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• We present a general method to determine the interface normal from arbitrary orientations.
• We developed a general model of interface projection, including existing methods as special cases.
• The method is proved to be robust, efficient, and scalable in different situations.
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ABSTRACT
This paper presents a new analytical method to determine interface normals from a series of
bright/dark field images taken from arbitrary orientations. This approach, based on a general
geometrical model of interface projection, provides a generalized formulation of existing meth-
ods. It can treat an excessive number of inputs, i.e. orientation conditions. Given 6 or more
sets of inputs, even with considerable experimental errors, we prove that this method is still very
likely to yield results with satisfactory trueness. The robustness of the method can thus allow its
implementation in problems dealing with a large amount of data. We show that this method can
also be applied to determine 1D features or to check the planarity of microstructural features.

1. Introduction

Transmission electron microscopy (TEM) is a powerful tool to examine a variety of defects in materials, including
point defects (zero dimension, 0D), dislocation lines (1D), interfaces (2D) and inclusions (3D). Since TEM images are
2D projections of the 3D space, the geometrical features of non-0D defects, e.g., their shapes, must be reconstructed
from their projections on the observation plane. The identification of 3D inclusions, curved lines or curved planes
is a cumbersome work [1][2]. However, many 1D or 2D defects, e.g., interfacial dislocations or faceted interfaces,
often have preferred orientations. They can be considered as straight lines or flat planes. Accurately determining their
crystallographic orientations is fundamental to unravel the mechanism of associated microstructure evolution [3]. In
this context, the problem is restricted to the line direction or the interface plane normal determination, using a technique
called trace analysis [4][9].

The concept and methods of trace analysis using TEM were clearly introduced in the well-known book by Hirsch
et al. [4]. A line feature is always on the plane defined by its projection and the electron beam direction. Therefore
it can be determined if observed from two directions. However, the projection of a planar feature usually contains
the projection of two traces, the intersections of the interface with two foil surfaces, separated by a certain width.
An interface can be directly determined at its edge-on condition, where the projection width is zero and the interface
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normal lies in the viewing screen [4]. Since an edge-on condition often carries non-negligible uncertainty, several
modifications were later proposed to improve the accuracy, such as the single edge-on method [9][5], the double edge-
on method [10][11], and the trace & edge-on method [12]. Despite their good accuracy, these methods are not easy to
use, as finding an exact edge-on condition is usually time consuming or even impossible if it is out of the tilting range
of the sample holder.

An edge-on condition is not always necessary, if the interface contains an additional sharp line feature, such as a
straight dislocation line [5][6][7] or an intersection with another plane [8], using the so-called double-trace method.
The orientations of both trace and line feature in the plane can be measured by the trace analysis method of 1D features.
Then one can obtain the interface normal by making a cross product of the line and the trace direction. However,
additional line features are not always present, which limits the application of this method.

When the condition for the double-trace method is not satisfied, the projection width can be used to calculate
interface normals at arbitrary orientations. In this approach, the trace direction is assumed to lie on the screen plane at
zero tilt. The interface normal can be determined, once the inclination angle between the foil surface and the interface
is determined. Traditionally, this was done by measuring the foil thickness and the projection width of the interface at
an orientation near to zero tilt [9]. Since this method contains considerable uncertainty, Zhang and Kelly [13] made
an improvement by tilting the sample along the trace direction. But it is usually difficult to ensure the tilting axis
exactly parallel with the trace direction. Qiu an Zhang [14] solved this problem on a single tilt holder by taking the
angle between the trace and the tilting axis into consideration. In order to avoid ambiguous solutions, this approach
still needs to track the trend of the projection width change during sample tilting. All these methods are based on the
assumption that the upper and lower foil surfaces are both perpendicular to the electron beam direction at zero tilt.
This may introduce systematic error when the foil has thickness variation or not flat.

