The earliest Tyrannida (Aves, Passeriformes), from the Oligocene of France Ségolène Riamon, Nicolas Tourment, Antoine Louchart #### ▶ To cite this version: Ségolène Riamon, Nicolas Tourment, Antoine Louchart. The earliest Tyrannida (Aves, Passeriformes), from the Oligocene of France. Scientific Reports, 2020, 10 (1), 10.1038/s41598-020-66149-9. hal-02909865 ### HAL Id: hal-02909865 https://hal.science/hal-02909865v1 Submitted on 21 Dec 2020 HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. natureresearch #### **OPEN** # The earliest Tyrannida (Aves, Passeriformes), from the Oligocene of France Ségolène Riamon¹, Nicolas Tourment² & Antoine Louchart¹ ⊠ Passeriformes is the most diverse bird order. Nevertheless, passerines have a remarkably poor early fossil record. In addition, high osteological homoplasy across passerines makes partial specimens difficult to systematically assign precisely. Here we describe one of the few earliest fossil passerines, from the early Oligocene (ca 30 Ma) of southern France, and one of the best preserved and most complete. This fossil can be conservatively assigned to Tyrannida, a subclade of the New World Tyranni (Suboscines), i.e. of the Tyrannides. A most probably stem-representative of Tyrannida, the new fossil bears strong resemblance with some manakins (Pipridae), possibly due to plesiomorphy. Furthermore, it yields a new point of calibration for molecular phylogenies, already consistent with the age of the fossil. Tyrannida, and the more inclusive Tyrannides, are today confined to the New World. Therefore, the new fossil calls for scenarios of transatlantic crossing during or near the Oligocene. Later, the European part of the distribution of the Tyrannida disappeared, leading to a relictual modern New World distribution of this clade, a pattern known in other avian clades. The history of Tyrannida somehow mirrors that of the enigmatic Sapayoa aenigma, sole New World representative of the Eurylaimides (Old World Tyranni), with transatlantic crossing probably caused by similar events. The order Passeriformes (Aves) comprises 59% of the extant bird diversity, i.e. 6,493 over ca. 11,000 species¹. They comprise the basal Acantisittidae (two species), sister to the Eupasseres which in turn comprises the Tyranni (previously called Suboscines; 1,407 species), and the Passeri (previously called Oscines; 5,084 species). Molecular studies show that, as the sister clade to Psittaciformes (parrots and allies), Passeriformes originated in the earlier part of the Paleogene, and most of the extant families diverged near the Eocene-Oligocene-limit, i.e. some of them should be approximately as old as 30 million years (Ma)²⁻⁴. Nevertheless, the fossil record of passerine birds remains exceedingly poor prior to the middle Miocene, and increasingly toward earlier times. This taphonomic bias explains the difficulty in finding early specimens representing extant passerine clades. Among the few pre-Miocene published specimens, most are fragmentary⁵⁻¹¹, and even the three more complete specimens, on slab, are rather poorly preserved and prove difficult to identify with some precision. The latter specimens are all from the European early Oligocene: Wieslochia weissi (Germany^{12,13}), Jamna szybiaki and Resoviaornis jamrozi (Poland^{14,15}). This difficulty is also explained by (i) high apparent homoplasy observed on osteological characters within the Passeriformes^{12,13}, and (ii) the difficulty to compare fossils with a sufficiently large, representative sample of extant taxa, passerine clades being so rich at specific and generic levels. Some early fossils have been referred to Tyranni indet., others to Passeri indet., and the remaining to either the preceding taxa or possibly stem Eupasseres or stem passerines^{5–15}. All these fossils date to the Oligocene of France, Germany and Poland in Europe. In addition, late Oligocene fossils of logrunner (Oscines, Orthonychidae) are known from Australia¹⁶. As for the older, possible passerine remains from the lower Eocene of Australia^{17,18}, they are fragmentary (one proximal carpometacarpus and one distal tibiotarsus) and considered to be either not sufficiently diagnostic of the Passeriformes 12,19 or possibly Passeriformes outside Eupasseres20. Here we describe one of the earliest fossils on slab of a passerine bird, nearly complete, from the early Oligocene of the Luberon (Alpes-de-Haute-Provence, France). Its exceptional state of preservation allows for its identification as the oldest Passeriformes assignable to a modern subgroup of the Tyrannides (the latter being sometimes called "New World Tyranni"). This fossil provides the earliest calibration point for a subclade of the Tyranni. In addition, it yields evidence of an American passerine element in this locality, calling for several plausible paleobiogeographical scenarios. ¹Univ Lyon, Univ Lyon 1, ENSL, CNRS, LGL-TPE, F-69622, Villeurbanne, France. ²13012, Marseille, France. [™]e-mail: antoine.louchart@ens-lyon.fr **Figure 1.** The fossil specimen NT-LBR-014 from Revest-des-Brousses, Luberon (France), and interpretative drawing. al, wing phalanx digiti alulae; c, costa; cmc, carpometacarpus; cr, os carpi radiale; crc, coracoid; cu, os carpi ulnare; ddmj, distal wing phalanx digiti majoris; dmn, wing phalanx digiti minoris; hm, humerus; mdb, mandible; met, metacarpal; pdmj, proximal wing phalanx digiti majoris; q, quadrate; sp, scapula; tbt, tibiotarsus; tmt, tarsometatarsus; uln, ulna; v, vertebra; II, III, IV, numbering of pedal digits. Scale bars, 10 mm. #### Results **Assignment to the Passeriformes.** The whole morphology of the specimen NT-LBR-014 (Fig. 1), from the early Oligocene of Revest-des-Brousses (Luberon, Alpes-de-Haute-Provence, France), indicates that it belongs to the Passeriformes, to the exclusion of other birds. Among the more distinctive passerine characters, the fossil exhibits (i) trochleae II, III and IV of the tarsometatarsus situated in one plane, and the distal extremities of which are aligned (Figs. 1 and 2); (ii) a carpometacarpus with a wide processus intermetacarpalis (Fig. 2), a character found outside Passeriformes only in the Galliformes, Piciformes, Coliiformes and Coraciiformes (which differ from passerines by other characters)¹⁸; and (iii) the processus intermetacarpalis and the os metacarpale minus are fused in the fossil, which is found only in Passeriformes²¹ and Piciformes²², the latter differing in many other characters (among which zygodactylous type tarsometatarsus trochleae). Among numerous other passerine characters, the fossil also exhibits a tibiotarsus with two equally-sized and parallel condyles, not curved laterally or medially. **Figure 2.** Selected bones of the Luberon fossil NT-LBR-014, compared with extant species (Acanthizidae, Calyptomenidae, Tyrannidae, Pipridae). Second column from the left, drawings of bones which photos are in the first column. Line a, proximal humeri in caudal view. Line b, distal humeri in caudal view. Line c, carpometacarpi in dorsal view. Line d, proximal wing phalanges digiti majoris in ventral view. Line e, distal tarsometatarsi in dorsal view. cap. hum., caput humeri; cr. delt. pect., crista deltopectoralis; dist. proj. synos. metc. dist., distal projection of synostosis metacarpalis distalis; fpt, fossa pneumotricipitalis; fptd, fossa pneumotricipitalis dorsalis; fptv, fossa pneumotricipitalis ventralis; inc. cap., incisura capitis; L, left side; met., metacarpal; pila cran., pila cranialis; proc. dent., processus dentiformis; proc. ext. processus extensorius; proc. flex., processus flexorius; proc. int. ind., processus internus indicis; proc. int. met., processus intermetacarpalis; proc. sup. dors., processus supracondylaris dorsalis; R, right side; trchl. met., trochlea metatarsi. Scale bars, 2 mm (a-c), 1 mm (d,e). **Assignment to the Eupasseres (Passeri and Tyranni).** Acanthisittids are osteologically very derived, probably owing to their long insular isolation without predators, which favoured characters associated with reduction of flight ability, apparent in certain species (some are or were even flightless). The fossil differs from **Figure 3.** Drawings of right ulna of the Luberon fossil NT-LBR-014 and ulnas of extant species (Passeri, Acanthizidae; Tyranni, Calyptomenidae and Tyrannidae). (**a,b,e**), left ulnas; (**c,d,f**), right ulnas; (**a,c,e**), cranial views; (**b,d,f**), ventral views, tuber, lig. collat. ventr., tuberositas ligamenti collateralis ventralis. Scale bars, 1 mm. acanthisittids by numerous characters (Supplementary Table 1). Among these characters, the acanthisittid humerus is more curved (S-shaped), a shape approached by the Rhinocryptidae, also poorly flighted, contrary to the fossil which exhibits a straight humerus (Fig. 1). In addition, the fossa pneumotricipitalis is double in acanthisittids, as in most Passeri, whereas it is unique in the fossil (Fig. 2). The combination of those two characters is found only in acanthisittids. In addition, among characters less susceptible to be associated with flight reduction (see also cranial characters in Supplementary Table 1), the coracoid in acanthisittids has a shape much different from that of the fossil and the extant Eupasseres, and does not possess a foramen situated medially at the base of the processus acrocoracoideus (present in the extant Eupasseres and the fossil). The acanthisittid carpometacarpus also exhibits differences,
notably a more proximally situated processus intermetacarpalis, compared with the fossil and other passerines. The fossil therefore differs from the Acanthisittidae, and belongs to the Eupasseres. **Assignment to the tyranni.** The wing elements are especially diagnostic for differentiation between the two sub-orders^{5,7,8,13} (Figs. 2 and 3, Supplementary Table 1), but other features are also helpful. These diagnostic features are confirmed, or one yielded, by the present comparative study. As in the Tyranni, the fossil exhibits: a quadrate-quadratojugal articulation of the suboscine type (see ref. ¹⁹: 136–137.); a prominent tuberculum ligamenti collateralis ventralis of the ulna (little prominent in the Passeri)¹³; a tuberculum carpale more extended and spatulate (vs. shorter and obtuse in the Passeri; new described character); a processus dentiformis of the carpometacarpus poorly individualized (and moderately marked; less marked in some Tyranni; well individualized and strongly marked in the Passeri);^{5,7,8,13} a distal extremity of the os metacarpale minus prominent and pointed (square-shaped, and more hollow in ventral view, in the Passeri);^{5,7,8,13} a blade of the wing phalanx 1 digiti majoris with a rounded, convex border (straight border in the Passeri);^{7,19} presence of a processus internus indicis on the distal extremity of the alar phalanx 1 digiti majoris (absent in the Passeri)^{7,19}. These and other diagnostic characters allow to identify NT-LBR-014 as belonging to the Tyranni (and exclude the Passeri). **Phylogenetic analyses.** In order to precise the position of NT-LBR-014 within the Tyranni, phylogenetic analyses in parsimony were conducted based on the distribution of characters across the extant Tyranni examined and the fossil, transformed into a character matrix (Supplementary Methods; strict consensus, Supplementary Fig. 1; bootstrap analysis, Supplementary Fig. 2). The resulting trees show low robustness indices for most nodes (Supplementary Figs. 1, 2). We interpret the low robustness or poor resolution of the trees as the result of pervasive homoplasy in the distribution of osteological character states across the Tyranni (and probably across the whole Passeriformes). This had been observed in previous analyses involving fossil passerines, leading authors to refrain applying cladistic analyses (or other phylogenetic methods) to such osteological datasets^{12–14}. Results of our temptative phylogenetic analyses are not incongruent with our more qualitative results below, although they do not offer significant weight per se. *Sapayoa aenigma* is correctly placed in a clade exclusively with other Eurylaimides in the tree generated by bootstrap analysis (1000 replicates), although with poor support (Supplementary Fig. 2), as well as in the strict consensus tree (Supplementary Fig. 1). NT-LBR-014 is found distant from *Sapayoa* (and other Eurylaimides) in both analyses, and in addition it is found in a clade exclusively with piprid taxa in the strict consensus tree. The phylogenetic trees do not make it possible to ascertain which characters are plesiomorphic for the Tyrannida, for example, or synapomorphic for diverse subclades. In spite of the limitations of phylogenetic analyses based on a character matrix, the distribution of characteristics observed makes it possible, nevertheless, to identify sets of characters that successively exclude taxa in the assignment of NT-LBR-014, and restrain the clade to which it belongs, starting again at the level of the Tyranni. **Assignment to the Tyrannides.** The Tyranni comprises two infra-orders: the Eurylaimides ("Old World Tyranni") and the Tyrannides ("New World Tyranni"), based on molecular data 4,23-25. Few skeletal diagnostic characters make it possible to differentiate systematically between members of the two clades. Two of these characters apply to all the Eurylaimides and Tyrannides examined. As in the Tyrannides, the fossil exhibits: a straight processus flexorius of the distal humerus (partly produced, and somehow hooked more dorsally and caudally in the Eurylaimides); a cotyla ventralis of the proximal ulna slightly rounded and little developped ventrally (more rounded and developped ventrally in the Eurylaimides) (Figs. 2 and 3, Supplementary Table 1). In addition, most of the Tyrannides, as well as the fossil, exhibit other characters distinct from the Eurylaimides: more rounded orbits; a brachial tuberosity of coracoid (tuberculum brachiale; Fig. 4) more developed medially; and a processus extensorius of carpometacarpus (Fig. 2) less deported ventrally and slightly laterally. Species in the Tyrannides that exhibit intermediate states for these characters (between Eurylaimides and typical Tyrannides) are: Geositta cunicularia (Furnariidae), Scytalopus unicolor (Rhinocryptidae), Formicarius analis (Formicariidae), Cotinga sp. (Cotingidae), Tyrannus dominicensis (Tyrannidae). These few intermediate cases do not affect the observation that for all these characters NT-LBR-014 corresponds to the Tyrannides and differs from the Eurylaimides. **Assignment within the Tyrannides.** Among all characters observed on the fossil, 53 are discriminant among the examined Tyranni, within which many are rather variable across the Tyrannides (Fig. 5, Supplementary Tables 1, 2) and do not help link the fossil with a particular family or genus. Nevertheless, a number of other characters on each skeletal element appear diagnostic for one or several families (Supplementary Table 1); the more prominent ones are detailed below. **Skull.** The fossil, as well as *Xenopipo atronitens* (Pipridae), exhibit a reduced and triangular anteorbital fenestra (Fig. 6, Supplementary Table 1). The other species exhibit a fenestra generally more developed proportionally, and less neatly triangular. The dorsal interorbital fenestra is smaller than the ventral, and the separation between them is thin, in the fossil (Fig. 6, Supplementary Table 1). The relative size of these fenestrae shows great variability across extant species and families. However, there are certain trends in the position of these fenestrae, relative to the orbit, between families. The fenestrae generally start rostrally at the same level relative to the orbit, in species of a given family. In the fossil, the rostral extremity of the fenestrae lies at the rostral ¼ of the orbit length, like in the Pipridae. The outline of the cranium, orbits, (and beak) of the fossil, in comparison with extant Tyrannides, also helps delimiting close similarities of several characters with different taxa: one genus in the Tityridae and two in the Tyrannidae, but several in the Pipridae, and also *Sapayoa* (Sapayoidae), different suites of characters being involved for every of these taxa (Supplementary Table 1, Fig. 6). Incidentally, among piprid taxa, for *Antilophia*, which otherwise shares a number of similarities with NT-LBR-014, differences mainly concern a few cranial characters (Fig. 5); another piprid, *Neopelma*, is in contrast similar to the fossil in most cranial characters (including the marked gonys of mandible), and less so in postcranial ones. The feather crest erected above the rostrum basis of NT-LBR-014, in close examination, is clearly in exact life position and shape, and has been unaffected by taphonomic processes. It is triangular, well-developed, directed rostrally but with the tip slightly recurved caudally (Figs. 1 and 6, Supplementary Table 1). Several families **Figure 4.** Coracoids of the Luberon fossil NT-LBR-014, compared with extant species (Tyrannida). (a,e), respectively right (dorsal view) and left (ventral view) coracoids of the fossil NT-LBR-014; b, drawing of (a,c), dorsal view, inverted left coracoid; (d), dorsal view; (f), ventral view; (g), ventral view, inverted right coracoid. ang. med., angulus medialis; proc. acrocor., processus acrocoracoideus; proc. lat., processus lateralis; proc. procor., processus procoracoideus; tub. brach., tuberculum brachiale; br, broken. Scale bars, 5 mm. comprise species that exhibit a crest (or crests) on the head, but different in shape and/or in precise position (Tyrannidae, Tityridae, Cotingidae, Thamnophilidae, Rhinocryptidae, Furnariidae). Only in certain Pipridae a crest above the beak exhibits a shape approaching (*Chiroxiphia*, *Masius*) or being identical (*Antilophia*) to that of the fossil. The crest of the fossil is only slightly larger proportionally (18.6 mm length) than that of *A. galeata* (13.0–14.5 mm), with a coefficient of proportionality of ca. 4/3 (see Fig. 7B). **Coracoid.** The fossil coracoid exhibits a prominent processus acrocoracoideus (Fig. 4), with a shape similar to that of *A. galeata* (Pipridae). The processus procoracoideus of the fossil is well-developed medially (Fig. 4), and is similar to that of *Tyrannus dominicensis* (Tyrannidae). This process has a shape approaching that of the piprid species *C. holochlora* and *X. atronitens* at least (broken in the available specimen of *A. galeata*, also suggesting prominent shape). **Humerus.** Scytalopus unicolor (Rhinocryptidae) differs from other extant taxa examined and the fossil by the reduced crista deltopectoralis, a character linked with reduced flight capability²⁶. The fossil exhibits a processus supracondylaris dorsalis that is unique and well-developed (Fig. 2), a character shared with all the Pipridae, and Pitta sordida (Pittidae), Sapayoa aenigma (Sapayoidae), Scytalopus unicolor (Rhinocryptidae), Schiffornis turdina (Tityridae), and Pipreola arcuata (Cotingidae); the other extant species examined in the Tyrannides have a unique processus supracondylaris dorsalis, but which is reduced (or less prominent proximally). **Figure 5.** Radial visualisation (Kiviat diagram) of the distribution of character states of the Luberon fossil NT-LBR-014, across extant taxa of the Tyrannides for which all the characters were assessable. Top, position of the
diagnostic characters considered here relative to each radius. In extant species, character state can be 0 (centre; character absent), 1 (mid-radius; character present but state still different from fossil), or 2 (state identical or similar to fossil) (see Supplementary Table 4). **Ulna.** The fossil exhibits relatively reduced papillae remigales caudales, similar to the condition in *Myrmotherula axillaris* (Thamnophilidae), *Conopophaga ardesiaca* (Conopophagidae), *Oxyuncus cristatus* (Tityridae), *Todirostrum* sp. (Tyrannidae), and most of the Pipridae. **Carpometacarpus.** The shape and position of the processus intermetacarpalis in the fossil are similar to those observed in *C. linearis*, *X. atronitens*, *A. galeata* (Pipridae), and *Cotinga* sp. (Cotingidae) (Fig. 2). The processus dentiformis in NT-LBR-014 is well marked, as is observed in some taxa of the Eurylaimides (including *Sapayoa*), as well as some Conopophagidae, Rhinocryptidae, Formicariidae and Pipridae in the Tyrannides. In the Pipridae, a marked processus dentiformis is seen in *Manacus* and *Xenopipo*. The outline of the bone is otherwise similar to that in several piprid species (Fig. 8). **Figure 6.** Skull of the Luberon fossil NT-LBR-014, compared with extant species (Pipridae, Sapayoidae). All left lateral views. Top left, fossil NT-LBR-014; top right, drawing of the preceding. NB: the part below the os lacrimale is collapsed, and seems to have been developed as in, e.g., *Sapayoa*. arc. jug., arcus jugalis; fen. antorb., fenestra antorbitalis; fen. interorb. dors., fenestra interorbitalis dorsalis; fen. interorb. ventr., fenestra interorbitalis ventralis; for. feath. cr., forehead feather crest; os ect., os ectethmoidale; os lacr., os lacrimale; oss. nas. sept., osseous nasal septum; proc. orb., processus orbitalis of quadrate; proc. otic., processus oticus of quadrate; proc. mand., processus mandibularis of quadrate; rostrum mand., rostrum mandibulare; rostrum max., rostrum maxillare. Scale bars, 5 mm. **Wing phalanx digiti majoris 1.** Among the Tyrannides, certain families exhibit a processus internus indicis that is only faint, or even absent: the Furnariidae, Thamnophilidae, Conopophagidae, Rhinocryptidae, Formicariidae, Dendrocolaptidae. In addition, in these families the shape of the blade is intermediate between the typical Passeri state (straight border) and the typical Tyranni state (convex border), a character directly linked with the development of the processus internus indicis¹⁹. These six families can therefore be differentiated from the other Tyrannides and the fossil NT-LBR-014 (Fig. 2) based on these characters. **Femur.** The proximal end of the fossil femur exhibits a rather deep caudal fossa (Fig. 9), a character observed in *Geositta cunicularia* (Furnariidae), *Scytalopus unicolor* (Rhinocryptidae), and *Masius chrysopterus*, *C. linearis* and *X. atronitens* (Pipridae). **Tibiotarsus.** A medial crest on the proximal end is absent, contrary to *Scytalopus unicolor* (Rhinocryptidae), *Phytotoma rara* (Cotingidae), *Rhynchocyclus olivaceus* (Tyrannidae), and most of the Tityridae examined, which exhibit a marked crest. **Tarsometatarsus.** The fossil exhibits an ossified pons supratendineus on the proximal part of the dorsal face, positioned rather proximally. A pons is positively absent in only two of the examined extant passerines, *Tyrannus dominicensis* and *Todirostrum* sp. (both Tyrannidae), and at least no other Tyranni (Fig. 9, Supplementary Table 1). **Combinations and distributions of characters.