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ABSTRACT

Many natural systems undergo critical transitions, i.e. sudden shifts from

one dynamical regime to another. In the climate system, the atmospheric

boundary layer can experience sudden transitions between fully turbulent

states and quiescent, quasi-laminar states. Such rapid transitions are observed

in Polar regions or at night when the atmospheric boundary layer is stably

stratified, and they have important consequences in the strength of mixing

with the higher levels of the atmosphere. To analyze the stable boundary layer,

many approaches rely on the identification of regimes that are commonly de-

noted as weakly and very stable regimes. Detecting transitions between the

regimes is crucial for modeling purposes.

In this work a combination of methods from dynamical systems and statisti-

cal modeling is applied to study these regime transitions and to develop an

early-warning signal that can be applied to non-stationary field data. The pre-

sented metric aims at detecting nearing transitions by statistically quantifying

the deviation from the dynamics expected when the system is close to a sta-

ble equilibrium. An idealized stochastic model of near-surface inversions is

used to evaluate the potential of the metric as an indicator of regime transi-

tions. In this stochastic system, small-scale perturbations can be amplified

due to the nonlinearity, resulting in transitions between two possible equilib-

ria of the temperature inversion. The simulations show such noise-induced

regime transitions, successfully identified by the indicator. The indicator is

further applied to time series data from nocturnal and Polar meteorological

measurements.
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1. Introduction41

The atmospheric boundary layer (ABL) is the lowest part of the atmosphere that is directly influ-42

enced by the Earth’s surface and across which turbulent exchanges of momentum, heat and matter43

between the surface and the free atmosphere occur. During daytime, surface warming leads to an44

unstable or convective boundary layer. During clear-sky nights, radiative cooling leads to a sur-45

face that is cooler than the air aloft and the ABL becomes stably stratified. The stable stratification46

can also arise when warm air is advected over a colder surface, which is a frequent event in Polar47

regions. Turbulence in the resulting stable boundary layer (SBL) is subject to buoyant damping48

and is only maintained through mechanical production of turbulent kinetic energy (TKE). Under-49

standing and modeling the SBL is essential for regional and global atmospheric models, yet there50

are many well-documented challenges to simulate stably stratified atmospheric flows (Sandu et al.51

2013; Holtslag et al. 2013; LeMone et al. 2018). One of the challenges is to develop an accu-52

rate understanding and representation of distinct regimes of the SBL and transitions between them53

(Baas et al. 2017).54

Numerous observational and modeling studies show that the SBL can be classified, to a first55

approximation, in a weakly stable regime in which turbulence is continuous, and a very stable56

regime with patchy and intermittent turbulence, requiring a different modeling approach (Mahrt57

2014). The weakly stable regime typically occurs when cloud cover limits nocturnal radiative58

cooling at the land surface, or with strong winds associated to wind shear that produces enough59

TKE to sustain turbulence. The vertical mixing is therefore maintained and a well-defined bound-60

ary layer usually exists in which turbulent quantities decrease upwards from the surface layer61

following the classical model of Monin-Obukhov similarity theory and related existing concepts62

(Mahrt 2014). The associated temperature stratification, or temperature inversion, is weak. The63
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strongly stable regime occurs with strong stratification and weak winds and does not follow the64

traditional concept of a boundary layer. Transitions from weakly stable to strongly stable regimes65

are caused by a strong net radiative cooling at the surface which increases the inversion strength66

and eventually leads to suppressed vertical exchanges, unless winds are strong enough to maintain67

turbulence (van de Wiel et al. 2007). The reduced vertical mixing results in a decoupling from the68

surface, such that similarity theory breaks down (Acevedo et al. 2015). Intermittent bursts tend to69

be responsible for most of the turbulent transport (Acevedo et al. 2006; Vercauteren et al. 2016).70

Such bursts alter the temperature inversion and can sometimes drive transitions from strongly to71

weakly stable boundary layers.72

Transitions between the different SBL regimes have been found by modeling studies to be dy-73

namically unpredictable. Based on a numerical model representing the exchanges between the74

surface and the SBL using a very simple two-layer scheme, McNider (1995) showed the existence75

of bi-stable equilibria of the system, which can thus transition between very different states under76

the influence of random perturbations. Interacting nonlinear processes that lead to this bi-stability77

partly involve thermal processes at the land surface, as was highlighted following the hypothesis78

that continuous turbulence requires the turbulence heat flux to balance the surface energy demand79

resulting from radiative cooling (van de Wiel et al. 2007, 2012b, 2017). According to this max-80

imum sustainable heat flux hypothesis, a radiative heat loss that is stronger than the maximum81

turbulent heat flux that can be supported by the flow with a given wind profile will lead to the82

cessation of turbulence (van de Wiel et al. 2012a) and thus to a regime transition. This concept is83

used by van Hooijdonk et al. (2015) to show that the shear over a layer of certain thickness can84

predict SBL regimes when sufficient averaging of data is considered. Based on observations, Sun85

et al. (2012) identify a height and site-dependent wind speed threshold that triggers a transition86

between a regime in which turbulence increases slowly with increasing wind speed from a regime87
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where turbulence increases rapidly with the wind speed. The change of the relationship between88

the turbulence and the mean wind speed occurs abruptly at the transition. Sun et al. (2016) attribute89

this difference to the turbulent energy partitioning between turbulent kinetic energy and turbulent90

potential energy (TPE): in the very stable regime, shear-induced turbulence will have to enhance91

the TPE in order to counter the stable stratification before enhancing the TKE.92

The combined importance of the wind speed and of the surface thermal processes has also been93

evidenced by numerical studies using idealized single-column models of the atmosphere. Single-94

column models with a first-order turbulence closure scheme (Baas et al. 2017, 2019; Holdsworth95

and Monahan 2019) or a second-order closure scheme (Maroneze et al. 2019) are able to rep-96

resentatively simulate transitions from weakly to strongly-stable regimes. Yet, direct numerical97

simulations show that transitions from strongly to weakly-stable regimes can occur following a98

localized, random perturbation of the flow (Donda et al. 2015). Field studies have also highlighted99

examples of transitions induced by small-scale perturbations of the flow (Sun et al. 2012). In fact,100

a statistical classification scheme introduced by Vercauteren and Klein (2015) shows that the SBL101

flow transitions between periods of strong and weak influence of small-scale, non-turbulent flow102

motions on TKE production in the SBL. Such submeso-scale fluctuations of the flow (e.g. induced103

by various kind of surface heterogeneity) are typically not represented in models but are important104

in strongly stable regimes (Vercauteren et al. 2019), and may trigger regime transitions. Stochastic105

modeling approaches are a promising framework to analyze their impact on regime transitions.106

A related statistical classification of the Reynolds-averaged boundary-layer states introduced by107

Monahan et al. (2015) highlighted that regime transitions are a common feature of SBL dynamics108

around the globe (Abraham and Monahan 2019). Regime transitions typically take an abrupt char-109

acter (Baas et al. 2019; Acevedo et al. 2019). Predicting the transition point remains a challenge110

(van Hooijdonk et al. 2016).111
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Abrupt or critical transitions are ubiquitous in complex natural and social systems. The con-112

cept of critical transition is formally defined in dynamical systems theory and relates to the notion113

of bifurcation (Kuznetsov 2013). When the dynamics is controlled by a system of equations de-114

pending on an external parameter (often called forcing), the stability of the equilibrium solutions115

can change abruptly and this is also reflected on macroscopic observables of the system. Some-116

times, one can have early-warning signals of a transition because the systems experience some117

influences of the bifurcated state before actually reaching it. The motion of a particle undergo-118

ing random fluctuations in an asymmetric double-well energy potential V is a minimal system to119

detect early warnings, in which each well or local minimum of the energy potential corresponds120

to a stable equilibrium state of the system. For a small fixed level of noise, the control parameter121

is ∆V , the depth of the well in which the particle is located, leading to an energy barrier that the122

particle has to overcome in order to transition to the second stable equilibrium. If ∆V is large, the123

distribution of the positions of the particle will be quasi Gaussian and the autocorrelation function124

of the position of the particle will have an exponential decay. Conversely, if ∆V is reduced when125

the particle approaches the bifurcation point, then the particle position’s distribution starts to “feel”126

the effect of the other state and the distribution will be skewed towards the new state. Similarly, the127

excursions from the equilibrium position will become larger, increasing the autocorrelation time.128

