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Abstract In the present study, we focus our attention to a specific type of composite,
constituted by two media, called the adherents, bonded together with a thin interphase
layer, called the adhesive. We assume that the composite constituents are made
of different multi-physic materials with highly contrasted constitutive properties.
The study considers a generic multi-physic coupling in a very general framework
and can be adapted to well-known multi-physic behaviors, such as piezoelectricity,
thermo-elasticity, as well as to multifield microstructural theories, such as micropolar
elasticity.
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18.1 Introduction

Structural bonding assembly has become an important technological solution over
the past few years and is increasingly replacing bolting assembly (Ascione et al,
2017) as shown in Fig. 18.1). The resulting structure has many advantages, such
as weight savings or the elimination of stress concentration. Similarly, in nature
there are many living or natural structures that are composed of substructures, cells
or soils for example, glued together. There are also many other examples of glued
structures in the field of bioengineering (Breschi et al, 2008) as illustrated in Fig. 18.2.
Understanding and modelling the bonding process then becomes a necessity.

Fig. 18.1 An example of bonding, for civil engineering structures.

Fig. 18.2 An example of adhesion, for dental structures.

An obvious common point between all these bonded composite structures is the
thinness of the adhesive compared to those of the substrates or adherents. This is
true for both industrial structures and living or natural structures. This thinness will
obviously lead to numerical modelling difficulties. Indeed, the mesh size of the
glue will mechanically lead to computations with a very large number of degrees
of freedom and therefore very expensive computations. These costs will increase
further if the adhesive surface is irregular and has a high roughness. Similarly, in the
presence of kinematic or behaviour non-linearities, in the presence of cracks, etc., the
costs become prohibitive. “Direct” calculations are then limited to academic cases
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(Dumont et al, 2014). There are two very different possibilities, either to develop
suitable numerical methods (Alart and Lebon, 1995; Alart et al, 1997; Barbie et al,
2015) or to set up macroscopic models of the adhesive’s behaviour. In this chapter,
we will focus on the second family of solutions.

There are at least two methodologies in the literature for obtaining constitutive
laws of adhesive (interface) behaviour. The most classic is the introduction of phe-
nomenological models, usually based on experimental results, such as Coulomb
models, compliances, etc. In this chapter, we will prefer to focus on deductive mod-
els. The idea of this methodology is to start from a micromechanical study of the
adhesive (interphase) and to deduce, using mathematical methods, an equivalent
macroscopic behaviour (interface).

In this chapter, we focus our attention to a bonded composite, constituted by
two adherents, bonded together with a thin adhesive. We assume that the composite
constituents are made of different multi-physic materials with highly contrasted
constitutive properties. The study considers a generic multi-physic coupling in a
very general framework and can be adapted to well-known multi-physic behaviors,
such as piezoelectricity, thermo-elasticity, as well as to multifield microstructural
theories, such as micropolar elasticity (see, e.g. Chatzigeorgiou et al, 2015). Several
works have suggested a generalization of the classical interface models, including
the effects of other physical (thermal, piezoelectric, etc.) interactions (dell’Isola and
Romano, 1987; Chen, 2008; Wang et al, 2017; Firooz and Javili, 2019; Saeb et al,
2019), and within the framework of linear multifield theories, such as higher order
continua theories (Placidi et al, 2014; Eremeyev, 2019).

The analysis has been carried out by means of the asymptotic expansions method,
using the thickness as a small parameter. This technique is based on the fact that
the thickness of the adhesive can be considered as a small parameter (intended to
tend towards zero) and denoted by ε in the following. The asymptotic analysis has
been applied to the rigorous derivation of simplified models for complex assemblies,
presenting thin interphases, in the field of linear elasticity (Lebon and Rizzoni
(2010); Dumont et al (2018); Rizzoni et al (2014); Serpilli and Lenci (2016)) as well
as in piezoelectricity, taking into account other physical interactions, micropolar
elasticity and poroelasticity (Serpilli et al (2013); Serpilli (2015, 2017, 2018, 2019)).
As mentioned above, the asymptotic methods allow to replace the adhesive layer
with a two-dimensional surface, the so-called imperfect interface, with non-classical
transmission conditions between the two adherents. By defining the small parameter
and constitutive properties of the middle layer, we perform an asymptotic analysis.
We assume that the multi-physic stiffness ratios between the adherents and the
adhesive depend on εp. As proposed by Caillerie (1970), we identify three critical
exponents p, corresponding to different imperfect interface models: p = 1, the
soft (also called lowly-conducting) multi-physic interface model; p = 0, the hard
(also called moderately-conducting) multi-physic interface model; p = −1, the
rigid (also called highly-conducting) multi-physic interface model. Following the
approach introduced by Rizzoni et al (2014), we characterize the order zero and the
order one transmission problems. Finally, a general multi-physic interface model is
developed, and numerically tested through the finite element method. In particular,
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in the framework of piezoelectricity, we compare the results obtained by modeling
the adhesive as an interphase, having a thin finite thickness, with the results obtained
with the general multi-physic interface model.