** A Kiviat diagram allows visualization of the distribution of the states of the characters that show heterogeneity across extant Tyrannides, and the states observed in the fossil (Fig. 5). The families in the Tyrannides are grouped into two clades: the Tyrannida and the Furnariida. A **Figure 7.** Geographic location, and reconstruction of the Luberon early Oligocene Tyrannida. In (a), the geographic location of the Luberon Tyrannida NT-LBR-014 is represented (red circle), together with the extant distribution of Tyrannida (red area), superimposed on a paleogeographic map of landmasses in the early Oligocene (map background modified after The Paleobiology Database). In (b), reconstruction of the Luberon Oligocene manakin-like Tyrannida in life; drawing copyright Manon Delval. **Figure 8.** Right carpometacarpus of the Luberon fossil NT-LBR-014, compared with extant species (Pipridae). (**b,c**), inverted left carpometacarpi. In (**c**), the angle of view (ventral) is slightly different from that in (**a,b,d**) (slightly cranio-ventral, in (**b**) more than in (**a,d**)). *The facies articularis radiocarpalis is masked under the matrix. facies art. rad., facies articularis radialis; facies art. uln., facies articularis ulnaris; os met. maj., os metacarpale majus; os met. min., os metacarpale minus; proc. ext., processus extensorius; synos. met. dist., synostosis metacarpalis distalis. The angles of view prevent from seeing the processus dentiformis when present. Scale bars, 5 mm. **Figure 9.** Leg bones of the Luberon fossil NT-LBR-014. a, right femur, latero-caudal view; b, left distal tibiotarsus, latero-cranial view; c, left proximal tarsometatarsus, latero-dorsal view; d, right proximal tarsometatarsus, dorsal view. cond. lat., condylus lateralis; cr. med. hyp., crista medialis hypotarsi; cr. med. pl., crista medialis plantaris; gr., tiny groove between the tuberositas retinaculi extensorius lateralis and the tuberculum retinaculi m. fibularis, proximal to the condylus lateralis (see Supplementary Table 1); h., hollow just distal to the facies articularis antitrochanterica; o. p. s., ossified pons supratendineus; tr. fem., trochanter femoris. Scale bars, 5 mm. number of characters are shared between the fossil and the Tyrannidae, Cotingidae, Tityridae and Pipridae – these four families forming the Tyrannida– and differ from those in the Furnariida. In addition, all the characters of the fossil are similar to those of at least one of the examined species of Pipridae. And last, the fossil shows a greater resemblance overall with *C. linearis* and *X. atronitens*, and above all a maximum of similar/identical characters with *A. galeata*. NT-LBR-014 exhibits a mosaic of characters present in one or more families of Tyrannides, and systematically in some or all of the examined Pipridae, contrary to other families (Fig. 5, Supplementary Table 1, and also Supplementary Table 2 showing six additional characters that are discriminant for certain genera and species across the Tyrannida). #### Discussion **Systematic assignment of the Oligocene fossil.** NT-LBR-014, unambigously assignable to the Tyranni within the Passeriformes, can also be firmly placed more precisely in the Tyrannides. All the character states of NT-LBR-014 are systematically present in members of the Tyrannides and they include the diagnostic characters of Tyrannides, to the exclusion of the Eurylaimides, that we highlighted. Eventhough with poor support, our temptative phylogenetic analyses are concordant with this result, placing the fossil outside the Eurylaimides, the latter comprising Sapayoa in agreement with molecular works (see below). Within the Tyrannides, several characters exclude the infra-order Furnariida (composed of the Furnariidae -this family including the former Dendrocolaptidae¹, the Thamnophilidae, Conopophagidae, Formicariidae, and Rhinocryptidae)^{1,2,27}, and no character state is shared only between the fossil and one or more members of these six families to the exclusion of other Tyrannides -the Tyrannida. Not all the extant genera (not to mention species) could be examined in the Furnariida, but a sample that we consider sufficiently well-distributed phylogenetically, to allow for some extrapolation of the character states that were observed, and which differ systematically from NT-LBR-014. The most genus and species-rich families in the Furnariida are the Thamnophilidae and the Furnariidae. The representatives examined (or for which data are available in the literature) are considered sufficiently different from the fossil to be confident in our conclusions. Conversely, most characters are shared between the fossil and the other infra-order, the Tyrannida (composed of the families Cotingidae, Tityridae, Tyrannidae, and Pipridae^{1,2,27}). Specimens of Cotingidae, Tityridae and Tyrannidae differ from NT-LBR-014 mostly in characters of the skull and the coracoid. The fossil shares a maximum of characters with the Pipridae, and every character is in common with at least one, or all of the genera examined in the Pipridae. Similarity is greater with the Piprinae (Chloropipo, Antilophia, Chiroxiphia, Masius, Xenopipo, Manacus, Pipra, Machaeropterus) on postcranial characters, and with the Neopelminae (Neopelma et Tyranneutes; the more basal subfamily of Pipridae²⁸) on cranial characters (principally with Neopelma). Within the Piprinae, the fossil shares a greater number of postcranial characters with Chiroxiphia and Xenopipo, and an even greater number with Antilophia (26 of 30 characters, excluding those diagnostic for Passeriformes and for Tyranni). However, NT-LBR-014 exhibits a mosaic of characters present in several different piprid genera (Piprinae or Neopelminae; Supplementary Table 1). But moreover, it is possible that osteological characters are also shared with at least one other Tyrannida outside the Pipridae. This is especially possible in the family Tyrannidae since a number of extant genera and species could not be examined among the 449 species in 101 genera of this extremely rich family. Among the 67 species in 24 genera of Cotingidae, or the 49 species in 11 genera of Tityridae, most could not be seen either. As a consequence, some characters here found in common exclusively with some piprid taxa could possibly be plesiomorphic for the Pipridae, or even plesiomorphic for the Tyrannida as a whole, and
present also in other families. Some of the Tyrannidae examined already show a number of shared characteristics with the fossil, although less than the piprid taxa. Even rare features such as the particular feather crest could be found in an Oligocene fossil through plesiomorphy or convergence outside crown Pipridae, or even in another family. Therefore, even if more extant species of Tyrannida were examined and considered here than in all previous literature on an early fossil passerine, we suggest, pending a more thorough survey of other taxa in the Tyrannida, to conservatively assign NT-LBR-014 to the Tyrannida, more probably as Interestingly, a synamoporphy of Pipridae has been known since the 19th century, namely the syndactyly of the outer toes (III and IV); and this character also evolved convergently in some members of other clades in the Tyranni²⁹. Aware of this character, we nevertheless found no indication of fusion between phalangeal bones themselves, in any extant piprid, nor in any other extant specimen examined (Supplementary Fig. 3). The syndactyly of toes III and IV in Pipridae, as well as other forms of syndactyly, were observed exclusively on naturalized specimens²⁹, and obviously they concern only the soft tissues surrounded the bones. Therefore, the absence of fusion of toe bones in the fossil (Supplementary Fig. 3), as well as on all extant specimens examined, has no bearing on reported syndactyly, wich rests on soft tissues, and the latter is a character out of reach on the fossil. The early assignment of *Sapayoa* to the Pipridae in the history of classification, on the basis of morphology, is consistent with the osteological partial resemblance on some characters noticed here between these two taxa. More recently, molecular phylogenetic analyses revealed that *Sapayoa* belonged in the Eurylaimides, of which it is the only New World representative^{2,3,30}. The characters of *Sapayoa* showing similarity with the Pipridae, as well as with the fossil, are therefore interpretable as the result of convergences. NT-LBR-014 shows no close similarity with the few incomplete passeriform fossils found in the Oligocene or early Miocene of France, Germany and Poland $^{5-15,31}$, including a nearly completely represented taxon from the early Oligocene of Germany, *Wieslochia weissi* 12,13 (Supplementary Table 1), which displays a greater number of assessable characters than others. Although disarticulated and with moderately well preserved detail, *W. weissi* exhibited features leading to consideration of its position as probably basal in the Tyranni, or Eupasseres, or even Passeriformes as a whole 13 . Incidentally, a range of comparable phylogenetic positions (including within crown passerines) is indeed plausible for some European Miocene tarsometatarsi, the hypotarsus of which had initially led Manegold *et al* 31 , to consider them outside crown Passeriformes 32 . **Paleoecology.** With a length of 15 cm, the fossil NT-LBR-014 is a medium-sized Tyrannida; its legs are of medium length proportionally, as well as the wings (Supplementary Table 3, Supplementary Fig. 4). The beak and claw shapes are also unspecialized compared with modern Tyrannida, and are compatible with a rather generalist diet, comprising insects and small fruits, as in most extant manakins, tyrant-flycatchers and allies. Extant Tyrannida live in the Americas, with most diversity in the neotropical ecozone¹. NT-LBR-014 derives from a near-coastal lagunar, freshwater depositional setting, surrounded by forests, under a subtropical to tropical paleoclimate^{33–35}, consistent with the ecological requirements of the vast majority of present-day members of the Tyrannida; only the Tyrannidae expand across entire North America in the breeding season, in addition to the Neotropics. **Early passerines and molecular ages.** Recent molecular studies have determined the age of divergence between Acanthisittidae and Eupasseres (Passeri and Tyranni) as around the Paleocene-Eocene limit (ca. 56 Ma)³, or later in the early Eocene, near 48 Ma⁴. The earliest ascertained fossil passerines are from the early Oligocene of Europe. They comprise Passeri, Tyranni and possibly more basal lineage(s)^{5–15}. NT-LBR-014 is the first to be assignable to a more precise, extant passerine clade, the Tyrannida, at ca 30 Ma. A molecular age of diversification for the Tyrannida was proposed at 32–33 Ma^{2,27} or near 24 Ma⁴, and the divergence between Tyrannida and Furnariida at 38.9 Ma³ or near 36 Ma⁴. The identification of NT-LBR-014 as a stem Tyrannida, or possibly situated at the start of the diversification of the Tyrannida, is congruent, at ca 30 Ma, with these molecular results. Furthermore, this fossil will now offer a new calibration point for a minimal age of stem Tyrannida (prior to crown diversification), for future molecular studies, which would presumably tend to slightly increase the diversification ages cited above. Paleobiogeography of the Tyranni. The early Oligocene presence in Europe of a Tyrannida, a clade today exclusively American (Fig. 7), might be explained by several different scenarios, as for two other stem-representatives of New World clades found in the same area: the stem hummingbird Eurotrochilus sp. 34 and the stem Galbulae Jacamatia³⁶. The stem Tyrannida may have originated in the New World, and then the presence of a Tyrannida in southern France in the Oligocene implies that they rapidly colonized Europe in the early Oligocene. This passage might have taken the route of landmasses and straits between northern North America and Europe. Fossil records of Tyrannida (and other Tyranni) are lacking in Oligo-Miocene or older strata of northern America to support this hypothesis, but this apparent absence does not rule out the hypothesis since sufficiently diagnostic fossil passerines are extremely rare worldwide in these periods in general. The passage might alternatively have been from southern America to Europe, directly or via Africa, where the avian fossil record is extremely scarce for these periods. Alternatively, the stem Tyrannida may have originated in the Old World. A new fossil such as NT-LBR-014 can disrupt models that are inferred⁴ based only on extant distributions. As is the case for the stem hummingbirds³⁴ and stem Galbulae³⁶ found in Europe in the early Oligocene, the new fossil Tyrannida calls for the possibility of a much more complex history of past distributions. In the hypothesis of an Old World origin of stem Tyrannida (and hence, probably also the stem Tyrannides, from the Old World stem of its sister clade Eurylaimides), they must have colonized the Americas at some point between the early Oligocene and the middle Miocene. Again, the passage could have occurred north of the northern Atlantic via northern America, or from Europe to southern America. In the latter case, an additional scenario might be envisioned as colonisation of southern America by European populations becoming medium-distance or long-distance seasonal migrants, in a context of increased seasonality during these periods³⁷. Such populations would have been progressively wintering in southern America where descendents would have become more resident later in evolution. In both scenarios of family origin, transatlantic crossing by the northern route was rendered possible by the tropical to subtropical climate up to high latitudes, but preferentially early in the Oligocene, owing to later global cooling stages³⁸. And in both scenarios, crossing between northwest Africa and South America would have required a transit of "only" 1,000 km across the ocean, and progressively more with continental drift. Paleo-islands in the southern Atlantic in the Oligocene³⁹ would have helped this crossing. A last possibility of passage would have been via the Bering Strait which benefited from a mild climate, but the absence of fossil evidence added to the much greater distance, make this scenario much less likely. In every hypothesis, after the Oligocene the European distribution of Tyrannida would have become reduced and eventually disappeared at latest in the upper Miocene, owing to global cooling and a decrease in winter temperatures among other factors^{37,38}. This led to a relictual distribution in the southern hemisphere, tropical regions, in this case neotropical zones, as was the case for several other bird groups^{36,40,41}. Concomitant with this retreat towards the equator in America, some lineages could become progressively long-distance migrants (including members of the Tyrannidae today breeding in North America and wintering in the Neotropics). Interestingly, *Sapayoa aenigma*, "Old World" Tyranni (Eurylaimides) living in South America, also illustrates a transatlantic crossing of an ancestor, leaving descendents on both sides (this species is neotropical, and all other Eurylaimides are paleotropical). It is not possible to favour a northern or a southern passage in the case of *Sapayoa*, but it must have occurred between the latest Oligocene and middle Miocene³. #### Methods **Fossil material.** The fossil NT-LBR-014 (collection Nicolas Tourment, Marseille^{34,35}) is a nearly complete articulated skeleton on slab, embedded in fine limestone laminites. A cast is deposited in the Collections of the Université Lyon 1-Claude Bernard (Villeurbanne, France, collection n° UCBL-FSL-444666). The depositional setting was calm; only a few bones are disarticulated (e.g., the right coracoid is slightly displaced). Parts of the feathering are preserved as a thin layer of dark organic matter, showing among other features the shape of a typical frontal crest, in place and undisturbed. The laminites were deposited in a coastal freshwater to slightly brackish lagoon, and date to the early Oligocene ("Vachères limestones", Rupelian strata, biozone MP24, 33–28.25 Ma^{42–45}) of Revest-des-Brousses (Apt Basin, Luberon, Alpes-de-Haute-Provence, southeastern
France). These levels locally comprise elements of a tropical to subtropical fauna and flora, essentially of continental origin, and including birds of a dozen families^{34–36}. **Comparative material.** Comparisons were made with representatives of the families osteologically close to passerines, and within passerines with a representative sample of most families in the Passeri, as well as with Acanthisittidae and members of all families of Tyranni (41 species), and also with the literature (extant and fossil taxa) (Supplementary Methods, Supplementary Table 1). **Comparative anatomy, osteological nomenclature, and systematics.** Observations of the fossil and extant specimens were realized using a binocular microscope at various magnifications. Drawings were additionally realized using a camera lucida with binocular microscope. Osteological nomenclature follows primarily Baumel and Witmer⁴⁶, unless stated otherwise. Systematic arrangement follows Del Hoyo *et al*¹.. **Phylogenetic analyses.** Methods used for phylogenetic analyses in parsimony are in Supplementary Methods. #### Data availability Data analysed during this study are included as Supplementary Information files. The fossil NT-LBR-014 is deposited in the Collection Nicolas Tourment, Marseille, and is accessible upon request. The cast UCBL-FSL-444666 is deposited in the Collections of Paleontology, Université Lyon 1, Villeurbanne. Any additional data are available from the author upon reasonable request. Received: 25 February 2020; Accepted: 12 May 2020; #### Published online: 17 June 2020 #### References - 1. del Hoyo, J., Elliott, A., Sargatal, J., Christie, D. A. & de Juana, E. (eds) *Handbook of the Birds of the World Alive* (Lynx Edicions, Barcelona, 2019). (retrieved from https://www.hbw.com/ on 13 March 2019). - Ericson, P. G., Klopfstein, S., Irestedt, M., Nguyen, J. M. & Nylander, J. A. Dating the diversification of the major lineages of Passeriformes (Aves). BMC Evol. Biol. 14, 8 (2014). - 3. Selvatti, A. P. & Gonzaga, L. P. & de Moraes Russo, C. A. A Paleogene origin for crown passerines and the diversification of the Oscines in the New World. *Mol. Phylogenet. Evol.* 88, 1–15 (2015). - 4. Oliveros, C. H. et al. Earth history and the passerine superradiation. Proc. Natl. Acad. Sci. USA 116, 7916-7925 (2019). - 5. Mourer-Chauviré, C., Hugueney, M. & Jonet, P. Découverte de Passeriformes dans l'Oligocène supérieur de France. C. R. Acad. Sci. Paris Série 2 309, 843–849 (1989). - Mourer-Chauviré, C., Berthet, D. & Hugueney, M. The late Oligocene birds of the Créchy quarry (Allier, France), with a description of two new genera (Aves: Pelecaniformes: Phalacrocoracidae, and Anseriformes: Anseranatidae). Senckenbergiana lethaea 84, 303–315 (2004). - 7. Mayr, G. & Manegold, A. A small suboscine-like passeriform bird from the early Oligocene of France. *The Condor* **108**, 717–720 (2006). - Manegold, A. Passerine diversity in the late Oligocene of Germany: earliest evidence for the sympatric coexistence of Suboscines and Oscines. Ibis 150, 377–387 (2008). - 9. Bochenski, Z. M., Tomek, T. & Swidnicka, E. The first complete leg of a passerine bird from the early Oligocene of Poland. *Acta Palaeont. Polon.* **59**, 281–285 (2014). - 10. Bochenski, Z. M., Tomek, T. & Swidnicka, E. A complete passerine foot from the late Oligocene of Poland. *Palaeontologia Electronica* 17.1.6A, 1–7 (2014). - Bochenski, Z. M. et al. Articulated avian remains from the early Oligocene of Poland add to our understanding of passerine evolution. Palaeontologia Electronica 21.2.32A (2018). - 12. Mayr, G. & Manegold, A. The oldest European fossil songbird from the early Oligocene of Germany. *Naturwissenschaften* 91, 173-177 (2004). - 13. Mayr, G. & Manegold, A. New specimens of the earliest European passeriform bird. Acta Palaeontol. Polon. 51, 315-323 (2006). - 14. Bochenski, Z. M., Tomek, T., Bujoczek, M. & Wertz, K. A new passerine bird from the early Oligocene of Poland. J. Ornithol. 152, 1045–1053 (2011). - 15. Bochenski, Z. M., Tomek, T., Wertz, K. & Swidnicka, E. The third nearly complete passerine bird from the early Oligocene of Europe. *J. Ornithol.* 154, 923–931 (2013). - 16. Nguyen, J. M. T., Boles, W. E., Worthy, T. H., Hand, S. J. & Archer, M. New specimens of the logrunner *Orthonyx kaldowinyeri* (Passeriformes: Orthonychidae) from the Oligo-Miocene of Australia. *Alcheringa* 38, 245–255 (2014). - 17. Boles, W. E. The world's oldest songbird. Nature 374, 21-22 (1995). - 18. Boles, W. E. Fossil songbirds (Passeriformes) from the early Eocene of Australia. *Emu* **97**, 43–50 (1997). - 19. Manegold, A. Zur Phylogenie und Evolution der "Racken"-, Specht- und Sperlingsvögel ("Coraciiformes", Piciformes und Passeriformes: Aves). Ph.D Dissertation. Freie Universität Berlin (2005). - 20. Mayr, G. The origins of crown group birds: molecules and fossils. Palaeontology 57, 231-242 (2014). - 21. Kakegawa, Y. A Miocene passeriform bird from the Iwami Formation, Tottori Group, Tottori, Japan. Bull. Natl. Sci. Mus. Series C 49, 33–37 (2003). - 22. Smith, N. A., de Bee, A. M. & Clarke, J. A. Systematics and phylogeny of the Zygodactylidae (Aves, Neognathae) with description of a new species from the early Eocene of Wyoming, USA. *PeerJ* 6, e4950, https://doi.org/10.7717/peerj.4950 (2018). - 23. Chesser, R. T. Molecular systematics of New World suboscine birds. Mol. Phylogenet. Evol. 32, 11-24 (2004). - 24. Barker, F. K., Cibois, A., Schikler, P., Feinstein, J. & Cracraft, J. Phylogeny and diversification of the largest avian radiation. *Proc. Natl. Acad. Sci. USA* 101, 11040–11045 (2004). - 25. Irestedt, M., Ohlson, J. I., Zuccon, D., Källersjö, M. & Ericson, P. G. Nuclear DNA from old collections of avian study skins reveals the evolutionary history of the Old World suboscines (Aves, Passeriformes). *Zoologica Scripta* 35, 567–580 (2006). - Feduccia, A. & Olson, S. L. Morphological similarities between the Menurae and the Rhinocryptidae, relict passerine birds of the southern hemisphere. Smithson. Contrib. Zool. 366, 1–22 (1982). - 27. Ohlson, J. I., Irestedt, M., Ericson, P. G. & Fjeldså, J. Phylogeny and classification of the New World suboscines (Aves, Passeriformes). *Zootaxa* 3613, 1–35 (2013). - 28. Ohlson, J. I., Fjeldså, J. & Ericson, P. G. Molecular phylogeny of the manakins (Aves: Passeriformes: Pipridae), with a new classification and the description of a new genus. *Mol. Phylogenet. Evol.* **69**, 796–804 (2013). - 29. Prum, R. O. A test of the monophyly of the manakins (Pipridae) and of the cotingas (Cotingidae) based on morphology. Occasional Papers of the Museum of Zoology, the University of Michigan 723, 1–44 (1990). - 30. Fjeldså, J., Zuccon, D., Irestedt, M., Johansson, U. S. & Ēricson, P. G. Sapayoa aenigma: a New World representative of "Old World suboscines. Proc. Royal Soc. London B 270, S238–S241 (2003). - 31. Manegold, A., Mayr, G., Mourer-Chauviré, C. & Nelson, D. A. Miocene songbirds and the composition of the european passeriform avifauna. *The Auk* 121, 1155–1160 (2004). - 32. Worthy, T. H. et al. Biogeographical and phylogenetic implications of an early Miocene wren (Aves: Passeriformes: Acanthisittidae) from New Zealand. J. Vertebr. Paleontol. 30, 479–498 (2010). - 33. Roux, T. Deux fossiles d'oiseaux de l'Oligocène inférieur du Luberon. Courrier scientifique du Parc naturel régional du Lubéron 6, 38-57 (2002). - Louchart, A., Tourment, N., Carrier, J., Roux, T. & Mourer-Chauviré, C. Hummingbird with modern feathering: an exceptionally well-preserved Oligocene fossil from southern France. *Naturwissenschaften* 95, 171–175 (2008). - 35. Louchart, A., Tourment, N. & Carrier, J. The earliest known pelican reveals 30 million years of evolutionary stasis in beak morphology. *J. Ornithol.* **152**, 15–20 (2011). - Duhamel, A., Balme, C., Legal, S., Riamon, S. & Louchart, A. An early Oligocene stem Galbulae (jacamars and puffbirds) from southern France, and the position of the Paleogene family Sylphornithidae. The Auk: Ornithological Advances 137 (2020). doi: 10.1093/auk/ukaa023. - 37. Louchart, A. Emergence of long distance bird migrations: a new model integrating global climate changes. *Naturwissenschaften* **95**, 1109–1119 (2008). - 38. Zachos, J. C., Dickens, G. R. & Zeebe, R. E. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451, 279–283 (2008). - De Oliveira, F. B., Molina, E. C. & Marroig, G. Paleogeography of the south Atlantic: a route for primates and rodents into the New World? in South American Primates, Developments in Primatology: Progress and Prospects (eds. P. A. Garber et al.) 55–68 (Springer Science, New York, 2009). - 40. Blondel, J. & Mourer-Chauviré, C. Evolution and history of the western Palaearctic avifauna. Trends Ecol. Evol. 13, 488–492 (1998). - 41. Mayr, G. Two-phase extinction of of "Southern Hemispheric" birds in the Cenozoic of Europe and the origin of the Neotropic avifauna. *Palaeobiodiversity and Palaeoenvironments* 91, 325–333 (2011). - 42. Cavelier, C. Paléogène in Synthèse Géologique du Sud-Est de la France (ed S. Debrand-Passard) 389-468 (Mémoires BRGM France 125, 1984). - 43. Ducreux, J. L., Hugueney, M. & Truc, G. La formation des Calcaires et Lignites de Sigonce (Oligocène moyen, bassin de Forcalquier, Alpes-de-Haute-Provence): datation à l'aide des mammifères; reconstitution des milieux de dépôts. *Geobios* 18, 109–114 (1985). - 44. Escarguel, G., Marandat, B. & Legendre, S. On the numerical ages of the Paleogene mammalian faunas from Western Europe, particularly of the lower and middle Eocene. *Mém. Trav. EPHE Inst. Montpellier* 21, 443–460 (1997). - 45. Sigé, B. & Hugueney, M. Les micromammifères des gisements à phosphate du Quercy (SW France). Strata Sér. I 13, 207-226 (2006). - Baumel, J. J. & Witmer, L. M. Osteologia. I in Handbook of avian anatomy: nomina anatomica avium (eds J. J. Baumel, A. S. King, J. E. Breazile, H. E. Evans & J. C. Vanden Berge) 45–132
