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Abstract—This paper proposes a new methodology inspired
from pattern matching and able to find alarm correlations with
or without prior knowledge about the monitored system. The
data structure can store every observed pattern of correlated
alarms by processing logs online. It can be queried to extract
the patterns of alarms leading to an arbitrary failure. First, we
propose a framework able to represent alarm logs according to
spatio-temporal dependencies. Second, we design a new scalable
data structure, able to store every observed pattern of alarms,
and validate it by simulation. Third, we show how to exploit this
data structure for fault diagnosis.

Index Terms—Fault diagnosis, pattern matching, online algo-
rithm.

I. INTRODUCTION

Telecommunication networks are more and more complex:
they involve different pieces of equipment and technologies,
support heterogeneous and heavy traffic, and have stronger
requirements. Network management has then become a com-
plex, yet crucial task. To detect misbehaviors of the system,
network elements trigger alarm messages that are aggregated
into logs. There can be thousands of alarms fired in a day.

Most fault diagnosis techniques rely on models built from
prior knowledge or by processing and analyzing alarm logs.

A quick overview of fault diagnosis techniques:
a) Chronicles: they are timed causal patterns [10], pre-

sented in the form of acyclic graphs, Petri nets or logical
functions. Some works focus on the construction of chronicles
by processing alarm logs, thus on searching frequent patterns
of a log [7], [9], or a collection of logs [5], [18].

b) Bayesian networks: They are usually built using prior
knowledge of the system. To cope with scalability issues,
various techniques have been developed, like introducing case-
based reasoning [3] or clustering [4].

c) Clustering: [2], [13] group alarms sharing similar
attributes (such as their location or message); [12], [16] cluster
non-overlapping blocks of consecutive alarms by relying on
PCA; and [6] groups alarm blocks sharing similar patterns
using a timed version of the Smith-Wasserman algorithm [17],
but an expert is required to interpret each cluster.

d) Learning techniques: [11] uses random forests in
order to build models from a collection of alarm logs.

All these approaches are based on some statistics and focus
on frequent patterns. On the contrary, our aim is to help for
fault diagnosis, even for rare patterns of events. To do so,
we need to store all the possible patterns. Our proposal is
inspired from pattern-matching data structures. [1] provides a
tree storing a collection of patterns and define suffix links so

that the presence of these patterns in a text can be efficiently
detected. Works related to building a suffix-tree from a given
input text are also relevant since logs of alarms can be modeled
by a word. Building such trees can be done in linear time [14],
[19], [20].

Contributions: In this paper, we propose a data structure,
called DIG-DAG, able to store all the potential chains of
correlations based on the temporal and spatial characteristics
of alarms, and possibly on the prior knowledge of experts. Our
main contributions are:

1) Defining a framework to represent spatio-temporal de-
pendencies in alarm logs (cf. §II).

2) Designing a scalable data structure storing all the ob-
served sequences of correlated alarms and the corre-
sponding online update algorithm (cf. §III).

3) Exploiting this data structure for fault diagnosis and
summarizing a log of alarm (cf. §IV).

4) Evaluating the efficiency of our approach through sim-
ulations on real data and toy examples (cf. §V).

II. MODELING LOGS OF ALARMS

An alarm log is a collection of events appearing in chrono-
logical order. Our goal is to find all potential sequences of
correlated alarms based on the observation of alarm logs, that
are processed online.

In the rest of the paper, we use formal language notations.
Given a finite set Σ, Σ∗ denotes the set of the finite sequences,
called words, on Σ, and ε is the empty word. If w is a word,
|w|a is the number of occurrences of a in w and w≤k is the
prefix of w of length k.

A. Modeling segmented events

An event e = (a, [s, t]) is described by three parameters:
• The interval [s, t] describes when the event is occurring:

the event starts at time s and ends at time t.
• The symbol a represents the alarm type and its attributes.

A spatial attribute can indicate where the event is occur-
ring. We denote by Σ the set of all symbols representing
this information. By a slight abuse of language, we will
call spatial all the information that is not temporal.

Let E = (ei)i∈{1,...,n} be the collection of events of a log.
For all i ∈ {1, . . . , n}, let us denote ei = (ai, [si, ti]). We
make the following assumptions:
(H1) All the starting and ending times of events are distinct.
(H2) Two events with the same symbol have disjoint emission

period: [si, ti] ∩ [sj , tj ] 6= ∅ ⇒ ai 6= aj or i = j.
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These assumptions are not restrictive: we can have a total order
on the emission dates considering the event order in the log.
Overlapping events of the same type are aggregated.

B. Modeling potential causalities between events

The temporal and the spatial information can be used to
decide whether two events have a potential relation. Let e =
(a, [s, t]) and e′ = (a′, [s′, t′]) be two events.
• The temporal relation Rt tests whether two events are

temporally related: eRte′ iff s′ ∈ [s, t].
• The spatial relation Rs tests if two events are spatially

related, given a subset C ⊆ Σ2 representing valid spatial
causalities: eRse′ iff aa′ ∈ C.

