Anne Bouillard

Marc-Olivier Buob

Maxime Raynal

Achille Salaün

Log Analysis via Space-time Pattern Matching

Keywords: Fault diagnosis, pattern matching, online algorithm

This paper proposes a new methodology inspired from pattern matching and able to find alarm correlations with or without prior knowledge about the monitored system. The data structure can store every observed pattern of correlated alarms by processing logs online. It can be queried to extract the patterns of alarms leading to an arbitrary failure. First, we propose a framework able to represent alarm logs according to spatio-temporal dependencies. Second, we design a new scalable data structure, able to store every observed pattern of alarms, and validate it by simulation. Third, we show how to exploit this data structure for fault diagnosis.

I. INTRODUCTION

Telecommunication networks are more and more complex: they involve different pieces of equipment and technologies, support heterogeneous and heavy traffic, and have stronger requirements. Network management has then become a complex, yet crucial task. To detect misbehaviors of the system, network elements trigger alarm messages that are aggregated into logs. There can be thousands of alarms fired in a day.

Most fault diagnosis techniques rely on models built from prior knowledge or by processing and analyzing alarm logs.

A quick overview of fault diagnosis techniques:

a) Chronicles: they are timed causal patterns [START_REF] Dousson | Situation recognition: Representation and algorithms[END_REF], presented in the form of acyclic graphs, Petri nets or logical functions. Some works focus on the construction of chronicles by processing alarm logs, thus on searching frequent patterns of a log [START_REF] Cram | A complete chronicle discovery approach: application to activity analysis[END_REF], [START_REF] Dousson | Discovering chronicles with numerical time constraints from alarm logs for monitoring dynamic systems[END_REF], or a collection of logs [START_REF] Capacho | Alarm management via temporal pattern learning[END_REF], [START_REF] Subias | Learning chronicles signing multiple scenario instances[END_REF].

b) Bayesian networks: They are usually built using prior knowledge of the system. To cope with scalability issues, various techniques have been developed, like introducing casebased reasoning [START_REF] Bennacer | Selfdiagnosis technique for virtual private networks combining bayesian networks and case-based reasoning[END_REF] or clustering [START_REF] Bennacer | Scalable and fast root cause analysis using inter cluster inference[END_REF]. c) Clustering: [START_REF] Al-Mamory | Intrusion detection alarms reduction using root cause analysis and clustering[END_REF], [START_REF] Julisch | Clustering intrusion detection alarms to support root cause analysis[END_REF] group alarms sharing similar attributes (such as their location or message); [START_REF] Johannesmeyer | Pattern matching in historical data[END_REF], [START_REF] Singhal | Matching patterns from historical data using PCA and distance similarity factors[END_REF] cluster non-overlapping blocks of consecutive alarms by relying on PCA; and [START_REF] Cheng | Pattern matching of alarm flood sequences by a modified Smith-Waterman algorithm[END_REF] groups alarm blocks sharing similar patterns using a timed version of the Smith-Wasserman algorithm [START_REF] Smith | Identification of common molecular subsequences[END_REF], but an expert is required to interpret each cluster.

d) Learning techniques: [START_REF] Gonzalez | Root cause analysis of network failures using machine learning and summarization techniques[END_REF] uses random forests in order to build models from a collection of alarm logs.

All these approaches are based on some statistics and focus on frequent patterns. On the contrary, our aim is to help for fault diagnosis, even for rare patterns of events. To do so, we need to store all the possible patterns. Our proposal is inspired from pattern-matching data structures. [START_REF] Aho | Efficient string matching: An aid to bibliographic search[END_REF] provides a tree storing a collection of patterns and define suffix links so that the presence of these patterns in a text can be efficiently detected. Works related to building a suffix-tree from a given input text are also relevant since logs of alarms can be modeled by a word. Building such trees can be done in linear time [START_REF] Mccreight | A space-economical suffix tree construction algorithm[END_REF], [START_REF] Ukkonen | On-line construction of suffix trees[END_REF], [START_REF] Weiner | Linear pattern matching algorithms[END_REF].