(Publ. Nuttall Ornithol. Club 23, 1993). #### Acknowledgements We thank the following curators and institutions for providing extant comparative specimens: C. Lefèvre (MNHN, Paris, France), S. W. Cardiff and J. V. Remsen (MZLSU, Baton Rouge, USA), D. Willard (FMNH, Chicago, USA), J. Cooper and J. White (NHM, Tring, UK), A. Tennyson (NMNZ Te Papa Tongarewa, Wellington, New Zealand), J. Dean (NMNH, Washington, D.C., USA). We also thank C. Mourer-Chauviré and T. Roux for early initiation of the study, E. Robert (UCBL) for taking care of casts, M. Makou for revising English, and M. Delval for drawing the reconstruction in life of the Luberon Oligocene Tyrannida. #### **Author contributions** A.L. conceived the study. N.T. provided the fossil material. S.R. and A.L. performed the analyses and realised the figures, for which S.R. made the drawings. S.R. and A.L. developed and discussed interpretations, and prepared the manuscript. All authors read and modified the manuscript. #### Competing interests The authors declare no competing interests. #### Additional information Supplementary information is available for this paper at https://doi.org/10.1038/s41598-020-66149-9. Correspondence and requests for materials should be addressed to A.L. Reprints and permissions information is available at www.nature.com/reprints. **Publisher's note** Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0/. © The Author(s) 2020 | 1 | Supplementary Information | |----|--| | 2 | | | 3 | The earliest Tyrannida (Aves, Passeriformes), from the Oligocene of France | | 4 | | | 5 | Ségolène Riamon, Nicolas Tourment & Antoine Louchart | | 6 | | | 7 | | | 8 | This PDF file includes: | | 9 | Supplementary Methods | | 10 | Supplementary Figures 1 to 4 | | 11 | Supplementary Tables 1 to 5 | | 12 | References (for Supplementary Table 1) | | 13 | | | 14 | | | 15 | | #### **Supplementary Methods** - 17 List of extant specimens examined, and their collection acronyms - 18 In addition to preliminary comparisons with representatives of almost all other avian families, - including a number of derived Oscine passerines (UCBL), skeletal specimens of the following - 20 extant species were examined for comparison. (F, female; M, male). - 21 Acanthisittidae, Acanthisitta chloris chloris, MNZ 26466; Pittidae, Pitta sordida, LAC - 22 1884.2469; Philepittidae, *Philepitta castanea*, F, FMNH 384764; Eurylaimidae, - 23 Cymbirhynchus macrorhynchos, LAC 1884.256; Calyptomenidae, Calyptomena viridis, LAC - 24 1997.830; Sapayoidae, Sapayoa aenigma, M, USNM 428203; Furnariidae, Geositta - cunicularia, M, USNM 614657; Dendrocincla fuliginosus, M, FMNH 321160; - Thamnophilidae, Myrmotherula axillaris, M, FMNH 319192; Sakesphorus canadensis - 27 loretoyacuensis, M, FMNH 389206; Thamnophilus doliatus, (skull) LAC 1997.556; - 28 Thamnophilus coecus, (skull) LAC 1884.1557; Conopophagidae, Conopophaga ardesiaca - 29 saturata, M, FMNH 322380; Rhinocryptidae, Scytalopus unicolor, M, USNM 559977; - 30 Formicariidae, Formicarius analis, M, USNM 612383; Pipridae, Ceratopipra erythrocephala, - 31 LAC 1880.125; Neopelma sulphureiventer, M, MZLSU 101474; Tyranneutes stolzmanni, F, - 32 FMNH 322555; Chloropipo holochlora viridior, M, FMNH 322514; Manacus manacus - 33 trinitatis, FMNH 394500; Machaeropterus pyrocephalus pyrocephalus, M, FMNH 322563; - 34 Chiroxiphia linearis fastuosa, F, FMNH 434065; Xenopipo atronitens, M, USNM 622077; - 35 Masius chrysopterus, M, MZLSU 89991; Antilophia galeata, USNM 321704; Cotingidae, - 36 Pipreola arcuata, F, MZLSU 104416; P. intermedia signata, (skull) LAC 1884.1554; - 37 Cephalopterus ornatus, LAC 1986.37; Cotinga sp., LAC n° 2278; Procnias sp., (skull) LAC - 38 1884.1583; *Rupicola rupicola*, LAC 2004.635; *Rupicola* sp., (skull) LAC 1884.1574 - 39 (=111/711); *Phytotoma rara*, NHM 1891.7.20.273; Tityridae, *Oxyruncus cristatus*, M, - 40 MZLSU 108942; Onychorhynchus coronatus, NHM 1891.7.20.143; Tityra semifasciata, - NHM 1891.7.20.16; Schiffornis turdinus amazonus, F, FMNH 322490; Tyrannidae, Tyrannus - 42 dominicensis, LAC 1996.60; Tyrannus sp., LAC; Todirostrum sp., LAC 2000.556; Contopus - 43 latirostris, (skull) LAC; Rhynchocyclus olivaceus, NHM S/1974.11.83; Rhynchocyclus sp., - LAC 2000.459; Menuridae, *Menura novaeohollandiae*, LAC 1883.2208; Ptilonorhynchidae, - 45 *Sericulus* sp. LAC 1845.92, *Ptilonorhynchus violaceus* LAC A 4307 = BVI/417; - 46 Meliphagidae, Meliphaga lewini LAC 1883.2127 = IV/342, Philemon corniculatus LAC A - 47 4319 = BVI/370, Manorina melanocephala LAC A 4468 = BVI/364; Pardalotidae, - 48 Pardalotus punctatus LAC 1860.96; Acanthizidae, Gerygone flavolateralis, LAC 1997.535; - 49 Pomatostomatidae, *Pomatostomus temporalis trivirgatus*, LAC A 4467 = BVI/373; - Paradisaeidae, *Ptiloris paradiseus* LAC 1860.102 = A 4291 = BVI/360, LAC A 4295 = - 51 BVI/359, Paradisaea minor LAC 1878.620. - 53 Institutions acronyms 52 - 54 FMNH, Field Museum of Natural History (Chicago, USA); LAC, Laboratoire d'Anatomie - Comparée (Muséum National d'Histoire Naturelle, Paris, France); NHM, Natural History - Museum (Tring, UK); MNZ, Museum of New Zealand Te Papa Tongarewa (Wellington, - New-Zealand); MZLSU, Museum of Zoology, Louisiana State University (Baton Rouge, - 58 USA); UCBL, Université Claude Bernard Lyon 1 (Villeurbanne, France); USNM, National - Museum of Natural History (Smithsonian Institution, Washington, D.C., USA). - 61 Methods for phylogenetic analyses - The phylogenetic analyses were realized using 36 characters, which were discriminant for at - least one among the Tyranni examined, and 34 taxa of the Tyranni (including the fossil). The - 64 character matrix (Supplementary Table 5), is derived from the characters observed - 65 (Supplementary Tables 1, 2). *Gerygone flavolateralis* (Passeri, Acanthizidae) and *Acanthisitta*66 *chloris* (Acanthisittidae) were chosen as respective outgroup taxa to the Tyranni. - The taxon-character matrix was analysed with parsimony using PAUP*4.a166. The - executable data matrix with PAUP commands is appended as Nexus File (in Supplementary - 69 information). Both parsimony analyses were performed with characters ordered. Gaps were - 70 treated as missing data. Parsimony analyses treated all changes as equal ("unweighted") and - used heuristic searches with tree-bisection-reconnection (TBR) branch swapping and other - default settings, and 1000 random addition replicates per search. Strict consensus trees were - 73 computed from the set of most parsimonious trees, and clade support was assessed by - bootstrapping using the same settings and 1000 replicates. - 75 - 76 Osteological characters used in the phylogenetic analysis. - Feather crest: 0, absent; 1, present but different of fossil; 2, present and similar of fossil. - Relative size of orbits: 0, more than half of the skull; 1, less than half of the skull. - 79 Shape of orbits: 0, the dorsal part is flatter, 1, rounded; 2, almost circular. - 80 Size of nasal opening: 0, wide opening; 1, intermediate size, 2, small opening. - 81 Fenestra antorbitalis (proportion): the proportional size of the fenestra antorbitalis compared - 82 to that of the skull. 0, developed; 1, reduced. - 83 Os lacrimale: 0, free; 1, present and more or less individualized. - Latero-dorsal part of ectethmoid: 0, little developed; 1, developed; 2, well developed; 3, - highly developed. - Lateral parts of etecthmoid: 0, reduced gap; 1, intermediate gap; 2, large gap. - 87 Crest/ridge on culmen: 0, absent; 1, present. - Foramen (foramina) of coracoid omal end: 0, present, 1, absent. - 89 Processus procoracoideus: 0, little developed; 1, well developed. - Processus acrocoracoideus: 0, little developed; 1, well developed. - 91 Brachial tuberosity (tuberculum brachiale): 0, little developed; 1, developed; 2, well - 92 developed. - 93 Sulcus medialis supracoracoidei: 0, straight; 1, rounded; 2, almost circular. - Fossa pneumotricipitalis: 0, single fossa; 1, double fossa: present of an additional fossa. - 95 Crista deltopectoralis: 0, developed; 1, reduced. - 96 Crus ventralis fossae: 0, little developed; 1, well developed. - 97 Crus dorsalis fossae: 0, little developed; 1, well developed. - 98 Shaft shape: 0, curved; 1, not curved. - 99 Depth of incisura capitis: 0, shallow; 1, moderately deep; 2, deep. - Processus flexorius: 0, dorso-caudally deflected edge; 1, straight edge. - 101 Processus supracondylaris dorsalis: 0, double; 1, single. - Processus supracondylaris dorsalis: 0, little developed; 1, developed; 2, well developed. - Tuberculum ligamenti collateralis ventralis: 0, projecting; 1, not projecting. - 104 Cotyla ventralis: 0, ventral edge developed and almost circular; 1, convex ventral edge. - 105 Cotyla dorsalis: 0, little developed; 1, large. - Position of the dorso-proximal edge of the incisura tendinosa (for mm extensor metacarpi - ulnaris and extensor digitorum communis), distal ulna: 0, proximal; 1, distal. - Papillae
remigales caudales: 0, almost absent; 1, little developed; 2, developed; 3, well - developed. - Processus dentiformis: 0, absent; 1, little developed: edge with a slightly wavy; 2, developed; - 3, well developed. - Position of processus intermetacarpalis: 0, proximal; 1, more proximal. - Distal symphysis of os metacarpale minus: 0, the os metacarpale minus is lightly protruding, - and forms a marked square projection; 1, the distal end of os metacrpale minus is moderately - protruding and its cranial portions forms a projection that reaches farther distally than the - facies rticularis digitalis minor (Mourer-Chauviré et al., 1989; Mayr and Manegold 2006). - Processus extensorius: 0, not ventrally deflected; 1, ventrally deflected; 2, slightly ventrally - dejected. - Blade of Phx 1 digiti majoris: 0, straight edge; 1, slightly rounded edge; 2, rounded edge - 120 (Manegold, 2005). - Processus internus indicis: 0, present; 1, absent. - Femur: hollow just distal to proximal articular surface, caudal side: 0, absent; 1, shallow; 2, - marked. - Medial crest (tibiotarsis proximal most shaft): 0, absent; 1, present. - 125 Tiny proximo-distal groove between the tuberositas retinaculi extensorius lateralis and the - tuberculum retinaculi m fibularis, lateral side of distal end, proximal to the lateral condyle, - rostral aspect: 0, absent; 1, it is located relatively distally; 2, it is located more proximally. - Fusion (continuity) between crista med plantaris and crista med hypotarsi: 0, absent; 1, - 129 present. - Ossified pons supratendineus: 0, not ossified, 1, ossified. - Position of pons supratendineus: 0, not ossified, 1, located proximally; 2, located proximally; - 3, located less proximally; 4, located in an intermediate position. - 133 Trochlea metatarsi II: 0, as distal as trochlea metatarsi III; 1, shorter than trochlea metatarsi - 134 III; 2, longer than trochlea metatarsi III. - 135 Trochlea metatarsi IV: 0, as distal as trochlea metatarsi III; 1, shorter than trochlea metatarsi - 136 III; 2, longer than trochlea metatarsi III. | 139 | Supplementary Figures | |-----|--| | 140 | Supplementary Fig. 1 Strict consensus tree, hardly resolved. As for the bootstrap | | 141 | analysis (Supplementary Fig. 2), the poor resolution and support convey pervasive | | 142 | homoplasy. The fossil is associated in a clade with five members of the Pipridae, | | 143 | although five other extant piprids are more basally misplaced in a wide unresolved | | 144 | polytomy with many Tyrannides. The fossil is, as in the bootstrap analysis, distant from | | 145 | Sapayoa aenigma, which is correctly placed within the Eurylaimides | **Supplementary Fig. 2** Bootstrap analysis, with 1000 replicates. Only four nodes are supported by the bootstrap, but with a very low value (between 37 and 40%). As for the strict consensus (Supplementary Fig. 1), the poor resolution and support convey pervasive homoplasy. The fossil is however, as in the strict consensus, distant from *Sapayoa aenigma*, which is correctly placed within the Eurylaimides Supplementary Fig. 3 Distal part of the tarsometatarsus and toe bones (both right side, in dorsal view) in (A) *Antilophia galeata* (Pipridae) and (B) the fossil NT-LBR-014. There is no fusion at the level of pedal phalanges bones, despite *A. galeata* exhibiting syndactyly of toes III and IV in life, and this is because syndactyly affects only the soft tissues surrounding the bones. I, first digit, positioned in distal extension in (A), in proximal extension in (B); II, second digit—only the first phalanx was preserved attached in the preparation of specimen (A); III, third digit; IV, fourth digit—only the first two phalanges were preserved attached in the preparation of specimen (A); mtI, first metatarsal; tmt, tarsometatarsus. In the fossil (B) the first phalanx of digit II presents proximally a sort of bulb that seems to be pathological. Scale bar, 1 cm A tmt mtl mtl **Supplementary Fig. 4** Simpson's diagram of intersegment proportions of the Luberon fossil NT-LBR-014, compared with extant species of the Tyranni. The differences in Log10 of length of the main elements are expressed for the fossil and ten species of Tyranni 175 Supplementary Tables Supplementary Table 1 Osteological characters as observed in the fossil passerine NT-LBR-014, and extant representatives of Tyranni families, Acanthisittidae, basal and other Passeri, and *Wieslochia weissi*, passerine from the Oligocene of Germany. All character states of species compared to the fossil are given relative to state of the fossil. Only characters that discriminate at least one species among the Tyranni and Acanthisittidae examined have been selected here. *On occasions, character states are given not only for the extant species examined here for comparison, but for more species in the family (in such instances references are given via number in parentheses). (1) it is mentioned if other extant taxa in every genus or family concerned exhibit a crest approaching the fossil's (after del Hoyo et al., 2019¹). (2) from this work, and characters 22 and 55 in James et al., 2003². (3) 185 from this work and Mourer-Chauviré et al., 1989³; NB: C. Mourer-Chauviré (pers. comm.) 186 187 noticed (in Smithsonian Institution collections) that among 21 extant species of Furnariidae, 188 only one exhibited a slight undulation, the others none (straight edge of major metacarpal). 189 and among 30 species of Formicariidae, only four possessed a proc. dentiformis (the others 190 nothing: straight edge of major metacarpal). (4) from Boles, 2006⁴. (5) from this work, Millener, 1988⁵, and Millener and Worthy, 1991⁶. (6) sensu del Hoyo et al., 2019¹, i.e. 191 192 comprising taxa earlier in the former Dendrocolaptidae. (7) also from Fieldsa et al., 2005⁷. 193 (8) a few genera and species exhibit a crest that is different from that of NT-LBR-014, 194 triangular, often acute, pointing upwards over the head, and spread caudally (some Leptasthenura spp., Furnarius cristatus, Coryphistera alaudina, and more or less in the 195 different species of *Pseudoseisura*). (9) same in *Pseudoseisura*⁸. (10) a few genera and 196 197 species exhibit a crest that is different from that of NT-LBR-014, triangular, often acute, 198 pointing dorso-caudally over the head, and spread caudally. Pithys albifrons exhibits original 199 long, upright white tufts on both sides of forehead, shorter tufts below chin. (11) from this work and Feduccia and Olson, 1982⁹. (12) In *Rhinocrypta* a crest extends from the back of the 200 201 head, that can be spread upwards, making an acute triangle. In Merulaxis feathers above the 202 base of rostrum make a « crest » resembling that of Calyptomena but sparser. (13) An ossified bridge exists in *Melanopareia* (recently placed in own family¹)⁹. (14) Quadrate even more 203 different in Melanopareia⁹. (15) Apart from Masius, Antilophia and Chiroxiphia (see Table), 204 205 feather ornaments over the head in the Pipridae exist also in *Ilicura militaris* (where it 206 consists of short, round feather fluffy crest over rostrum base; more developed in male). (16) 207 Apart from Cephalopterus and Rupicola (see Table), in the Cotingidae only Phytotoma 208 exhibits feather head ornament, especially P. raimondii (rear head, spreading upward). (17) In 209 the Tyrannidae, in addition to some species of *Contopus* (short, slight crest back to top of head; see Table), crests exist in several genera and species, where always at the back of head, forming when spread a crest with longest feathers toward the top of head (extent of crest variable among genera and species concerned). (For instance also the crest of *Comptostoma* is more on top of head and shorter (and still toward back)). An exception consists in Anairetes (variable among species) of a prominent frontal crest of long feathers implanted over the rostrum base, and pointing upwards and backwards; they form either a fan or a bifurcated crest (like horns) of long, thin feathers. (18) from this work, Feduccia and Olson, 1982⁹ and Rich et al., 1985¹⁰. (19) from Feduccia and Olson, 1982⁹, and Rich et al., 1985¹⁰. (20) data also from Bock, 1963¹¹ and Olson et al., 1983¹² (NB: *Turnagra* now known to be in the Oriolidae¹³). (21) data also from Bock, 1963¹¹. (22) The fossa is simple in all the Passeriformes except most of the the Oscines Passerida - and a few Oscines Corvoidea where derived states of a double fossa occur polyphyletically; pneumatic in Corvoidea, either pneumatic or non-pneumatic in Passerida^{2,3,14}. (23) A processus dentiformis is present in most of the Passerida, while within the Corvoidea it is either absent or present^{3,15,16}. (24) Oligocene, Wiesloch-Frauenweiler (Germany); assigned to stem Passeriformes or stem Tyranni^{17,18}. NB: for several modern specimens, character states are absent due to the lack of the element or element part, or the incomplete specimen preparation, obscuring detail by ligaments for instance. It is specified for which specimens the skull only could be examined. 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 | | | Taxon | | | | | | | | Skull | | | | | | | | Coracoid | | | | |----------------|---------------|------------------------------|--|---|--|--------------------------------------|---|--|---|--|--------------------------------------
---|---|------------------|---|---|---|---|---|--------------------------|---| | | | | Species (species seen for comparison | Cranium shape | | Relative size | | | Fenestra antorbitalis | | latero-dorsal part | Intercribital fenestrae | | Crest/rides | Rostrum and | Foramen | Processus | Processus | Brachial
tuberosity
(tuberculum | Sukus medialis | Coracold blade | | | Sub | border to Family | Species (species seen for comparison
are listed, but see *) | Cranium shape
(lateral profile) | Feather crest (1) | Relative size
of orbits | Shape of orbits | Osseous nasal septum | Fenestra antorbitalis
(proportion) | Os lacrimale | latero-dorsal part
of ectethmoid | (2) | Quadrate shape | on culmen | Rostrum and mandible (mdb) | Foramen
(foramina) of
coracold omal end | Processus
procoracoideus | acrocoracoldeus | (tuberculum
brachiale) | supracoracoidei | Coracold blade
shape | | | | | | | over base of rostrum; crest | large
(11.5mm:
more than | | present over most of | neduced equilateral | present and | | donal smaller than
ventral; separation | | | relatively straight; | | | | uny deselorant | | | | | Revest-des-l | Brousses fossil (early Oligo | ocene) NT-LBR-014 | see illustrations | 'triangular', directed
forward, with tip recurved
slightly backwards | more than
half of the
cranium) | much rounded | nasal aperture (rostrally) | triangle | Individualized | well developed | ventral; separation
rather narrow | see Bustrations | no | relatively straight;
nasal opening 2/3 of
rostnam; mdb with
marked gonys | yes | developed | developed | straight | relatively circular edge | e see Bustrations | | | Aca | ınthisittidae | Acanthisitta chloris (5) | variable | none | (generally
more
reduced) | rounded | none | larger (variable) | free? | very slightly
developed | dorsal fenestra
proportionally larger;
separation very thin | processus orbitalis much
reduced and obtuse; proc.