Definition 1. An event e is a potential cause of event e′ if
eRte′ ∧ eRse′. In this case, we write e→ e′.

C. Two representations for the aggregation of alarm logs

1) Directed interval graph (DIG): We have defined events
and a potential causality relation between them. This leads to a
first natural graphical representation for an alarm log: let E be
the set of events of the log, and λ : E → Σ; (a, [s, t]) 7→ a be
a labeling function. The triple (E ,→, λ) is a labeled directed
graph, called DIG, whose nodes are the events, labeled by
their symbol, and the arcs are exactly the potential causalities.
Due to the temporal relation, this graph is acyclic.

2) Word representation: As we want an online construction
of our data structure, we need to represent the start and end
of events. To this end, we introduce the alphabet Σ, a disjoint
copy of Σ. Each event e = (a, [s, t]) emits a symbol a at
time s and a symbol ā at time t. The word corresponding
to a collection E of events is the word composed of all the
emitted symbols in their emission order. Note that this word is
independent of the relation C and represents only the potential
temporal causalities. Because of assumption (H1), this word
is uniquely defined, and the following properties hold:
(P1) ∀a ∈ Σ, |w|a = |w|a;
(P2) ∀j ∈ {1, . . . , |w|}, |w≤j |a ≤ |w≤j |a ≤ |w≤j |a + 1.
The right inequality of the second property is a direct conse-
quence of assumption (H2): alarms with the same symbol do
not overlap.

Definition 2. A word is correct if it satisfies properties (P1)
and (P2) and is a correct prefix if it satisfies property (P2).
We denote by L the language of correct prefixes.

One can show that every DIG has unique word representa-
tion. Conversely, one can show that a canonical DIG can be
built from a correct word and C.

D. The language of words to store

Our aim now is to store all the words corresponding to the
paths in a DIG. The word of a path is the sequence of labels
on the nodes along this path. In Fig. 1a, the set of words is
{ε, a, b, c, d, cb, ba, cd, db, cba, dba, cdb, cdba}.

Definition 3. Let w = w1 · · ·wn ∈ L be a correct prefix. the
sub-word wφ(1)wφ(2) · · ·wφ(k) ∈ Σk of w is admissible if:

• ∀j ∈ {1, . . . , k − 1}, wφ(j)wφ(j+1) ∈ C;
• ∀j ∈ {1, . . . , k − 1}, |wφ(j) · · ·wφ(j+1)|wφ(j) = 0.

The language of admissible sub-words of w is denoted L(w).

Theorem 1. Let E be a collection of events, and w be the
correct word built from it. Then the set of labeled paths in
(E ,→, λ) is exactly L(w).

A recursive construction of L(w): One can distinguish
two types of admissible sub-words: the continuable and non-
continuable sub-words. Informally, the continuable sub-words,
Lc(w), are those that can potentially be extended when
considering the next symbols of w.

Theorem 2. L(ε) = Lc(ε) = {ε}. For all w ∈ L and a ∈ Σ,
• if wa ∈ L, then Lc(wa) = Lc(w)∪ (Lc(w)a∩Σ∗C) and
L(wa) = L(w) ∪ (Lc(w)a ∩ Σ∗C).

• if wā ∈ L, L(wā) = L(w) and Lc(wā) = Lc(w) \ Σ∗a.

III. STORING SEQUENCES OF ALARMS

We now define an efficient data structure storing all admis-
sible sub-words L(w) of a correct prefix w. The construction
should be online, discovering symbols of w from left to right.
We call it DIG-DAG for directed interval graph - directed
acyclic graph

A. The DIG-DAG data structure

A natural way to store a set of words is to use a graph, where
words can be read on the paths. To this end, we propose a data
structure D = (V,E, λ,A) with the following properties:
(D1) (V,E) is a directed acyclic graph with node set V and

arc set E, with a unique node q0 with in-degree 0.
(D2) λ is a labeling function λ : V → Σ∪{ε} with λ(q0) = ε

and λ(q) ∈ Σ for any other node.
(D3) A ⊆ V is the set of active nodes, and q0 ∈ A always

holds. We denote by Aa the set of the active nodes
labeled by a.

(D4) For each symbol a, a node p has at most one successor
q with label a, in which case we denote q = g(p, a).
The arc (p, q) is called an a-transition;

(D5) The set of words of all paths from the root is exactly
L(w), and the set of words of all paths from the root to
any active node is exactly Lc(w).

Definition 4. A DIG-DAG for a correct prefix w is a data
structure D = (V,E, λ,A) satisfying properties (D1)–(D5).