Contributions:

In this paper, we propose a data structure, called DIG-DAG, able to store all the potential chains of correlations based on the temporal and spatial characteristics of alarms, and possibly on the prior knowledge of experts. Our main contributions are:

1) Defining a framework to represent spatio-temporal dependencies in alarm logs (cf. §II). 2) Designing a scalable data structure storing all the observed sequences of correlated alarms and the corresponding online update algorithm (cf. §III). 3) Exploiting this data structure for fault diagnosis and summarizing a log of alarm (cf. §IV). 4) Evaluating the efficiency of our approach through simulations on real data and toy examples (cf. §V).

II. MODELING LOGS OF ALARMS

An alarm log is a collection of events appearing in chronological order. Our goal is to find all potential sequences of correlated alarms based on the observation of alarm logs, that are processed online.

In the rest of the paper, we use formal language notations. Given a finite set Σ, Σ * denotes the set of the finite sequences, called words, on Σ, and is the empty word. If w is a word, |w| a is the number of occurrences of a in w and w ≤k is the prefix of w of length k.

A. Modeling segmented events

An event e = (a, [s, t]) is described by three parameters:

• The interval [s, t] describes when the event is occurring:

the event starts at time s and ends at time t. • The symbol a represents the alarm type and its attributes.

A spatial attribute can indicate where the event is occurring. We denote by Σ the set of all symbols representing this information. By a slight abuse of language, we will call spatial all the information that is not temporal. Let E = (e i) i∈{1,...,n} be the collection of events of a log. For all i ∈ {1, . . . , n}, let us denote e i = (a i , [s i , t i]). We make the following assumptions: (H1) All the starting and ending times of events are distinct. (H2) Two events with the same symbol have disjoint emission period:

[s i , t i] ∩ [s j , t j] = ∅ ⇒ a i = a j or i = j.
978-3-903176-14-0 © 2018 IFIP These assumptions are not restrictive: we can have a total order on the emission dates considering the event order in the log.

Overlapping events of the same type are aggregated.

B. Modeling potential causalities between events

The temporal and the spatial information can be used to decide whether two events have a potential relation. Let e = (a, [s, t]) and e = (a , [s , t]) be two events. We have defined events and a potential causality relation between them. This leads to a first natural graphical representation for an alarm log: let E be the set of events of the log, and λ : E → Σ; (a, [s, t]) → a be a labeling function. The triple (E, →, λ) is a labeled directed graph, called DIG, whose nodes are the events, labeled by their symbol, and the arcs are exactly the potential Due to the temporal relation, this graph is acyclic.

2) Word representation: As we want an online construction of our data structure, we need to represent the start and end of events. To this end, we introduce the alphabet Σ, a disjoint copy of Σ. Each event e = (a, [s, t]) emits a symbol a at time s and a symbol ā at time t. The word corresponding to a collection E of events is the word composed of all the emitted symbols in their emission order. Note that this word is independent of the relation C and represents only the potential temporal causalities. Because of assumption (H1), this word is uniquely defined, and the following properties hold:

(P1) ∀a ∈ Σ, |w| a = |w| a ; (P2) ∀j ∈ {1, . . . , |w|}, |w ≤j | a ≤ |w ≤j | a ≤ |w ≤j | a + 1.
The right inequality of the second property is a direct consequence of assumption (H2): alarms with the same symbol do not overlap. Definition 2. A word is correct if it satisfies properties (P1) and (P2) and is a correct prefix if it satisfies property (P2). We denote by L the language of correct prefixes.

One can show that every DIG has unique word representation. Conversely, one can show that a canonical DIG can be built from a correct word and C.

D. The language of words to store

Our aim now is to store all the words corresponding to the paths in a DIG. The word of a path is the sequence of labels on the nodes along this path. In Fig. 1a, the set of words is { , a, b, c, d, cb, ba, cd, db, cba, dba, cdb, cdba}.