Early-warning signals can then, e.g., be defined based on the changes of the autocorrelation time.129

These first early-warning signs have been successfully applied to several systems with excellent130

results (Scheffer et al. 2009, 2012), including the present context of SBL regime transitions (van131

Hooijdonk et al. 2016). However, sometimes, transitions can happen without detectable early-132

warnings (Hastings and Wysham 2010). The main limitation of early-warning signals based on133

the increase of autocorrelation is that their activation does not always correspond to a bifurcation.134

Indeed, if a single well potential widens, as it can occur in non-stationary systems, the distribution135
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of a particle’s position experiences the same increase in skewness and autocorrelation function136

without the need of approaching a bifurcation (Lenton et al. 2012; Faranda et al. 2014). In our137

context of SBL flows, non-stationarity of the energy potential governing the dynamics can be due138

to changes in the mean wind speed or cloud cover, for example. For these reasons, (Faranda139

et al. 2014) have introduced a new class of early-warning indicators based on defining a distance140

from the dynamics expected from a particle evolving in a single-well potential. The suggested141

indicator statistically quantifies the dynamical stability of the observables and was already used142

by Nevo et al. (2017) to show that strongly stable flow regimes are dynamically unstable and may143

require high-order turbulence closure schemes to represent the dynamics. Alternative new early144

warnings are based on the combination of statistical properties of observables when approaching145

the bifurcation (Chen et al. 2012).146

In the present analysis, we investigate if the early-warning indicator introduced by Faranda147

et al. (2014) can be used to detect nearing transitions between SBL flow regimes, based on both148

simulated data and field measurements. We show that the conceptual model that was recently149

suggested by van de Wiel et al. (2017) to understand SBL regime transitions in terms of thermal150

coupling of the land surface is equivalent to a dynamical system representing the evolution of151

the temperature inversion evolving in a double-well energy potential. We extend this conceptual152

model to a stochastic model where added noise represents the effect of natural fluctuations of the153

temperature inversion’s rate of change. The resilience of equilibria of the non-random model to154

perturbations as well as the bifurcation points are known analytically (as was discussed in van de155

Wiel et al. (2017)), and we thus use the simulated data to test our indicator. Additionally, the156

indicator relies on calculating statistical properties of the data with a moving window approach157

and is sensitive to the choice of the window length. We suggest two complementary, data-driven158

but physically justified approaches to define an appropriate window length for which results can159
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be trusted. Finally, the indicator is applied to nocturnal temperature inversion data from a site in160

Dumosa, Australia as well as from temperature inversion data from Dome C, Antartica.161

2. Analyzing the dynamical stability of stable boundary layer regimes162

The goal of our study is to investigate if a statistical early-warning indicator of regime transitions163

can be successfully used to detect nearing regime transitions in the SBL. In section a, the concep-164

tual model introduced by van de Wiel et al. (2017) to study regime transitions will be introduced,165

along with its dynamical stability properties. In section b, the model is extended to a stochastic166

model in which noise represents fluctuations in the dynamics of the near-surface temperature in-167

version. In section c, we present a statistical indicator that was introduced in Faranda et al. (2014)168

and applied to SBL turbulence data in Nevo et al. (2017) to estimate the dynamical equilibrium169

properties of time series, based on a combination of dynamical systems concepts and stochastic170

processes tools. The conceptual model describes the evolution of the near-surface temperature in-171

version and is used to produce time series of controlled data for which the theoretical equilibrium172

properties are known.173

a. Model description and linear stability analysis174

A conceptual model was introduced by van de Wiel et al. (2017) to study regime transitions of175

near-surface temperature inversions in the nocturnal and polar atmospheric boundary layer. The176

authors were able to determine a connection between the dynamical stability of the temperature177

inversion and the ambient wind speed U through their model and measurements. Mathematically178

speaking, the model is a dynamical system represented by a first order ordinary differential179

equation, abbreviated ODE, which describes the time evolution of the difference between the180

temperature at a reference height Tr and the surface temperature Ts. Although the equilibrium181
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properties of the system and the dynamical stability properties (i.e. the resilience to perturbations)182

of all equilibria states were thoroughly discussed in van de Wiel et al. (2017), for the sake of183

completeness we briefly introduce the model and summarize the linear stability analysis of184

equilibrium points of the resulting ODE for different values of a bifurcation parameter. The185

bifurcation parameter is related to the ambient wind speed.186

187

Assuming that the wind speed and temperature are constant at a given height zr, the fol-188

lowing equation describes the evolution of the near-surface inversion strength, based on a simple189

energy balance at the ground surface:190

cv
d∆T
dt

= Qn−G−H. (1)

In this energy balance model, cv is the heat capacity of the soil, ∆T = Tr − Ts is the inversion191

strength between the temperature at height zr and at the surface zs, Qn is the net long wave radiative192

flux (an energy loss at the surface that will be set as a constant), G is the soil heat flux (an energy193

storage term that will be parameterized as a linear term), and H is the turbulent sensible heat flux194

(a non-linear energy transport term that will be parameterized in the following).195

After parameterizing the fluxes, the model has the form:196

cv
d∆T
dt

= Qi−λ∆T −ρcpcDU∆T f (Rb), (2)

in which Qi is the isothermal net radiation, λ is a lumped parameter representing all feedbacks197

from soil heat conduction and radiative cooling as a net linear effect, ρ is the density of air at198

constant pressure, cp is the heat capacity of air at constant pressure, cD = ( κ

ln(zr/z0)
)2 is the neutral199

drag coefficient with κ ≈ 0.4 the von Kármán constant, z0 the roughness length and zr the reference200

height, U is the wind speed at height zr, Rb = zr(
g
Tr
)∆T

U2 is the bulk Richardson number, and f (Rb)201

is the stability function used in Monin-Obukhov similarity theory.202
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The lumped parameter λ corresponds to a linear term in the model as the soil is assumed to203

respond linearly to the temperature inversion. Moreover, ∆T · f (Rb) is a non-linear term due to204

the non-linear dependence of turbulent diffusion on the vertical temperature gradient.205

206

Following van de Wiel et al. (2017), instead of analyzing the dynamical stability of the207

energy-balance model (2) itself, we will present the linear stability analysis of a simplified system208

that has a similar mathematical structure but is mathematically convenient to analyze. Using a209

cutoff, linear form for the stability function, i.e. f (x) = 1−x and f (x) = 0 for x > 1, the simplified210

model is211

dx(t)
dt

= g
(
x(t)
)
, where g(x) =


Qi−λx−Cx(1− x) for x≤ 1

Qi−λx for x > 1

(3)

and x(t0) = x0. Here, up to dimensional constants, x represents ∆T . The parameter C will be212

treated as a bifurcation parameter for this simplified system. Similar types of stability functions213

are typically used in numerical weather prediction tools, and the cutoff form facilitates the math-214

ematical analysis of the model. Note that to be consistent with the original model, the stability215

function should include a dependence on both the temperature and the wind speed via Rb. Re-216

moving this dependence as it is done here changes some of the nonlinearity, however it makes217

the mathematical analysis very simple and the qualitative behavior of the system is similar to the218

original system - see van de Wiel et al. (2017), their Figure 8 and 10. In that sense, the model loses219

some physical significance for mathematical convenience, but the qualitative nonlinear feedback220

processes are maintained. This simplification also has for implication that while C is related to the221

wind speed, it cannot be directly interpreted as such in the context of the energy balance model.222

For a deeper discussion of the model, its simplifications and the model parameters, the reader is223

referred to its thorough presentation by van de Wiel et al. (2017).224
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For fixed and physically meaningful values of Qi and λ , equation (3) can have either one, two,225

or three possible equilibrium solutions depending on the fixed values (see illustration in van de226