18.2 Statement of the Problem

We consider the composite assembly constituted of two solids Ωε
± ⊂ R3, called

the adherents, bonded together by an intermediate thin layer Bε := S × (− ε
2 ,

ε
2 ) of

thickness ε, called the adhesive, with cross-section S ⊂ R2. In the followingBε and
S will be called interphase and interface, respectively. Let Sε

± be the plane contact
surfaces between the adhesive and the adherents and let Ωε := Ωε

+ ∪ Bε ∪ Ωε
−

denote the composite system comprising the interphase and the adherents (cf. Fig.
1.3a).

Fig. 18.3 Initial (a), rescaled (b) and limit (c) configurations of the composite.

We suppose that the composite is constituted by a multi-physic material, in
which different physical behaviors interact together, such as in piezoelectricity.
Its equilibrium state is determined by a collection of order parameters sε :=
(uε

1, . . . ,u
ε
N , ϕ

ε
1, . . . , ϕ

ε
M ):N vector state variables, namely uε

i , andM scalar state
variables, namely ϕε

k. With the multi-physic state sε, we associate its conjugated
physical quantity tε = tε(∇εsε), where ∇εsε denotes the gradient of sε. The vec-
tor field tε := (σε

1, . . . ,σ
ε
N ,D

ε
1, . . . ,D

ε
M ) represents a generalized stress field. We

also consider the following homogeneous and linear constitutive law:

tε = Kε∇εsε,

where Kε is a generalized linear constitutive matrix. The constitutive tensor Kε

satisfies suitable symmetry and positivity properties.
We assume that the adherents are subject to a generalized system of body

forces Fε : Ωε
± → R3N×M and surface forces Gε : Γ ε

g → R3N×M , where
Γ ε
g ⊂ (∂Ωε

+ \Sε
+)∪ (∂Ωε

− \Sε
−). Body and surface forces are neglected in adhesive
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layer. On Γ ε
u := (∂Ωε

+ \Sε
+)∪ (∂Ωε

− \Sε
−)\Γ ε

g homogeneous boundary conditions
are prescribed, so that sε = 0 on Γ ε

u . We assume that on Γlat := ∂S × (− ε
2 ,

ε
2 ) ho-

mogeneous Neumann boundary conditions are applied. The differential formulation
of the governing equations has the following structure:⎧⎨⎩

−div tε = Fε in Ωε,
tεnε = Gε on Γ ε

g ,
sε = 0 on Γ ε

u ,
(18.1)

where tεnε := (σε
1n

ε, . . . ,σε
Nnε,Dε

1 ·nε, . . . ,Dε
M ·nε) represents the generalized

traction vector on the boundary Γ ε
g and nε the outer normal unit vector to Γ ε

g . Let us
introduce the functional space V (Ωε) := {sε ∈ H1(Ωε;R3N×M ); sε = 0 on Γ ε

u}.
The variational formulation of problem (18.1) defined on the variable domain Ωε

can be written as follows:{
Find sε ∈ V (Ωε) such that
Āε

−(s
ε, rε) + Āε

+(s
ε, rε) + Âε(sε, rε) = Lε(rε),

(18.2)

for all rε := (vε
1, . . . ,v

ε
N , ψ

ε
1, . . . , ψ

ε
M ) ∈ V (Ωε), where defined by

Āε
±(s

ε, rε) :=

∫
Ωε

±

K̄ε∇εsε ·∇εrεdxε, Âε(sε, rε) :=

∫
Bε

K̂ε∇εsε ·∇εrεdxε,

Lε(rε) :=

∫
Ωε

±

Fε · rεdxε +
∫
Γ ε
g

Gε · rεdΓ ε.