oticus wider | no | beak on average
longer and thinner | no | poorly developed,
turned 90° | not developed medially | 2 | ? | similar | | | | | | similar | | | donal edge | present over most of | similar | free? | | ventral fenestra slightly | | no | nasal opening only
1/2of rostrum; | | developed, pointed | very slightly less | | relatively straight | processus lateralis | | | | Pittidae | Pitta sordida | unar | none | similar | dorsal edge
flatter | nasal aperture escept
ventral edge | unur | **** | developed | larger | rather similar | no | rostrum straighter;
mdb without gonys | yes | developed, pointed
distally
developed, but | developed medially | less developed | edge | processus lateralis
more obtuse | | | | Philepittidae | Philepitta castanea | forehead flatter | none | similar | donal edge
flatter | present over dorsal and
nostral large border of
the nasal aperture | similar | free? | slightly developed | dorsal fenestra larger,
and separation thinner | slightly different | no | beak thinner, longer,
decurved and
pointed | yes | elongation more
proximal than in the
fossil | less developed medially | 2 | ? | similar | | | | Eurylaimidae | Cymbirhynchus macrorhynchas | rather similar
(forehead slightly
flatter) | none | similar | donal edge
flatter | 2 | more extended
donally, shape more
elongated and
narrow | free? | moderately
developed | both fenestrae much
larger, separation much | processus orbitals shorter,
processi mandibularis and
oticus more curved | no | beak more curved, | yes; smaller but
deep | not much developed | less developed medially,
more hooked | much less
developed | straight edge | similar | | | Eurylaimide | s | , | flatter) | | | flatter | | elongated and
narrow | | developed | larger, separation much
thinner | oticus more curved | | hooked and robust | deep | | more hooked | developed | | | | | | Calyptomenidae | Colyptomena viridis | rather similar
(forehead slightly
flatter) | more reduced, rounded,
directed forward | similar | donal edge
flatter | present only over dorsal
and rostral border of the
rusual aperture | more extended
donally, more
rounded | free? | moderately
developed | wentral fenestra slightly
reduced, dorsal slightly
larger | different | yes, small | beak more curved
and hooked | yes | developed, same shape
as fossil; shorter | less developed medially | far less developed | relatively straight edge | processus lateralis
more developed
laterally | | | | | | | | | | almost complete | | | | ventral fenestra | | | | | | very slightly less | | | | | | | Sapayoidae | Sopayoa aenigma | Identical | none | identical | donal edge
flatter | (starting from donsal edge) | similar | free ? | slightly developed | reduced, separation
slightly thinner | similar | no | rostrum similar; mdb
without gonys | yes | developed, same shape
as fossil | very slightly less
developed medially and
pointed | ? | 7 | rather similar | | | | | Geositta cunicularia | rather similar (7) | none (1) | similar (7) | dorsal edge
slightly flatter | none / oblique bar | generally wider | absent or fused | moderately
developed | rather similar to fossil;
fenestrae can be fused
(no separation) | very similar | no | beak thinner, longer,
decurved and
pointed; rasal
opening reduced; | yes | moderately developed,
pointed rather acutely | slightly less developed
medially | not much
developed | more rounded edge | processus lateralis
more extended
latero-distally | | | | Furnariidae (6) | | | | | | | | | | | | | mdb gonys less
marked (1)
beak much longer; | | | | | | processus lateralis | | | | | Dendrocincla fuliginasa | forehead slightly
flatter | none | similar | rounded | none | larger | absent or fused | well developed | ventral fenestra much
smaller | proc. orbitalis narrower | no | nasal opening
reduced | yes | developed, thinner, and
shape different | very slightly less
developed medially | developed | rounded edge | much more
extended latero-
distally | | | | | Myrmotherula axillaris | rather similar | none (10) | smaller | dorsal edge
slightly less
rounded | almost complete (except
rostralmost part) | slightly larger | absent or fused | developed | dorsal fenestra larger
and separation much
thinner | proc. orbitalis narrower | no | beak thinner,
straighter; no gonys | 7 | moderately developed,
pointed rather acutely | slightly less developed
and pointed medially | developed | rounded edge | processus lateralis
more obtuse | | | | Thamnophilidae | Sakesphorus canadensis | rather similar
(forehead slightly
flatter) | crest on the back of head
(can be spread upwards) | similar | rounded | complete | slightly larger | absent or fused | well developed | dorsal fenestra slightly
larger, and separation
thinner | proc. orbitalis
proportionally longer | no | beak longer; nasal
opening reduced;
gonys slightly
reduced | 7 | slightly less developed | point slightly less shifted
medially | 2 | , | processus lateralis
developed slightly
more distally | | | | | Thamnophilus doliatus (skull) | forehead flatter | present; directed donally | smaller | rounded | almost complete | larger, more
rounded | absent or fused | developed | similar to fossil;
separation thin | proc. orbitals namower | no | beak longer and
more curved | 2 | ? | ? | 2 | ? | ? | | | | | Thamnophilus coecus (skull) | forehead flatter | none | similar | much rounded | almost complete | more rounded | absent or fused | very slightly
developed | no dorsal fenestra
dorsal fenestra larger, | 7 | no | more hooked
beak longer beyond | 7 | not much / moderately | ? | ?
much less | 7 | 7 | | | | Conopophagidae | Conopophaga ordesiaca saturata | similar | none | similar | rounded | over the caudal 3/4 | slightly larger | absent or fused | slightly developed | separation thinner | proc. orbitalls narrower | no | nasal opening | no; (and NB: | developed; obtuse
corner shaped end | slightly less developed
medially | developed | very rounded edge | similar | | | | Rhinocryptidae | Scytalopus unicolor | slightly flatter | none (12) | smaller (11) | dorsal edge
flatter | none / narrow oblique
bar | variable | absent or fused | very slightly - to
developed | single large fenestra (no
ossified
septum/separation)
(13) | rather similar (14) | yes / no
(11) | rostrum thinner and
more hooked; mdb
thinner, decurved,
and gonys almost | triosseal canal
closed, by junction
between processi
procoracolideus and | very little developed | not much developed medially | much less
developed | very rounded edge | less developed | | | | | | | | | | | | | | ventral fenestra more | | | absent
beak longer; nasal | acrocoracoldeus) | not much / moderately | | | | processus lateralis | | | | Formicariidae | Formicarius analis | forehead more
angular | none | very slightly
smaller | rounded | none | larger | absent or fused | developed | developed, separation
thinner | similar | no | opening reduced;
gonys reduced | yes | developed; acute corner
shaped end | less developed medially | much less
developed |
very rounded edge | developed more
distally | | | | | Ceratopipra erythrocephala | similar | none (15) | similar | much rounded | over rostnal and domail
border | larger and slightly
more rounded | present and more
or less
individualized | developed | dorsal fenestra more
developed, ventral
fenestra more reduced,
separation thinner | very similar | no | similar to fossil;
gonys reduced | yes | developed, slightly more
external | developed | 2 | , | 7 | | | | | Neopelma sulphureiventer | rather similar
(forehead slightly | none | slightly | rounded | narrow over dorsal edge | much larger, more
rounded, and more
developed rostrally | , | developed | dament franches arrange | more robust; processus
orbitalis less developed | no | similar | yes; smaller | developed; straighter
and more massive | developed; more | slightly less | rounded edge | processus lateralis
more developed | | | | | | (forehead slightly
flatter) | | smaller | | | developed rostrally | | | developed; ventral
fenestra more reduced
donal fenestra more | orbitalis less developed | - | beak thinner; nasal | , | | hooked; thinner | Servingeo | | more developed
distally | | | | | Tyranneutes stolzmanni | similar | none | similar | much rounded | narrow over dorsal edge | slightly larger | 7 | developed | developed; ventral
fenestra more reduced | proc. orbitalis more ventral | no | opening reduced;
gonys reduced | yes | developed, slightly more
external | slightly less shifted
medially | slightly less
developed | very rounded edge | similar | | | | | Chloropipo holochlora viridior | forehead slightly
flatter | none | similar | rounded | narrow over dorsal and
rostral edge | similar | 7 | developed | dorsal fenestra larger,
ventral fenestra smaller | 7 | no | beak straighter, with
edges more 'parallel';
gonys reduced | yes | similar, slightly more
external | slightly less pointed
medially | slightly less
developed | rounded edge | rather similar | | | | Pipridae | Manacus manacus | forehead slightly
flatter | none | similar | rounded | over rostral half, and
also a narrow central
caudal extension | slightly larger | 7 | moderately
developed | dorsal fenestra larger,
ventral fenestra smaller | proc. orbitalis more ventral | no | beak more decurved;
gonys slightly
reduced
mdb slightly more | 7 | more squarish; very
slightly more external | slightly less pointed | slightly less
developed | very rounded edge | slightly more
developed distally | | | | | Machaeropterus pyrocephalus | forehead flatter,
cranium flatter
forehead slightly | none | similar | rounded | oblique narrow central
extension
over 4/5 rostro-donal | slightly larger | 7 | developed developed, round | dorsal fenestra larger,
ventral fenestra smaller
dorsal fenestra larger. | proc. orbitalis more ventral
proc. orbitalis slightly more | no | mdb slightly more
decurved with an
angle
beak smaller, shorter
and much more | ? | wider and more obtuse;
square | point les shifted medially | much less
developed
slightly less | very rounded edge | similar | | Tyran
(Subc | ni
scines) | | Chiroxiphia linearis | flatter | crest over rostrum base | similar | rounded | part, with namow caudo-
ventral extension | slightly larger | suture visible | and obtuse | ventral fenestra smaller | ventral | no | curved; nasal opening reduced | 7 | more tapering | slightly less pointed | developed | rounded edge | similar | | | | | Xenopipo atronitens | forehead slightly
flatter | none | similar | rounded | over dorsal half | identical | present,
individualized,
fusion with suture
visible | well developed,
similar to fossil | ventral fenestra
smaller, dorsal fenestra
larger; separation
slightly thinner | proc. orbitalis slightly more
ventral | no | beak shorter,
decurved; gonys
absent | yes | similar, slightly more
external | developed slightly less
medially | slightly less
developed; hooked | relatively circular edge | more developed
laterally | | | | | Masius chrysopterus | forehead slightly concave | crest over rostnum base:
ponted, directed forward
and recurved forward | similar | rounded | over donso-caudal half | (shape similar but)
slightly larger | present and more
or less
individualized | well developed,
similar to fossil | ventral fenestra
smaller, dorsal fenestra | proc. orbitalis slightly more
ventral | no | beak shorter; mdb
much more
decurved, and gonys
slightly reduced | yes | only slightly wider | less developed medially | slightly less
developed; hooked | relatively circular edge | e similar | | | | | Antilophia galeata | similar | crest over rostrum base
identical to fossil's | similar | rounded | over more than 3/4 donal | slightly larger | present and more or less | developed | larger; separation
slightly thinner
dorsal fenestra larger,
ventral fenestra smaller | similar | no | slightly reduced
similar; but gonys
less marked | yes | as fossil | developed; shape similar | similarly very
developed; slightly | very rounded edge | similar | | | Tyrannides | | | forehead flatter; | | | | | shape similar but | Individualized present and more | | donal fenestra much | more robust; processus | | beak more hooked
and robust; mdb | | developed; more | | more hooked | | more developed | | | | | Pipreola arcuata | cranium more
elongated | none | similar | rounded | over 1/3 rostral | larger | or less
Individualized | well developed | larger, vectral fenestra
smaller | orbitalis less developed | no | more curved; gonys
less developed | yes: fenestra | developed anteriorly | slightly less developed | developed | very rounded edge | distally | | | | | Cephalopterus omatus | flatter | Immense crest over head,
recurved forward and
reaching level of beak tip | similar | rounded | ower 1/3 rostro-donsal | more extended donally | present and more
or less
individualized | developed | both fenestrae much
smaller; separation
wider | proc. orbitalis wider and
more ventral | no | beak more developed
rostralmost; more
hooked; gonys almost
absent | yes | not much developed | developed | similarly very
developed | relatively rounded edge | much more
developed distally | | | | | | | | | | | | present and more | | both fenestrae much | | | rostrum sliehtly | | | | | | | | | | Cotingidae | Cotinga sp | flatter | none (16) | similar | dorsal edge
slightly flatter | over more than 3/4 caudal | rather similar | present and more
or less
individualized | well developed | both fenestrae much
smaller, (donal fenestra
larger than the ventral) | proc. orbitalis more ventral | no | longer and more
hooked; mdb much
thinner and
straighter, without
gonys | yes | slightly less developed | slightly less pointed
medially | similarly very
developed | relatively rounded edge | similar | | | | | Procnias sp. (skull) | similar | none | similar | rounded | thin ; almost complete
ventrally | more comma-
shaped, pointed
ventro-caudally | present and more
or less
individualized | well developed | One single large
fenestra | 7 | no | beak shorter; nasal opening smaller | 2 | 7 | 7 | 7 | 7 | 7 | | | | | Pipreola intermedia signata (skull) | forehead flatter | none | similar | rounded | thin ; almost complete ventrally | similar | present and fused | well developed | One single large
fenestra, no ossified
septum | 7 | no | mdb slightly more
curved | ? | 7 | 7 | 2 | 7 | 7 | | | | | Rupicola rupicala | forehead flatter | present; fan-shaped | similar | rounded | almost completely
closing the nasal
aperture, viewed in
lateral aspect (except
thin westral limit) | more rounded, and
comma-shaped,
pointed ventro-
caudally | present and more
or less
individualized | slightly developed | One single large
fenestra, no ossified
septum | 7 | no | beak more hooked;
mdb thinner | yes | very little developed | much less developed | slightly less
developed | rounded edge | rather similar | | | | | Phytotoma rara | forehead flatter | none (16) | similar | rounded | thin ventral limit) almost complete dorsally | larger, more
rectangular | present and more | developed | dorsal fenestra larger, | processus orbitalis much
narrower, processus | no | beak more hooked,
nasal opening more
reduced, absence of | yes | less developed | slightly less developed | slightly less | relatively rounded | processus lateralis
more developed | | | | | ,,,,,, | forehead flatter; | | | | docul thin sentum | | or less
individualized
present and more | | ventral fenestra much
reduced, and round
donal fenestra much | narrower, processus
mandibularis wider | | gonys | | | | developed similarly very | edge | more developed medially processus lateralls | | | | | Oxyruncus cristotus | cranium more
elongated | none | similar | rounded | more developed (high)
rostrally | similar | or less
Individualized | developed | reduced; ventral
fenestra even more
reduced | 7 | no | beak thinner
beak longer | yes | developed, as fossil | less developed; smaller | developed; more
hooked | rounded edge | thinner and more
curved | | | | | Onychorbynchus coronatus | forehead flatter ;
cranium more
elongated | large, semi-circular crest,
fan-shaped; nuchally;
same for other species in
the genus | similar | rounded | over 1/3 ventral | larger, more
developed donally | present and more
or less
individualized | developed | both fenestrae much
smaller | processus mandibularis
more developed laterally | no | rostralmost, and
more hooked; nasal
opening more
reduced; gonys very
slight | yes | slightly less developed,
thinner than fossil | much less developed | slightly less
developed | rounded
edge | processus lateralis
more developed
laterally and more
curved | | | | Tityridae | | | | | | | | | | | processus orbitalis much | | nasal opening | | | | | | processus lateralis | | | | | Tityra semifasciata | forehead flatter | none | similar | rounded | semi-circular small
rostro-ventral open area | larger | free? | well developed | both fenestrae larger | more developed rostrally;
processus mandibularis
more developed laterally | no | reduced, absence of
gonys | yes | much thinner | less developed | slightly less
developed | relatively straight edge | more developed
medially and
laterally | | | | | Schiffarnis turdina | similar | none | similar | rounded | narrow oblique central
bar, directed from
rostro-dorsal to caudo-
ventral | larger | well individualized;
reaches the
ectethmoid | well developed | ventral fenestra slightly
reduced; dorsal
fenestra larger | proc. orbitalis more ventral | no | similar; but gonys
less marked and beak
slightly decurved | yes: fenestra | wider and more
othogonal | less pointed | slightly less
developed | rounded edge | more developed
latero-distally | | | | | Tyrannus dominicensis | rather similar | none (17) | rather
similar | 2 | over 1/3 dorsal | 7 | present and more
or less
individualized | developed | ventral fenestra much
reduced ; dorsal
fenestra larger | 7 | no | beak longer; gonys
less marked | yes | developed, same shape
as fossil | less developed medially | much less
developed | relatively straight edge | rather similar | | | | | Tyrannus sp. | forehead much
flatter | slight crest in dorsal position | similar | donal edge
flatter | over rostro-dorsal half | larger | 7 | slightly developed,
pointed | ventral fenestra larger,
separation thinner | proc. orbitalis shorter and proc. oticus wider | 7 | beak much longer;
gonys less marked | yes | markedly less
developed; point in
proximal position | less developed medially | slightly less
developed; hooked | relatively straight edge | developed more
latero-distally | | | | | Todirostrum sp. | similar | none | similar | rounded | over rostro-dorsal half ;
very thin | more extended donally | free? | slightly developed,
pointed | ventral fenestra larger,
separation thinner | , | no | beak thinner and
more decurved; nasal
opening shorter;
gonys less marked | yes | markedly less developed | less developed medially | slightly less
developed | rounded edge | processus lateralis
more developed
laterally; more
curved | | | | Tyrannidae | Contopus latirostris (skull) | forehead much
flatter | slight crest in top-dorsal
position (short in this
species) | similar | rounded | (over large part) | rather similar | 7 | moderately
developed | 7 | 7 | 7 | gonys less marked
beak much longer,
with edges parallel | 7 | 7 | 7 | 2 | ? | curved ? | | | | | | | | | | donal half and 1/4 | | | | ventral fenestra more | processus mandibularis | | beak slightly thinner;
slightly more
decurved; nasal | | less developed than in
the fossil; with an
individualized losangic | | similarly very | | more developed | | | | | Rhynchocyclus olivaceus | similar | none (17) | similar | rounded | rostral | larger | free? | more developed | reduced, dorsal
fenestra larger | more shifted laterally | no | opening more
reduced; gonys less
marked | yes | or elliptical flat, oblique
area at the extremity,
ventral side. | less developed | developed; slightly
hooked | relatively circular edge | e medially and
laterally | | | | | Rhynchocyclus sp. | similar | slight crest in dorsal position | similar | rounded | donal half and 1/4
rostral | larger | free? | more developed | ventral fenestra more
reduced, dorsal
fenestra larger | 7 | no | beak slightly thinner;
slightly more
decurved; nasal
opening reduced;
gonys less marked | yes | even more developed
mesially than fossil; with
an individualized
losangic or elliptical flat,
oblique area at the | less developed | slightly less
developed | rounded edge | more developed
medially and
laterally | | Passe | d | Menuridae (18) | Menura noverhallandar | 7 | none | 7 | 2 | none | 7 | present and
individualized (free | developed | donal fenestra much
reduced ; separation | proc. oticus reduced;
processus orbitalis reduced | no | gonys less marked | yes | oblique area at the
extremity, ventral side.