Above methods are highly sensitive to experimental errors, since they rely on limited information — usually one
or two sets of inputs (beam and projected trace directions, projection width). Particularly, the error could be greatly
amplified by the cross product operation in double trace and double edge-on methods [12]. To improve the reliability,
one may use excessive experimental data to calculate several solutions of the interface normal. The scattering of results
can be plotted in a pole figure [12][14], but the selection of the final result and the estimation of its uncertainty are
largely based on the operator’s experience.
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In order to improve the accuracy of interface normal determination and simplify the TEM operation, we present
here a close-form algorithm to optimize the result with multiple sets of inputs from arbitrary orientations. In this
method, there is no specific requirements on the beam direction, nor conditions on the interface and the foil.

In Section 2, we will describe the methodology used to compute the interface normal. Section 3 will present
experimental details, followed by Section 4 illustrating the applications of the present method. The results and method
will finally be discussed in Section 5. The accuracy of the results will be adressed by an error analysis, and the method
will be compared with other methods proposed in the literature. A generalization of our approach will be proposedat
the end.

2. Geometrical model of interface projection

The approach presented below is a purely geometrical analysis of the orthogonal projection of planar features on
the observation screen, without any requirement on the beam direction (projection direction) or the foil surface. It is
based on the measurement of the interface width and apparent trace direction for different beam direction. The symbols
used in the derivation and their meaning are listed in Table 1.

Table 1
Definition of symbols 1

Symbol Definition

be Reversed electron beam direction, unit vector
n Interface normal, unit vector
r Arbitrary vector in the screen plane, unit vector, be ⋅ r = 0
s Foil surface normal, unit vector

t Trace direction, i.e., direction of the intersection between the interface and the
foil surface, unit vector t = n × s∕‖n × s‖

tp Projected direction of t
ℎ Foil thickness
� Azimuth angle from x axis of the screen to tp
d Real interface width, i.e., real distance between traces
w Projected interface width, i.e., distance between projected traces
i Input number, index, 1 ≤ i ≤ m
m Total number of inputs

Rx(�), Ry(�), Rz(�) Right-handed rotation matrix with rotation angle � about x, y, z axis respectively
sgn(i) A function that gives a value of ±1 respect to the sign of n ⋅ bei

A flat interface has two traces, the intersections with upper and lower foil surfaces. Firstly, let us assume the
two foil surfaces to be parallel planes, resulting in two parallel traces separated by a certain width d. This case is

1If not pointed out, all the vector symbols noted in bold and italics are column vectors.
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Figure 1: Geometrical description of interface projection. (a) Parallel traces case: The interface AQRC is projected on the
viewing screen, giving the projection EFGH . The inset is the cross section view along the trace direction. (b) Non-parallel
traces case: A traceable point C on the interface and a trace AQ are projected to the viewing screen, giving the projection
EFH .

shown in Figure 1a, where the interface is enclosed by the red parallelogram AQRC . Line CR and AQ are upper
and lower traces of the interface, intersections between the foil surfaces (orange planes) and the interface. The blue
parallelogram EFGH is the projected interface on the screen. Areas of these parallelograms, SAQRC = d|AQ| and
SEFGH = w|EF |, are related by SEFGH = SAQRC cos , where  is the angle between reversed electron beam
direction be and interface normal n. Since |EF | is the projection of |AQ|, they are related by |EF | = |AQ| cos �,
where � is the angle between trace t and its projection tp.

When the foil is bent or has a wedge shape, the assumption of parallel foil surfaces is no longer valid. Because of
this, trace AQ and trace CR are not parallel, AQRC in Figure 1 is no longer a parallelogram (Figure 1b). However,
if a point on the interface can be tracked, it is still possible to resolve the relationship between d and w. As shown in
Figure 1b, by tracking point C on the interface AQC , one can redefine d as the distance between C and the trace AQ,
intersection with one foil surface (orange plane), while the distance between the projected pointH and projected trace
EF is measured as w. In this case, it is crucial to measure w at the same position each time. The area of interface
triangle SAQC = d|AQ|∕2 and that of projection triangle SEFH = w|EF |∕2 are still related by SEFH = SAQC cos .
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The relationship of |EF | = |AQ| cos � remains valid.
Therefore, no matter two foil surfaces are parallel or not, the interface projection width w is always given by

w =
d cos 
cos �

(1)

