∆α ≈ 0.21′′ yr−1 for the φ4 resonance and ∆α ≈ 0.01′′ yr−1 for
the φ19 resonance (computed at the right separatrix when it
appears). Therefore, the time that would be needed for α to
cross the φ4 resonance is ∆t ≈ 2.5 Gyr, which corresponds to
many oscillation periods of σ4 (about 100): this is the adiabatic
regime. On the contrary, the time needed for α to cross the φ19
resonance is ∆t ≈ 0.1 Gyr, which corresponds to less than one
oscillation period of σ19 (about 0.2): this is the non-adiabatic
regime. As a result, a resonance capture with φ19 is extremely
unlikely, even if the orbital motion of Jupiter was restricted to
its 19th harmonic: Jupiter’s spin axis enters the resonance and
exits before σ19 has time to oscillate. With suitable initial con-
ditions, Jupiter roughly follows the resonance centre during the
crossing, producing a bump in the obliquity evolution (see Fig. 5
for λ = 0.227), but nothing more can possibly happen. This kind
of non-adiabatic resonance crossing is described by Ward et al.
(1976), Laskar et al. (2004b), and Ward & Hamilton (2004) using
Fresnel integrals.

A11, page 11 of 12

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/202038432&pdf_id=0


A&A 640, A11 (2020)

0

5

10

15

20

25

−π −π/2 0 π/2 π

o
b
li
q
u
it
y
(d

eg
)

ψ + φ4 or ψ + φ19 (rad)

section at φ4 − φ19 = 0 for α = 3.12"/yr

0

5

10

15

20

25

−π −π/2 0 π/2 π
26

28

30

32

34

36

38

40

−π −π/2 0 π/2 π

o
b
li
q
u
it
y
(d

eg
)

ψ + φ4 or ψ + φ19 (rad)

section at φ4 − φ19 = 0 for α = 3.60"/yr

26

28

30

32

34

36

38

40

−π −π/2 0 π/2 π

Fig. C.1. Poincaré surfaces of section showing the dynamics in the vicinity of resonances with φ4 and φ19. Each graph corresponds to a different
value of α (see titles). The separatrices of the two resonances taken separately are shown with coloured curves: red for φ4 and blue for φ19.
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