François-David Collin
email: francois-david.collin@umontpellier.fr

Arnaud Estoup

Jean-Michel Marin

Louis Raynal

Bringing ABC inference to the machine learning realm : AbcRanger, an optimized random forests library for ABC

Keywords: Approximate Bayesian Computation, Random Forests, Model Choice, Parameter Estimation, C++, Python, R

The AbcRanger library provides methodologies for model choice and parameter estimation based on fast and scalable Random Forests, tuned to handle large and/or high dimensional datasets. The library, initially intended for the population genetics ABC framework DIYABC, has been generalized to any ABC reference table generator. At first, computational issues were encountered with the reference ABC-Random Forest. Those issues have been diagnosed by us as friction between "strict" Machine Learning setup and ABC context, and this incited us to modify the C++ implementation of stateof-the-art random forests, ranger, to tailor it for ABC needs: potentially "deep" decision trees are not stored in memory anymore, but are processed by batches in parallel. We focused on memory and thread scalability, ease of use (minimal hyperparameter set). R and python interfaces are provided. A toy example and a population genetics example are presented.

Introduction : challenges for ABC from Population Genetics

In the context of recent advances in population genetics, the number of simulated data in a ABC context could reach over the hundred of thousands (10 5) mark. Similarly, with the advent of multipopulation summary statistics in this domain (see [START_REF] Hivert | Measuring genetic differentiation from pool-seq data[END_REF]) the number of summary statistics computed by ABC (as covariables) could range from several hundreds to tens of thousands (scenario with several populations and combinatorial "explosion" of multi-population statistics). Moreover, not all summary statistics are relevant, and traditional variable selection methods still have to be tuned for each case in an ad hoc manner. From both row and column inflations point of view, classical methods for ABC (k-nn and local methods) don't cope very well with this situation.

[2] and [START_REF] Raynal | ABC random forests for Bayesian parameter inference[END_REF] proposed a novel approach, coined as ABC-random forest or ABC-RF, which relies on Random Forests to provide tractable and efficient methodologies, for both model choice and parameter estimation.

First building block : ABC simulations to generate the Random Forest training database

In a Bayesian context, when the likelihood function is too complex or untractable, several likelihoodfree methods are available to approximate it, including Approximate Bayesian Computation (ABC) [START_REF] Marin | Approximate bayesian computational methods[END_REF]. Given observed data, the basic idea of ABC is to approximate the likelihood of a parameterized model with selected simulations, by comparing the observed data and simulated ones via computed summary statistics. The table of summary statistics for simulated data is called the reference table (see 1). It corresponds to the so called "training dataset" in Machine Learning terminology.

ABC posterior methodologies

Model Choice

Given an observed data, and several (parameterized) models, the purpose is to estimate the best model to fit our data. A reference table combining summary statistics of simulated samples (particles) is generated from each model (models are sampled according to a prior distribution, e.g. by penalizing the model complexity). A Model Choice methodology is an inference method which takes this reference table, the observed data and infers the best fitted model for this data, along with an estimated posterior probability (the probability of the model knowing the observed data), which assesses the fitness of the predicted model.

Parameter Estimation

Given an observed data and one parameterized model, the purpose is to infer one or several parameters for this model given the observed data. An ABC reference table is generated from the model. The Parameter estimation methodology is an inference method which takes this reference table, the observed data and infers one or several parameters, along with the usual Bayesian decorum : posterior distribution, quantiles and so on.

General workflow

A sensible workflow is to first choose a model and then infer its parameters (see 2).

Second building block : Random Forests

Enter the Supervised Machine Learning (SML) realm [START_REF] Friedman | The elements of statistical learning[END_REF]: at the beginning lies a list of pairs of input data/output data {x i , y i } from (X, Y) domain, called a training dataset (the output is also called the target). The objective is to learn the best function f θ (x) parameterized by θ ∈ Θ 5 so that a scalar loss function L : Y × Y → R is minimized on the Θ domain :

f θ = argmin θ L(f (x i), y i)
A specific class of learning function f θ are Random Forests (RF), which we are going to expose. RF are based on CART, Classification and Regression Trees, an algorithm developed by [START_REF] Breiman | Classification and Regression Trees[END_REF].

CART

A CART is a supervised machine learning algorithm which essentially performs a partitioning of the predictor space into disjoint subspaces recursively. A prediction value is obtained and assigned

s 2 s 3 s 4 X 1 X 2 X 2 ≤ s 1 X 1 ≤ s 2 ŷ1 ŷ2 X 1 ≤ s 3 ŷ3 X 2 ≤ s 4 ŷ4 ŷ5
Fig. 3. An example of CART and the associated partition of the two dimensional predictor space. Each splitting condition takes the form X j ≤ s and the prediction at a leaf is denoted ŷ .

to each of those subspaces (or Leaves), computed from the target (output) values of the samples contained in the corresponding leaves. Once the partitioning is done, the result is a binary tree which could predict outcomes from an input data, either classes or continuous values, by routing the data to a leaf, whose assigned value will be used then as prediction (see 3).