18.3 Method of Asymptotic Expansion

In order to perform an asymptotic analysis of problem (18.2) when ε tends to zero,
we rewrite the problem on a fixed domainΩ independent of ε. By using the approach
of Ciarlet (1997), we consider the change of variables πε : x ∈ Ω �→ xε ∈ Ωε given
by

πε :

{
π̄ε(x1, x2, x3) = (x1, x2, x3 ∓ 1

2 (1− ε)), for all x ∈ Ω±,
π̂ε(x1, x2, x3) = (x1, x2, εx3), for all x ∈ B,

where, after the change of variables, the adherents occupyΩ± := Ωε
± ± 1

2 (1− ε)e3
and the interphase B = {x ∈ R3 : (x1, x2) ∈ S, |x3| < 1

2}. The sets S± =
{x ∈ R3 : (x1, x2) ∈ S, x3 = ± 1

2} denote the interfaces between B and Ω±
and Ω = Ω+ ∪ Ω− ∪ B is the rescaled configuration of the composite. Lastly, Γg

and Γu indicate the images through πε of Γ ε
g and Γ ε

u (cf. Fig. 1.3b). Consequently,
∂

∂xε
α
= ∂

∂xα
and ∂

∂xε
3
= ∂

∂x3
in Ω±, ∂

∂xε
α
= ∂

∂xα
and ∂

∂xε
3
= 1

ε
∂

∂x3
in B.

We assume that the constitutive coefficients of Ωε
± are independent of ε, K̄ε =

K̄, while the constitutive coefficients of Bε depend on ε, K̂ε = εpK̂, with p ∈
{−1, 0, 1}. Finally, we assume that the forces are such thatLε(rε) = L(r). By virtue
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of the previous hypothesis, the rescaled problem can be written in the following form:{
Find sε ∈ V (Ω), such that
Ā−(sε, r) + Ā+(s

ε, r) + εp−1â(sε, r) + εpb̂(sε, r) + εp+1ĉ(sε, r) = L(r),
(18.3)

for all r ∈ V (Ω) := {s ∈ H1(Ω;R3N×M ); s = 0 on Γu}, where

Ā±(sε, r) :=
∫
Ω±

K̄∇sε ·∇rdx, â(sε, r) :=

∫
B

K̂33s
ε
,3 · r,3dx,

b̂(sε, r) :=

∫
B

{
K̂3αs

ε
,3 · r,α + K̂α3s

ε
,α · r,3

}
dx, ĉ(sε, r) :=

∫
B

K̂αβs
ε
,β · r,αdx,

and K̂ij denote the sub-matrices of K̂, defined by

K̂ =

[
K̂αβ K̂α3

K̂3α K̂33

]
, (K̂ij)

T = K̂ji.

We can now apply the asymptotic expansions method to the rescaled problem (18.3),
whose fundamental assumption relies in considering the solution sε of the problem
as a series of powers of ε:

sε = s0 + εs1 + ε2s2 + . . . ,
s̄ε = s̄0 + εs̄1 + ε2s̄2 + . . . ,
ŝε = ŝ0 + εŝ1 + ε2ŝ2 + . . . .

(18.4)

where s̄ε = sε ◦ π̄ε and ŝε = sε ◦ π̂ε. By injecting (18.4) into the rescaled prob-
lem (18.3), and by identifying the terms with identical power of ε, we obtain, as
customary, a set of variational problems to be solved in order to characterize the
limit multi-physic state s0, the first order corrector term s1 and their associated limit
problem, for p ∈ {−1, 0, 1}.

Following the approach described in Rizzoni et al (2014); Dumont et al (2018), we
introduce the matching conditions based on the continuity of the generalized traction
tεe3 and multiphyisic state sε at the interfaces Sε

± in the initial configuration and on
the continuity of the traction and state t̄εe3, s̄ε, t̂εe3, ŝε at the interfaces S± in the
rescaled configuration. Hence, one has

[[sε]] = [s̄ε]− ε〈〈sε,3〉〉+ o(ε), 〈〈sε〉〉 = 〈s̄ε〉 − ε
4 [[s

ε
,3]],

[[tεe3]] = [t̄εe3]− ε〈〈tε,3e3〉〉+ o(ε), 〈〈tεe3〉〉 = 〈t̄εe3〉 − ε
4 [[t

ε
,3e3]],

(18.5)

where

〈f〉(x̃) := 1
2 (f(x̃, (1/2)

+) + f(x̃,−(1/2)−), x̃ := (xα) ∈ S,
[f ] (x̃) := f(x̃, (1/2)+)− f(x̃,−(1/2)−),
〈〈f〉〉(x̃) := 1

2 (f(x̃, 0
+) + f(x̃, 0−)),

[[f ]](x̃) := f(x̃, 0+)− f(x̃, 0−),
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denote, respectively, the mean value and the jump functions at the interfaces.