Wiel et al. (2017), Figure 10-12, and related discussion for more details). The equilibrium solu-227

tions will be functions of the parameter C, which we will consider as a bifurcation parameter in228

the following. Physically, the case of strong thermal coupling between the surface and the atmo-229

sphere, corresponding to a large value of λ , results in one unique equilibrium solution whose value230

depends on C. In van de Wiel et al. (2017), it is hypothesized that such a case is representative231

of a grass site such as Cabauw, the Netherlands. The solution is linearly stable to perturbations,232

i.e. linear stability analysis shows that perturbed solutions are attracted back to the equilibrium.233

The case of no coupling (λ=0) leads to two equilibrium solutions, one of which is linearly stable234

and the other unstable to perturbations (i.e. perturbed solutions are repelled by the equilibrium).235

A weak coupling strength, with an intermediate value of λ that could be representative of a snow236

surface or another thermally insulated ground surface, results in three possible equilibrium solu-237

tions. The two extreme solutions are stable to perturbations, while the middle equilibrium solution238

is unstable. Perturbed solutions around the middle equilibrium will thus be attracted either by239

the upper or the lower equilibrium. Plotting those three equilibrium solutions as a function of the240

bifurcation parameter C results in a back-folded curve which is qualitatively similar to observa-241

tions of the temperature inversion shown as a function of wind speed at Dome C, Antartica; see242

Vignon et al. (2017). The bifurcation diagram is shown in Figure 1 for parameter values such that243

λ > 0 and Qi > λ , resulting in the case with three possible equilibrium solutions. By convention,244

the unstable equilibrium branch is denoted by a dashed line. In the following, we will analyze245

transitions between the two stable equilibria. If the system undergoes random perturbations in this246

bi-stable context, a perturbation could drive the system sufficiently far from a stable equilibrium247

state so that it comes near the unstable equilibrium and finally gets attracted by the second equi-248
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librium. The three possible equilibria are denoted as xe1 , xe2 and xe3 . In order to study such regime249

transitions induced by random perturbations, the conceptual model is extended with a noise term250

in the following section.251

b. Extending the conceptual model by randomization252

The conceptual model (3) can be equivalently written in terms of a gradient system, in which the253

temperature inversion represented here by x evolves according to the influence of an underlying254

potential V (x). The randomized model to be introduced will be based on this gradient structure.255

Specifically, the initial value problem (3) can be written as256

dx
dt

=−dV
dx

, x(t0) = x0 ,

where it is easy to see that the potential is given by257

V (x) =


1
2x2(λ +C)− C

3 x3−Qix for x≤ 1 ,

1
2λx2−Qix+ 1

6C for x > 1 .

(4)

The linear stability analysis discussed in the previous section can thus be understood in the sense258

that the temperature inversion x equilibrates at a local minimum of a potential V . That is, an259

equilibrium point xe satisfies V ′(xe) = 0. Figure 2 sketches the form of the potential with the260

exemplary parameter values λ = 2,Qi = 2.5,C = 6.4. Note that V (x) is a double-well potential in261

that case where each local minimum corresponds to one of the stable equilibrium points xe1 and262

xe3 , while the local maximum corresponds to the system’s unstable equilibrium xe2 .263

While the conceptual model (3) has proven very insightful to explain observed sharp transitions264

in temperature inversions, it only allows for regime transitions when drastic changes in the model265

parameters (i.e., bifurcations) occur. That is, the model is overly idealized and in reality one can266

expect regime transitions to also take place due to small natural fluctuations of the temperature267
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inversion itself in certain cases, e.g., when the potential barrier separating the two local minima and268

corresponding stable equilibria is shallow. Therefore we will consider an appropriate randomized269

variant of the model. Specifically, we consider the stochastic differential equation (SDE) model270

dx =−dV (x)
dx

dt +σ dB , x(t0) = x0 , (5)

to account for small random perturbations to the temperature inversion’s rate of change. Here, B271

denotes a standard Brownian motion (i.e., a stochastic process) and σ > 0 scales the intensity of the272

fluctuations, while the potential V is as in (4). As the randomized dynamics is characterized by the273

same potential, also the equilibrium points of the non-random model (3) will describe the dominant274

effects of the randomized model’s dynamics. However, due to the presence of the noise, the stable275

equilibria of the non-random model (3) are not limiting points for the stochastic counter-part in (5),276

in the sense that the temperature inversion may still fluctuate after reaching a stable equilibrium.277

The reason is that in a context of two stable equilibria (i.e. for parameter values such that the278

model (3) exhibits two stable equilibria, denoted earlier as the thermally weakly-coupled state), the279

random perturbations can trigger transitions from one stable equilibrium to another one. We will280

therefore refer to the formerly stable states as: metastable. Note that depending on the coupling281

strength and noise intensity, the likelihood of regime transitions can change drastically and the282

system may or may not exhibit metastable states. The type of noise (additive or multiplicative for283

example, or noise with a Levy distribution) will also affect regime transitions. In our subsequent284

simulations and analyses, we will focus on the case of two metastable states with additive noise285

and leave other cases for future research.286

The effect of these random perturbations to a metastable equilibrium point xe can be understood287

through a localized approximation of the original dynamics. More precisely, consider a second-288

order Taylor approximation of the potential around an equilibrium point xe, yielding the quadratic289
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approximate potential Ṽ :290

V (x)≈ Ṽ (x) :=V (xe)+
1
2

d2V
dx2 (x)

∣∣∣∣
x=xe

(x− xe)
2 .

For the same parameter values that were used to plot the original potential in Figure 2, the red line291

in the same figure shows the approximate quadratic potential around the equilibrium value xe1 .292

Using the locally quadratic potential, we can thus define a locally approximate dynamics for the293

temperature inversion by replacing V in (5) by Ṽ , resulting in294

dX =−k(X− xe)dt +σ dB , X(t0) = xe ,

where k := d2V
dx2 (x)|x=xe ∈ R and X is introduced to describe the approximate dynamics of the295

former x. This approximate dynamics is an example of the well-studied Ornstein–Uhlenbeck296

process and it provides an accurate description of the full dynamics in the neighborhood to the297

equilibrium point xe. Discretizing the Ornstein–Uhlenbeck process X using the Euler–Maruyama298

scheme with a step-size ∆t := T
L for some positive integer L we furthermore find that the process299

at discrete times t ∈ {1, . . . ,L} approximately satisfies the difference equation300

Xt = Xt−1− k(Xt−1− xe)∆t +σ

(
B(t∆t)−B

(
(t−1)∆t

))
, X0 = ee ,

in the sense that Xt ≈ X(t∆t). By defining µ := kxe ∈ R, φ := (1− k∆t) and wt := σ
[
B(t∆t)−301

B
(
(t−1)∆t

)]
this can be written as302

Xt = µ +φXt−1 +wt ,

which is a so-called autoregressive model of order one, denoted AR(1), thanks to the properties303

of the (scaled) Brownian increments wt . Consequently, we see that the discretized Ornstein–304

Uhlenbeck process can be accurately approximated by an AR(1) process. This derivation can also305

be found in Thomson (1987). Combining this with the observation that the Ornstein–Uhlenbeck306
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process offered an accurate approximation to the original dynamics in the vicinity of a stable307

equilibrium, we can thus conclude that the local dynamics in the neighborhood of a metastable308

state can be approximately described by an AR(1) process.309

c. Statistical indicator for the dynamical stability of time series310

In section a we discussed the simplified model by van de Wiel et al. (2017) which was developed311

to understand regime transitions in near-surface temperature inversions. This model provides a312

hypothesis that explains the existence of two possible equilibria of the temperature inversion for a313

given wind speed. In agreement with the randomized conceptual model introduced in the previous314

section, we say that a system exhibiting at least two metastable equilibria is called metastable.315

In this section the goal is to describe a methodology for statistically detecting critical transitions316

based on time series data. For the detection we apply an indicator for the dynamical stability317