Random Forests

Bootstrapping Training Trees

For each node Choose the best split over a random subset of features

Predictor obtained by majority vote (for classification) or mean (for regression)

Fig. 4. Random Forest

Random Forests [START_REF] Breiman | Random forests[END_REF] are a three pronged extension of CART (see 4). First, it is an Ensemble method which trains a set of CART (not just one) and predict the outcome with the majority vote (resp. mean) of this set of trained trees for classification (resp. regression) target (or output data). Second, bootstrapping is applied before each tree training, i.e. training data is randomly sampled (with replacement). And last but not least, in a growing tree, at each node, the best split is computed on a random subset of the features. Those three extensions have multiple benefits; the main ones are lower variance compared to a single CART tree, due to the ensemble method, and unbiasedness, because of the de-correlation of the trees induced by both bootstrapping and random sampling of features. Other advantages are: robustness to noise, variable importance for (almost) free, integrated cross-validation procedure (out-of-bag samples, no need to get a validation dataset), easy parallelization, very good scaling properties (both in rows and columns axes), and availability for both classification and regression targets.

ABC Random Forest

A reference implementation of the ABC-Random Forest setup is given by abcrf [START_REF] Marin | abcrf: Approximate Bayesian Computation via Random Forests[END_REF]. Here, we provide a brief description of ABC Random Forest methodologies for model choice and parameter estimation. The input in both case is the reference table of summary statistics obtained by ABC, the predictor space is the models (discrete) in case of model choice or a specific model parameter for

Model Choice

Model Choice methodology in ABC-RF is two staged. First a classification random forest is trained with the models (classes) as target. The trained random forest model is evaluated on the observed data, getting votes and the best model to fit. Second, using the obtained random forest from the first stage, each sample from the training dataset is labeled classified/misclassified with the out-of-bag prediction and finally as numerical 0 or 1 for a new target. Then, a new regression random forest is trained on the training dataset, but this time with this new target (as continuous, non-categorical one for regression). And finally a prediction on the observed data is evaluated with the obtained random forest, and this predicted value (between 0 and 1) is a viable estimator for the posterior probability of the chosen model.

Parameter Estimation

In ABC Random Forest setup, parameter estimation is limited to one parameter at a time. Choosing a parameter θ to estimate, a regression RF is trained on a reference table generated only with the corresponding model and with the θ parameter values as target, forming the training dataset. Once trained, the regression RF is evaluated on the observed data and several outcomes are obtained, like an estimation of θ, variance, and quantiles with the help of quantile regression forests [START_REF] Meinshausen | Quantile regression forests[END_REF]. It is worth noting that Quantile Forests are not new forests per se but anintegrated -method to compute weights distribution of the samples, knowing an observed (or out-ofbag) data. This distribution is then used to compute quantiles, for example. Finally a set of both prior and posterior estimators is inferred from the RF predictions, for example a prior (resp. posterior) pdf, obtainable via standard kernel density estimation (resp. standard weighted density estimation).

Linear augmentations

As stated in [START_REF] Pudlo | Reliable ABC model choice via random forests[END_REF] (resp. [START_REF] Raynal | ABC random forests for Bayesian parameter inference[END_REF]), for Model choice (resp. parameter estimation), there is the optionenabled by default -to add linear combinations covariables to the existing summary statistics in the reference table via Linear Discriminant Analysis (resp. Partial Least Squares) [START_REF] Friedman | The elements of statistical learning[END_REF]. By refining the partitioning of the trees 6 , this sensibly improves the prediction accuracy of Random Forests outcomes.

Computational limitations with ABC Random Forests reference implementation

Faced with training dataset including 100 000 lines and more than 10 000 summary statistics, abcrf has been found growing trees over one gigabyte of memory size each. So, as typical random forests are made of 500 or 1000 trees for prediction performance, even with state of the art RF packages like [START_REF] Marvin | Ranger: a fast implementation of random forests for high dimensional data in c++ and r[END_REF], memory constraints are preventing completion of the training.