This data structure is very close to the notion of automaton.
Here labels are on the nodes instead of on the arcs, g plays the
role of the transition function, q0 is the initial state. Property
(D4) states that the automaton is deterministic. From this
viewpoint, L(w) is the language recognized when every state
is final and Lc(w) is the language recognized when the final
states set is A.

B. Online construction of a compact DIG-DAG

Multiple instances of DIG-DAG satisfy the above properties
for a given word w. Our aim is to build a compact structure
that can be efficiently updated at the reception of each symbol.
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Fig. 1: (a) top: a network involving three machines. The spatial causality is based on the topology, C = Σ2\{ac, ca}; (a) bottom:
the DIG corresponding to a collection of 7 events. Arc (a, c) is discarded according to the relation C. The word corresponding
to the DIG is cbc̄ab̄cādbc̄d̄aāb̄. Consider w = cbc̄ab̄cād its 8 first symbols, we have L(w) = {ε, a, b, c, d, ba, cb, cd, cba} and
Lc(w) = {ε, c, d, cd}. Th. 2 gives Lc(wb) = {ε, b, c, d, cb, db, cd, cdb} and L(wb) = {ε, a, b, c, d, ba, cb, cd, db, cdb, cba}.
(b) top: The DIG-DAG evolution from word w to wb. The (bold) node labeled b has only active (colored) predecessors and
cb ∈ C, so this node is activated. The node with label d has no b-transition, so a new node is created (dashed); (b) bottom: the
DIG-DAG of the correct word. Weights their update are explained in §IV. (c) Split operation, with update of the weights

UPDATE(D, a): For sake of clarity, we decompose the update
procedure in three steps, even if they can be implemented in
a single step. Suppose that A is the set of active nodes and
that the next symbol in the word is a ∈ Σ.

a) Split: Let q be an active node such that r = g(q, a).
Note that necessarily λ(q)a ∈ C. Directly activating r would
induce inconsistencies in the set of stored words if r also has a
predecessor p with p /∈ A. To avoid this, we split the node into
two nodes, r and a new node rs. The predecessors p of r all
satisfy p ∈ A, and the predecessors p of rs all satisfy p /∈ A.
Node rs has the same successors as r. This construction is
illustrated on Fig. 1c.

b) Extend and activate: For each active node q with
λ(q)a ∈ C, after the split operation, we activate g(q, a) if it
exists, or otherwise create a new node successor of q labeled
by a. This step is similar to the DIG-trie update.

c) Merge: Merge all the active leaves with label a into
one single node. The language of correct sub-words is not
modified by this operation.

Theorem 3. Let w ∈ (Σ∪Σ)∗ and a ∈ Σ∪Σ. If wa is a correct
prefix and if D is a DIG-DAG for w, then the UPDATE(D, a)
is a DIG-DAG for wa.

C. Minimal DIG-DAG

The DIG-DAG is generally not minimal: in Fig. 1b (bot-
tom), the two nodes labeled by b could be merged. Minimiza-
tion techniques from automata theory [8], [15] can be adapted
to our context with very minor modifications. We found that
the DIG-DAG construction scales rather well compared to
the minimal DIG-DAG. Note that even if there are efficient
minimization algorithms in this case, their execution time is
significant, which is a reason why we do not use them.

IV. FINDING CAUSES OF A FAILURE

In this section, we present some preliminary works on
exploiting the DIG-DAG data structure to find the most
relevant causalities, hence the causes of a failure. A first

step, done during the DIG-DAG construction is to weight the
data structure. The second step is to exploit these weights to
quantify the correlation between a given context and an alarm.

A. Weighting the DIG-DAG

Let q be a node and a be a symbol. We call context of
q the set P(q) of words labeling paths from q0 to q, and
context of qa the set P(q)a. We denote by nq,a the number
of times the context P(q)a appears in the DIG, that is,
the number of times there is a node labeled by a that has
paths to it labeled by the words of P(q)a. For example, in
Fig. 1a, the context {cba, ba, a} appears twice, and the context
{cdba, bda} appears once. In this paragraph we show how to
maintain the weight nq,a assigned to each arc (q, g(q, a)) in
an online fashion. In arc (p, q), we call q its head.

Intuitively, the following properties should hold:
• The weight of a newly created arc is 1, as it corresponds

to a pattern seen for the first time;
• The weight of an arc is incremented by 1 whenever its

head is re-activated.
Split and merge operations only imply copying arcs and

their weights. Minimizing weighted DIG-DAGs is not possible
since arcs with different weights could be merged.