(i.e. the resilience to perturbations) of time series, which was defined by Faranda et al. (2014) and318

applied to SBL turbulence data in Nevo et al. (2017). The indicator uses a combination of methods319

from dynamical systems and from statistical modeling. In its definition, deviations from AR(1)320

processes in the space of so-called autoregressive-moving-average (ARMA) models are used to321

quantify the dynamical stability of a time series. A time series xt , t ∈ Z, is an ARMA(p,q) process322

if it is stationary and can be written as323

xt = ν +
p

∑
i=1

φixt−i +wt +
q

∑
j=1

θ jwt− j , (6)

with constant ν , coefficients φp, θq and {wt} being white noise with positive variance σ2. The co-324

efficients φp and θq additionally have to satisfy some constraints, see Brockwell and Davis (2016).325

Notice that AR(1) = ARMA(1,0). Intuitively the parameters p and q are related to the memory lag326

of the process. The longer the system takes to return to the equilibrium after a perturbation, the327
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more memory we expect to observe in the process. Examples of simple systems along with their328

ARMA(p,q) characteristics can be found in Faranda et al. (2014).329

In section b, it was shown that the dynamics when the system is close to a stable equilibrium330

can be approximated by a AR(1) process. We will assume that far from the transition from one331

dynamical regime to another, the time series of a generic physical observable can be described by332

an ARMA(p,q) model with a reasonably low number of p,q parameters and coefficients. Indeed333

far from a transition, the system will tend to remain around an equilibrium despite random pertur-334

bations, and excursions from the equilibrium are short. The idea behind the modeling assumption335

is that ARMA processes are an important parametric family of stationary time series (Brockwell336

and Davis 2016). Their importance is due to their flexibility and their capacity to describe many337

features of stationary time series. Thereby, choosing ARMA(p,q) processes for modeling the dy-338

namics away from a stable state is a reasonable Ansatz. Close to a transition, the resilience of the339

system to perturbations is weak and longer excursions from the equilibrium occur. The statistical340

properties (such as the shape and/or the persistence of the autocorrelation function) of the system341

change drastically, leading to an expected increase of the value p+q (Faranda et al. 2014). Based342

on this, we use ARMA(p,q) models in the following to analyze the stability of a dynamical system.343

The dynamical stability indicator which will be defined next will be used to obtain indicators for344

detecting the system’s proximity to a regime transition.345

In order to quantify the local stability of a time series, we first slice the time series xt346

with a moving time window of fixed length τ . In other words, we obtain subsequences347

{x1, . . . ,xτ},{x2, . . . ,xτ+1}, . . . ,{xt−τ+1, . . . ,xt} of the original time series that overlap. By slic-348

ing the original time series we obtain a sequence of shorter time series for which it is reasonable349

to suppose that they are amenable to ARMA modeling. In detail, we assume that the subse-350

quences are realizations of linear processes with Gaussian white noise which then implies that the351
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process is stationary. We then fit an ARMA(p,q) model for every possible value of (p,q), with352

p ≤ pmax and q ≤ qmax, to these subsequences, where pmax and qmax are predefined thresholds.353

Afterwards we choose the best fitting ARMA(p,q) model by choosing the one with the minimal354

Bayesian information criterion, BIC, (Schwarz 1978) which is a commonly used and well-studied355

tool in statistical model selection. Assuming that we have the maximum likelihood estimator356

β̂ := (ν̂ , φ̂1, . . . , φ̂p, θ̂1, . . . , θ̂q) of the fitted ARMA(p,q) model (which can be obtained using a357

so-called innovation algorithm, as it is, for example, implemented in the ”forecast” R package358

(Hyndman et al. 2019) which is used for the analyses), the BIC is formally defined as359

BIC(p,q) =−2lnL(β̂ )+ ln(τ)(p+q+1) , (7)

where L(β̂ ) denotes the associated likelihood function evaluated at the maximum likelihood esti-360

mator β̂ . The second term introduces a penalty for high-order models (i.e., those that contain more361

parameters) to avoid over-fitting.362

We reiterate that when the system is close to a metastable state, its dynamics can be well ap-363

proximated by an AR(1) process. When the system is approaching an unstable point separating364

multiple basins of attraction, the approximation no longer holds as the underlying potential can-365

not be approximated by a quadratic potential anymore. The change in the shape of the potential366

introduces new correlations in the time series, resulting in higher-order ARMA terms when fitting367

such a model to data.368

The definition of the stability indicator is based on this observation, in the sense that it assumes369

that the dynamics near a metastable state can be modeled by an ARMA(1,0) or AR(1)-process.370

Specifically, the stability indicator is defined as371

ϒ(p,q;τ) = 1− exp
(
−|BIC(p,q)−BIC(1,0)|

τ

)
. (8)
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For a stable state, the most likely statistical model is an AR(1) process and one expects that ϒ = 0.372

The indicator ϒ gives a normalized distance between the stable state (ϒ = 0) and the state in373

which the system is. The limit ϒ → 1 corresponds to a most likely statistical model of high374

order and probably to a nearing transition. While a formal proof of this statement is still missing,375

tests performed for systems of increasing complexity in Nevo et al. (2017) showed promising376

results where the indicator correctly identified changes in the stability of metastable states. Note377

that the character of the noise present in the physical system (additive noise, multiplicative, Levy378

process...) will affect the ARMA model approximation and impact the values of ϒ. To simplify379

the notation we drop the dependence of ϒ on p,q and τ in the following discussion.380

The reliability of ϒ highly depends on the choice of τ , the window length (which we will381

consider in number of discrete observations in the following), and it relates to the characteris-382

tic timescales of the dynamics. Intuitively, the window length, when converted to its equivalent383

physical duration (i.e. the number of discrete observations multiplied by the discrete sampling384

time), has to be shorter than the residence timescale in one basin of attraction (i.e. the time spent385

in the neighborhood of an equilibrium before transitioning to another one) in order to satisfy the386

local stationarity, but large enough so that statistical model estimation is reliable. In winter at387

Dome C where the Polar winter results in a near absence of daily cycle, no preferred timescale of388

residence around an equilibrium of the temperature inversion was observed (an equilibrium can389

remain for several days), however the transition between two equilibria was observed to take place390

over a timescale of the order of 10 hours (Baas et al. 2019). For nocturnal flows, the residence391

timescale is tightly connected to the daily cycle and could be of a few hours during the night,392

or the entire night. The transition between two equilibria typically takes place over a duration of393

about a half hour. For reliable statistical estimation, multiple tests showed that a minimum window394
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length of 20 discrete points is needed. With a sampling time of 1 minute, that means that a moving395

window of approximately 20 or 30 minutes may be appropriate.396

In addition, the sampling frequency has to be fine enough to sample typical fluctuations of the397

dynamics. In the following analyses, we find a sampling frequency of one minute to be appropriate398

for that purpose. The characteristic timescale here is given by the timescale at which the system399

recovers from perturbations (which is estimated by linear stability analysis in the case where the400

model is known, see e.g. (van de Wiel et al. 2017)), and the time interval between two observations401

should be close to or smaller than this quantity so that (small-scale) local fluctuations can be402

resolved. Since the characteristic timescales of the system cannot be known analytically in many403

situations, for example when analyzing time series from atmospheric models or from field data,404

we suggest two data-driven approaches to select a window length:405

• In the first approach, the mean residence time around each metastable state as well as the406

mean transition time between the two states will be estimated based on a data clustering407

approach. The observations will be clustered in the metastable regimes and an intermediate,408

transition regime. From the clustered data, the mean residence time in each cluster will be409

evaluated. This approach will provide an upper bound to select the window length.410

• The second approach is motivated by the fact that the indicator ϒ is obtained through a sta-411

tistical inference procedure through the definition of the BIC which involves fitting suitable412