Definition 3. Let w = w 1 • • • w n ∈ L be a correct prefix. the sub-word w φ(1) w φ(2) • • • w φ(k) ∈ Σ k of w is admissible if: • ∀j ∈ {1, . . . , k -1}, w φ(j) w φ(j+1) ∈ C; • ∀j ∈ {1, . . . , k -1}, |w φ(j) • • • w φ(j+1) | w φ(j) = 0.
The language of admissible sub-words of w is denoted L(w).

Theorem 1. Let E be a collection of events, and w be the correct word built from it. Then the set of labeled paths in (E, →, λ) is exactly L(w).

A recursive construction of L(w): One can distinguish two types of admissible sub-words: the continuable and noncontinuable sub-words. Informally, the continuable sub-words, L c (w), are those that can potentially be extended when considering the next symbols of w.

Theorem 2. L() = L c () = { }. For all w ∈ L and a ∈ Σ, • if wa ∈ L, then L c (wa) = L c (w) ∪ (L c (w)a ∩ Σ * C) and L(wa) = L(w) ∪ (L c (w)a ∩ Σ * C). • if wā ∈ L, L(wā) = L(w) and L c (wā) = L c (w) \ Σ * a.

III. STORING SEQUENCES OF ALARMS

We now define an efficient data structure storing all admissible sub-words L(w) of a correct prefix w. The construction should be online, discovering symbols of w from left to right. We call it DIG-DAG for directed interval graph -directed acyclic graph A. The DIG-DAG data structure A natural way to store a set of words is to use a graph, where words can be read on the paths. To this end, we propose a data structure D = (V, E, λ, A) with the following properties: (D1) (V, E) is a directed acyclic graph with node set V and arc set E, with a unique node q 0 with in-degree 0. (D2) λ is a labeling function λ : V → Σ∪{ } with λ(q 0) = and λ(q) ∈ Σ for any other node. (D3) A ⊆ V is the set of active nodes, and q 0 ∈ A always holds. We denote by A a the set of the active nodes labeled by a. (D4) For each symbol a, a node p has at most one successor q with label a, in which case we denote q = g(p, a). The arc (p, q) is called an a-transition; (D5) The set of words of all paths from the root is exactly L(w), and the set of words of all paths from the root to any active node is exactly L c (w). This data structure is very close to the notion of automaton. Here labels are on the nodes instead of on the arcs, g plays the role of the transition function, q 0 is the initial state. Property (D4) states that the automaton is deterministic. From this viewpoint, L(w) is the language recognized when every state is final and L c (w) is the language recognized when the final states set is A.

B. Online construction of a compact DIG-DAG

Multiple instances of DIG-DAG satisfy the above properties for a given word w. Our aim is to build a compact structure that can be efficiently updated at the reception of each symbol. For sake of clarity, we decompose the update procedure in three steps, even if they can be implemented in a single step. Suppose that A is the set of active nodes and that the next symbol in the word is a ∈ Σ. a) Split: Let q be an active node such that r = g(q, a). Note that necessarily λ(q)a ∈ C. Directly activating r would induce inconsistencies in the set of stored words if r also has a predecessor p with p / ∈ A. To avoid this, we split the node into two nodes, r and a new node r s . The predecessors p of r all satisfy p ∈ A, and the predecessors p of r s all satisfy p / ∈ A. Node r s has the same successors as r. This construction is illustrated on Fig. 1c.

b) Extend and activate: For each active node q with λ(q)a ∈ C, after the split operation, we activate g(q, a) if it exists, or otherwise create a new node successor of q labeled by a. This step is similar to the DIG-trie update.

c) Merge: Merge all the active leaves with label a into one single node. The language of correct sub-words is not modified by this operation.

C. Minimal DIG-DAG

The DIG-DAG is generally not minimal: in Fig. 1b (bottom), the two nodes labeled by b could be merged. Minimization techniques from automata theory [START_REF] Daciuk | Incremental construction of minimal acyclic finite-state automata[END_REF], [START_REF] Revuz | Minimisation of acyclic deterministic automata in linear time[END_REF] can be adapted to our context with very minor modifications. We found that the DIG-DAG construction scales rather well compared to the minimal DIG-DAG. Note that even if there are efficient minimization algorithms in this case, their execution time is significant, which is a reason why we do not use them.