At first, limiting tree depth has been investigated but quickly dismissed because accuracy took an unacceptable hit. This issue has a longer reach than an simple implementation issue and exhibits a fundamental mismatch of objectives between "classical" supervised machine learning setup and ABC posterior methodologies. Indeed, within "pure" SML, a model (like a Random Forest) is first trained, and then used to make predictions on a potentially endless source of new data; the whole model is stored by training and loaded in memory each time for prediction purpose. However, within the ABC inference context, the SML model is only needed for specific predictions directly on one or several observed data sample(s) and out-of-bag samples. Moreover, the corresponding trained Random Forest is coupled to the generated reference table (aka the training dataset), and is by no mean meant to generalize to new data (other reference tables), let alone other model and relevant observed data: in fact storing the forest is useless 7 . Those remarks established the need of an adaptation of random forest algorithm for ABC.

New implementation of Random Forest and ABC Random Forest

Based on our own version of the core RF (written in C++) from the ranger package [START_REF] Marvin | Ranger: a fast implementation of random forests for high dimensional data in c++ and r[END_REF], our new implementation of Random Forest for ABC, AbcRanger, solves the memory constraint issue related to the deep trees. Leveraging the cumulative nature of the ensemble method, Random Forest computations are now done in a joint grow/predict phase for each tree, and then optimized in order to grow a limited batch of trees in memory. As illustrated by fig. 5), this means that the computation of the growing and prediction steps for each tree is executed in a sequential --i.e. batch-wise -order: as now tree growing and predictions are computed in a single pass, predictions and posteriors are then 6. In our previous bi-dimensional example 3, it is similar to add a linear combination of X1 and X2 to our input space, and the resulting partitioning may no longer be horizontally or vertically aligned partitions in the (X1, X2) predictor space.

7. the R package randomForest has indeed an option to discard the forest as soon the test predictions are done

Not in memory anymore Growing trees in memory

To be computed

Just Finished

Accumulated values Observed data

Computed values for this tree Time Now Fig. 5. Window of growing trees stored/accumulated and each tree is finally discarded, freeing the system memory for next growing trees. The trees of the currently processed batch are still computed in parallel to leverage nowadays ubiquitous multicore architectures.

Although this doesn't precludes the in-memory storage of the entire training dataset at once, this way of processing avoids the in-memory storage of the whole forest at no performance cost. In a very constrained memory environment, one should just have to lower the number of computing threads to keep the memory of a training batch in check. A special care has also been taken to the Meinshausen's quantiles computations, completely parallelized and typically unnoticeable on multicore systems. Another advantage over abcrf package: methodologies are now pure C++. So, it is relatively easy to provide wrappers/interfaces to other languages than R, like Python, with the added guarantee that no copy of the reference table happens between the core C++ layer handling the methodology, and the interfaced language providing the reference table.

A toy example application with the ELFI python package

The ELFI python package [START_REF] Lintusaari | Elfi: Engine for likelihood-free inference[END_REF] provides a popular and flexible ABC framework, meant to integrate complex ABC and inferences pipelines. Inspired by the M a(2) toy example used by original ABC authors in [START_REF] Marin | Approximate bayesian computational methods[END_REF], we used a more general M a(q) example for model choice and parameter estimation, fixing q = 10 in the following.

M A(q) is a time series called moving average model of order q defined by :

x t = µ + t - q i=1 ϑ i t-i
where µ is the mean of the series, the ϑ 1 ...ϑq the parameters of the model, and t , t-1 , ... t-q the white noise error terms. For identifiability purposes the parameters should verify the following condition, roots of

Q(u) = 1 - q i=1 ϑ i u i
should be strictly outside the (complex) unit disc, and this is our main prior constraint. We choose another prior for the highest order parameter, θ q , sampled from an uniform distribution (constraint domain).

From the generated examples of M a(10) on a 200-length signal, sampling the prior θ q uniformly in the [START_REF] Hivert | Measuring genetic differentiation from pool-seq data[END_REF][START_REF] Pudlo | Reliable ABC model choice via random forests[END_REF] interval, the usual row of (partial) autocorrelation features seems to be nonconclusive (see [START_REF] Breiman | Classification and Regression Trees[END_REF] to discriminate between, for example M a(8), M a [START_REF] Marvin | Ranger: a fast implementation of random forests for high dimensional data in c++ and r[END_REF] or M a(12).