ARMA processes to data. Specifically, a maximum likelihood approach is used, which as-413

sumes that subsequences are sampled from a normal distribution. To assess the validity of414

this statistical approach, a normality test will be implemented as a criterion to select a win-415

dow length for which the normality assumption is justified and ARMA model estimation is416

reliable.417
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Both approaches are applicable when the data-generating model is unknown. This is important in418

cases where data showing signs of metastability are available, but an underlying model is unknown.419

A summary of the full algorithmic procedure used to calculate the statistical indicator is given in420

Appendix A3.421

1) CLUSTERING APPROACH: K-MEANS422

In the first approach, we suggest to use the K-means algorithm (Hartigan and Wong (1979),423

see pseudo code in Appendix A1) to select a window length for the analysis. In the context of424

analyzing transitions in the temperature inversion, the idea is to cluster the data into three different425

clusters: data around each stable fixed point and data near the unstable fixed point (in other words,426

data covering the transition periods between two metastable states). By that, the goal is to estimate427

the average time needed by the system to transition between two metastable states. The mean428

residence time within each cluster is calculated from the time series of cluster affiliation. We429

choose τ (recall that we consider it in number of discrete observations and not in physical time)430

such that it is smaller than the minimal mean time spent in one cluster, which should ensure that431

subsequences remain mostly around one equilibrium. This value is denoted by τKmeans. For the432

simulated data in the following, each simulated time series will be assigned a window length433

τKmeans by this procedure. For the nocturnal dataset, we cluster the entire dataset once and obtain434

a length τKmeans of 22 points, corresponding to a duration of 22 minutes. For the Polar dataset,435

only one continuous time series during a Polar winter will be considered and assigned one value436

of τKmeans, namely 10 points, corresponding to a duration of 100 minutes. This window length is437

insufficient to obtain reliable statistical estimations.438

Note that this clustering approach to determining a residence timescale around an equilibrium is439

a crude approximation and suffers from many caveats: a high density of data close to a given value440
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of the temperature inversion may not necessarily relate to the existence of metastable equilibria,441

but could occur due to non-stationary dynamics or complex nonlinear effects, for example. Never-442

theless, we use it as a first approach and future research may result in more reliable approaches. In443

the following analyses, the K-means procedure can be interpreted as providing an upper bound for444

selecting a window length for the analysis and thus, combined with the following criterion, will445

offer an applicability criterion for our method.446

2) STATISTICAL APPROACH: ANDERSON-DARLING NORMALITY TEST447

The K-means clustering approach described above estimates the system’s physical timescales,448

but the statistical properties of the process should also be considered for reliable calculations. To449

fit ARMA models reliably and to calculate the Bayesian information criterion for ARMA model450

selection, we need the underlying process to follow a normal distribution. Note that the reliability451

of ARMA model fitting generally increases for increasing number of data points (assuming sta-452

tionarity remains fulfilled). In this approach, we suppose that the subsequences are sampled from453

a normal distribution, at least for some window length τ . We then choose τ as the biggest window454

length such that this normality assumption holds (more precisely, such that the normality hypoth-455

esis cannot be rejected). This value is denoted by τAD. If we find that τAD has to be much larger456

than τKmeans to fulfil the normality assumption, we will interpret this as a sign of undersampling457

in the data.458

Specifically, the statistical test results in a p-value for each subsequence, and we choose the459

window length such that the median of the p-values of all subsequences is above a threshold for460

which the null-hypothesis cannot be rejected. The normality test applied here is the Anderson-461

Darling Test (Anderson and Darling 1952), abbreviated AD test, as it is, for example, more stable462

than the Kolmogorov–Smirnov test (Stephens 1974). Further details details of the AD test are463
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summarized in Appendix A2. Similarly to the clustering approach, the window length τAD for464

which normality cannot be rejected is selected for each analyzed time series, and this value of τAD465

is then used for all subsequences of the time series. Each of the simulated dataset, the nocturnal466

dataset and the Polar dataset will be assigned a single value of τAD. The value of τAD for the467

nocturnal dataset is 19 discrete points, hence 19 minutes with a sampling frequency of one minute.468

For the Polar dataset, the value of τAD is 43 points corresponding to a duration of 430 minutes.469

3. Stability analysis of simulated and observed time series470

In this section we quantify the reliability of the stability indicator introduced in section 2.c.471

We start by testing it on a controlled dataset generated by the simplified model for near-surface472

temperature inversion (see section 2.a) and then proceed by applying ϒ, the stability indicator, to473

observational data. In the tests we use the auto.arima() function from the ”forecast” R package474

(Hyndman et al. 2019). The auto.arima() function fits ARMA(p,q) models by calculating the475

maximum likelihood estimators for a given model order (using the innovation algorithm mentioned476

earlier). It calculates the corresponding BIC (using the definition (7)) for all ARMA(p,q) models477

with p≤ pmax and q≤ qmax, where pmax and qmax are thresholds set to 10 in our application, and478

then it chooses the ARMA model with the minimal BIC value. This procedure is repeated for each479

subsequence of data, using the moving window approach, and the minimal BIC value leads to the480

optimal ARMA(p,q) model to represent the given subsequence.481

a. Simulated time series482

To generate the simulated data, we use the conceptual randomized model (5), which we recall483

here for the reader’s convenience:484

dx(t) =−
dV
(
x(t)
)

dx
dt +σdB(t) , x(t0) = x , 0≤ t ≤ T ,
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where V (x) is the energy potential defined in (4). That is, the data-generating model reads485

dx =


(Qi−λx−Cx(1− x))dt +σdB, x≤ 1 ,

(Qi−λx)dt +σdB, x > 1 .

(9)

The SDE model (9) is approximated path-wise (i.e., for each realization of the driving Brownian486

path) using the Euler-Maruyama scheme.487

For the purpose of testing the accuracy of the ϒ indicator and its potential to detect nearing488

regime transitions, one realization {xt} of the stochastic process is used for each fixed value of489

the bifurcation parameters C. Multiple fixed values of C are used, resulting in one timeseries per490

value of C. The initial parameters are set to t0 = 0 and x(t0) = min{xei|i = 1,2,3} where xei are the491

three equilibria of the system. To generate the controlled data set the model parameters are set to492

λ = 2, Qi = 2.5 and σ = 0.35. The value of C is varied between C = 5.3 and C = 7.2 with discrete493

increments of 0.1 and one simulation is done per value of C. The simulations are ran for n = 2000494

time steps of size ∆t = 0.01. The amplitude of the noise, or diffusion coefficient, σ = 0.35 is495

chosen as it resulted in trajectories for which regime transition could be observed on the time496

interval [0,T = n∆t = 20]. The range for C is chosen because for these values the time series497

shows frequent transitions from one metastable state to another. To choose the window length498

τ we apply both the K-means Algorithm (section 2.c.1) and the Anderson Darling Test (section499

2.c.2). The length τ is determined individually for each simulation, i.e. for each fixed value of500

C. The K-means algorithm can be used to estimate the amount of discrete observation points501

covering the transition time. We set the cluster number to three as we expect three equilibria.502

The results of the clustering algorithm are exemplary shown in figure 3 for C = 6.4. Note that503

t ∈ [0,n ·∆t] = [0,20], whereas we will express our window length τ in number of discrete points504

in the following. In this case the equilibria are xe1 = 0.46 (metastable), xe2 = 0.97 (unstable),505
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and xe3 = 1.25 (metastable). The cluster centers, estimated by the K-means algorithm, are 0.46,506

0.97, and 1.31 which are a close approximation of the equilibria. Therefore, we expect a good507

estimation for the amount of points covering the transition. The average time spend in each cluster508

are (for C = 6.4): mean(T1) = 112.2, mean(T2) = 94, and mean(T3) = 286.67, where mean(Ti) is509

the average time spent without observed transitions in cluster i ∈ {1,2,3} expressed in number of510

discrete points. The minimal mean residence time is thus mean(T2) = 94 and provides an upper511

bound to select a window length that respects the timescales of the system. The window length τ512

is thus chosen such that it is smaller than the minimal average time spent in one cluster, i.e. for513