Or alternatively using dot product:
w =

|dn ⋅ be|
√

1 −
(

be ⋅ t
)2

(2)

In Eq. (2), w and be can be measured, while dn and t are unknown.
Vector t can be determined from its measured projections tp’s at different be’s, using:

[

be1 × tp1 be2 × tp2 ... bem × tpm

]T
t = 0 (3)

When m = 2, Eq. (3) is solved by using the cross product t = (be1 × tp1) × (be2 × tp2). When the number of input
sets m ≥ 3, it is an overdetermined homogeneous linear equation, and can to be solved by the least square method
(LSM, see Appendix A).

The determination of t allows to compute the non-linear part
√

1 −
(

be ⋅ t
)2 in Eq. (2), turning Eq. (2) into a

linear problem. However, the width of interface projection,wi, is always positive, while n ⋅bei could be negative. Thus
sgn(i), the sign of n ⋅ bei, is needed to remove the absolute sign in Eq. (2). Using the fact that dn ⋅ t = 0, a synthetic
formula incorporating the input measurements (wi, bei) can be derived:
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This equation can be solved by LSM, but the uncertainty of sgn(i) would result in multiple solutions of dn. When
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m = 2, Eq. (4) is determined and two different solutions are expected. It is impossible to assess the actual one without
additional information. When m ≥ 3, Eq. (4) is overdetermined, and its residual error can be computed (see Appendix
A). The uncertainty of sgn(i) will give 2m−1 solutions of n. The one with the minimum residual error is the best
solution, because an improper sgn(i) would result in significantly large residual error. The contribution to the residual
error from each set of input (wi, bei, tpi) can be quantified by the respective element in the residual vector of Eq. (4)
(see Appendix A). The element with the maximum absolute value and different sign from the others may indicate
an abnormal input with significantly large deviation. One may drop this input and recalculate the result, which can
reduce the residual error and improve the input consistency. Thus, with at least 3 different sets of experimental data
(wi, bei, tpi), LSM will give the optimized solutions of t, d and n.

The accuracy of the interface normal, which is the deviation between the determined value and the true value is an
important concern. Unfortunately, the true value of dn is usually unknown, and needs to be estimated. The estimation
of the true value is a range with a certain confidence, i.e., a confidence interval, which can represent the accuracy of
the result, based on the internal consistency of inputs. In the present work, the 95% confidence interval of d and that
of n can be calculated by the bootstrap method (see Appendix B) with Eq. (4).

A C++ implementation of the present algorithm can be found in Supplementary Materials.

3. Experimental details

The present method was tested in two cases. In both cases, bright field images were recorded at different orientation
conditions in an FEI Tecnai G2 20 TEM operated at 200 kV. Observations were performed using a double tilt sample
holder with the coordinate conventions as shown in Figure 2: the x-axis is parallel to the holder axis, and the y-axis
is perpendicular to the x-axis and the beam direction. In the following, the subscripts H, P and S denote the indices in
holder, projection screen, and sample coordinate system, respectively . In the holder coordinate system, the sample is
firstly tilted about the −y axis by angle �, and then tilted about the −x axis by angle �.

The rotation angle from holder xH axis to the projection screen xP axis is � about zH = zP axis. This accounts for
the rotation of the image in the microscope column. Hence, the beam direction be perpendicular to the screen and the
direction tp in the observation plane can be calculated using right-handed rotation matrices Rx(�), Ry(�), and Rz(�),
as shown below:
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Figure 2: Illustration of the holder coordinate system when the sample is mounted in a double-tilt holder.

be = Ry(�)Rx(�)[0, 0, 1]TH

= [sin � cos �, − sin �, cos � cos �]TS

(5)

tp = Ry(�)Rx(�)Rz(�)[cos �, sin �, 0]TP (6)

where � is the azimuth angle between the projected trace and the xP -axis on the viewing screen.
In the first experiment, a grain with two interfaces was investigated in a duplex stainless steel Fe-24.9Cr-7.0Ni-

3.1Mo (wt%) sample prepared by the same procedure as reported in [15]. The images were taken in conditions where
� = 90◦.