Model choice:

M a(10) vs "all" (6 ≤ q ≤ 16) An ABC pipeline has been configured with elfi, choosing the default sampler, without rejection (option quantile fixed to 1). For 100 trials, starting with uniform distribution for θ q , all other are constrained by the unity disc root exclusion 10) models are tried with ABC simulations followed by RF model choice inference (choosing from 10 different M A(q) models where 6 ≤ q ≤ 16, with signal length of 200 points and reftables of 2000 particles each). described before, priors for M a [START_REF] Marvin | Ranger: a fast implementation of random forests for high dimensional data in c++ and r[END_REF] are sampled and an observation generated. Summary statistics are the autocorrelations, partial autocorrelations with 0.05, and 0.95 corresponding quantiles, for lags from 1 to 20. Models to choose are from M a(q) with 6 ≤ q ≤ 16. On fig. 7, the performance of the ABC-RF setup is illustrated (python notebook). Also, features coming from LDA linear augmentation are often discriminative, see fig. 8 for one inference example.

Parameter Estimation

For parameter estimation one M a(10) is sampled and observed, and then all parameters are inferred individually with ABC-RF methodology (whith the help of AbcRanger python wrapper). Results are illustrated in fig. 9. All parameters of the model are nicely estimated, and the posterior/prior distributions clearly discriminated, except for the last θ 10 parameter: this is, by essence, the most difficult parameter to infer, but it is expected as it is the highest order coefficient of a 10-polynomial.

A population genetics example

Reftables are generated by DIYABC simulator. DIYABC simulator with RF methodologies, as long than population genetics interpretations are presented in [START_REF] David | Extending approximate bayesian computation with supervised machine learning to infer demographic history from genetic polymorphisms using DIYABC random forest[END_REF]. In this example, several evolutionary models with divergence and/or admixtures events are considered. Prior parameters are population sizes, times of events and the admixture rate (respective proportions of genes from admixed populations). Observed data is generated from the third model (see fig. 10).

The reftable contains a range of summary statistics (130, note that is a relatively low number, our experiments can achieve more than 20000), related to population genetics various measures. Abcranger selected the right model with a posterior probability around 70% (See fig. 11).

For parameter estimation of the admixture rate in model 3, we use another generated reftable, see fig. 12 and13, for posterior inferences. The real value of the parameter is within its inferred confidence interval. Note that inferring the admixture rate is considered as very difficult problem in population genetics, so the deviation from the real value is expected.

Conclusions and perspectives

ABC-RF posterior methodologies are a clean and efficient integration of SML techniques in a model-based approach, although the main objective is not the raw predictive power per se like in a pure machine learning perspective, but easy to get, accurate and interpretable posteriors.

Many ideas emphasized in both posterior methodologies from [START_REF] Pudlo | Reliable ABC model choice via random forests[END_REF] and [START_REF] Raynal | ABC random forests for Bayesian parameter inference[END_REF] have strong connections with Generalized Random Forests framework [START_REF] Athey | Generalized random forests[END_REF]. We would like to explore them in order to extend our developments to other fields than population genetics. Moreover, we intend to pursue the algorithm adaptation of Random Forests for ABC even further, at the tree level: for a growing tree, only encountered leaves should be stored for point estimates and final moments. Thus, the memory footprint of the trees becomes negligible, and their growing could finally be parallelized at full scale.

Finally, by nature of Breiman's CART, the computational bottleneck for random forests lies in the greedy, local split procedure at each node. To alleviate this, they are promising optimizations coming from the Gradient Boosted Trees community [START_REF] Ke | Lightgbm: A highly efficient gradient boosting decision tree[END_REF] and also some inspired by the Deep Learning one like [START_REF] Kontschieder | Deep neural decision forests[END_REF].

Fig. 1 .

 1 Fig. 1. ABC simulations to generate the Random Forest training database

Fig. 6 .

 6 Fig. 6. Example of an M A(10) model. From the left to the right, a M A(10) signal, autocorrelations (correlation of the signal with its own delayed copy), and partial autocorrelations (the dependance of shorter delay removed).

Fig. 7 .

 7 Fig. 7.Model Choice weighted histogram of inferred models: 100 M a(10) models are tried with ABC simulations followed by RF model choice inference (choosing from 10 different M A(q) models where 6 ≤ q ≤ 16, with signal length of 200 points and reftables of 2000 particles each).

 5. the θ parameter for the learning (fitting) function should not be confused with a prior θ parameter of a model in bayesian context.

	Compute simulations with several models, and the reference table
	with model-indexed lines using a simulator (DIYAC, PyABC etc.)
		Apply Model Choice
	Methodology with AbcRanger
		Apply Parameter Estimation
	Methodology with AbcRanger
	Fig. 2. Workflow with AbcRanger
		ŷ5
	ŷ3	ŷ4
	s 1	
	ŷ1	ŷ2

Fig. 8. 10 most ranked summary statistics, sorted by permutation importance. acf i , (resp. pacf i , pacf 1 i , pacf 2 i) are i-lagged autocorrelations (resp. partial autocorrelations, 0.05 and 0.95 corresponding quantiles).