C = 6.4 we choose τ < τKMeans := min{mean(Ti)|i = 1,2,3} = 94. For all tested C, we choose514

τ = min{mean(Ti)|i = 1,2,3}−5 in order to give room for some uncertainty in the evaluation of515

the time spent in each cluster, due to potential overlaps of the clusters (we recall that the minimal516

mean residence time should be understood as an upper bound to select τ). By applying ϒ to the517

data generated by the simplified model with C = 5.3, C = 6.4 and C = 7.2 we get the results shown518

in figure 4. The solid red lines correspond to the stable equilibria and the dotted red line to the519

unstable one. The colors ranging from dark blue to yellow represent the stability of the points520

measured by ϒ and we always color the last point of the subsequence. The simulation is initialized521

around the stable equilibrium xe1 , where short memory of the random perturbations should prevail.522

As expected, the values of ϒ remains close to 0 (corresponding to a most likely AR(1) model) as523

long as the simulation oscillates around the equilibrium. The timeseries eventually approaches524

the neighborhood of the unstable equilibrium where long memory properties are to be expected525

and thus higher order ARMA(p,q) models, hence larger values of ϒ, are more likely. This first526

transition through the unstable equilibrium is well recognized with higher values of ϒ (green dots527

after the dotted red line).528
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The Anderson Darling Test can be used to find the biggest τ for which we can assume that most529

of the subsequences are sampled from a normal distribution and hence trust the ARMA model530

selection and fitting. As shown in figure 5, for C = 6.4 the Anderson Darling Test yields that for531

τ = 67 the median of the p-values for all subsequences is greater than the significance level 0.05.532

The solid line in the gray boxes is the median of the p-values for a fixed τ while the upper and533

lower border of the gray boxes refer to the upper and lower quartile of the p-values. The dotted534

horizontal line is the significance level. We report that the values of τAD given by the Anderson535

Darling Test are ranging from 60 to 70 discrete points for all values for C.536

Figure 6 summarizes the ϒ values obtained for different choices of τ and different values of C in537

a bifurcation diagram. In the figure, the equilibrium solutions of the deterministic equation (3) are538

shown by a red line for the considered range of values of C. This is the same diagram as shown539

in Fig. 1, where the upper and lower branches of the equilibrium solution correspond to the two540

stable equilibria, while the middle one is the unstable equilibrium separating the two basins of541

attraction of the stable equilibria. A discontinuity in the solution is visible between the upper and542

middle solution branches, which is due to the discontinuity introduced by the cutoff form of the543

stability function. The ϒ values obtained for the simulations of the stochastic system (eq. (9)) for544

all considered values of C are then shown as a scatter plot along with the equilibrium solution, and545

the darker color corresponds to higher values of ϒ. As the initial condition for all simulations is546

taken at the lowest equilibrium values, the transitions are expected to occur between the lower and547

upper equilibrium branches when the system transitions from the basin of attraction of the lowest548

equilibrium value to that of the highest value. High values of ϒ are indeed mainly found in this549

region of the diagram.550

Three methods are used to select the value of τ and the results associated with these window551

sizes are shown in figure 6. In figure 6 panel a, τ = τKMeans−5 is used. Around the stable branches,552
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values of ϒ are small, denoting that stable states are detected as such. Large values of ϒ are found553

between the unstable branch and the upper stable branch of the bifurcation diagram, indicating554

that transitions from the lower to the upper stable branches are detected by the indicator. The555

fact that the high values are not exactly located around the unstable branch is due to the use of a556

finite window size for the calculation: in the diagram, the color is always assigned to the last point557

of the subsequence. For small values of C, e.g. for C = 5.4, large values of ϒ are occasionally558

inappropriately found around the upper stable branch. For small C, the potential well will be559

relatively steep and the system rapidly approaches the second equilibrium, so that the detection560

can be too slow. Figure 6 panel b shows the results for ϒ when choosing τ according to the561

Anderson Darling test, denoted as τAD. The figure is very similar to the one using τKMeans except562

that for C≤ 5.6 there are more high values of ϒ located around the stable branch. This is due to the563

fact that for these C’s the τ’s chosen by the Anderson Darling test are larger than the ones estimated564

by the K-means algorithm. Consequently, the local stationarity assumption may break down. For565

C≥ 5.9 the τ’s given by the AD Test are smaller than the ones of the K-means algorithm. In these566

cases ϒ gives a good indication for the stability. Figure 6 panel c is a bifurcation plot showing only567

the time series for which τ can be chosen to satisfy both the K-means and the Anderson Darling568

condition, i.e. τAD < τKMeans− 5. Here τ := τAD is used for the analysis and timeseries that do569

not satisfy the condition are discarded from the analysis. In this case, we see that large values570

of ϒ always occur between the unstable branch and the upper stable branch, thus ϒ is capable of571

recognizing the location of unstable equilibria for all C and stable equilibria are never assigned a572

large value of ϒ. A note of caution should however be given regarding the reverse transitions from573

the upper stable branch to the lower stable branch in those numerical examples. Indeed, those are574

poorly identified. This is probably related to the asymmetry of the underlying potential, which575

induces different characteristic timescales in the system and hence a need to adapt the value of576
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τ locally, and not just globally for all types of transitions as it is done here. To overcome this577

difficulty, an adaptive tuning of τ would be required, which will be left for future research. With578

these possible limitations in mind, ϒ will next be applied to observational data.579

As a final remark, the values of τ considered here can be compared to analytical results in580

this numerical example. Indeed, for this simple bistable example system, analytical results can581

provide the expected time taken by the system to transition from one of the local equilibria to582

the bifurcation point (Krumscheid et al. 2015) and can serve as a comparison to the statistical583

estimations of τ obtained here. As a matter of fact, for C close to the bifurcation point, the results584

given by the Anderson Darling test are similar to those given by analytical calculations.585

b. Analysis of regime transition in observed nocturnal and Polar temperature inversions586

In this section we apply the stability indicator ϒ on observational data obtained from one site587

near Dumosa, Australia for which nocturnal data are selected, and from Dome C, Antarctica for588

which we consider the Polar winter. When we plot ∆T over U for both sites (see figure 7) we see589

a clear sign of two distinct states: one when the wind is weak and ∆T is large and one for strong590

wind where ∆T is small.591

1) DUMOSA592

The first observational dataset consists of temperature measurements from a site near Dumosa,593

Victoria, Australia. The site was located in a large area with mostly homogeneous and flat terrain,594

covered by wheat crops, and measurements were taken during the crop season. The temperature595

measurements were made on the main tower at heights of 3 and 6m and the wind measurements at596

6m. The frequency of measurements is 1 minute. Further details about the observational site can597

be found in Lang et al. (2018). As we want to use data where we can expect temperature inversions598
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to take place we exclusively use evening and nighttime data from March until June 2013 (89 days).599

Each night of data results in a timeseries of 1020 discrete observations. Similarly to the simulated600

data, we use the K-means algorithm and the Anderson Darling Test to choose the window length601

τ . The results are shown for all nights considered together in Figure 8. According to these tests602

the maximal τ for which we can assume normality (τAD) is 19 discrete observations (hence 19603

minutes with the sampling frequency of 1 minute) and the τ which corresponds to the minimal604

mean residence time in one of three clusters (τKMeans) is 22. Hence we have τAD < τKMeans and605

choosing τAD should be appropriate. The results for ϒ applied to all 89 nights with both choices of606

window lengths are given in figure 9. The results highlight a lower branch with low values of ϒ, or607

dynamics identified as stable, and an upper branch with high values of ϒ, or dynamics identified608

as unstable. In some cases, a proper ARMA(p,q) model cannot be fitted by the statistical methods,609

resulting in absence of results for some windows. Generally, a reliable ARMA(p,q) fit becomes610

difficult for a time series with less than 20 observations, and the estimated window lengths are611

on the lowest end to obtain the statistical estimations. Figure 10 shows the time evolution of ∆T612

when conditionally averaged for all nights with the wind speed (wsp) being in a given category.613