In the second case, a grain boundary with non-parallel traces was observed in an aluminum bicrystal with a mis-
orientation close to a coincident Σ41 12.68◦ < 0 0 1 > {5 4 0}. The sample was first ground to 50 microns using
SiC grain disks and then electro-polished to obtain electron transparency. The TEM foil was strained in-situ at c.a.
400◦C, as reported earlier in [? ] (ref missing). Plastic deformation leads to a complex microstructure of dislocations,
resulting in significant bending of the wedge foil and possible deviation from the original orientation. Eq. (5) and Eq.
(6) are still valid in this case, using here � = 157◦ for Eq. (6).
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4. Application examples

4.1. Measuring two interfaces with a double-tilt holder

Figure 3 shows a series of bright field (BF) images of a faceted austenite grain (A) in a ferrite matrix (F) taken at
different orientations. Two FCC/BCC facets, IntA and IntB, intersect and form a well defined corner. In order to show
the ability to determine multiple interfaces, normals of these two facets are determined simultaneously, using 6 sets of
inputs among 8 different imaging conditions. The determination was performed both in the holder coordinate system
and in the lattice coordinate system. The former is more convenient to use, as it only needs tilt angles of the sample
holder, while the latter, which requires the analysis of Kikuchi patterns, usually has better accuracy. The normal of
IntA is determined by Figures 3a∼f, and that of IntB by Figures 3a ∼ e and 3g. Figure 3h, a near edge-on condition of
both IntA and IntB, was only used to check the results.

The first step of the method is to determine t. The be’s in holder coordinates were calculated with data in Table 2
and Figure 3, using Eq. (5) and Eq. (6), while the tp’s of IntA and IntB are given by their azimuth angle with respect to
the x axis of Figures 3a∼g. The lattice coordinates of be’s and tp’s were defined in austenite using the Kikuchi patterns
shown in Figure 3, as listed in Table 2. Hence t was determined by solving Eq. 3 in either coordinate system.

The second step is to substitute be’s, t, and wi’s, into Eq. 4 to solve dn. By enumerating all the possibilities of
sgnA(i), and sgnB(i), dn and its residual error in both conventions are solved by LSM. Among them, the one with the
minimum residual error was chosen as the final result, whose sgn(i) is shown in Table 2. Then, the optimized results
were calculated, as shown by Table 3. The n’s in holder coordinates were transformed to lattice coordinates using the
transformation matrix determined from Figure 3e2 (see Supplementary materials).

The t’s of IntA and IntB in holder coordinates are almost in the xOy plane, indicating that the foil was almost
perpendicular to the beam direction at zero tilt. For each interface, the real width (d) and the normal (n) calculated
from different coordinate systems show a good consistency. This means the holder coordinate system can be used
instead of the lattice coordinate system to simplify the process while reserving the accuracy. The correctness of n
is verified by tilting both interfaces to a near edge-on condition (Figure 3h), where the interface normal n can be
determined by be × tp. Using the data of Figure 3h in Table 2, the normal of IntA is [0.562 0.592 − 0.579], and that
of IntB is [−0.594 − 0.237 − 0.766]. These results are inside the confidence range of the n’s determined in Table 3.
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Figure 3: BF images of the interfaces and the corresponding Kikuchi patterns taken in austenite at different tilt angles.
The � and � tilt angles are reported in the bottom right. The projection widths and the azimuthal angle of both IntA and
IntB interfaces are also indicated. Arrows in the Kikuchi patterns indicate the be × tp directions of IntA and IntB.

Hence, the present method is able to accurately determine multiple interfaces simultaneously, either in the holder or
lattice coordinate system.