undeveloped | 7 | 7 | 2 | 7 | | (Oscii | ies) | | u novembloode | | | <u> </u> | <u> </u> | | · ' | individualized (free
but still in place) | venque0 | reduced; separation
rather wide | processus orbitalis reduced
and more robust | | · ' | , | pea | | | | ш. | | Atrichonsithidae (18) | | 2 | none | reduced | | none | 7 | present, free and
small | (developed) | One single large
fenestra, no ossified
septum | processus orbitalis reduced and more robust | Ass | 7 | * | very little developed | 2 | 7 | 7 | 2 | |-------------------------------------|--|--------------------------------|---------------------------|--|------------------------|-----------------|--------|---|----------------------------------|--|--|-----|---|---------------|--|---------------------|--|--------------|-------------------------------------| | Ptilocorhynchidae (11) | Sericulus sp., Philosophyschus violoceus | 7 | none | large (20) | 7 | none | | present and
individualized, large | 7 | ventral and dorsal
fenestrae reduced | proc. oticus proportionally
shorter | no | 7 | yes | obtuse to slightly acute | 7 | 7 | 7 | 7 | | Climacteridae (2) | | ? | none | ? | * | 2 | 7 | free lacrimal absent | 7 | One single large
fenestra, no ossified
septum (2) | 7 | 7 | 7 | ? | ? | ? | 7 | 7 | 7 | | Meliphagidae | Philemon corniculatur, Meliphaga Inwini,
Manarina melanacephola | ? | none | large | 2 | none | 7 | free lacrimal absent | 7 | ventral and dorsal
fenestrae reduced; a
third ventral even
smaller (2) | procorbitals developed
more dorsally | no | , | 7 | very little developed | ? | 7 | , | 7 | | Pardalotidae | Pardalotus punctatus | ? | none | large | * | none | 7 | 7 | 7 | One single large
fenestra, no ossified
septum | 7 | no | 7 | ? | undeveloped | ? | 7 | 7 | 7 | | Acanthisidae | Gerygone flovolateralix | forehead flatter
and longer | none | large | dorsal edge
flatter | almost complete | larger | fused or absent | slightly developed | donal fenestra more
developed, ventral
fenestra more reduced,
separation thinner | 7 | no | rostrum longer and
thinner; mdb gonys
less marked | no | less developed | much less developed | similarly very
developed; much
more hooked | rounded edge | more developed
latero-distally | | Pomatostomidae | Fornatostomus temporalis trivigatus | ? | none | 7 | 2 | ? | 7 | 7 | 7 | ? | , | 7 | , | 7 | very little developed | ? | 7 | , | 7 | | Paradisseidae | Ptiloris paradiseus, Panadisaea minor | ? | present; directed donally | large (21) | 2 | complete | 7 | present | 7 | One single large
fenestra, no ossified
septum | processus orbitalis shorter,
slightly narrower, tip
expanded | no | , | 7 | very little developed | ? | 7 | , | 7 | | Cether cocines | | | | | | | | many Corvoidea:
free lacrimal
present; most
Passerida: free
lacrimal absent (2) | Corvidae: very
much developed | many Corvoides: donal
ferestra absent; many
Passerida: donal ferestra
present (2) | Corvidae: proc. oticus
proportionally shorter | no | 7 | Corvidae: yes | absent or very little
developed (in Corvidae
absent) | Corvidae: developed | 7 | ? | 7 | | Winstochia welsal [†] (24) | | ? | 7 | more
reduced
(less than
half of the
cranium
length) | ? | absent | 7 | 7 | 7 | , | 7 | no | 7 | no | developed | not much developed | , | ? | much more
developed
laterally | | | | Taxon | | Scapula | | | Hume | nus. | | | | Ulna | | | | Carpometacarpus | | | Proximal wing phalanx | of major digit | |--------|--------------|------------------------------|--|--|-----------------------------|---|----------------------------------|--|----------------------------------|---|--|--|-----------------------------------|---|------------------------------------|--|--|--|--|-------------------------------| | | | | | | | | | | | Processus | Tuberculum | | Papillae | | | | | | | | | | Sub | order to Family | Species (species seen for comparison
are listed, but see *) | Outline | Fossa
pneumotricipitalis | Crista deltopectoralis | Shaft shape | Depth of incisurs
capitis | Processus flexorius | supracondylaris
dorsalis | ligamenti
collateralis
ventralis | Cotyla ventralis | Papillae
remigales
caudales | Processus
dentiformis (3) | Processus
Intermetacarpalis | Distal symphysis of os
metacarpale minus | Carpometacarpus
outline | Processus extensorius | Blade | Processus
Internus Indicis | | | | | | | | | | | | | | marked groove just distal | | | | "suboscine type", le: short
and rounded caudally, and | | in dorsal aspect, the
proximal border of the | "suboscine type", le: | | | | Revest-des-l | Brousses fossil (early Oligo | ocene) NT-LBR-014 | see illustrations | unique | see ilustrations | straight | Rather deep | Straight edge | unique, well-marked | prominent | bonder/bulge of cotyla | rather little
marked | present, rather
well marked | see illustrations | forming a rostrally situated | see illustrations | proximal border of the
proc. extensorius forms a
right angle with the rostral
border of the donal edge
of the trochles carpalis,
without a notch in the | caudal edge convex,
rounded (with the most
caudal extension
situated distally) | present | | | | | | | Two similar fossae, | | | | | | | forms an angle with
olecranon axis. (ventral
view) | | | | estending more distally;
NB: pointed protuberance
slight
"suboscine type" without | | | | - | | | Aca | nthisittidae | Aconthisitta chloris (5) | much more curved
distally (except
Dendrosconsor) | moderate, non-
pneumatic | reduced | curved (5-
shaped) | shallow | 7 | wery little marked to
absent | prominent | ? | marked to very
well marked | absent, or marked
undulation | more proximal | pointed protuberance, to
"oscine type" (le symphysis
square shaped) | rather similar | variable between genera of
Acanthisittidae (5) | "oscine type", le: caudal
edge straight | reduced to
absent | | | | Pittidae | Pitto sordida | wider proximally | unique, prieumatic | similar | straight | rather deep | edge deflected dono
caudally | unique, well-marked | prominent | distal edge of cotyla
wentr marked; no groove
distal to it. Plane of cot.
ventr. (in ventral view) | very well marked | present, rather
well marked | similar | "suboscine type" with
pointed protuberance | slightly less elongated | there is a distinct notch in
the angle between the
proc. ext. and the dorsal | intermediate between
typical suboscine and | present | | | | | | | | | | | | | | more in continuity with
olecranon axis. | | very slight | | Intermediate between | | edge of trochlea carpalis. there is a distinct notch in | typical oscine types | | | | | Philepittidae | Philepitta castonea | rather similar | unique, pneumatic | similar | straight | rather deep | ? | unique, well-marked | prominent | ? | very well marked | undulation to
absent | similar | suboscine and oscine types,
nearer to suboscine type;
with pointed protuberance | slightly less elongated | the angle between the proc. ext. and the donal edge of trochles carpalis. | intermediate between
typical suboscine and
typical oscine types | present | | | | Eurylaimidae | Combintonchus macrantonchas | rather similar but | unique, pneumatic | similar | straight | moderately deep | edge deflected dorso | unique. little marked | | distal edge of cotyla
vents marked; no groove
distal to it. Plane of cot. | very well marked | present, rather
well marked; | similar but less pointed | suboscine type ; pointed protuberance more | slightly more robust | there is a distinct notch in
the angle between the | suboscine type, blade | present | | | Eurylaimide | es corytamioae | Cymewnyntnus metranyntnus | wider | unque, prieumatic | umar | straignt | moderately deep | caudally | unique, intre manxed | prominers | ventr. (in ventral view)
more in continuity with
olecranon axis. | very well marked | situated more
proximal | similar out less poinced | developed | signtly more robust | proc. ext. and the donal
edge of trochlea carpalls. | edge slightly more
rounded | present | | | | Calyptomenidae | Calyptomena viridis | rather similar but
more curved distally | unique, prieumatic | similar | straight | rather deep | edge deflected dorso
caudally | unique, little marked | prominent | distal edge of cotyla
wentr marked; no groove
distal to it. Plane of cot.
ventr. (in ventral view) | very well marked | absent to rather
well marked | similar but less pointed | rather more similar to
oscine type (le square), but
with a pointed | slightly more robust | there is a distinct notch in
the angle between the
proc. ext. and the donal | suboscine type, blade
edge slightly more
rounded | present | | | | | | | | | | | | | | more in continuity with
olecranon axis.
distal edge of cotyla | | | | protuberance | | edge of trochlea carpalis. | rounded | | | | | Sapayoidae | Sapayoa aenigma | similar | unique, pneumatic | similar | straight | shallow | edge deflected dono
caudally | unique, well-marked | prominent | ventr marked; no groove
distal to it. Plane of cot.
ventr. (in ventral view)
more in continuity with
olecranon axis. | moderately
better marked | present | more distal | suboscine type; with
pointed protuberance | less elongated | there is a distinct notch in
the angle between the
proc. ext. and the donal
edge of trochlea carpalis. | similar | present | | | | | | NB: cranial | | | | | | | | olecranon axis. | | | | | | | intermediate between | | | | | | Geositta cunicularia | extremity axially
rotated | unique, pneumatic | similar | straight | shallow | straight edge | unique, very little
marked | prominent | 7 | very little marked | absent to very
slight undulation | similar | suboscine type; with
pointed protuberance | similar | similar | typical suboscine and
typical oscine types
(closer to the latter) | present | | | | Furnariidae (6) | Dendrocincla fuliginosa | rather similar | unique, prieumatic | similar | straight | rather deep | 7 | unique, very little
marked, and an even | prominent | ? | lightly better
marked | absent to very
slight undulation | similar | suboscine type | slightly less elongated | similar | rather oscine type | almost absent | | | | | | more curved and | | | | | | less marked second
one | | | III ARG | agn cracason | | rather more similar to | processus extensorius | | | | | | | | Myrmotherula axillaris | more curved and
more angular
distally | unique, prieumatic | similar | straight | 7 | 7 | unique, very little
marked | very
prominent | , | similar | slight undulation | more square | oscine type (le square), but
with a very slight pointed
protuberance
intermediate between | more the shape of an
isosceles triangle | 7 | rather oscine type | absent | | | | Thamnophilidae | Sakesphorus canadensis | more curved distally | unique, pneumatic | similar | straight | 7 | 7 | unique, little marked | prominent | 7 | similar | absent | rather similar | suboscine and oscine types,
nearer to suboscine type;
with a very slight pointed | rather similar | 7 | intermediate between
typical suboscine and
typical oscine types;
rather more like | absent | | | | | Thomnophilus doliatus (skull) Thomnophilus coecus (skull) | ? | ? | ? | 7 | 7 | ? | ? | ? | ? | ? | ? | ? | protuberance
?
? | ? | ? | subascine but narrow
?
? | ? | | | | Conopophagidae | Conopophaga ardesiaca saturata | much more curved distally | unique, pneumatic | similar | very slightly
5-shaped | , | 7 | unique, well marked,
with a very little
marked second one | prominent | 7 | similar | present, very well
marked | slightly more
developed | rather more similar to
oscine type (le square), but
with a pointed
protuberance | (slightly more robust) | similar | intermediate between
typical suboscine and
typical oscine types;
rather more like | absent | | | | | | | | | | rather deep; (all | | | | | | | | protuberance | | | suboscine but narrow | | | | | Rhinocryptidae | Scytalopus unicolor | more curved distally | unique, less pneumatic | reduced | 5-shaped | Rhinocryptidae:
some shallower
(11)) | straight edge | unique, well marked | very
prominent | 7 | very little marked | present, very well
marked (11) | rather developed | suboscine type | more robust | similar | rather oscine type | almost absent | | | | Formicariidae | Formicarius analis | more curved distally | unique, pneumatic | similar | straight; (all
Formicarlidae: | shallower; (all
Formicariidae: | straight edge | unique, rather | | 7 | moderately | very well marked in
this species, but in | slightly more | subcacine type; with | similar | somehow intermediate | intermediate between
typical suboscine and | very slight | | | | rormcanidae | Parmicarius anais | more curved distally | unque, prieumatic | umar | straight to
5-shaped (11)) | some as deep as
in fossil (11)) | scraight edge | marked | prominers | , | better marked | majority absent in
this family | developed | pointed protuberance | umar | somenow incomessuos | typical oscine types
(closer to the latter) | very signt | | | | | Ceratopipra erythrocephala | slightly more curved | unique, prieumatic | similar | straight | rather deep | straight edge | unique, well marked | prominent | similar | very little marked | absent | similar | suboscine type; with very
slight pointed protuberance | similar | similar | suboscine type, very
slightly narrower | present | | | | | Neopelma sulphureiventer | , | , | 7 | , | , | 2 | | | similar | unmarked | | less developed; | suboscine type; with slight | spatium | similar | 7 | | | | | | Neopema suptureventer | , | , | , | , | , | , | , | prominent | similar | unmarked | absent | straighter | pointed protuberance |
intermetacarpalis less
developed distally | similar | 7 | , | | | i i | | Tyronneutes stolzmanni | slightly more curved
distally | unique, prieumatic | similar | straight | moderately deep | straight edge | unique, well marked | prominent | 7 | very little marked | absent | similar | suboscine type; with
pointed protuberance | similar | similar | suboscine type, but
narrower | present | | | | | Chloropipo holochlora viridior | rather similar | unique, pneumatic | similar | straight | shallow | straight edge | unique, well marked | prominent | 7 | similar | absent | rather similar | suboscine type; with
pointed protuberance | rather similar | similar | identical | present | | | | Pigridae | Manacus manacus | distal two thirds
much wider | unique, pneumatic | similar; slightly shorter
(prox-distally) | straight | shallow | straight edge | unique, very well
marked | prominent | 2 | similar | present | much more developed | suboscine type; with slight
pointed protuberance | more robust | similar | similar | absent | | Tyranr | | | Machaeropterus pyrocephalus | similar | unique, pneumatic | slightly less
developed; slightly
shorter (prox-distally) | straight | rather deep | straight edge | unique, well marked | prominent | ? | very well marked | slight undulation | slightly more
developed | suboscine type; with very
slight pointed protuberance | similar | similar | suboscine type, but
rarrower | present | | (Subo | | | Chiraxiphia linearis | similar | unique, pneumatic | similar | straight | rather deep | straight edge | unique, very well
marked | prominent | 7 | skrálar | absent | similar | suboscine type; with very
slight pointed protuberance | similar | similar | suboscine type, but the
most caudal extension
of the blade is proximal | present | | | | | Xenopipo atronitens | more curved distally | unique, prieumatic | similar | straight | shallow | straight edge | unique, very well
marked | prominent | , | very little marked | present | similar | suboscine type; with
pointed protuberance | similar | similar | similar | present | | | | | Masius chrysopterus | rather similar | unique, pneumatic | similar | straight | shallow | straight edge | unique, very well
marked | prominent | similar | very little marked | veryalight | similar | suboscine type; with very
slight pointed protuberance | similar | similar | similar | present;
reduced | | | | | Antilophia galeata | similar | unique, prieumatic | similar | straight | rather deep | straight edge | marked unique, well marked | prominent | similar | similar | absent | similar | suboscine type; with very | similar | similar | suboscine type; but | neduced
present | | | Tyrannides | | | | | | | | | | | | | | | slight pointed protuberance | | | narrower | | | | | | Pipreolo arcuata | 7 | unique, prieumatic | similar | straight | moderately deep | straight edge | unique, well marked | prominent | similar | 7 | undulation | more pointed | suboscine type; with slight
pointed protuberance | intermetacarpalis less
elongated | similar | suboscine type; but
narrower | present | | | | | Cephalopterus amatus | wider proximally | unique, prieumatic | similar | straight | shallow | edge relatively
straight | unique, very little
marked | prominent | similar | very well marked | absent or slight undulation | more developed | suboscine type; with pointed protuberance | simlar | similar | suboscine type ; blade
even more prominent | present | caudally | - | | | | | Cotinga sp | area of maximal
curvature wider | unique, prieumatic | similar | straight | shallow | straight edge | unique, very little
marked, and an even
less marked second
one | prominent | similar | moderately
better marked | undulation | similar | suboscine type; with
pointed protuberance | similar | somehow intermediate but
closer to fossil | similar | present | | | | Cotingidae | Procnias sp. (skull) | 7 | 7 | ? | 7 | 7 | ? | 7 | 7 | ? | 7 | 2 | 7 | 7 | ? | 7 | 7 | 7 | | | | | Pipreola intermedia signata (skull) | y
wider; area of | 7 | ? | 7 | 7 | ? | 7 | ? | 7 | 7 | ? | 7 | 7 | 7 | 7 | ? | ? | | | | | Rupicola rupicola | wider; area of
maximal curvature
more proximal | 7 | ? | 7 | 7 | ? | ? | 7 | ? | 7 | 2 | ? | 7 | ? | 7 | 7 | ? | | | | | Phytotoma rara | wider and more
curved distally | unique, pneumatic | similar | straight | rather deep | straight edge | unique, very little
marked | prominent | similar | very little marked | very slight
undulation | more pointed and narrower | suboscine type; with pointed protuberance | similar | , | very similar | present | | | | | Oxyruncus cristatus | 7 | 7 | 2 | , | , | 2 | 2 | prominent | similar | skrálar | 2 | , | , | ? | , | 7 | 7 | | | | | and contacts | | · | | · | | - | | | | | - | | · | - | | shape similar; pila
cranialis slightly more | - | | | | | Onycharhynchus coronatus | wider and more
curved distally | unique, pneumatic | similar | straight | rather deep | straight edge | unique, rather
marked | prominent | similar | similar | slight undulation | more developed
laterally | suboscine type; with
pointed protuberance | spatium
intermetacarpalis more
developed | similar | cranials slightly more
individualized and
protruding in relief
ventrally, relative to the | present | | | | Tityridae | | | | | | | | | | | | | | | | | blade plane
shape similar; pila
cranialis more | | | | | | Tityra semifasciata | wider | unique, non-pneumatic | similar | straight | rather deep | straight edge | unique, well marked | prominent | similar | very little marked | absent | slightly more
developed | suboscine type; with
pointed protuberance | trochlea carpale more
developed | similar; proc. ext. more
developed | individualized and
protruding in relief
wentrally, relative to the
blade plane | present | | | | | Schiffornis turdina | more curved distally | unique, pneumatic | similar | straight | rather deep | straight edge | unique, well marked | prominent | 7 | (very) little
marked | slight undulation | similar | suboscine type; with pointed protuberance | similar | similar | very similar | present | | | | | Tyrannus dominicensis | similar | unique, pneumatic | similar | straight | rather deep | straight edge | unique, rather little
marked | promineré | similar | moderately
better marked | slight undulation | slightly less developed | suboscine type; with pointed protuberance | similar | similar | wey similar | present | | | | | Tyrannus dominicensis Tyrannus sp. | 7 | 7 | 7 | 2 | 7 | 7 | marked
? | prominers: | 7 | better marked | 2 | 2 | pointed protuberance | 7 | 7 | 7 | present
? | | | | | Todirostrum sp. | much wider and
more curved | unique, pneumatic | similar | straight | shallow | straight edge | unique, very little
marked | prominent | similar | similar | absent | similar | suboscine type; with pointed protuberance | similar | similar | very similar | present | | | | Tyrannidae | Contopus latirostris (skull) | 7 | 7 | 7 | 7 | , | 7 | 7 | 7 | , | , | 7 | 7 | 7 | 7 | 7 | 7 | ? | shape similar; pila
cranialis more
individualized and | | | | | | Rhynchocyclus alivaceus | more curved distally | unique, pneumatic | similar | straight | shallow | straight edge | unique, rather
marked, wider | prominent | similar | very little marked | undulation | less pointed medially;
narrower | suboscine type; with
pointed protuberance | similar | similar | protruding in relief
ventrally, relative to the
blade plane; blade more | present | | | | | Rhynchocyclus sp. | more curved | unique, prieumatic | similar | straight | shallow | straight edge | almost absent; and
beginning of a second | prominent | similar | almost absent | slight undulation | slightly more pointed medially | suboscine type; with pointed protuberance | similar | similar | rounded.