IV. FINDING CAUSES OF A FAILURE

In this section, we present some preliminary works on exploiting the DIG-DAG data structure to find the most relevant causalities, hence the causes of a failure. A first step, done during the DIG-DAG construction is to weight the data structure. The second step is to exploit these weights to quantify the correlation between a given context and an alarm.

A. Weighting the DIG-DAG

Let q be a node and a be a symbol. We call context of q the set P(q) of words labeling paths from q 0 to q, and context of qa the set P(q)a. We denote by n q,a the number of times the context P(q)a appears in the DIG, that is, the number of times there is a node labeled by a that has paths to it labeled by the words of P(q)a. For example, in Fig. 1a, the context {cba, ba, a} appears twice, and the context {cdba, bda} appears once. In this paragraph we show how to maintain the weight n q,a assigned to each arc (q, g(q, a)) in an online fashion. In arc (p, q), we call q its head.

Intuitively, the following properties should hold:

• The weight of a newly created arc is 1, as it corresponds to a pattern seen for the first time; • The weight of an arc is incremented by 1 whenever its head is re-activated. Split and merge operations only imply copying arcs and their weights. Minimizing weighted DIG-DAGs is not possible since arcs with different weights could be merged.

B. Analysis of the log

We now illustrate how these weights can be exploited. Our goal is to extract the most likely contexts explaining an alarm. Let q be a node of the DIG-DAG and a ∈ Σ such that g(q, a) exists. Let us define the ratio n q,a /n q0,a . Without rigorously defining the probability P, we can give the interpretation r q,a = n q,a n q0,a ≈ P(q, a) P(a) = P(q | a), and this ratio represents the probability that, given the observation of a, the context P(q) appeared before. If this ratio approaches 1, then a is strongly correlated with P(q). 2) Fault diagnosis: A DIG-DAG can also be used to find the origin of a failure related to an alarm a. At reception of a, after updating the DIG-DAG, one might consider the relevant paths from the root to the newly activated nodes. Those paths are all possible explanations of a.

V. SIMULATIONS

We now evaluate the performances of our solution. We first performed our experiments on a log issued from an experimental platform, where failures are manually triggered. It contains 1409 events (hence 2818 symbols) involving 27 machines (physical or virtual), 29 types of alarms, and resulting to an alphabet of size 73. The underlying system topology is unknown. The DIG-DAG corresponding to the whole log has 1726 nodes the construction took 16s. The size of the DIG-DAG differs from that of the minimal DIG-DAG by a small multiplicative constant (1.18). The consistency of our results was validated by experts.

As we do not have ground-truth about the real dataset, we implemented a discrete event simulator to produce artificial logs. Informally, our log generator is Markovian and relies on a causal graph (see Fig. 2a), where a symbol is assigned to each node. Symbols a, h, i, m, n are emitted from M 1 , symbols b, c, g, k, , o, from M 2 and d, e, f, j, p from M 3 , and the topology is that of Fig. 1a. The relation C is built from this topology (ad, ae, . . . / ∈ C), which discards 21% of the potential causalities. Fig. 2b highlights the impact of the expert knowledge on scalability. Here, we considered the DIG-DAG construction of an artificial dataset when C or Σ 2 is used. We can observe that the DIG-DAG is 40% smaller with C, as reducing the potential correlations limits the growth of the DIG-DAG. The gain on the minimized DIG-DAG is the same. These curves also show that the DIG-DAG scales very well on this toy example, both in terms of memory and processing time.