18.4 Multi-Physic Interface Models

In this section we present the asymptotic models for multi-physic interfaces obtained
for the soft, hard and rigid cases at order 0 and order 1. For the sake of brevity, we
will skip all the mathematical computations carried out in the deduction of the limit
models.

18.4.1 The Soft Multi-Physic Interface

The transmission problems at order 0 and order 1 can be summarized as follows:

• Order 0

Governing equations⎧⎪⎨⎪⎩
−div t̄0 = F in Ω±,
t̄0n = G on Γg,

s̄0 = 0 on Γu,

Transmission conditions on S±{
[s̄0] = (K̂33)

−1〈t̄0e3〉,
[t̄0e3] = 0.

• Order 1

Governing equations⎧⎪⎨⎪⎩
−div t̄1 = 0 in Ω±,
t̄1n = 0 on Γg,

s̄1 = 0 on Γu,

Transmission conditions on S±{
[s̄1] = (K̂33)

−1
(
〈t̄1e3〉 − K̂α3〈s̄0〉,α

)
,

[t̄1e3] = −K̂3α[s̄
0],α.

The transmission problems for a soft multi-physic interface at order 0 and order 1
represent a formal generalization of the soft interface models obtained by means of
the asymptotic methods in linear elasticity (see, e.g., Rizzoni et al, 2014; Dumont
et al, 2018) and in other multifield frameworks, such as poroelasticity (see Serpilli,
2019). At order 0, the interface behaves from a mechanical point of view as a series
of linear springs, reacting to the discontinuity of the multi-physic state between the
upper and bottom faces, while the generalized traction vector remains continuous.
At order 1, the interface conditions maintain a similar structure, but both the multi-
physic state and the traction vector are discontinuous through the interface. Moreover,
they depend on the in-plane derivatives of the jump and mean values of s̄0, which
can be considered a known source term, identified in the order 0 problem.
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18.4.2 The Hard Multi-Physic Interface

The hard interface transmission problems at order 0 and order 1 take the following
expressions:

• Order 0

Governing equations⎧⎪⎨⎪⎩
−div t̄0 = F in Ω±,
t̄0n = G on Γg,

s̄0 = 0 on Γu,

Transmission conditions on S±{
[s̄0] = 0,

[t̄0e3] = 0.

• Order 1

Governing equations⎧⎪⎨⎪⎩
−div t̄1 = 0 in Ω±,
t̄1n = 0 on Γg,

s̄1 = 0 on Γu,

Transmission conditions on S±⎧⎨⎩[s̄1] = (K̂33)
−1

(
〈t̄0e3〉 − K̂α3〈s̄0〉,α

)
,

[t̄1e3] = −
(
K̂3α[s̄

1],α + K̂αβ〈s̄0〉,αβ
)
.

It is interesting to notice that the hard multi-physic interface problems is equivalent to
the ones derived in the case of linear elasticity in Lebon and Rizzoni (2010); Rizzoni
et al (2014); Dumont et al (2018). At order 0, we recover the classical continuity
conditions for both the multi-physic state and generalized traction vector. Thus, the
adherents are perfectly bonded together. At order 1, we encounter a mixed interface
model with a jump of the state and traction vector depending on the values of the
multi-physic state and traction vector at order 0. These order 0 terms, being known
from the solution of the previous problem, can be viewed as external source terms.

18.4.3 The Rigid Multi-Physic Interface

The differential formulations of the rigid interface problems at order 0 and order 1
take the following form:

• Order 0

Governing equations⎧⎪⎨⎪⎩
−div t̄0 = F in Ω±,
t̄0n = G on Γg,

s̄0 = 0 on Γu,

Transmission conditions on S±{
[s̄0] = 0,

[t̄0e3] = −L̂αβ〈s̄0〉,αβ .