The corresponding time evolution of ϒ is shown for the same conditional averages. The window614

length here is chosen as the most restrictive criterion τ = τAD < τKMeans. For low wind speeds,615

the ϒ values are high (on average), which implies that in this case we have an unstable system.616

Note that in this dataset, a leveling-off of the temperature inversion for low wind speeds (which617

could correspond to the stable equilibrium of a strong inversion according to the model of van de618

Wiel et al. (2017)) is not very evident from Figure 9. It could be that the temperature inversion619

does not have time to reach the stable equilibrium during the night, or that other instabilities which620

are not considered in the simplified model arise in strong stability conditions. For example, flow621
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instabilities such as submeso motions, which are favored in strongly stratified situations, could622

make the system dynamically unstable.623

2) ANTARCTICA624

The Dome C data was measured at the Concordia Research Station which is located on the625

Antarctica Plateau. It is a French-Italian research facility that was built 3233m above sea level.626

It is extensively described for example in Genthon et al. (2010). The Dome C dataset contains627

10-min averaged meteorological data from 2017. Regimes and their transitions were analyzed by628

Vignon et al. (2017) and Baas et al. (2019). Important for our analysis are measurements of the629

temperature at height 9.4 m and surface, the wind speed (m/s) at height 8 m and the radiation630

made in the polar night which is from March to September. We focus on the polar night during631

which multiple regime transitions take place. Following van de Wiel et al. (2017) the data is632

classified into two subcategories of radiative forcing being the sum of net shortwave and incoming633

longwave radiation: R+ = K↓−K↑+ L↓. Strong cooling is favored in cases of low incoming634

radiation and when plotting ∆T = T9.4m−Ts over the wind speed U8m a back-folding of the points635

becomes apparent when R+ < 80Wm−2 (van de Wiel et al. (2017), their Figure 6 and less clearly636

in our Figure 7). Therefore, we focus on the case when R+ < 80Wm−2. We apply ϒ to the longest637

consecutive time series with R+ < 80Wm−2 which is from 2017-08-03 10:50 to 2017-08-24 21:50,638

i.e. 3091 data points. Our analyzed time series is thus shorter than the one visualized in van de639

Wiel et al. (2017), which explains the differences in the scatter plot. Again we choose τ with the640

Anderson Darling Test and the K-Means algorithm. The value for τ given by the Anderson Darling641

Test τAD = 43 observations (with a corresponding window duration of 430 minutes) is much larger642

than the one given by the K-means algorithm (τKMeans = 10 observations, corresponding to a643

window duration of 100 minutes), which is in fact too few points to expect a good fit for the644
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ARMA(p,q) model. In figure 11 we see that no transitions are recognized by ϒ with τ = τAD (left)645

but with τ = τKMeans (right) some transitions are noted. This indicates that the data frequency of646

this data set is not high enough to give reliable results for the stability indicator.647

c. Sensitivity analysis on averaged data648

As discussed when applying the indicator ϒ on the Dome C dataset, there is strong indication649

for the data frequency being crucial for the reliability of the results when applying the stability650

indicator. Observational data is often stored in block averages, e.g. measurements over 5 minute651

time window are averaged into 1 data point. The issue with this can be that the data frequency can652

be too low to sample typical fluctuations during the observed transition. In more detail, if the time653

taken by the system to transition from one metastable state to the next is less than approximately654

20 discrete measurement points (the minimum needed to have relevant statistical results according655

to our tests), then the approach may not be applicable. Therefore, data frequency needs to be high656

enough to give reliable results for ϒ. As a comparative study to illustrate this point, we block657

average the temperature measurements for the Dumosa data, such that we repeat the analysis658

based on 5-min averaged data instead of 1-min averages. Thereby, we reduce the length of the659

time series for each individual night from 1020 to 204 data points. Again we choose τ with the660

Anderson Darling Test and the K-means algorithm. There is a clear distinction between the τ661

estimated by the Anderson Darling Test and the one given by the K-means algorithm for the 5662

min data, contrary to the 1 min data where both methods suggested comparable window lengths.663

Indeed, τAD = 31 and τKMeans = 7 for the 5 min averaged data whereas τAD = 19 and τKMeans = 22664

for the 1 min data. The small value for τ given by the K-means algorithm for the 5 min averaged665

data suggests that there is only a small amount of points covering the transition time and we cannot666

fit an ARMA(p,q) model properly to subsequences this short. Moreover, as the value for τ given667
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by the Anderson Darling Test is much bigger than the amount of points covering the transition668

time we do not expect reliable results for ϒ with this τ . Figure 12 confirms this hypothesis. The669

left plot is with τ = τAD and the right one with τ = τKMeans.670

4. Discussion and conclusion671

In this study we analyzed the potential of a statistical indicator to be used to detect the system’s672

proximity to critical regime transitions in the near-surface temperature inversion. The statistical673

indicator evaluates the dynamical stability of time series resulting from a dynamical system and674

was initially suggested in Faranda et al. (2014). Based on idealized numerical simulations, van675

Hooijdonk et al. (2016) had found the presence of early-warning signs in the turbulent flow field676

before a transition from weakly stable to strongly stable conditions. These signs included a critical677

slowing down, referring to the fact that dynamical systems tend to recover slower from perturba-678

tions when approaching a transition point in the dynamics. This slowdown was evaluated based679

on fluctuations of the temperature field and the early-warning signal relied on a change in the680

variance. Such metrics, which are often used in studies of tipping points, can become problematic681

when the underlying dynamics is highly non-stationary, as an increase of variance could be due to682

the non-stationarity of the system without implying a transition (Lenton et al. 2012; Faranda et al.683

2014). The typical scatter of atmospheric field data and their inherent non-stationarity makes the684

application of classical critical slowdown metrics difficult. The metric presented and used here is685

different in that it statistically quantifies the deviation from the dynamics expected when the sys-686

tem is close to a stable equilibrium. Specifically, the indicator is based on ARMA modeling with a687

moving window for which local stationarity is assumed, and the distance from stable equilibrium688

dynamics is evaluated based on a Bayesian information criterion. The indicator crucially relies on689

an appropriate window length and we suggested two methods to select its value in a data-driven690
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manner. That is, both methods can be used when the underlying model governing the dynamics691

is unknown, such that those can be applied to field data with significant scatter. Our suggestion692

to ensure reliable results is to use a combination of both approaches. The shortest residence time693

around an equilibrium estimated through the K-means approach provides an upper bound to select694

a window length that respects the timescale of the system, i.e. a length that ensures local station-695

arity for ARMA model fitting. The window length should be selected as shorter or equal to this696

upper bound, and such that the data within individual windows mostly satisfy normality to ensure697

reliable Bayesian inference. The Anderson Darling normality test is appropriate, but an improve-698

ment of the clustering approach to estimate the residence time around an equilibrium (here done699

based on a simple K-means clustering approach) would be beneficial. Based on this approach,700

we find that a nocturnal temperature inversion dataset with a sampling frequency of 1 minute can701

be analyzed successfully using a window length of approximately 20 minutes. Slower sampling702

frequency did not lead to conclusive results.703

The conceptual model introduced by van de Wiel et al. (2017) was developed to understand704

regime transitions in the near-surface temperature inversion and can support scenarios with multi-705

ple stable equilibria. For our purpose of identifying the system’s proximity to regime transitions,706

it offers an ideal model for which the theoretical dynamical stability can be calculated analytically.707

We extended the model to include random perturbations in the dynamics and used the resulting708

stochastic model to provide a test dataset on which to evaluate the potential of the indicator of709

regime transitions. In this stochastic system, small-scale perturbations can be amplified due to710

the nonlinearity, resulting in transitions between the bi-stable equilibria. Our simulations show711

such noise-induced regime transitions, successfully identified by the indicator ϒ. More research712

would however be beneficial in order to assess the type of noise that is appropriate to represent713

randomized dynamics of the SBL.714
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The application to field data was done for one nocturnal dataset and one Polar dataset. In their715

discussion, van de Wiel et al. (2017) suggest that the strength of the thermal coupling between716

the soil and the atmosphere may be a key process to distinguish between cases where the temper-717

ature inversion has a unique stable equilibria and cases with bi-stable equilibria, separated by an718

unstable equilibrium. The wind-speed dependence of observational scatter is partly attributed to719

the existence of a dynamically unstable branch in the system in cases where the thermal coupling720

is weak. In both datasets considered in our analysis, a weak thermal coupling is to be expected.721