shape similar; pila
cranialis more
individualized and | present | | | | | | | I | | | | <u> </u> | | | 1 | l | l | | | I | 1 | individualized and
protruding in relief | ventrally, relative to the
blade plane | | |-------|--|--|---|---|-----------|----------|-----------------------------|---------------|---|-----------------------------------|--|----------------------|--|----------------------------------|---|-------------|---------|---|--------------| | | Mecuridae (18) | Menura novarholiandiae | curved, more homogeneously | unique, prieumatic | reduced | straight | 7 | 7 | unique, little markeo | non-
prominent:
flat | 2 | moderately
marked | present, very well
marked | developed | oscine type | more robust | 7 | 2 | 7 | | | Atrichomithidas (10) | | | unique, prieumatic | reduced | 5-shaped | ? | , | absent | non-
prominent:
flat | 2 | rather marked | slight | 2 | oscine type | ? | 7 | oscine type (blade
caudal edge straight) | 7 | | | Prilonorhynchidae (III) Sericulus sp., Prilonorhynchus violocuus | | | unique, prieumatic | similar | straight | ? | 7 | marked, sometimes
beginning of a secon | non-
prominent:
almost flat | ? | little marked | absent | similar | oscine type | similar | ? | ascine type | absent | |
| Climacteridae (2) | | 7 | unique, non-pneumatic (2) | 7 | 7 | 7 | ? | , | , | ? | ? | , | , | 7 | ? | 7 | 7 | ? | | | Meliphagidae | Phileman corniculatur, Meliphaga lewini,
Manorina melanocephala | straighter and wider proximally | unique, pneumatic (2);
(beginning of a second
sometimes rather
marked) | similar | straight | ? | 7 | double, little
developed | non-
prominent:
flat | ? | ? | extremely slight undulation | * | oscine type | ? | ? | ascine type | absent | | (Osci | | Pandolotus punctetus | more curved and
more angular
distally | unique, prieumatic | similar | straight | 7 | ? | unique, very well
marked | , | ? | ? | , | , | 7 | ? | 7 | 7 | ? | | | Acarethiolae | Gerygane flavolaterzős | rather similar | double; dorsal fossa
preumatized | similar | straight | rather deep, very
narrow | straight edge | prominent (double
but with very shallow
division) | non-
prominent:
flat | distal edge of cotyla
ventr. marked; no groove
distal to it. Plane of cot.
ventr. (in ventral view)
more in continuity with
olecranon axis. | moderately
marked | very well marked | more proximal, less
developed | ascine type | similar | similar | ? | 7 | | | Pomatostonidae | Pomatastomus temporalis trivigatus | more curved and
more angular
distally | unique, prieumatic | (similar) | straight | 7 | 7 | unique, little markec | non-
prominent:
almost flat | 2 | 7 | slight undulation | 2 | oscine type | ? | 7 | oscine type | very reduced | | | Paradisseldae | Ptiloris paradiseus, Porodisaeo minor | more curved and
more angular
distally | unique, prieumatic | similar | straight | ? | 7 | double, rather little
marked | non-
prominent:
flat | ? | ? | extremely slight undulation | similar | oscine type | similar | ? | ascine type | absent | | | Other decines | | 7 | unique or double (22) (in
Corvidae: unique,
pneumatic) | similar | straight | ? | ? | Generally double (in
Corvidae: double,
well marked) | non-
prominent:
flat | | | absent or present
(21) (in Corvidae:
absent) | | oscine type | | | ascine type | absent | | | Mentiocha wellat [®] (24) | | | unique | ? | straight | 7 | ? | ? | ? | 2 | ? | marked | more rounded | symphysis poorly
developed; presents a
pointed protuberance | similar | 7 | 7 | ? | | Note | | | Taxon | | Femur | | Tibiotarsus | | 1 | | Tarson | etatamus | | | Pedal p | halanges | |--|-------|--------------|------------------------------|--------------------------------------|---------------|---|---|-------------------------|--|--|-----------------------------------|---|--|---|-------------|--| | Part | | | | | | | Tiny proximo-distal groove | roots does | Product formation that | | | Commend in section (| | | | | | No. Part | | Sub | conder to Family | Species (species seen for comparison | to proximal | proximalmost | retinaculi extensorius lateralis
and the tuberculum retinaculi m. | ridge
between the | between crists
med, plantaris and | Ossified pons | Position of pons | outer (IV) trochlese
tarsometatarsi (also | Trochlea | Trochlea metatarsi | | Shape of claws | | Note | | | | are titled, but are y | | shaft) | fibularis (see 4), lateral side of
distal end, proximal to the lateral
condyle, rostral aspect (Fig. 51). | condyles
(dist. tbt) | crista med.
hypotarsi | | | dorsally unless stated
otherwise) | | | (laterally) | | | | | Revest-des-l | Brousses fossil (early Oligo | cene) NT-I RR-014 | marked | absent | Present; (NB: seems restricted | hardy | no ; crista plantaris
relatively little | present | much proximal | no | extension
almost as distal | extension almost
as distal as tr. mit. | no | generalist | | Part | | nevest-des-i | brousses rossii (earry Oligo | Cerie/ NP-EBN-014 | | | distally owing to slight crushing) | outlined | developed | (flattened) | | | as tr. mitt. III | - | - | | | Part | | Aca | nthisittidae | Aconthisitta chloris (5) | absent | absent to present | present; short and more
protruding (including laterally) | stronger | no | present | like subascines | | markedly lesser
distal extension | slightly lesser distal
extension than II | no | more or less
curved | | Part | | | Pittidae | Pitto sordida | slighter | absent | present; less distal | slight | no; wide gap
between the two
crests | present | as fossil | II: only donal and
slightly; IV: yes
(plantar to partly
donal) | as fossil | extension very
slightly less distal | no | more elongated | | Part | | | Philepittidae | Philepitta castanea | absent | slight | present; less distal | as fossil | no; crista plantaris
very little developed | present | as fossil | no | as fossil | extension less
distal | slightly | more elongated | | Part | | Eurylaimide | Eurylaimidae
25 | Cymbirhynchus macrorhynchos | slighter | absent | rather similar | as fossil | no; wide gap
between the two
crests | present | as fossil | II: no; FV: yes (plantar
only) | extension rather
like fossit; tr
mtt. II oriented
more medially | extension less
distal | , | slightly more
curved | | Note | | | Calyptomenidae | Calyptomena viridis | absent | absent | present; shorter, more in relief,
more distal | as fossil | no; wide gap
between the two
crests | present | as fossil | II: extremely slight
plantaro-dist; IV: no | like fassil; tr.
mtt. II oriented | extension less
distal | ? | more curved | | Part | | | Sapayoidae | Sapayoa aenigma | absent | absent | present; on a greater length | very slight | no; crista plantaris
almost nonexistent | present | as fossil | It no, IV extremely
slight | distal externion
greater | extension slightly
less distal | no | rather similar | | Part | | | Discontinue (C) | Geositta cunicularia | marked | slight | present; less distal | slight | between the two | present | | II: yes; IV: no (9) | as fossil | very narrow and reduced | no | rather tapering
and curved | | Part | | | rum <i>a</i> nose (o) | Dendrocincia fuliginosa | absent | slight | present; slightly less distal | slight | no; small gap
between the two
crests | present | as fossil | no | extension
slightly less
distal | estension slightly
less distale; (NE:
trochlea III very
much incised by
groove) | no | longer and more
curved | | Procedure Proc | | | | Myrmotherula axillaris | shallow | almost absent | present; less restricted distally | slight | between the two
crests | present | distal rather like
in Corvidae | no | as fossil | extension less
distal | no | more curved | | Part | | | Thamnophilidae | | absent | slight | present; (less restricted distally) | slight | no; rather small gap
between the two
crests | | as fossil | no | as fossil | extension as distal
as to mit. III | | longer | | Processor Proc | | | Conopophagidae | Thamnophilus coecus (skull) | | | | | no (plantar crests | ? | | | | extension slightly | 2 | | | Provided | | | | | | marked; (and | | | hypotansus) | | | | | ress distal | | | | Part | | | Rhinocryptidae | Scytalopus unicolor | marked | indentation
proximal to the
fibular crest) (11) | | stronger (11) | crests | present | in Corvidae | yes (22) | signify more
distal (11) | extension less
distal (11) | yes | tapering and more
curved | | Professional Part | | | Formicariidae |
Farmicarius analis | very shallow | absent | present; less distal | none | crests | present | rather proximal | yes (moreover the IV)
(11) | as fossil | 7 | yes | tapering little
curved | | Professional Science | | ni . | | Ceratopipra erythrocephala | shallow | absent | present; less distal | slight | no; wide gap
between the two
crests | present | as fossil | only very slightly, only
plantar | almost as distal
as fossil | estension slightly
less distal | no | as fossil | | Profession Pro | | | | Neopelma sulphureiventer | 7 | 7 | 7 | | | present | as fossil | 7 | 7 | 7 | ? | ? | | Profession Pro | | | | Tyronneutes stolzmanni | absent | absent | rather similar | wery slight | | present | as fossil | no | as fossil | extension as distal
as to mit. III | no | similar | | Victor Core Popular | | | | Chloropipo holochlora viridior | absent | very slight | present; less distal | very slight | crests; crista
plantaris rather little
developed | present | as fossil | It slightly; N: no | as fossil | extension less
distal | no | narrower, longer
and more curved | | Michaelpha (Septiment) | Tyran | | Pipridae | Manacus manacus | absent | absent | 7 | very slight | crests; crista
plantaris rather little
developed | 7 | 7 | no | as fossil | extension less
distal | no | slightly narrower | | Pyramides | (3000 | scines | | Machaeropterus pyrocephalus | absent | absent | 7 | very slight | crests; crista
plantaris rather little
developed | present | as fossil | no | as fossil | extension as distal
as to mit. III | no | | | Pyramides | | | | Chiraxiphia linearis | marked | absent | present; less distal | very slight | crests; crista
plantaris rather little
developed | present | as fossil | It slightly, IV: no | as fossil | extension less
distal | no | slightly longer,
more curved and
more tapering | | Addition depositions and when the same of the control contr | | Tyrannides | | Xenopipo atronitens | marked | absent | rather similar | none | crests; crista
plantaris very little
developed | present (at least
in part ossified) | | | as fossil | extension as distal
as to mit. III | no | slightly longer and
more curved | | Procedura countes 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | | | | Masius chrysopterus | marked | absent | rather similar | as fossil | | present | as fossil | It: slightly (at distal
tip); IV: no | as fossil | extension less
distal | no | slightly longer,
more curved and
more tapering | | Cottograde Cottograde Cottograde Processor or (base) 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | | | | Antilophia galeata | absent | very slight | rather similar | as fossil | identical to fossil | present | as fossil | no | as fossil | extension less
distal | no | slightly langer | | Cottogidae Cottogidae Cottogidae Cottogidae Cottogidae Processor (plant) 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | | | | Pipreolo arcuata | 7 | , | 7 | | 7 | 7 | 7 | 7 | 7 | 7 | , | 2 | | Consignate Process on (shall) 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | | | | Cepholopterus ornatus | absent | absent | absent (or hardly visible) | slight /
absent | no; wide gap
between the two
crests | present | as fossil | plantar; Il also visible | as fossil | estension slightly
less distal | no | slightly more
curved | | Process up (shall) 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | | | Cotingidae | Cotinga sp | absent | absent | present; less distal | slight | no; wide gap
between the two
crests | present | as fossil | I: no; IV: yes
(essentially plantar) | almost as distal
as fossil | extension less
distal | , | slightly longer and
more curved | | Rupicide registed with the control of o | | | | Procesias sp. (skull) | 7 | 7 | , | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 2 | 7 | | Physicians are signed and signed marked rether entire to present and based 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | | | | Pipreola intermedia signata (skull) | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | | Opportunal crisiantus 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | | | | Rupicola rupicola | slighter | 7 | 7 | 7 | 7 | 7 | , | , | 7 | , | , | 7 | | Only Charly frithe conditions was in figure and an extended control of the contro | | | | Phytotoma rara | slighter | marked | rather similar | | no | present | as fossil | 7 | 7 | 7 | no | similar | | Tilgridae | | | | Oxyruncus cristatus | , | , | , | | 7 | , | , | 7 | 7 | , | , | 7 | | Typested gas and the second se | | | Tityridae | Onycharhynchus coranatus | much slighter | marked | rather similar | | no | present | as fossil | no | extension less
distal | estension slightly
more distal | no | more curved | | Schightest furdition above wey sight sendor only only of the sendor t | | | | Tityra semifasciata | absent | marked | rather similar | | no | 7 | 7 | It slightly, N: no | as fossil | , | no | more curved | | Tyramonic disminiscration showes where the same of | | | | Schiffornis turdina | absent | very slight | similar | very slight | between the two
crests; crista
plantaris rather little | present | as fossil | It very slightly; IV: no | as fossil | extension less
distal | no | longer | | Tyrantidae | | | | | | | distal | slight | no; wide gap
between the two
crests | absent | | both slightly plantar;
II: also visible at distal
tip | extension
slightly less
distal | distal | | tapering | | | | | Tyrannidae | | | | | | no; wide gap
between the two
crests; crista
plantaris very little | absent | | It slightly, Nt no | almost as distal
as fossil | extension less | | | | | | | | Contopus latirostris (skull) | 7 | 7 | 7 | | | 7 | 7 | 7 | 7 | 7 | 7 | 7 | | | | Rhynchacyclus alivaceus | absent | marked | rather similar | | no; wide gap
between the two
crests; crista
plantaris very little
developed | present | as fossil | no | extension less
distal | , | no | more curved and tapering | |---------------------------------|------------------------|--|--------|----------------------------------|--------------------------------|-----------------------------------|---|-------------------|----------------------------|---|--|---|----------|--------------------------| | | | Rhynchocyclus sp. | absent | marked | rather similar | | no; wide gap
between the two
crests; crista
plantaris very little
developed | present | as fossil | no | as fossil | extension less
distal | no | similar | | | Menuridae (18) | Menura novaeholiandiae | absent | marked; and
more proximal | 7 | marked | no; crista plantaris.
little developed | present | rather proximal | yes | extension
slightly more
distal | estension slightly
less distal | yes | 2 | | | Atrichomithidae | 1.00 | absent | marked | * | little to
moderately
marked | no; crista plantaris
little developed | present | intermediate /
proximal | yes | extension
slightly more
distal | estension slightly
less distal | yes | , | | | Ptilosorhynchidae (11) | Sericulus sp., Ptilanarhynchus violaceus | absent | almost absent | hardly visible | almost
absent | yes | present | 7 | no | extension
slightly less
distal | extension slightly
less distal | no | 7 | | | Climacteridae (| 1 | 7 | ? | 7 | | yes (2) | 7 | 7 | 7 | 7 | 7 | ? | 2 | | Passei | Meliphagidae | Phileman corniculatus, Meliphaga lewini,
Monorina melanocephala | absent | present,
moderately
marked | Ittle marked | little marked | variable: no fusion
to almost fusion
(apparently fusion
in Philemon) (2) | present | 7 | no | slightly less
distal | , | no | | | (Oscin | | Fandolotus punctotus | absent | present,
moderately
marked | absent (or hardly visible) | very little
marked | no | ? | 7 | no | 7 | * | ? | , | | | Acantholdse | Gerygane flavolateralis | 7 | present; marked | absent | | yes | absent? | 7 | It no; IV slightly | as fossil | extension slightly
less distal | 7 | more curved and tapering | | | Pomatostomidae | Pomatostomus temponolis trivingatus | absent | 7 | very slight | very slight | no; small gap
between the two
crests | present | 7 | 7 | 7 | , | no | 2 | | | Paradixaeldae | Paloris paradiseus, Porodisana minor | absent | almost absent | small | almost
absent | no; wide gap
between the two
crests | present | 7 | no | oriented more
medially | , | slightly | 7 | | | Other oscines | | 7 | absent or almost
absent | Corvidae: present; less distal | absent to
very slight | no (2) | generally present | Corvidae: more
distal | no (or extremely
slightly plantarly) | Corvidae:
slightly less
distal extension
than III | Corvidae: very
slightly less distal
extension than the
III | no | Corvidae:
generalist | | Westcho wital [†] (24) | | | | , | 7 | | ? | absent | , | , | , | , | ? | slightly more
robust | - 1 Supplementary Table 2 Additional characters in the fossil NT-LBR-014 and extant - 2 Tyrannida (i.e., Pipridae, Cotingidae, Tityridae and Tyrannidae). - 3 All character states of species compared to the fossil are given relative to state of the fossil. - 4 NB: for several modern specimens, character states are absent due to the lack of the element - 5 or element part, or the incomplete specimen preparation, obscuring detail by ligaments for - 6 instance. It is specified for which specimens the skull only could be examined. | | Taxon | Skull | | Hum | ierus | | Ulna | |------------|--|---|--|-----------------------|----------------------|-----------------------------
---| | Family | Species | Size of nasal opening | Lateral parts of etecthmoid | Crus ventralis fossae | Crus dorsalis fossae | Cotyla
dorsalis | Position of the dorso-
proximal edge of the incisura
tendinosa (for mm. extensor
metacarpi ulnaris and
extensor digitorum
communis), distal ulna | | | est-des-Brousses fossil
Oligocene) NT-LBR-014 | large; more than half
rostrum length | gap reduced | little developed | well developed | hollow; little
developed | proximal | | | Pipra erythrocephala | large; more than half
rostrum length | gap reduced | little developed | well developed | hollow; little
developed | proximal | | | Neopelma sulphureiventer | large; more than half
rostrum length | gap reduced | ? | ? | hollow; little
developed | proximal | | | Tyranneutes stolzmanni | large; more than half
rostrum length | gap reduced | little developed | well developed | hollow; little
developed | proximal | | 4) | Chloropipo holochlora viridior | large; more than half
rostrum length | gap reduced | little developed | well developed | hollow; little
developed | proximal | | Pipridae | Manacus manacus | large; more than half
rostrum length | gap reduced | little developed | well developed | hollow; little
developed | proximal | | Pipr | Machaeropterus pyrocephalus | large; more than half
rostrum length | gap reduced | little developed | well developed | hollow; little
developed | proximal | | | Chiroxiphia linearis | large; more than half
rostrum length | gap reduced | little developed | well developed | hollow; little
developed | proximal | | | Xenopipo atronitens | large; more than half
rostrum length | gap reduced | little developed | well developed | hollow; little
developed | proximal | | | Masius chrysopterus | large; more than half
rostrum length | gap reduced | little developed | well developed | hollow; little
developed | proximal | | | Antilophia galeata | large; more than half
rostrum length | gap reduced | little developed | well developed | hollow; little
developed | proximal | | | Pipreola arcuata | medium-sized | gap larger | well developed | well developed | flat; wide | proximal | | l o | Cephalopterus ornatus | medium-sized | gap larger | well developed | well developed | flat; wide | proximal | | g | Cotinga sp. | medium-sized | gap larger | well developed | well developed | flat; wide | proximal | | . <u>i</u> | Procnias sp. (skull) | medium-sized | gap larger | ? | ? | ? | ? | | Cotingidae | Pipreola intermedia signata (skull) | medium-sized | gap larger | ? | ? | ? | ? | | 0 | Rupicola rupicola | medium-sized | gap larger | ? | ? | ? | ? | | | Phytotoma rara | medium-sized | gap larger | well developed | well developed | flat; wide | proximal | | зе | Oxyruncus cristatus | small | gap larger | ? | ? | flat; wide | proximal | | <u>.</u> | Onychorhynchus coronatus | small | gap larger | well developed | well developed | flat; wide | proximal | | Tityridae | Tityra semifasciata | small | gap larger | well developed | well developed | flat; wide | proximal | | — | Schiffornis turdina | small | gap larger | well developed | well developed | flat; wide | proximal | | | Tyrannus dominicensis | large; more than half