• Order 1
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Governing equations⎧⎪⎨⎪⎩
−div t̄1 = 0 in Ω±,
t̄1n = 0 on Γg,

s̄1 = 0 on Γu,

Transmission conditions on S±{
[s̄1] = −(K̂33)

−1K̂α3〈s̄0〉,α,
[t̄1e3] = −K̂3α(K̂33)

−1〈t̄0e3〉,α − L̂αβ〈s̄1〉,αβ ,

where L̂αβ := K̂αβ − K̂3α(K̂33)
−1K̂β3. The rigid multi-physic interface problems

show the same features of the rigid interface asymptotic models obtained in different
frameworks in Bessoud et al (2009); Serpilli (2015, 2017, 2018, 2019). Concerning
the order 0 model, we obtain a continuity of the multi-physic state at the interface
level, while the traction vector is discontinuous and depends on the divergence of
a generalized membrane stress vector N0

α := L̂αβ〈s̄0〉,β . The interface behaves as
a multi-physic membrane. The order 1 presents a discontinuity on both the multi-
physic state and traction vector. Analogously to the order 0 model, we obtain a
generalized equilibrium membrane problem defined on the plane of the interface.

18.4.4 The General Multi-Physic Interface

The approach of Rizzoni et al (2014) can be extended in order to obtain a condensed
form of the transmission conditions summarizing both the orders 0 and 1 of the soft,
hard and rigid cases in only one couple of equations in terms of the jump of the
multi-physic state and generalized tractions at the interface.

Therefore, we denote by s̃ε := s̄0 + εs̄1 + ε2s̄2 and t̃ε := t̄0 + εt̄1, two suitable
approximations for s̄ε and t̄ε. Let us consider the rigid multi-physic interface con-
ditions, as starting point. After rescaling back the constitutive coefficients K̂ = εK̂ε

in Bε, we can write [s̃ε] and [t̃εe3]. Indeed, one has

[s̃ε] := [s̄0] + ε[s̄1] + ε2[s̄2] = −ε(K̂ε
33)

−1
(
K̂ε

α3〈s̃ε〉,α − 〈t̃εe3〉
)
+ o(ε2),[

t̃εe3
]
:= [t̄0e3] + ε[t̄1e3] = −εK̂ε

3α(K̂ε
33)

−1〈t̃εe3〉,α − εL̂ε
αβ〈s̃ε〉,αβ + o(ε2).

An alternative expression of the above transmission conditions can be given in terms
of 〈t̃εe3〉 and

[
t̃εe3

]
, which will be useful to write the variational formulation of the

interface multi-physic problem:

〈t̃εe3〉 = 1
ε K̂

ε
33[s̃

ε] + K̂ε
α3〈s̃ε〉,α + o(ε2),[

t̃εe3
]
= −K̂ε

3α[s̃
ε],α − εK̂ε

αβ〈s̃ε〉,αβ + o(ε2).
(18.6)

It is easy to prove that this interface law is general enough to describe the interface
laws at order 0 and order 1 prescribing the multi-physic state jump and traction jump
in the cases of the soft and hard interfaces, by choosing the following scalings for
the constitutive matrices: K̂ε = εK̂, for the soft case, and K̂ε = K̂, for the hard case.
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The relations (18.6) can be transformed into interface equations defined on S, by
making use of the matching relations (18.5), up to higher order terms:

〈〈te3〉〉 = 1
ε K̂33[[s]] + K̂α3〈〈s〉〉,α,

[[te3]] = −K̂3α[[s]],α − εK̂αβ〈〈s〉〉,αβ . (18.7)

18.5 Finite Element Implementation and Numerical Test

In order to derive the variational form of the multi-physic problem, which will be
numerically tested through a finite element procedure, one can write the variational
form of the equilibrium problem on each sub-domain Ω+ and Ω−:∫

Ω±
K̄∇s ·∇rdx−

∫
S

t(x̃, 0+)n(x̃, 0+) · rdΓ −
∫
S

t(x̃, 0−)n(x̃, 0−) · rdΓ =

=

∫
Ω±

F · rdx+

∫
Γg

G · rdΓ,

which can be rewritten as∫
Ω±

K̄∇s ·∇rdx+

∫
S

[[te3 · r]]dx̃ = L(r),

letting e3 = n(x̃, 0−) = −n(x̃, 0+) and dΓ = dx̃. Then, using the property
[[ab]] = 〈〈a〉〉[[b]] + [[a]]〈〈b〉〉, relations (18.7) and after an integration by parts, we
obtain {