B. Analysis of the log

We now illustrate how these weights can be exploited. Our
goal is to extract the most likely contexts explaining an alarm.
Let q be a node of the DIG-DAG and a ∈ Σ such that g(q, a)
exists. Let us define the ratio nq,a/nq0,a. Without rigorously
defining the probability P, we can give the interpretation

rq,a =
nq,a
nq0,a

≈ P(q, a)

P(a)
= P(q | a),

and this ratio represents the probability that, given the obser-
vation of a, the context P(q) appeared before. If this ratio
approaches 1, then a is strongly correlated with P(q).
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Fig. 2: Scalability of the DIG-DAG structures.

1) Finding correlations: One can infer a correlation graph
by exploring the DIG-DAG from the root’s successors and
keeping only arcs above a given threshold ρ. Consider ρ =
0.8 and the DIG-DAG from Fig. 1b (bottom). The correlation
graph keeps the chain c→ b→ a and arc c→ d.

2) Fault diagnosis: A DIG-DAG can also be used to find
the origin of a failure related to an alarm a. At reception of a,
after updating the DIG-DAG, one might consider the relevant
paths from the root to the newly activated nodes. Those paths
are all possible explanations of a.

V. SIMULATIONS

We now evaluate the performances of our solution. We first
performed our experiments on a log issued from an experimen-
tal platform, where failures are manually triggered. It contains
1409 events (hence 2818 symbols) involving 27 machines
(physical or virtual), 29 types of alarms, and resulting to
an alphabet of size 73. The underlying system topology is
unknown. The DIG-DAG corresponding to the whole log has
1726 nodes the construction took 16s. The size of the DIG-
DAG differs from that of the minimal DIG-DAG by a small
multiplicative constant (1.18). The consistency of our results
was validated by experts.

As we do not have ground-truth about the real dataset, we
implemented a discrete event simulator to produce artificial
logs. Informally, our log generator is Markovian and relies
on a causal graph (see Fig. 2a), where a symbol is assigned
to each node. Symbols a, h, i,m, n are emitted from M1,
symbols b, c, g, k, `, o, from M2 and d, e, f, j, p from M3, and
the topology is that of Fig. 1a. The relation C is built from
this topology (ad, ae, . . . /∈ C), which discards 21% of the
potential causalities.

Fig. 2b highlights the impact of the expert knowledge on
scalability. Here, we considered the DIG-DAG construction of
an artificial dataset when C or Σ2 is used. We can observe that
the DIG-DAG is 40% smaller with C, as reducing the potential
correlations limits the growth of the DIG-DAG. The gain on
the minimized DIG-DAG is the same. These curves also show
that the DIG-DAG scales very well on this toy example, both
in terms of memory and processing time.

One of the strengths of our approach is to store chains of
causality. We now illustrate the ability of the DIG-DAG to
infer the causality model of Fig. 2a. We use the approach of

§IV-B and extract a sub-graph from the DIG-DAG according
a given threshold ρ. We denote by F (ρ) the arc set of the
extracted DIG-DAG and by G that of the causality graph.

Then, we compare how the extracted DIG-DAG and the
causality graph overlap. The accuracy is evaluated according
to the precision P and recall R performance metrics:

P (ρ) =
|G ∩ F (ρ)|
|F (ρ)|

and R(ρ) =
|G ∩ F (ρ)|
|G|

.

Informally, the recall is the proportion of missed arcs, and the
precision is the proportion of arcs not in the causality graph.

We build a DIG-DAG based on a log of length 1000 and
then measure the precision and the recall as functions ρ.

The precision increases with ρ, while the recall decreases.
On Fig. 2c, the precision can reach 65% with a recall equal
to 1, by choosing ρ = 0.55. Thus, the ratio rq,a is indicative
of the relevance of the potential observed causalities.

The recall decreases for high values of ρ, hence relevant
dependencies will be discarded. In our example, as o can
be consequence either of m or of n, alarm o can appear
under two distinct contexts, thus ratios rg(q0,m),o and rg(q0,n),o
are slightly above 0.5. Note that rg(q0,u),v = 1 for all other
implications u→ v, v 6= o, in our toy model.

Adding spatial information C increases the precision only
for ρ ≤ 0.6. Actually, most false positives for higher ρ are
shortcuts of arcs present in the model, and spatial filtering has
little impact on it: if prior knowledge slightly improves perfor-
mances in this example, its main benefits reside in improving
the scalability and discarding irrelevant correlations.

VI. CONCLUSION

In this article, we presented a pattern matching approach
dedicated to fault diagnosis. We process online logs of alarms
and build a graph structure, called DIG-DAG. It stores all the
spatio-temporal patterns. It can be used to summarize large
logs of alarms involving multiple components and to extract
the patterns of alarms raised before a given outage.

As future work, we plan to generalize the notion of cor-
relation (e.g. a ∧ b → c) to detect more elaborated patterns.
Extending the notion of symbol to embed numerical measure-
ments (and adapting split and merge primitives consequently)
could also be an interesting improvement. At last, we believe
that using our solution after having filtered noise from its input
could improve its accuracy.
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