rostrum length | gap moderate but
larger than fossil | well developed | little developed | hollow; wide | distal | | ae . | Tyrannus sp. | large; more than half
rostrum length | gap moderate but
larger than fossil | well developed | little developed | hollow; wide | distal | | Tyrannidae | Todirostrum sp. | large; more than half
rostrum length | gap moderate but
larger than fossil | well developed | little developed | hollow; wide | distal | | /ran | Contopus latirostris | large; more than half
rostrum length | gap moderate but
larger than fossil | ? | ? | hollow; wide | distal | | 🖍 | Rhynchocyclus olivaceus | large; more than half
rostrum length | gap moderate but
larger than fossil | well developed | little developed | hollow; wide | distal | | | Rhynchocyclus sp. | large; more than half
rostrum length | gap moderate but
larger than fossil | well developed | little developed | hollow; wide | distal | ## 1 Supplementary Table 3 Measurements (lengths) of the main bones of the Luberon fossil ## NT-LBR-014 (mm). | Skull | | Wing | | Leg | | |----------|------|-------------------------------|------|-----------------|------| | Cranium | 21.5 | Humerus | 19.4 | Femur | 18.6 | | Beak | 15.1 | Ulna | 25.2 | Tibiotarsus | 28.7 | | | | Carpometacarpus | 13.6 | Tarsometatarsus | 20.4 | | Scapular | belt | Wing Phalanx 1 of major digit | 6.5 | Digit III | 16.8 | | Caraccid | 15.7 | Total langth of wing homes | 647 | Total length of | 015 | | Coracoid | 15.7 | Total length of wing bones | 64.7 | leg bones | 84.5 | | Scapula | 19.6 | | | | | 4 5 7 8 9 10 3 2 Supplementary Table 4 States of characters selected and coded for the radial visualisation in 6 Fig. 5. The character states are coded in order to categorize observations in Supplementary Tables 1 and 2, as follows. State (0) corresponds to absence of the character, state (1) to presence of the character but state different from the fossil's, and state (2) to presence of character and state similar or identical to the fossil's. The extant species of comparison are limited here to the Tyrannides for which all characters were assessable, and the characters are those exhibiting heterogeneous states across the Tyrannides. | | | | | Skull | | | | | Coracoid | | | Scapula | | Hum | erus | | Ulna | | | Carpometaca | irpus | | Proximal wing | phalanx of major digit | Femur | Tibiotarsus | | Tarsometatarsu | s | | |--------------------------------|--|------------------|-------------------------------|-------|--|-------------|----------|------------------------------|------------------------------|---|----------------------------|---------|------------------------|--------------------|---------------------------|--------------------------------------|--|----------------------------|--|--|----------------------------|--------------------------|---------------|-------------------------------|---|-------------------------------|----------------------------|---|--------------------------------|------------------------------| | | Cranium
shape
(lateral
profile) | Feather
crest | Relative
size of
orbits | nasal | Fenestra
antorbitalis
(proportion) | dorsal part | mandible | Processus
procoracorideus | Processus
acrocoracoideus | | Coracoid
blade
shape | Outline | Crista
deltopectora | Shaft
alisshape | Depth of incisura capitis | Processus
supracondyl
dorsalis | Papillae
a nis nigalis
caudalis | Processus
dentiformis I | Processus ^s
Intermetacar | Distal
symphysis of
palis os
metacarpale
minus | carpometacarpus
outline | Processus
extensorius | Blade | Processus internus
indicis | Hollow just distal to proximal articular surface, caudal side | Incisura
intercondylaris t | Proximal
arsometatarsus | Position of pons
supratendineusineus | Trochlea
metatarsus m
II | Trochlea
metatarsus
IV | | Fossil | 2 | | Geositta
cunicularia | 2 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 2 | 1 | 2 | 2 | 1 | 1 | 1 | 2 | 2 | | Dendrocincla
filignosa | 1 | 0 | 1 | 0 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 2 | 1 | 0 | 0 | 1 | 1 | 2 | 1 | 2 | | Myrmotherula
axillaris | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 2 | 1 | 0 | 0 | 1 | 1 | 1 | 2 | 2 | | Sakesphorus
canadensis | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 2 | 0 | 1 | 1 | 1 | 2 | 1 | 0 | 0 | 1 | 1 | 2 | 2 | 1 | | Conopophagidae
ardesiaca | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | | 1 | 2 | 1 | 1 | 1 | 1 | 2 | 1 | 0 | 0 | 1 | 1 | 2 | 2 | 2 | | Scytalopus
unicolor | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 1 | 2 | 2 | | Formicarius
analis | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 2 | 2 | | Pipra
erythrocephala | 2 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 1 | 2 | 2 | 1 | 2 | 1 | 0 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 1 | 1 | 2 | 2 | 2 | | Tyranneutes
stolzmanni | 2 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 2 | 2 | 1 | 2 | 1 | 0 | 1 | 1 | 1 | 2 | 1 | 2 | 0 | 2 | 2 | 2 | 2 | 1 | | Chloropipo
holochlora | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 2 | 1 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | 0 | 1 | 2 | 2 | 2 | 2 | | Manacus
manacus | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | | Machaeropterus
pyrocephalus | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 1 | 2 | 1 | 1 | 1 | 2 | 1 | 2 | 1 | 2 | 0 | 2 | 2 | 2 | 2 | 1 | | Chiroxiphia
linearis | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 0 | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 1 | 2 | 2 | 2 | 2 | | Xenopipo
atronitens | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | | Masius
chrysopterus | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 2 | 1 | 2 | 2 | 1 | 2 | 1 | 1 | 1 | 2
| 1 | 2 | 2 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | | Antilophia galeata | 2 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 2 | 2 | 2 | 2 | 2 | | Cephalopterus
ornatus | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 2 | 0 | 0 | 1 | 2 | 2 | 2 | | Cotinga sp | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 2 | 2 | 1 | 2 | 2 | 1 | 1 | 1 | 0 | 2 | 1 | 2 | 1 | 2 | 2 | 0 | 1 | 1 | 2 | 1 | 2 | | Onychorynchus
coronatus | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 1 | | Schiffornis
turdina | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 0 | 2 | 2 | 2 | 2 | 2 | | Tyrannus
dominicensis | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 0 | 1 | 1 | 0 | 1 | 2 | | Todirostrum sp. | 2 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 2 | 0 | 2 | 1 | 2 | 2 | 2 | 2 | 0 | 1 | 1 | 0 | 1 | 2 | | Rhynchocyclus
olivaceus | 2 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 2 | 0 | 2 | 1 | 2 | 1 | 1 | **Supplementary Table 5** Character matrix used for the phylogenetic analyses. | | Feather cres | Relative
et of orb | esize Shap
sits ori | | frasal Frasal are | enestra
torbitalis Or
aportion) | is lacrimale | Latero-dornal
part of
ectethmoid | Lateral parts o
etecthrooid | of Crest/ridge
culmen | Fora
on (foram
corace)
en | imen
nina) of
id omal pri
nd | Processus
ocoracoideus | Processus
acrocoracoldeus | Brachial
tuberosity
(tuberculum
brachiale) | Sulcus medialis
supracoracoidei | Fossa
pneumotricipitalis | Crista
deltopectoralis | Crus ventra
fossae | slis Crus dors
fossae | alis Shaft sha | Depth of
pe incluse
capitis | Processus
Resorius | Processus
supracondylaris
dorsalis | Processus
supracondylari
donalis | Tuberculum
ligamenti
is collateralis
ventralis | Cotyla
ventralis | Cotyla i
dorsalis m | sition of the doru
paimal edge of th
ncisura tendinosa
for me extensor
tacarpi ulnaris ar
densor digitonum
penmunini, distal
ulna | Papillae
remigales
id caudales | Processus
dentiformis | Position of processus intermetacarpalis | Distal
symphysis of os
metacarpale
minus | Processus
extensorius | Proc
Stade into
inc | Hollow
distal
resus prosin
resus articu
icis surfac
caudal | to Medial o
mal (tiblota
dar proximal
ce, shaft | crest retinaculi rost and the tu fibularis, end, pro | osimo-distal groove
en the tuberositas
l'edensorius lateralis
berculum netinaculi m
lateral side of distal
saimal to the lateral
yle, rostral aspect | between crista
med plantaris an | Ossified pons
supratendineu | Position of pos
supratendines | is Trochlea
s metatorsi II | Trochlea
metatarsi IV | |---|--------------|-----------------------|------------------------|---|-------------------|---------------------------------------|--------------|--|--------------------------------|--------------------------|------------------------------------|---------------------------------------|---------------------------|------------------------------|---|------------------------------------|-----------------------------|---------------------------|-----------------------|--------------------------|----------------|-----------------------------------|-----------------------|--|--|---|---------------------|------------------------|--|--------------------------------------|--------------------------|---|---|--------------------------|---------------------------|---|--|--|--|------------------------------------|--------------------------------|----------------------------------|-------------------------------|--------------------------| | Fassil | 2 | 0 | | 2 | 0 | 1 | 2 | 1 | 0 | 0 | | 0 | 1 | 1 | 2 | 2 | 1 | 0 | 0 | 1 | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 0 | 0 | 1 | 2 | 0 | 1 | 0 | | 2 | 0 | | 2 | 0 | 1 | 2 | 0 | 1 | | Pitta sordida
Philepitta castanea | 0 | 0 | | 0 | 7 | 1 | 0 | 1 0 | ? | 0 | c c | 0 | 1 | 1 0 | 9 7 | 9 | 1 | 0 | 7 | ? | 1 | 1 | 7 | 1 | 2 2 | 1 1 | 9 | ? | 7 | 3 | 1 | 0 | 1 | 1 | 1 | 1 0 | 0 | | 1 | 0 | 1 | 2 2 | 0 | 7 | | Cymbirhynchus
macrorhynchos | 0 | 0 | | 0 | 7 | 0 | 0 | 2 | 7 | 0 | | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 7 | , | 1 | 1 | 0 | 1 | 1 | 1 | 0 | , | 7 | 3 | 2 | 0 | 1 | 1 | 0 | 1 | 0 | | 1 | 0 | 1 | 2 | 1 | 2 | | Calyptomena viridis | 1 | 0 | | 0 | 7 | 0 | 0 | 2 | 7 | 1 | | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 7 | 7 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 7 | 7 | 3 | 1 | 0 | 1 | 1 | 0 | | 0 | | 1 | 0 | 1 | 2 | 1 | 2 | | Sapayos senigms
Seositta cunicularia
yrmotherula axillaris | 0 | 0 | | 0 | 7 7 7 | 0 0 | 1 1 | 2 | ? ? ? | 0 | | 0 7 | 0 0 | 1 1 | 0 | 2 | 1 | 0 | 7 7 7 | ? ? ? | 1 1 | 0 7 | 1 7 | 1 1 | 1 1 | 1 1 | ? ? | ? | 7 7 7 | 0 1 | 1 1 | 0 | 1 1 | 0 7 | 1 2 | 2 | 1 0 | | 1 1 | 0 | 1 1 | 2
4
3 | 0 0 | 7 | | kesphorus canadensis
loretoyacuensis
nopophaga ardesiaca | 0 | 0 | | 1 | | 0 | 1 | 0 | 7 | 0 | 1 | | 0 | 1 | 0 | 2 | 1 | 0 | 7 | 7 | | , | 7 | 1 | 1 2 | 1 | , | , | 7 | 1 | 3 | 0 | 1 | 7 | 1 | | | | 1 | | 1 | 2 2 | 0 | 1 | | saturata
Scytalopus unicolor
Formicarius analis | 0 | 0 | | 1 | 7 | 0 | 1 | 1 | 7 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 7 | 7 | 1 | 1 | 1 | 1 | 2 2 | 1 | ? | ? | 7 | 2 | 3 2 | 0 | 1 | 2 | 1 | 0 | 0 | | 1 | 0 | 1 | 1 | 0 | 7 | | endrocincia fuliginosus | 0 | 0 | | 1 | 7 | 0 | 1 | 3 | 7 | 0 | | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 7 | 7 | 1 | 1 | 7 | 1 | 1 | 1 | , | , | 7 | 1 | 1 | 0 | 1 | 0 | 1 | | 1 | | 1 | 0 | 1 | 2 | 1 | i | | Pipra erythrocephala | 1 | 0 | | 2 | 0 | 0 | 2 | 1 | 0 | 0 | c | 0 | 1 | 1 | , | 7 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | | 1 | 0 | 1 | 2 | 0 | 1 | | Neopelma
sulphureiventer | 0 | 1 | | 1 | 0 | 0 | 7 | 1 | 0 | 0 | | 0 | 1 | 1 | 1 | 1 | 7 | 7 | 0 | 1 | 7 | , | 7 | 7 | 7 | 1 | 1 | 0 | | 0 | 0 | 0 | 1 | 0 | , | , | , | | , | , | , | 7 | 7 | 7 | | enneutes stolzmanni
loropipo holochlora
viridior | 0 | 0 | | 2 | 0 | 0 | 7 | 1 | 0 | 0 | | 0 | 1 | 1 | 1 | 2 | 1 | 0 | 0 | 1 | 1 | 1 0 | 1 | 1 | 2 2 | 1 | ? | | 0 | 0 | 0 | | 1 | | | | | | 2 | | 1 | 2 2 | 0 | 0 | | nacus manacus
trinitatis | 0 | 0 | | 1 | 0 | 0 | 7 | 2 | 0 | 0 | 1 | 7 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 2 | 1 | 7 | 0 | 0 | 1 | 2 | 0 | 1 | 0 | 0 | | 0 | | , | 0 | 2 | 7 | 0 | 1 | | Machaeropterus
pyrocephalus
pyrocephalus
hiroxiphia linearis | 0 | 0 | | 1 | 0 | 0 | 7 2 | 1 | 0 | 0 | 1 | 7 | 1 | 1 | 0 | 2 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 7 | | 0 | 3 | 1 0 | 0 | 1 | | | 0 | | | 7 | | 1 | 2 2 | | 0 | | enopipo atronitens
taskus chrysoptenus | 1 | 0 | | 1 | 0 | 0 | 2 2 | 3 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 2 2 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 2 2 | 1 | 7 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 2 2 | 0 | | 2 2 | 0 | 1 | 2 | 0 | 1 | | intilophia galeata | 2 | 0 | | 1 | 0 | 0 | 2 | 1 | 0 | 0 | | 0 | 1 | 1 | 2 | 2 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | | 2 | 0 | 1 | 2 | 0 | 7 | | Pipreola arcuata | 0 | 0 | | 1 | 1 | 0 | 2 | 1 | 2 | 0 | | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 0 | 7 | 1 | 0 | 1 | 0 | 0 | 7 | 7 | | 7 | 7 | 7 | 7 | 7 | 7 | | phalopterus omatus
Cotinga sp | 0 | 0 | | 1 | 1 | 0 | 2 2 | 1 2 | 2 2 | 0 | 0 | 0 | 0 | 1 1 | 2 2 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 1 | 1 | 1 | 1 | 0 | 3 2 | 0 | 0 | 1 1 | 0 2 | 0 | | 0 | | 0 | 0 | 1 1 | 2 2 | 0 | 1 1 | | Phytotoma rara | 0 | 0 | | 1 | 1 | 0 | 2 | 1 | 2 | 0 | | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 7 | 0 | 1 | 1 | | 2 | 0 | 1 | 2 | 7 | 7 | | Onychorynchus coronatus | 1 | 0 | | 1 | 2 | 0 | 2 | 1 | 2 | 0 | | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | | 2 | 0 | 1 | 2 | 1 | 2 | | Tityra semifasciata | 0 | 0 | | 1 | 2 | 0 | 0 | 1 | 2 | 0 | | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | | 1 | | 2 | 0 | 7 | 7 | 0 | 7 | | Schiffornis turdininus
amazonus
Tyrannus dominicensis | 0 | 0 | | | | | 2 | 1 | 1 | 0 | 0 | | 1 | 0 | 0 | 1 0 | 1 | 0 | 1 | 1 0 | | | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 2 | 1 | 0 | 1 | 0 | 0 1 | | | | 2 | 0 | 1 0 | 0 | 0 | 1 | | Todirostrum sp | 0 | 0 | | 1 | 0 | 0 | 0 | 0 | 1 | 0 | | 0 | 0 | 0 | 1 | į | 1 | ō | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | | | 1 | | 2 | 0 | 0 | ۰ | 1 | 1 | | thyrichocyclus allvaceus | 0 | 0 | | 1 | 0 | 0 | 0 | 1 | 1 | 0 | | 0 | 0 | 0 | 2 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | | | 1 | | 2 | 0 | 1 | 2 | 1 | 7 | | Rhynchocyclus sp | 1 | 0 | | 1 | 0 | 0 | 0 | 1 | 1 | 0 | | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | | | 1 | | 2 | 0 | 1 | 2 | 1 | 2 | | Acanthisita chloris | 0 | 1 | | 1 | 7 | 1 | 0 | 0 | 7 | 0 | 1 | 1 | 0 | 0 | 7 | , | 0 | 0 | 7 | 7 | 0 | 0
| 7 | 1 | 0 | 1 | , | , | 7 | 2 | 0 | 1 | 1 | 7 | 2 | | 1 | | 1 | 0 | 1 | 1 | 1 | 7 | | Gerygone flavolateralis | 0 | 0 | | 0 | 7 | 0 | 1 | 0 | 7 | 0 | 1 | 1 | 0 | 0 | 2 | 1 | 0 | 0 | 7 | 7 | 1 | 1 | 1 | 0 | 2 | 0 | 0 | 7 | 7 | 2 | 3 | 1 | 0 | 0 | 7 | , | 1 | | 0 | 1 | 0 | 0 | 1 | 0 | - 1 References (for Supplementary Table 1) - 1. del Hoyo, J., Elliott, A., Sargatal, J., Christie, D. A. & de Juana, E. (eds) *Handbook of the* - 3 Birds of the World Alive (Lynx Edicions, Barcelona, 2019). (retrieved from - 4 https://www.hbw.com/ on 13 March 2019). - 5 2. James, H. F., Ericson, P. G. P., Slikas, B., Lei, F. M., Gill, F. B. & Olson, S. L. - 6 Pseudopodoces humilis, a misclassified terrestrial tit (Paridae) of the Tibetan Plateau: - 7 evolutionary consequences of shifting adaptive zones. *Ibis* **145**, 185–202 (2003). - 8 3. Mourer-Chauviré, C., Hugueney, M. & Jonet, P. Découverte de Passeriformes dans - 9 l'Oligocène supérieur de France. C. R. Acad. Sci. Paris, Série II **309**, 843–849 (1989). - 4. Boles, W. E. A new songbird (Aves: Passeriformes) from the mid-Cenozoic of Riversleigh, - 11 northwestern Queensland. *Alcheringa* Special Issue 1, 31–37 (2006). - 5. Millener, P. R. Contributions to New Zealand's Late Quaternary avifauna. 1: *Pachyplichas*, - a new genus of wren (Aves: Acanthisittidae), with two new species. *Journal of the* - 14 Royal Society of New Zealand 18, 383–406 (1988). - 6. Millener, P. R. & Worthy, T. H. Contributions to New Zealand's Late Quaternary avifauna. - 2: *Dendroscansor decurvirostris*, a new genus and species of wren (Aves: - 17 Acanthisittidae). *Journal of the Royal Society of New Zealand* **21**, 179–200 (1991). - 7. Fjeldsa, J., Irestedt, M. & Ericson, P. G. P. Molecular data reveal some major adaptational - shifts in the early evolution of the most diverse avian family, the Furnariidae. J. - 20 *Ornithol.* **146**, 1–13 (2005). - 8. Tonni, E. P. & Noriega, J. I. Una especie extinta de *Pseudoseisura* Reichenbach 1853 - 22 (Passeriformes: Furnariidae) del Pleistoceno de la Argentina: comentarios - filogeneticos. *Ornitologia Neotropical* **12**, 29–44 (2001). - 9. Feduccia, A. & Olson, S. L. Morphological similarities between the Menurae and the - 25 Rhinocryptidae, relict passerine birds of the Southern Hemisphere. *Smithsonian* - 26 *Contributions to Zoology* **366**, 1–22 (1982). - 27 10. Rich, P. V., McEvey, A. R. & Baird, R. F. Osteological comparison of the scrub-birds, - 28 Atrichornis, and Lyrebirds, Menura (Passeriformes: Atrichornithidae and Menuridae). - 29 *Records of the Australian Museum* **37**, 165–191 (1985). - 30 11. Bock, W. J. Relationships between the birds of paradise and the bower birds. *The Condor* - **65**, 91–125 (1963). - 32 12. Olson, S. L., Parkes, K. C., Clench, M. H. & Borecky, S. R. The affinities of the New - Zealand passerine genus *Turnagra*. *Notornis* **30**, 319–336 (1983). - 34 13. Zuccon, D. & Ericson, P. G. P. Molecular and morphological evidences place the extinct - New Zealand endemic *Turnagra capensis* in the Oriolidae. *Mol. Phylogen. Evol.* **62**, - 36 414–426 (2012). - 37 14. Bock, W. J. The pneumatic fossa of the humerus in the Passeres. *The Auk* 79, 425–443 - 38 (1962). - 39 15. Pocock, T. N. Osteology. Contributions to the osteology of African birds. *Proceedings of* - 40 the Second Pan African Ornithological Congress, 83–94 (1966). - 41 16. Harrison, C. J. O. Additional information on the carpometacarpal process as a taxonomic - 42 character. *Bulletin B.O.C.* **89**, 27–29 (1969). - 43 17. Mayr, G. & Manegold, A. The oldest european fossil songbird from the Early Oligocene - of Germany. *Naturwissenschaften* **91**, 173–177 (2004). - 45 18. Mayr, G. & Manegold, A. New specimens of the earliest European passeriform bird. *Acta* - 46 *Palaeontologica Polonica* **51**, 315–323 (2006). ``` #NEXUS BEGIN TAXA; DIMENSIONS NTAX=36; taxlabels Fossil Pitta sordida Philepitta_castanea Cymbirhynchus_macrorhynchos Calyptomena_viridis Sapayoa_aenigma Geositta_cunicularia Myrmotherula_axillaris Sakesphorus_canadensis_loretoyacuensis Conopophaga_ardesiaca_saturata Scytalopus unicolor Formicarius_analis Dendrocincla_fuliginosa Pipra_erythrocephala Neopelma sulphureiventer Tyranneutes_stolzmanni Chloropipo_holochlora_viridior Manacus_manacus_trinitatis Machaeropterus_pyrocephalus_pyrocephalus Chiroxiphia_linearis Xenopipo atronitens Masius chrysopterus Antilophia_galeata Pipreola arcuata Cephalopterus_ornatus Cotinga sp Phytotoma rara Onychorynchus coronatus Tityra_semifasciata Schiffornis_turdina_amazonum Tyrannus_dominicensis Todirostrum_sp Rhynchocyclus_olivaceus Rhynchocyclus_sp Acanthisitta_chloris Gerygone_flavolateralis end; BEGIN CHARACTERS: DIMENSIONS NCHAR=42; FORMAT SYMBOLS = "0 1 2 3 4" GAP=- MISSING = ?; Charlabels Feathercrest Sizeorbits Formorbits Taillenarine ``` Fenestraantorb Lacrimal LatDorsEctethmoid LatEtectmoid Crestculmen Foramencor Procoracorideus Acrocoracoideus Tubbrachiale Sulsupracoracoidei Fossapneum Cristadeltopect Crusventral Crusdorsal Curvedhum **Profcapitis** Procflexorius Procsupcondyldors Procsupcondyldors Ulna Cotylavent Cotyladors Tubconddors Papillae Procdent Positionprocintcarp **Osmetacminus** Procextens Lameborder Procindicis Fossacaud Medcrest Incintcondy Hypotarsi Ponttmt Positionponttmt Trochlint Trochlext **MATRIX** | Fossile | 3 | 1 | 3 | 1 | 2 | 3 | 4 | |----------|----------|-----|---|---|---|---|---| | 1 | 1 | 1 | 2 | 2 | 3 | 3 | 2 | | 1 | 1 | 2 | 2 | 3 | 2 | 2 | 3 | | 2 | 2 | 1 | 1 | 2 | 3 | 1 | 2 | | 1 | 1 | 1 | 3 | 1 | 3 | 1 | 2 | | 2 | 1 | 2 | | | | | | | Pitta_sc | rdida | 1 | 1 | 1 | ? | 2 | 1 | | 2 | ? | 1 | 1 | 2 | 2 | 1 | 1 | | 2 | 1 | ? | ? | 2 | 2 | 1 | 2 | | 3 | 2 | 1 | ? | ? | 4 | 3 | 1 | | 2 | 2 | 2 | 1 | 2 | 1 | 2 | 1 | | 2 | 2 | 1 | 3 | | | | | | Philepit | ta_casta | nea | 1 | 1 | 1 | ? | 2 | | 1
1
2
4
2 | 1
?