Find s ∈W (Ω̃), such that
Ā−(s, r) + Ā+(s, r) +A(s, r) = L(r),

(18.8)

for all r ∈W (Ω̃) := {s ∈ H1(Ω̃;R3N×M ), s|S ∈ H1(S;R3N×M ), s = 0 onΓu},
with Ω̃ := Ω+ ∪ S ∪Ω− and

A(s, r) :=

∫
S

(
1

ε
K̂33[[s]] · [[r]] + K̂α3〈〈s〉〉,α · [[r]] + K̂3α[[s]] · 〈〈r〉〉,α+

+εK̂αβ〈〈s〉〉,α · 〈〈r〉〉,β
)
dx̃.

A standard finite element method is employed to solve this equation. In order to
take into account the jumps in the displacements across the interface, a ‘flat" finite
element is considered on the interface S that has all nodes on S, the first ones related
toΩ−, and the other ones related toΩ+. It is then possible to write a stiffness matrix
of this problem that is invertible and with standard error estimates (for more details,
see for example Nairn, 2007).
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Numerical Study: The Piezoelectric Composite Plate

The aim of this study is to numerically test the general interface law, expressed in
(18.8), comparing it to a three-dimensional analysis of the problem. As preliminary
test, we consider the piezoelectric case. The piezoelectric state at the equilibrium is
determined by the pair s := (u, ϕ), where u and ϕ represent the displacement field
and the electric potential. The generalized stress vector is given by t := (σ,D),
where σ and D denote, respectively, the Cauchy stress tensor and the electric dis-
placement.

Let us consider a piezoelectric three-phases composite plate, which occupies a
3D domain defined by Ω = [0, L1] × [0, L2] × [−h/2, h/2], with L1 = 10h and
L2 = 5h (see Fig. 1.4). The adhesive thickness is set to be ε.

Fig. 18.4 The geometry of the piezoelectric composite plate in the plane (x, z).

The adherents are constituted by PVDF (Polyvinylidene fluoride), a monoclinic
piezoelectric material with poling axis e3, while the adhesive is made of PZT-4, a
transversally isotropic piezoelectric material with poling axis e3. This constitutive
sub-matrices (Kij) are defined as follows:

K33 =

⎛⎜⎜⎝
2c55 0 0 0
0 2c44 0 0
0 0 c33 e33
0 0 −e33 H33

⎞⎟⎟⎠ , K12 =

⎛⎜⎜⎝
0 2c66 + c12 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠ ,

K13 =

⎛⎜⎜⎝
0 0 2c55 e15
0 0 0 0
c13 0 0 0
−e31 0 0 0

⎞⎟⎟⎠ , K23 =

⎛⎜⎜⎝
0 0 0 0
0 0 2c44 e24
0 c23 0 0
0 −e32 0 0

⎞⎟⎟⎠ ,
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K11 =

⎛⎜⎜⎝
c11 0 0 0
0 2c66 0 0
0 0 2c55 e15
0 0 −e15 H11

⎞⎟⎟⎠ , K22 =

⎛⎜⎜⎝
2c66 0 0 0
0 c22 0 0
0 0 2c44 e24
0 0 −e24 H22

⎞⎟⎟⎠ .

For the transversally isotropic material with poling axis e3, one has c11 = c22,
c13 = c23, c55 = c44, c66 = (c11 − c12)/2, e15 = e24, e31 = e32 and H11 = H22.
The elastic, dielectric and piezoelectric coefficients are listed in Table 18.1. The

Table 18.1 Piezoelectric material properties

Moduli PZT-4 PVDF

c11, GPa 139 238.24

c22, GPa 139 23.6

c33, GPa 115 10.64

c12, GPa 77.8 3.98

c13, GPa 74.3 2.19

c23, GPa 74.3 1.92

2c44, GPa 25.6 2.15

2c55, GPa 25.6 4.4

2c66, GPa 30.6 6.43

e31, C/m2 −5.2 −0.13

e32, C/m2 −5.2 −0.145

e33, C/m2 15.1 −0.276

e24, C/m2 12.7 −0.009

e15, C/m2 12.7 −0.135

H11, nF/m 13.06 0.111

H22, nF/m 13.06 0.106

H33, nF/m 11.51 0.106

piezoelectric composite plate is subject to surface uniform load equal to p = 1 kN/m2

on the top face, as shown in Fig. ??. We assume that no voltage is applied on the
upper and lower faces. In this case, the composite plates behaves as a sensor (see
Bonaldi et al, 2017).