4.2. Measuring a grain boundary with non-parallel traces

Figure 4 shows a series of BF images of an interface with non-parallel traces in an Al bicrystal sample taken at
different tilt angles. The tracked point (pointed out by arrows) is defined by the position where the lower trace (dotted
line) starts to deviate. Figures 4a∼e are used to solve the interface normal, while Figure 4f is a near edge-on condition
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Table 2
Directions in lattice coordinates from the Kikuchi patterns in Figure 3 and sgn(i) for solving Eq. (4)

Figure be
IntA tp
IntB tp

sgnA(i)
sgnB(i)

wAi
wBi

�(◦) �(◦)

3a [-0.811 0.485 0.327]
[0.546 0.427 0.721]
[0.249 0.792 -0.558]

-1
+1

72
38 -37.86 27.22

3b [-0.629 0.147 -0.763]
[-0.250 0.891 0.378]
[0.772 0.239 -0.590]

+1
+1

33
175 35.23 25.19

3c [-0.107 0.628 -0.771]
[0.186 0.774 0.605]
[0.963 -0.128 -0.238]

+1
+1

130
108 30.53 -27.39

3d [-0.281 0.951 0.130]
[0.485 0.023 0.874]
[0.691 0.295 -0.660]

+1
-1

73
27 -29.90 -27.28

3e [-0.465 0.341 -0.817]
[-0.048 0.912 0.408]
[0.885 0.157 -0.438]

+1
+1

81
149 35.48 4.56

3f [-0.677 0.684 0.272]
[0.597 0.295 0.746]
[0.457 0.680 -0.574]

-1
not used

26
- -37.32 6.65

3g [-0.654 0.704 0.277]
[0.612 0.277 0.741]
[0.469 0.665 -0.582]

not used
+1

-
0 -38.01 4.51

3h [-0.592 0.776 0.219]
[0.578 0.220 0.786]
[0.541 0.584 -0.601]

not used
not used

-
- -34.12 -0.66

Table 3
Results of trace directions and interface normals

Coordinates Interface t n Confidence
range of n (◦) d (nm)

holder IntA [0.453, −0.891, 0.003]H [−0.863, −0.432, 0.262]H 1.0 166 ± 5
[0.567 0.588 − 0.577]

IntB [0.776, 0.630, 0.037]H [0.549, −0.670, 0.500]H 1.8 178 ± 6
[−0.605 − 0.208 − 0.769]

lattice IntA [−0.215 − 0.581 − 0.785] [0.581 0.585 − 0.567] 1.6 172 ± 8
IntB [−0.722 − 0.253 0.644] [−0.610 − 0.240 − 0.755] 1.6 182 ± 6

for verification. The trace t of the interface in holder coordinates deviates from the xOy plane, confirming that the foil
is bent. Through a similar process as the previous example, the optimized result in holder coordinates is calculated
as following: t = [0.883, −0.348, 0.315]H, n = [−0.473, −0.646, 0.600]H ∼ 2.4◦, and d = 224 ± 12 nm. (what is
2.4◦ ?) Using the transformation matrix determined from a Kikuchi pattern (Figure S1), the lattice coordinates of the
interface normal is n = [4.000 − 4.176 0.144] with 5.3◦ deviation from [4 − 5 0]. Noting that the 95% confidence
range is 2.4◦, this deviation is considered to be the result of plastic deformation, rather than experimental errors. Using
Eq. 5, the be at the near edge-on condition in Figure 4f is [0.278, 0.536, 0.797]H, which is almost perpendicular to the
interface normal with 0.1◦ deviation. This edge-on condition confirms the result of n. Therefore, the present method
remains effective even on interfaces with non-parallel traces.
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Figure 4: BF images of the interface with non-parallel traces at different tilt angles. The � and � tilt angles are reported
in the top left. The widths between the tracked point (indicated by arrows) and the trace (dash line), and the azimuth
angles of the trace (dash line) are also indicated.

5. Discussion

5.1. Accuracy of n

The use of the method presented here raises three questions concerning the accuracy of n: (i) is the true value of
the interface normal inside the bootstrap confidence interval; (ii) what is the main error source on interface normal
determination; (iii) what is the optimal number of input datasets for an acceptable accuracy. To answer these questions,
statistical analysis was performed using simulated erroneous data.