One of the strengths of our approach is to store chains of causality. We now illustrate the ability of the DIG-DAG to infer the causality model of Fig. 2a. We use the approach of §IV-B and extract a sub-graph from the DIG-DAG according a given threshold ρ. We denote by F (ρ) the arc set of the extracted DIG-DAG and by G that of the causality graph. Then, we compare how the extracted DIG-DAG and the causality graph overlap. The accuracy is evaluated according to the precision P and recall R performance metrics:

P (ρ) = |G ∩ F (ρ)| |F (ρ)| and R(ρ) = |G ∩ F (ρ)| |G| .
Informally, the recall is the proportion of missed arcs, and the precision is the proportion of arcs not in the causality graph. We build a DIG-DAG based on a log of length 1000 and then measure the precision and the recall as functions ρ.

The precision increases with ρ, while the recall decreases. On Fig. 2c, the precision can reach 65% with a recall equal to 1, by choosing ρ = 0.55. Thus, the ratio r q,a is indicative of the relevance of the potential observed causalities.

The recall decreases for high values of ρ, hence relevant dependencies will be discarded. In our example, as o can be consequence either of m or of n, alarm o can appear under two distinct contexts, thus ratios r g(q0,m),o and r g(q0,n),o are slightly above 0.5. Note that r g(q0,u),v = 1 for all other implications u → v, v = o, in our toy model.

Adding spatial information C increases the precision only for ρ ≤ 0.6. Actually, most false positives for higher ρ are shortcuts of arcs present in the model, and spatial filtering has little impact on it: if prior knowledge slightly improves performances in this example, its main benefits reside in improving the scalability and discarding irrelevant correlations.

VI. CONCLUSION

In this article, we presented a pattern matching approach dedicated to fault diagnosis. We process online logs of alarms and build a graph structure, called DIG-DAG. It stores all the spatio-temporal patterns. It can be used to summarize large logs of alarms involving multiple components and to extract the patterns of alarms raised before a given outage.

As future work, we plan to generalize the notion of correlation (e.g. a ∧ b → c) to detect more elaborated patterns. Extending the notion of symbol to embed numerical measurements (and adapting split and merge primitives consequently) could also be an interesting improvement. At last, we believe that using our solution after having filtered noise from its input could improve its accuracy.

Definition 4 .

 4 A DIG-DAG for a correct prefix w is a data structure D = (V, E, λ, A) satisfying properties (D1)-(D5).

 An example of DIG.

Fig. 1 :

 1 Fig. 1: (a) top: a network involving three machines. The spatial causality is based on the topology, C = Σ 2 \{ac, ca}; (a) bottom: the DIG corresponding to a collection of 7 events. Arc (a, c) is discarded according to the relation C. The word corresponding to the DIG is cbca bcādbc daā b. Consider w = cbca bcād its 8 first symbols, we have L(w) = { , a, b, c, d, ba, cb, cd, cba} and L c (w) = { , c, d, cd}. Th. 2 gives L c (wb) = { , b, c, d, cb, db, cd, cdb} and L(wb) = { , a, b, c, d, ba, cb, cd, db, cdb, cba}. (b) top: The DIG-DAG evolution from word w to wb. The (bold) node labeled b has only active (colored) predecessors and cb ∈ C, so this node is activated. The node with label d has no b-transition, so a new node is created (dashed); (b) bottom: the DIG-DAG of the correct word. Weights their update are explained in §IV. (c) Split operation, with update of the weights

Theorem 3 .

 3 Let w ∈ (Σ∪Σ) * and a ∈ Σ∪Σ. If wa is a correct prefix and if D is a DIG-DAG for w, then the UPDATE(D, a) is a DIG-DAG for wa.

2

 2 Minimal DIG-DAG with Σ 2 DIG-DAG with C Minimal DIG-DAG with C (b) Impact of the spatial relation C.

Fig. 2 : 1)

 21 Fig. 2: Scalability of the DIG-DAG structures.

•

 The temporal relation R t tests whether two events are temporally related: eR t e iff s ∈ [s, t]. • The spatial relation R s tests if two events are spatially related, given a subset C ⊆ Σ 2 representing valid spatial causalities: eR s e iff aa ∈ C. Definition 1. An event e is a potential cause of event e if eR t e ∧ eR s e . In this case, we write e → e .

C. Two representations for the aggregation of alarm logs 1) Directed interval graph (DIG):