The finite element simulations (made with GetFEM) are carried out using Q1
elements (linear on a cube), with 7280 nodes (29203 degrees of freedom) for the
three phases problem and 5824 nodes (23379 degrees of freedom) for the problem
with the interface law.

First, the influence of the relative thickness of the interphase ε
L is investigated

in order to evaluate the accuracy of the various modeling proposed in the previous
sections. In particular, the quality of the solutions is evaluated considering the L2-
relative error e = ‖sε−smodel‖

‖sε‖ , where sε denotes the reference solution computed

12



using the three-phases problem with a fine finite element mesh, while smodel indicates
the solution of the interface model (18.8). The convergence of the general interface
model towards the three-phases one with respect to the thickness ratio ε

L is presented
in Fig. 18.5. From the plot, it can be observed that, by reducing the thickness of

Fig. 18.5 Convergence results with respect to the thickness ε
L

.

the adhesive, the relative error has a drastic reduction and so, the proposed general
interface model provides an acceptable solution and it is able to correctly approximate
the solution sε. The convergence rate is ε3. Besides, even if the relative thickness
is of 1%, the relative error is equal to 7.65 · 10−2% for the displacement field and
9.06 · 10−4% for the electric potential, meaning that the general interface model can
also be used for moderately thick adhesive layers.

Now, let us fix the relative thickness ε
L = 0.02. The numerical results for the

variables are provided using the dimensionless units. We set:

(Ui, Φ) =
E0

V
(ui,

ϕ

E0
) (Tij ,Dk) =

hE0

C00V
(σij , E0Dk),

where we have chosen, for numerical convenience, V = 50V , E0 = 109V m−1 and
C00 = 1GPa. The results are represented in Fig. 18.6, 18.7 and 18.8.

Figure 18.6 represents the trend of the displacement field and electric potential,
evaluated in x = L1/2, y = L2/2, z/h ∈ [−0.5, 0.5]. The plot shows a good
agreement between the solution of the general interface problem (dotted line) and
the solution of the three-phases problem (solid line). The composite plate behaves
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Fig. 18.6 Representation of the displacements and the electric potential on a section along the
z-axis.

mostly as a Kirchhoff-Love single-layer plate, taking also into account the transversal
deformation of the adhesive. From the electric point of view, the electric potential
is constant through the adhesive: this is due to the fact that the intermediate layer
(PZT-4) has a higher electrical conductivity with respect to upper and lower bodies
(PVDF), see Table 1, and, hence, it behaves as a highly conducting interface.

Figure 18.7 and Fig. 18.8 represent the trend of the jumps of the displacement and
electric potential and the jumps of the stress vector and normal electric displacement
along the x-axis, namely (x ∈ [0, L1], y = L2/2, z = 0), and y-axis, namely
(x = L1/2, y =∈ [0, L2], z = 0). The numerical simulations highlight that the
proposed model is able to describe the mechanical behavior of the composite. Few
solution oscillations can be found close to the lateral boundaries, due to the presence
of edges, which produce expected stress concentrations and singularities.

18.6 Concluding Remarks

General imperfect contact conditions have been proposed, simulating the behavior
of a thin interphase undergoing linear coupled multi-physic phenomena. These con-
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Fig. 18.7 Representation of the jumps in the displacements and the electric potential across the
interface on a section along the x-axis and y-axis.

ditions link the generalized traction vector field and its jump to the multi-physic
state vector field and its jump at the interface, which is the geometric limit of the
interphase as its thickness parameter ε goes to zero. Three interface models (soft,
hard and rigid) have been deduced by means of the asymptotic methods, by varying
the rigidity ratios between the adhesive and adherents and considering the order 0
and order 1 corrector terms. Furthermore, these three different models have been
condensed in one general imperfect interface model and its variational formula-
tion has been presented. The weak formulation represents a key step towards the
FEM simulation. A numerical example has been presented considering a piezoelec-
tric composite plate, subject to an electric potential difference at the top and bottom
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Fig. 18.8 Representation of the jumps of the stress vector and normal electric displacement across
the interface on a section along the x-axis and y-axis.
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faces. The numerical results show the convergence of the solution of the three-phases
model towards the solution of the proposed model as ε tends to zero, highlighting
the accuracy and "goodness" of the general interface conditions.
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