The simulated datasets were generated in holder coordinates, using a 100-nm-thick virtual sample with two parallel
surfaces normal to z. As the prerequisite, the true value of the interface normal n must be known. Then, the � and �
angles were randomly chosen in ±40◦ range, and the true values of w and � were calculated. The dataset (�, �, �, w)
was randomly varied to simulated the experimental error. The �, � and � angles were randomly varied in ±1◦ range,
while the projection widths in ±5 nm range. With several erroneous datasets, the interface normal was determined,
and the deviation from the true value, which is called trueness for clarity, was calculated.

In the first analysis, the interface normal was randomly chosen and determined with 6 sets of simulated data. This
process was repeated 10000 times, and the true value was inside the bootstrap confidence interval for 9369 times. This
agrees to the confidence level (95%) of the interval. The true value could be outside the confidence interval when the
datasets (�, �, �, w) have relatively large systematic error, as this problem cannot be figured out from the consistency
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Figure 5: Statistical analysis of the trueness of the results.
(a) Distribution of the average trueness for interface normals chosen within the pole figure viewed from z axis. �, �, � and
w have random errors. The beam directions reached by sample tilting are limited by dashed lines. (b) Same as (a) when
the error is restricted to w. (c) The change of trueness with respect to the number of inputs for a fixed interface normal.

of the datasets.
In the second analysis, 4949 unit vectors evenly distributed on a hemisphere were used as known interface normals.

For each normal, 6 arbitrary conditions (�, �, �, w) were used to compute back an erroneous normal, and its trueness.
Because the trueness is dependent on the orientation conditions, it was averaged over 10000 arbitrary condition sets
for each known normal.

The results are plotted in a pole figure in Figure 5a. It shows an mm symmetry due to the angular area covered by
the sample tilt, limited by the dashed lines in Figure 5a. The average trueness of interface normals ranges between
0.65◦ and 1.35◦, but most of the value is due to the error on w as shown in Figure 5b, where the average trueness is
computed when varying only w. The ring-like shape of trueness in Figure 5a can be understood by inspecting how
errors affect the value of cos in Eq. 4. Using ℎ = d sin  = d

√

1 − (n ⋅ s)2 (Figure 1a inset) and Eq. 2, we can
derive

cos = n ⋅ be =
w
ℎ

√

1 −
(

be ⋅ t
)2 sin  (7)

When the interface normal nmoves from the center to the edge in the pole figure, statistically, sin  =
√

1 − (n ⋅ s)2

will increase, making the value of cos more sensitive to the error of w. In other words, largely inclined planes in
the foil are less precisely determined, because they statistically present orientation conditions where the projection
width is small. Meanwhile, the increase in  makes the direction of n less sensitive to the error of cos , as d =

−d(cos )∕ sin . The two effects having opposite variations, this leads to a trueness distribution with a maximum
value in a ring area inclined about 54◦ with the foil normal (Figure 5b). In common cases, the projection of the
interested interface is not very wide, which means that its normal is not located at the blue part in Figure 5a. Therefore,
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the error of n mainly comes from the error of w.
In the third analysis, the interface normal was fixed to [−0.547, 0.514, 0.661]H, an orientation with the worst

trueness in Figure 5a, while the number of input datasets varied from from 3 to 15. The average of trueness were
computed, again by randomly varying the condition sets over 10000 configurations. As shown in Figure 5c, the trueness
of n would reach 1.7◦ with 6 sets of inputs. It would reach 1.5◦ with 8 sets of inputs, but barely improves afterwards.
Based on the above analysis, 6 to 8 sets of inputs would be the optimal choice.

In practice, it is trivial to reach the data quality (±1◦, ±5nm) in this analysis, and hence to get the results with the
corresponding accuracy. Moreover, data quality can even be improved by imagemeasurements at higher magnification,
and by using Kikuchi patterns.

5.2. Comparison with existing methods

The method proposed here relies on the measurements of the direction and width of interface projections, and
the beam directions. It works both in lattice or holder coordinate systems. The double trace and edge-on methods
can be considered as special cases of the present method in the lattice coordinate system. The geometry model used
here offers a framework to understand the existing projection width methods, which, as shown below, used specific
simplifications of the non-linear part

√

1 −
(

be ⋅ t
)2 in Eq. 2. The summary of the comparison is listed in Table 4.