?
2
2 | ?
?
2
1 | 1
2
3
2
2 | 1
1
2
2
2 | 2
?
?
2
1 | ?
?
1
? | 2
?
1 | |-----------------------|-----------------------|------------------|-----------------------|-----------------------|-----------------------|------------------|-------------| | _ | | crorhynch | 105 | 1 | 1 | 1 | ? | | 1 | 1 | 3 | ? | 1 | 1 | 1
2 | 1
2 | | 1 | 2 | 2 | 2 | :
1 | :
? | ? | 4 | | 3 | 1 | 2 | 2 | _
1 | 1 | 2 | 1 | | 2 | 1 | 2 | 2 | 2 | 3 | | | | _ | ena_viri | _ | 2 | 1 | 1 | ? | 1 | | 1
1 | 3
2 | ?
1 | 2
? | 1 | 2 | 1
2 | 1
1 | | 2 | 2 | 2 | :
1 | :
? | ? | 4 | 2 | | _
1 | 2 | 2 | _
1 | 1 | 1 | 1 | 2 | | 1 | 2 | 2 | 2 | 3 | | | | | Sapayoa_ | aenigma | 1 | 1 | 1 | ? | 2 | 1 | | 1 | ? | 1 | 1 | 2 | 2
1 | ? | ? | | 2 | 1
2 | ?
1 | ? | 2
? | 3 | 1 | 2
1 | | 2 | 2 | 1 | 1 | 1 | 1 | 3
2 | 1 | | 2 | 2 | 3 | ? | _ | _ | _ | _ | | Geositta | _cunicul | aria | 1 | 1 | 1 | ? | 1 | | 2 | 3 | ? | 1 | 1 | 1 | 2 | 1 | | 3 | 2 | 1 | ? | ? | 2 | 1 | 2 | | 2
1 | 2 | 2 | ? | ?
1 | ? | 1
2 | 2 | | 1 | 3 | 1
4 | 1 | 7 | 3 | Z | 2 | | Mvrmothe | rula_axi | • | 1 | 2 | 2 | ? | 1 | | 2 | 2 | ? | 1 | ? | 1 | 2 | 2 | | 2 | 2 | 1 | ? | ? | 2 | ? | ? | | 2 | 2 | 2 | ? | ? | ? | 2 | 2 | | 1 | 2 | ? | 3 | 2 | 2 | 1 | 2 | | 1
Sakesnho | 4
Trus cana | 3
densis_lo | ıretovacıı | 2
ensis | 1 | 1 | | | 2 | ? | 1 | 2 | 3 | ? | 1 | ? | | 1 | 2 | ? | ? | 2 | 1 | ? | ? | | 2 | ? | ? | 2 | 2 | | | | | 2 | ? | ? | ? | 2 | 1 | 1 | _ | | 2 | ? | 2 | 2 | 1 | 2 | 2 | 1 | | | | ı
siaca_sat | urata
T | 1 | 1 | 2 | ? | | 1 | 2 | 1 | ? | 1 | ? | 1 | 2 | | 1 | 3 | 2 | 1 | ? | ? | _ | | | 2 | ? | ? | 2 | 3 2 | | | | | 2 | ? | ? | ? | | 4 | 1 | 2 | | 1 | 2 | 2 | 1 | 1 | 2 | 1 | 2 | | 2
Scytalon | ı
us_unico | | 1 | 2 | 1 | ? | 1 | | 2 | 2 | ? | 2 | 2 | 1 | :
1 | 1 | | 3 | 2 | 2 | ? | ? | 1 | 2 | 2 | | 2 | 3 | 2 | ? | ? | ? | 1 | 4 | | 1 | 2 | 1 | 2 | 2 | 3 | 1 | 2 | |---------------|----------------|--------------------|----------|--------------|--------|---|--------| | 1 | 4 | 3 | 1 | 2 | | | | | | ius_anali | is | 1 | 1 | 2 | ? | 1 | | 2 | 2 | ? | 1 | 1 | 1 | 1 | 1 | | 2 | 2 | 1 | ?
? | :
? | 2 ? | 2 | 2 | | 1 | 2 | 3 | 2 | 2 | :
1 | 1 | 3
2 | | 1 | 3 | 1 | 1 | ? | - | _ | _ | | Dendroci | ncla_fuli | iginosus | 1 | 1 | 2 | ? | 1 | | 2 | 4 | ? | 1 | 1 | 2 | 2 | 2 | | | 2 | 1 | ? | ? | 2 | 2 | ? | | 2
1 | 2 2 | 2 | ? | ? | ?
1 | 2 | 2 | | 1 | 2 | 2 | 2 | 2 | 1 | Z | 2 | | _ | z
ythroceph | _ | 2 | 1 | 3 | 1 | 1 | | 3 | 2 | 1 | 1 | 1 | 2 | | | | 3 2 | ? | ? | 2 | 1 | 1 | 2 | 2 | | 2 | 2 | 2 | 3 | 2 | 2 | 1 | 1 | | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 2 | | 1 | 2 | 1 | 2 | 2 | 1 | 2 | | | Neopelma | _sulphure | eiventer | 1 | 2 | 2 | 1 | | | 1 | ? | 2 | 1 | 1 | 1 | 2 | 2 | | 2 | 2 | ? | ? | 1 | | | | | 2 | ? | ? | ? | ? | ? | 2 | 2 | | 1 | 1 | 2 | 1
? | 1
? | 2 | ? | ? | | 7 | :
7 | :
7 | : | : | : | : | : | | Tyranneu | tes_stolz | zmanni | 1 | 1 | 3 | 1 | | | 1 | ? | 2 | 1 | 1 | 1 | 2 | 2 | | 2 | 3 | 2 | 1 | 1 | 2 | 2 | 2 | | 2 | 2 | 3 | 2 | ? | 1 | 1 | 1 | | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | | 3
Chloroni | 1
po_holoch | 2
Nora vir | 2 | 1 | 1 | 2 | 1 | | 2 | 7 | 2 | 1 | 1 | 1 | 2 | 2 | | 2 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | | 2 | 2 | 3 | 2 | ? | 1 | 1 | 2 | | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | | 2 | 1 | 2 | 2 | 1 | 2 | 2 | | | Manacus_
1 | manacus_t
? | | _ | 1 | 1 | 2 | 1
2 | | 2 | 2 | 3 2 | 1 | 1 | 2 | 2 | 1 | | 2 | 2 | 3 | 2 | ? | 1 | 1 | 2 | | 3 | 1 | 2 | 1 | 1 | 2 | 1 | _ | | 1 | ? | 1 | ? | ? | 1 | 2 | | | Machaoro | ntarus n | rocenhal | ue nyroc | anhaluc | 1 | 1 | 2 | | 1 | pterus_py
1 | ? : ocepiia t
? | 2 | ina cus
1 | 1 | ? | 2 | | 2 | 1 | 3 | 2 | 1 | 1 | 2 | 2 | | 2 | 2 | 2 | 3 | 2 | ? | 1 | 1 | | 4 | 2 | 1 | 2 | 1 | 1 | 1 | 1 | | 1 | ? | 1 | 2 | 2 | 1 | 1 | | | | | | | | | | | | Chiroxiphia_linearis | Chiroxir | nhia line | aris | 1 | 1 | 2 | 1 | 1 |
--|---------------|----------------------|--------------|--------|--------------|----------|--------------|---| | 2 | | _ | 1 | | ? | | | | | 2 | | _ | 1 | | 2 | | | | | 1 2 1 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | | - | 2 | | | | | | <pre>1</pre> | | | | :
1 | _ | | | | | Xenopipo_atronitens | 1 | | _ | - | _ | 3 | 1 | Z | | 3 | I
Vananina | | _ | _ | | 2 | 1 | 2 | | 3 | xenopipo | - | _ | | | | | | | 2 | | • | _ | _ | | | | | | 1 2 1 1 1 Masius_chrysopterus 2 1 2 1 1 1 1 1 2 1 1 1 2 1 1 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 2 | | | | 1 | | | _ | 2 | | 1 2 1 1 1 Masius_chrysopterus 2 1 2 1 1 1 1 1 2 1 1 1 2 1 1 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 2 | | | | ? | _ | | _ | 3 | | Masius_chrysopterus 2 1 2 1 1 3 4 1 1 1 2 1 2 3 2 1 1 2 2 1 2 2 3 2 2 1 1 2 2 1 2 1 2 1 1 1 3 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 1 | | | | 1 | 3 | 1 | 3 | | 3 | - | _ | _ | | 1 | | | | | 3 | | chrysopte | rus | | 1 | | 1 | | | 2 | | 4 | | | _ | | 1 | | | 2 | 3 | | 1 | | 2 | | 1 | 2 | | 1 | 2 | | 2 | 2 | 1 | 1 | 1 | 2 | | Antilophia_galeata 3 1 2 1 1 1 3 2 2 3 3 3 2 1 1 1 2 2 2 2 | 1 | 2 | 1 | 1 | 1 | 3 | 1 | 3 | | 3 | 1 | 2 | 2 | 1 | 2 | | | | | 3 | Antiloph | nia dalea | ta | 3 | 1 | 2 | 1 | 1 | | 3 | | _ | _ | | | | | | | 2 | | - | 1 | | - | | | | | 1 2 1 1 1 2 1 3 Pipreola_arcuata 1 1 2 2 1 3 2 3 1 1 2 2 2 2 2 2 1 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 | _ | | _ | _ | | | | | | 1 | | 2 | | 1 | _ | | 1 | 3 | | Pipreola_arcuata 1 | _ | 2 | | | _ | 2 | _ | , | | 2 | _ | | | | - | 2 | 1 | 2 | | 2 | | _ | | | | | | | | 3 2 2 2 2 1 ? 2 1 2 1 1 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? | | - | _ | | | | | 2 | | 2 | | _ | | | | | 2 | | | 1 ? | | | | 2 | 1 | ? | 2 | 1 | | Cephalopterus_ornatus | | _ | _ | _ | _ | _ | _ | | | 3 2 3 1 1 1 2 3 2 2 2 1 2 1 2 2 2 2 2 1 4 1 1 2 1 1 1 1 1 1 1 2 2 1 2 2 3 3 1 1 1 2 2 3 1 2 1 2 2 2 1 2 2 3 1 1 1 2 2 3 1 1 1 2 2 2 3 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 3 1 1 1 2 2 1 3 1 1 1 2 2 2 1 3 3 1 1 1 2 2 2 2 <td< td=""><td>1</td><td>?</td><td>?</td><td>?</td><td>?</td><td>?</td><td>?</td><td>?</td></td<> | 1 | ? | ? | ? | ? | ? | ? | ? | | 3 2 3 1 1 1 2 3 2 2 2 1 2 1 2 2 2 2 2 1 4 1 1 2 1 1 1 1 1 1 1 2 2 1 2 2 3 3 1 1 1 2 2 3 1 2 1 2 2 2 1 2 2 3 1 1 1 2 2 3 1 1 1 2 2 2 3 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 3 1 1 1 2 2 1 3 1 1 1 2 2 2 1 3 3 1 1 1 2 2 2 2 <td< td=""><td>?</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<> | ? | | | | | | | | | 2 2 2 2 2 1 2 2 2 2 2 1 4 1 1 2 1 1 1 1 1 1 1 2 1 </td <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td>_</td> | | | | | 1 | | | _ | | 2 2 2 2 1 4 1 1 2 1 1 1 1 1 1 1 2 2 1 2 2 3 3 1 1 1 2 2 3 1 1 2 2 3 1 1 2 2 3 1 1 2 1 1 1 2 <td></td> <td></td> <td></td> <td></td> <td>1</td> <td>_</td> <td>2</td> <td></td> | | | | | 1 | _ | 2 | | | 1 2 1 | 2 | | _ | | _ | 2 | 1 | 2 | | 1 2 2 1 2 2 3 3 1 1 1 1 2 2 3 3 1 1 1 2 2 3 1 1 2 2 3 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 | 2 | 2 | 2 | 2 | 2 | 1 | 4 | 1 | | Cotinga_sp 1 1 1 2 2 3 3 3 1 1 1 2 3 1 2 1 2 2 2 1 2 2 2 2 2 2 1 3 1 1 1 2 3 1 1 1 1 1 2 1 1 2 2 2 2 2 2 1 3 3 1 1 1 2 2 1 3 1 1 1 2 2 1 3 1 1 1 2 2 1 3 1 3 1 1 1 2 2 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 2 2 2 2 2 2 2 2 2 2 2 2 | 1 | 2 | 1 | 1 | | 1 | 1 | 1 | | 3 3 1 1 1 2 3 1 2 1 2 2 2 2 2 2 2 2 2 1 3 1 1 1 2 3 1 1 1 1 1 2 1 1 2 1 1 2 1 3 1 1 3 1 1 1 2 2 1 3 3 1 1 1 2 2 1 3 3 1 3 1 1 1 2 2 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 1 3 3 1 3 3 1 3 </td <td>1</td> <td>2</td> <td>2</td> <td>1</td> <td>2</td> <td></td> <td></td> <td></td> | 1 | 2 | 2 | 1 | 2 | | | | | 3 3 1 1 1 2 3 1 2 1 2 2 2 2 2 2 2 2 2 1 3 1 1 1 2 3 1 1 1 1 1 2 1 1 2 1 1 2 1 3 1 1 3 1 1 1 2 2 1 3 3 1 1 1 2 2 1 3 3 1 3 1 1 1 2 2 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 1 3 3 1 3 3 1 3 </td <td>Cotinga_</td> <td>sp</td> <td>1</td> <td>1</td> <td>1</td> <td>2</td> <td>2</td> <td>3</td> | Cotinga_ | sp | 1 | 1 | 1 | 2 | 2 | 3 | | 2 1 2 2 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 | 3 | _ ;
3 | 1 | 1 | 1 | 2 | 3 | | | 2 3 1 1 1 1 2 1 2 2 2 2 1 3 Phytotoma_rara 1 1 2 2 1 3 2 3 1 1 1 2 2 2 2 2 1 2 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3 1 2 3 1 3 1 2 <td>2</td> <td></td> <td>2</td> <td>2</td> <td>2</td> <td>1</td> <td>2</td> <td>2</td> | 2 | | 2 | 2 | 2 | 1 | 2 | 2 | | 2 3 1 1 1 1 2 1 2 2 2 2 1 3 Phytotoma_rara 1 1 2 2 1 3 2 3 1 1 1 2 2 2 2 2 1 2 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3 1 2 3 1 3 1 2 <td>2</td> <td>2</td> <td>2</td> <td>2</td> <td>1</td> <td>3</td> <td>1</td> <td>1</td> | 2 | 2 | 2 | 2 | 1 | 3 | 1 | 1 | | Phytotoma_rara 1 1 2 2 1 3 2 3 1 1 1 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 1 2 1 2 1 2 1 2 1 2 3 1 1 2 3 1 2 3 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3 1 1 3 3 1 3 3 3 1 3 | 2 | 3 | 1 | 1 | | 1 | 2 | 1 | | Phytotoma_rara 1 1 2 2 1 3 2 3 1 1 1 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 1 2 1 2 1 2 1 2 1 2 3 1 1 2 3 1 2 3 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3 1 1 3 3 1 3 3 3 1 3 | 2 | 2 | 2 | 2 | - | - | _ | _ | | 2 1 2 2 2 2 2 2 2 2 2 2 1 1 2 1 2 ? 1 1 2 2 3 1 2 2 ? ? 0nychorynchus_coronatus 2 1 2 3 1 | | | | 1 | 2 | 2 | 1 | 3 | | 2 1 2 2 2 2 2 2 2 2 2 2 1 1 2 1 2 ? 1 1 2 2 3 1 2 2 ? ? 0nychorynchus_coronatus 2 1 2 3 1 | | 3 | 1 | 1 | 1 | 2 | 2 | 2 | | 2 ? 1 1 2 2 3 1
2 2 ? ? ?
Onychorynchus_coronatus 2 1 2 3 1 | 2 | 1 | | 2 | | | 2 | 2 | | 2 ? 1 1 2 2 3 1
2 2 ? ? ?
Onychorynchus_coronatus 2 1 2 3 1 | 2 | | 2 | 2 | | <u> </u> | 2 | 1 | | Onychorynchus_coronatus 2 1 2 3 1 | 2 | 2 | Z
1 | Z
1 | 7 | 7 | 2 | 1 | | Onychorynchus_coronatus 2 1 2 3 1 | 2 | · · | 1 | 1 | Z | Z | 3 | Т | | Onychorynchus_coronatus | <u>Z</u> | <u>ا</u>
د مامد د | (
 | · · | 1 | 2 | 2 | 4 | | 3 2 3 1 1 1 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 1 2 2 1 2 1 1 1 2 2 3 | unychory | /ncnus_co | ronatus | 2 | | 2 | 3 | 1 | | 2 2 1 2 2 2 2 2 2 2 2 2 2 1 2 2 1 2 1 1 1 2 2 3 | 3 | 2 | 3 | 1 | | 1 | | 2 | | 2 2 2 2 2 1 2 2 1 2 1 1 1 2 2 3 | 2 | 2 | 1 | 2 | 2 | | 2 | 2 | | 1 2 1 1 1 2 2 3 | 2 | 2 | 2 | 2 | 2 | | 2 | 2 | | | 1 | 2 | 1 | 1 | 1 | 2 | 2 | 3 | | 1 | 2 | 2 | 2 | 3 | | | | |---------------|-----------------|-----------|--------|-------------|------------------|-------------|------------------| | Tityra_s | emifasci | ata | 1 | 1 | 2 | 3 | 1 | | 1 | 2 | 3 | 1 | 1 | 1 | 1 | 2 | | 1 | 2 | 1 | 2 | 2 | 2 | 2 | 2 | | 2 | 3 | 2 | 2 | 2 | 1 | 1 | 1 | | 1 | 2 | 1 | 1 | 1 | 1 | 2 | 3 | | 1 | ? | ? | 1 | ? | | | | | | | ininus_an | | 1 | 1 | 2 | 3 | | 1 | 3 | 2 | 3 | 1 | 1 | 2 | 1 | | 2 | 2 | 2 | 1 | 2 | 2 | 2 | 2 | | 2 | 2 | 3 | 2 | ? | 2 | 1 | 1 | | 2 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | | 3 | 1 | 2 . | 2 | 1 | 2 | | _ | | | _dominic | | 1 | 1 | ? | 1 | ? | | 3 | 2 | 2 | 1 | 1 | 2 | 1 | 1 | | 1 | 2 | 1 | 2 | 1 | 2 | 2 | 2 | | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 2 | | 1 | 2
1 | 1 | 1 | 1 | 1 | 1 | 1 | | I | | 0 | 1 | 2 | 1 | 1 | 1 | | Todirost
1 | .r uiii_sp
2 | 1 | 1 | 1 | 1
1 | 1
2 | 1
2 | | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 2 | | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 1 | | 2 | 1 | 1 | 1 | 1 | 2 | 3 | 1 | | 1 | 0 | 2 | 2 | 1 | 2 | 5 | _ | | _ | yclus_ol | | 1 | 1 | 2 | 1 |
1 | | 1 | 2 | 2 | 1 | 1 | 1 | 1 | | | 2 | 2 | 1 | 2 | 1 | 2 | 1 | 3
2
2
3 | | 2 | 2 | 2 | 2 | 2 | 2 | _
1 | 2 | | _
1 | 2 | _
1 | _
1 | 1 | 1 | 2 | 3 | | 1 | 2 | 2 | 2 | ? | | | | | Rhynchoc | yclus_sp | 2 | 1 | 2 | 1 | 1 | 1 | | 2 | 2 | 1 | 1 | 2 | 1 | 2 | 2 | | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 2 | | 1 | 2 | 2 | 2 | 2 | 1 | 2 | 1 | | 2 | 1 | 1 | 1 | 1 | 2 | 3 | 1 | | | 2 | 2 | 3 | | | | | | Acanthis | itta_chl | oris | 1 | 2 | 2 | ? | 2 | | 1 | 1 | ? | 1 | 2 | 1 | | | | 1 | ? | ? | 1 | 1 | ?
?
3
2 | ? | 1 | | 1 | ? | 2 | 1 | 2 | ? | ?
?
2 | ? | | 3 | 1 | 2 | 2 | ? | 3 | 2 | 1 | | 2 | 2 | 1 | 2 | 1 | 2 | ? | | | | 63 3 | | | | _ | | _ | | | _flavola | | 1 | 1 | 1 | ? | 1 | | 2 | 1 | ? | 1 | 2 | 1 | 1 | 3
2 | | 2 | 1 | 1 | ? | (| 2 | 2 | <u>ا</u> | | 1 | 3
1 | 1 | 1
? | ?
?
? | ?
? | 2
3
2 | 4
1 | | 2 | 1 | 1 | ? | ?
1 | !
■ | ۷ | Т | | END; | T | ש | ۷ | 1 | , | | | | LIND; | | | | | | | | log/file=resultats-2.txt; Begin paup; ``` outgroup Acanthisitta_chloris Gerygone_flavolateralis; hsearch swap=tbr addseq=random; roottrees/root=outgroup; savetrees/file=tree2.tre; describetrees/fvalue apolist; ``` end;