Clearly in the Polar dataset, the snow surface leads to a weak thermal coupling between the atmo-722

sphere and the soil (Vignon et al. 2017; van de Wiel et al. 2017). The nocturnal dataset originates723

from a wheat crop near Dumosa, Australia, probably resulting in a weak thermal coupling as well.724

While the Dome C data did not have the required sampling rate in order to have reliable estimates725

of the dynamical stability, the Dumosa data were found to have a clear signal with one dynam-726

ically stable branch and one dynamically unstable branch. A second dynamically stable branch727

corresponding to a strong inversion was not clearly observed. This data-driven result agrees with728

the theoretical result of van de Wiel et al. (2017), namely that a dynamically unstable branch ex-729

ists for a certain range of wind speeds in case of weak atmosphere-surface thermal coupling. Note730

that this is an idealized model and other non-represented physical processes may be at work and731

impact the interpretations. As an additional note of caution, if the nature of the noise was different732

in the two populations evident in the Dumosa data, then the value of ϒ could differ even if both733

branches were dynamically stable. Differences in the noise memory properties may also impact734

the results. Indeed, depending on how the noise enters the dynamics, its memory might or might735

not be represented well by an ARMA model. This result is nevertheless promising for the use of736

the indicator as an early-warning signal of regime transitions. Extending the analysis to a Polar737

night with an appropriate sampling frequency would be very interesting, as multiple regime tran-738
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sitions occur during the long-lived temperature inversion (Baas et al. 2019). Moreover, comparing739

results obtained for a site with strong atmosphere-surface thermal coupling would provide great740

insight to compare the dynamical stability of field data to the dynamical stability predicted by the741

conceptual model.742

To be noted is the fact that the conceptual model is derived for a temperature inversion between743

the surface and a height at which the wind speed stays relatively constant during the night, found744

to be approximately 40 m at Cabauw in the Netherlands and 10 m at Dome C. The Dumosa dataset745

did not offer the possibility to select a height with such a constant wind speed. The measurements,746

taken at lower heights in this case, will be prone to submeso-scale activity, inducing perturbations747

of the shallow inversion which could affect the dynamical stability of the time series. In fact, the748

earlier application of the dynamical stability indicator to SBL data in Nevo et al. (2017) showed749

that higher stability corresponded to unstable dynamics of the vertical velocity fluctuations and of750

the wind speed. More analyses would be needed to assess the influence of the measurement height751

on the evaluated dynamical stability of the temperature inversion. Nevertheless, our results encour-752

age the use of the statistical dynamical stability as a metric to detect nearing regime transitions in753

the SBL. The ability to detect nearing regime transitions in atmospheric numerical weather predic-754

tion and climate models could offer a possibility to use a different type of SBL parameterization755

in those specific cases without relying on the assumption of turbulence stationarity.756
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APPENDIX766

A1. Details of the K-means clustering algorithm767

The clustering is done using the K-means algorithm with the following steps:768

• Input: k = # number of clusters, set of points xi−τ+1, . . . ,xi769

• Place centroids c1, . . . ,ck at random locations.770

• Repeat until none of the cluster assignments change:771

– for each point xi find nearest centroid c j and assign xi to cluster j772

– for each cluster j = 1, . . . ,k calculate new centroid c j = mean of all points xi assigned773

to cluster j in previous step.774

A2. Details of the Anderson-Darling Normality Test775

The the Anderson-Darling (AD) normality test statistic is based on the squared difference be-776

tween the empirical distribution function estimated based on the sample, Fn(x), and the normal777

distribution F∗(x). The statistic for this test is,778

W 2
n = n

∫
∞

−∞

[Fn(x)−F∗(x)]2ψ(F∗(x))dF∗(x)

where ψ is a non-negative weight function which is used to emphasize the tails of the presumed779

distribution. We use the modified AD statistic given by D’Agostino and Stephens (1986) which780
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takes into accounts the sample size n781

W 2∗
n =W 2

n (1+0.75/n+2.25/n2).

The null hypothesis of this normality test is that the data are sampled from a normal distribution.782

When the p-value is greater than the predetermined critical value (α = 0.05), the null hypothesis783

is not rejected and thus we conclude that the data is normally distributed.784

A3. Summary of the algorithmic procedure785

The full procedure to apply the statistical indicator to a timeseries follows the following steps:786

• Input: Timeseries x1, . . . ,xT787

• Evaluate the window length τKmeans:788

– Cluster the timeseries in k clusters (expected number of equilibrium states) using the789

K-means algorithm.790

– For each cluster, calculate the mean residence time of the timeseries.791

– The minimal mean residence time over the k clusters provides an upper bound for792

τKmeans.793

• Evaluate the window length τAD:794

– For a range of window lengths τmin < τ < τmax, apply the AD test statistic to the time-795

series in a moving window approach.796

– For each τ , calculate the median of the p-values obtained over all windows.797

– Select the largest τ for which the median p-value is greater than the predetermined798

critical value (α = 0.05) as τAD.799
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• If τAD < τKmeans, select τAD as a window length. Else, ARMA model fitting may be innap-800

propriate.801

• Repeat for each window of length τAD:802

– Select the best fitting ARMA(p,q) model (minimal BIC).803

– Fit an ARMA(1,0) to the window and calculate the BIC.804

– Calculate ϒ. High values will indicate transitions. The values themselves may depend805

on the dataset.806
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FIG. 5. Boxplot of the p-values from the Anderson Darling Test for simulated time series with C = 6.4. The

window length estimated by the Anderson Darling test is τAD = 67 discrete timesteps.
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a) b) c)

FIG. 6. Bifurcation diagram of the deterministic system (red) and ϒ calculated for simulated data (gray dots):

a) for τ = min{mean(Ti)|i = 1,2,3}− 5 (K-means), b) for τ = τAD (Anderson Darling Test) and c) τ = τAD if

τAD < τKMeans− 5, otherwise the subseries are discarded. The red full and dotted lines show respectively the

stable and unstable branches of the bifurcation diagram.
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a) b)

FIG. 7. Temperature inversion as a function of wind speed as observed at Dumosa, Australia (a) and Dome C,

Antarctica (b). The color in panel b corresponds to lower and higher incoming radiation.
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a) b)

FIG. 8. a) Boxplot of the p-values from the Anderson Darling test and b) Clustered data with K-means for the

Dumosa data, for all 89 nights.
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FIG. 9. a), c): Observed temperature inversion versus wind speed relation for the Dumosa data. Colored

according to ϒ with different window lengths τ: a) τ = τAD, c) τ = τKMeans. The grey dots correspond to missing

values which are due to the fact that we only color the last point of the modeled subsequence. Moreover, in

some cases the auto.arima() R function is not able find an appropriate model. b), d): Histogramms of ϒ. The red

numbers in plots a and c are the bin numbers.
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a) b)

FIG. 10. Time series of mean(∆T ) (a) and mean(ϒ) (b) for different wind speed (wsp) categories for Dumosa

data, calculated with τKMeans. The shaded area is the standard deviation.
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a) b)

FIG. 11. Temperature inversion between 9.4 m and the surface, as a function of wind speed at 8m as ob-

served at Dome C. Colored according to ϒ with different window lengths τ , expressed in number of discrete

observations: a) τ = 10 (K-means) and b) τ = 43 (AD Test)
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FIG. 12. Observed temperature inversion versus wind speed relation for the 5-min averaged Dumosa data.

Colored according to ϒ with different window lengths τ , expressed in number of discrete observations: a)

τ = τAD and b) τ = τKMeans.
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