Table 4
A comparison between this work and previous methods

Method Coordinates Formulas Special requirements Number of inputs

double-trace [5] lattice Eq. (3) another line feature 2
single edge-on [9] lattice Eq. (4) edge-on condition 1
double edge-on [10] lattice Eq. (4) edge-on condition 2
trace & edge-on [12] lattice Eq. (3) and Eq. (4) edge-on condition 3
projection width [13] holder Eq. (4) tilting about the trace 2
projection width [14] holder Eq. (12) tilting axis in screen 2

this work either Eq. (3) and Eq. (4) none ≥ 3

In the double-trace method and edge-on methods, the interface normal is always derived by the cross product of two
vectors. These two vectors can be two traces (double-trace), a projected trace and a beam direction (single edge-on),
a trace and a beam direction (trace & edge-on), or two beam directions (double edge-on). Since the cross product is
equivalent to LSM when solving a determined equation, these methods can all be treated as special cases of Eq. (4),
with the traces determined by Eq. (3).
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Existing projection width methods [13][14] treated the non-linear part
√

1 −
(

be ⋅ t
)2 in Eq. 2 with different

strategies. Zhang and Kelly [13] tilted the sample about the trace direction, resulting in be ⋅t = 0 (?) andw = |dn ⋅ be|.
In their work, the sample thickness ℎ was used rather than d. These two variables have a relationship, ℎ = d cos 

(Figure 1a inset), which is valid only if the two foil surfaces are both perpendicular to the beam direction at zero tilt.
Qiu and Zhang [14] extended this work using the latter assumption, but they substituted

√

1 −
(

be ⋅ t
)2 by taking the

tilting axis of the sample holder as a reference vector. The derivation of this method using the present geometry model
is given in Appendix C.

The limitation of the reference vector method is that this vector r must be parallel to the tilting axis of the sample
holder, otherwise the n × s ⋅ r in Eq. 11 would not have a simple result like x, making it too hard to be solved.
Therefore, the reference vector method cannot be applied to double-tilt holders, because the resulting tilting axis is
neither constant, nor in the screen plane.

In addition, these two methods cannot determine the sign of wi’s without external help, as they only use two
sets of inputs. As shown in this work, the use of at least 3 input sets enables the determination of the sign of wi’s
straightforwardly.

5.3. Generalization of the present method

The presentmethod can also be used as an enhancedmethod to determine the length and the direction of 1D features.
Let l be the projected length of the 1D feature and d be the original length of the 1D feature. Each measurement of a
1D feature projection (bei, lpi, li) will give

[

bei × lpi bei

]T
dl =

[

0 li

]T
(8)

Eq. 8 can be solved the same way as described above. The length vector of the 1D feature can thus be determined.
This approach may be used, for instance, to track accurately the distance between pining points on a dislocation

line or the size of dislocation loops, as long as, 2 traceable features, such as intersection points between dislocation
segments, can be detected. If 3 traceable points can be detected, for instance, to determine dislocation habit plane if
at least 3 points (or 2 lines) can be tracked [16], or to assess the planarity of 4 points (or 3 lines). (i’m not sure to
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understand this sentence)
Since all algorithms proposed here employed LSM, they are equally robust against random errors and scalable

on large datasets. Efficient LSM functions can be found in plenty of math libraries, such as Eigen, LAPACK and
Intel®MKL. Hence the present algorithms can be implemented as a real-time solver (as shown in Supplementary
Material). They also have the potential to be integrated with automatic feature tracking in a tilting series, which could
be a fast and efficient way to automatically measure microstructural features in a foil.

6. Conclusions

A new analytical method to determine interface normals with excessive inputs has been proposed. It is a robust
algorithm based on a generalized geometrical model of interface projection, and it can also automatically deal with a
large amount of data. The validity of the method was verified using experimental observations of interfaces in TEM.
This study proves the reliability and effectiveness of this method, regardless of the input orientation or foil surface
configuration. Given 6 or a few more sets of inputs, even with considerable experimental errors, this method is still
capable of yielding reliable results. It can also be extended to determine 1D features or to check the planarity of a set
of features. The present method is compared with existing approaches, showing that many existing approaches can be
treated as special cases of the present method, while the present method has only few constraints.

A. LSM for solving overdetermined linear equations

For an overdetermined Ax = b equation, e.g., Eq. 4 with m ≥ 3, the least square solution of vector x is x+ =
A+b, where A+ is Moore-Penrose inverse, or pseudo-inverse, of matrix A. The solution has the residual vector,
e = AA+b − b, and the residual error, ‖AA+b − b‖2. This method is applicable for most circumstances. However,
when b = 0, e.g., Eq. 3, this method will only give a trivial solution of x = 0. Ax = 0 is a typical problem of
overdetermined homogeneous linear system, whose solution is the eigen-vector ofATA with the smallest eigen-value.
The residual error of the solution is the smallest eigen-value.
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B. Bootstrap method for estimating confidence intervals

Bootstrap is a statistical technique to estimate the variation of statistics that are computed from a set of data [? ].
Here we use the bootstrap method to estimate the variation, i.e., confidence intervals, of d and n determined by Eq.
4. In Eq. 4, t and sgn(i) are considered as constant parameters in the equation, as they have already been determined.
Thus, the data is composed of m data points of (bei, wi). Then, the data is resampled with replacement to generate
a resampled data set of size m, with which the statistics d∗ and n∗ (star denoting resampled data) can be calculated.
This procedure is repeated 10000 times, the deviations between d∗ and d and the angle between n∗ and n can also be
calculated. The 95% confidence interval of d is given by the 95th percentile of the deviation of d∗. The 95% confidence
interval of n is given by the 95th percentile of the deviation angle of n∗, denoting a confidence cone around n [? ].

C. The projection width method reported in [14]

Here we used the symbols and equations in present work to derive the equations reported in [14].
By replacing t in Eq. 2 with n × s∕‖n × s‖, and temporarily ignoring the absolute sign on be ⋅ n, we get:

w =
ℎbe ⋅ n

√

1 − (n ⋅ s)2 −
(

n × s ⋅ be
)2

(9)

By introducing r, the angle � between tp and r is expressed by:

cos � =
tp ⋅ r
‖tp‖

= n × s ⋅ r
√

1 − (n ⋅ s)2 −
(

n × s ⋅ be
)2

(10)

By substituting Eq. 10 into Eq. 9, we get Eq. 11. ℎ and n have to be combined, for they both need solving.

be ⋅ (
ℎ

n × s ⋅ r
n) = w

cos �
(11)

In the work of Qiu and Zhang, the sample is tilted about y axis with the screen remains unchanged. The xr , yr , zr

vectors at zero tilt in their work are the basis vectors in the holder coordinates system. Therefore, the parameters should
be set as be = [0, 0, 1]TH, r = [0, −1, 0]TH, n = Ry(�)[x, y, z]TH, and s = Ry(�)[0, 0, 1]TH. In addition, the trace
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direction was measured at zero tilt angle by �0, which would directly give t. Similar as Eq. (4), Eq. 12 is constructed
using two sets of Eq. 11 and t ⋅ n = 0. The ± sign is caused by the uncertainty of wi signs, and should be eliminated
by inspecting the trend of projection width change.

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

− sin �1 0 cos �1

− sin �2 0 cos �2

sin �0 −cos �0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

ℎ
x

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

x

y

z

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

w1∕ cos �1

±w2∕ cos �2

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(12)

The solution of Eq. 12 is Eq. 13, the same as reported in their work.

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ℎ

ℎy∕x

ℎz∕x

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= 1
sin(�2 − �1)

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

w1 cos �2
cos �1

∓ w2 cos �1
cos �2

(w1 cos �2cos �1
∓ w2 cos �1

cos �2
) tan �0

w1 sin �2
cos �1

∓ w2 sin �1
cos �2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(13)
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